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Abstract: Structure from Motion (SfM) can produce highly detailed 3D reconstructions,
but distinguishing real surface roughness from reconstruction noise and geometric inaccuracies
has always been a difficult problem to solve. Existing SfM commercial solutions achieve noise
removal by a combination of aggressive global smoothing and the reconstructed texture for smaller
details, which is a subpar solution when the results are used for surface inspection. Other noise
estimation and removal algorithms do not take advantage of all the additional data connected with
SfM. We propose a number of geometrical and statistical metrics for noise assessment, based on both
the reconstructed object and the capturing camera setup. We test the correlation of each of the metrics
to the presence of noise on reconstructed surfaces and demonstrate that classical supervised learning
methods, trained with these metrics can be used to distinguish between noise and roughness with an
accuracy above 85%, with an additional 5–6% performance coming from the capturing setup metrics.
Our proposed solution can easily be integrated into existing SfM workflows as it does not require
more image data or additional sensors. Finally, as part of the testing we create an image dataset for
SfM from a number of objects with varying shapes and sizes, which are available online together
with ground truth annotations.

Keywords: Structure from Motion (SfM); 3D reconstruction; noise estimation; point clouds; roughness

1. Introduction

Structure from Motion (SfM) is widely used for visualization and inspection purposes in the
building [1–3], manufacturing [4] and energy industries [5], as well as for geology [6–8] and cultural
preservation [9–11]. Because of the reliance of SfM on 2D image data, it is prone to geometric noise and
topological defects, if optimal image capturing conditions are not met (Figure 1). This has prompted
a number of benchmarks [12–14] on the accuracy and robustness of SfM solutions, as well as on
the best possible lighting conditions, camera positions, image density and captured object surface
characteristics. The problem of determining if noise is present on a 3D reconstructed mesh and
differentiating between noise and the inherent roughness that surfaces and objects have is not a trivial
one. Because topological defects and noise on the surface of SfM reconstruction are caused by a
combination of sub-optimal capturing conditions, the surface properties of the scanned object and the
camera used to capture the 2D, they cannot easily be quantified.

The main contribution of this paper is the exploration, development and evaluation of a number
of metrics for determining if the underlying 3D reconstructed surface is noisy or rough. An overview
of the idea proposed in this paper is shown in Figure 2. The proposed metrics are chosen based on
the known weaknesses of SfM solutions, as well as on the underlying principals used in many of the
state of the art mesh simplification, quality assessment and denoising algorithms, given in the next
section. For testing the proposed metrics, we have created a image dataset from a number of number
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of different objects. This dataset, together with the ground truth noise annotations for testing are
available online (Dataset: dx.doi.org/10.17632/xtv5y29xvz.2).

(a) (b) (c) (d)

Figure 1. Illustration of Structure from Motion (SfM) reconstruction geometrical errors, which need to
be distinguished from real surface roughness. Noise parts are shown in red. The problematic areas in
(a,c), lead to geometrical errors in the reconstruction as seen in (b,d).

Figure 2. Overview of the proposed idea for using metrics extract from the mesh and capturing setup
used for SfM reconstruction, to determine if the underlying surface is noisy or rough.

2. State of the Art

Most of the commercial SfM solutions rely on global or isotropic smoothing algorithms. These
algorithms remove noise, but smooth out smaller details. Reconstruction solutions like Metashape [15],
ContextCapture [16], Reality Capture [17], etc. use this approach, with additional options for mesh
surface refinement. Such global denoising algorithms are also presented by [18–20].

Local feature or anisotropic algorithms analyze the underlying mesh geometry and normals to
distinguish noisy areas from high surface roughness areas and preserve smaller details. The research
from [21] uses a pre-filtering step and a L1-median normal filtering, while [22] uses filtered facet normal
discriptors and training of a neural network for calculating regression functions. Other research is
focused on classifying normal regions and using isotropic neighbourhoods [23] or iterative estimation
of normals and vertex movement [24,25].

dx.doi.org/10.17632/xtv5y29xvz.2
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Another important factor for detecting noise is the geometric visibility of roughness, especially
on complex surfaces. There are multiple proposed solutions by [26–29], using local visibility features,
curvature calculation and normals to detect parts of meshes with low or high roughness. These
methods are used both for detecting noise on smooth meshes, but also for introducing watermarking
to meshes without distorting their appearance.

Most of the described mesh denoising algorithms are not focused directly on SfM reconstructions
and thus they do not use a lot of the information which can be taken from SfM production pipelines.
In this paper we propose noise estimation metrics, which can predict noise risk and be used to
distinguish noise caused by sub-optimal SfM reconstructions from the inherent roughness of the
reconstructed objects. These metrics combine knowledge taken directly from 3D meshes reconstructed
using SfM, with information taken from their textures, as well as from the camera setup used to capture
the images used for reconstructing the object, such as camera positions, orientations, focal length
and internal parameters. No external sensors or additional captured data are required for any of the
presented metrics. With this our main contributions in this paper can be summarized:

• We present a number of metrics that can be easily calculated as part of the normal SfM workflow;
• We explore the correlation between each metric and the presence of noise on reconstructed objects;
• We train classical supervised learning methods using combinations of these metrics and

demonstrate how to verify their accuracy;
• To verify the robustness of the metrics, we test them on objects with varying surface textures,

shapes and sizes;
• We provide the captured database of images used to create the SfM reconstructions, together with

the manually annotated ground truth data as part of the paper. This way others can use it for
comparison and testing noise estimation and removal implementations.

3. Methodology

As part of this paper we propose nine metrics for detecting noise on SfM reconstructed meshes.
These can be divided into two groups—metrics based on findings in the areas of mesh visual quality
and roughness detection, and ones based on the SfM reconstruction weaknesses to sub-optimal
capturing conditions. A total of five main observational hypotheses are made for the appearance
of noise and geometric inaccuracies in SfM reconstructions and for each, one or more metrics are
chosen as a way to describe each one. The observations are given in the numbered list below, with
corresponding metrics shown in Table 1. In the next sections, each of the metrics will be explained
in detail.

1. Noise manifests as either clumped together high frequency vertices or flat patches and
holes—when the initial feature detection and matching methods in the SfM pipeline do not
produce enough correct matches, the produced 3D surfaces can end up with overlapping or
missing parts. These manifest in geometrical surface errors, as seen in Figure 3a;

2. SfM noise normally comes from smooth, monochrome colored surfaces—monochrome surfaces
normally lack robust features like edges and angles, while smooth and transparent surfaces,
produce reflections, which change with the view direction, making correct feature matching
impossible (Figure 3b);

3. Noise is present on parts of the object that have not been seen from enough camera positions—SfM
needs to gather information of the object from multiple directions, to provide a correct geometrical
representation of the micro and macro shape of the surfaces. Not enough camera variation can
lead to 3D surface “guessing” and deformed patches. An example of this can be seen in Figure 3c,
where one object obscures another surface from being seen by the cameras resulting in noise;

4. Noise is present on parts of the object that have been seen from enough camera positions,
but were not in focus—surface features need to be extracted and matched, but if parts of the
object are blurred and out of focus, not enough information can be extracted from them. This
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is visualized in Figure 3d, where the back of the object becomes out of focus, resulting in not
enough features captured;

5. Noise is present on parts of the object that have been seen from enough camera positions, but those
positions were not diverse enough—if all the capturing positions are from the same direction,
not enough information can be extracted for the shape of the surface. This can be seen in Figure 3e,
where multiple images are taken from a surface, but none of them have enough angular diversity
in vertical direction, resulting in the reconstruction of the bottom of the surface being noisy.

(a) Observation 1 (b) Observation 2

(c) Observation 3 (d) Observation 4

(e) Observation 5

Figure 3. Examples of the five main observational hypotheses, used as a basis for the chosen mesh-based
and capturing setup-based metrics.

Table 1. The five observational hypotheses and the chosen metrics, used to describe them. The different
metrics are either based only on the reconstructed mesh itself or on the capturing setup—camera
positions, intrinsic parameters, etc.

Observation Metrics Type

1
Local Roughness from Gaussian Curvature (LRGCm)

Difference of Normals (DONm)
Vertex Local Spatial Density (VDm)

Mesh-based

2 Vertex Local Intensity Entropy (VIEm) Mesh-based

3
Number of Cameras Seeing Each Vertex (NCVs)

Projected 2D Features (PFs) Capturing Setup-based

4 Vertices in Focus (ViFs) Capturing Setup-based

5
Vertices Seen from Parallel Cameras (VPCs)

Vertex Area of Visibility (VAVs) Capturing Setup-based

A visualization of each of the metrics on the surface of a reconstructed mesh is given in Figure 4.
In the subsections below we will focus on each of the metrics’ theoretical basis, extraction methods,
interpretation, etc. For easier readability each of the metric abbreviations will have a subscript of m for
mesh-based or s for capturing setup-based. Before computing each metric, the reconstructed object is
scaled to absolute real-world scale. Once all the metrics have been presented, they will be analyzed to
determine their level of correlation. This will be presented in the Results Section 5.
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3.1. General Mesh-Based Metrics

In this subsection we will cover the metrics extracted directly from the 3D reconstructed mesh.
They are based on the vertex positions, normals and vertex color. These metrics are based on
observational hypotheses 1 and 2, presented in Section 3.

3.1.1. Local Roughness from Gaussian Curvature (LRGCm)

Rationale: Noise on the SfM surface appears as a geometric disturbance, which creates high roughness
areas on otherwise smooth surface patches.

The first calculated metric is the mesh’s local roughness, depending on a metric closely related to
Gaussian curvature. The metric was first proposed by [27], in their paper for mesh quality assessment.
Local curvature is widely used for visual quality assessment and denoising, as a characteristic
describing the local changes of the surface. Their proposed algorithm first calculates the Gaussian
curvature like metric (GC) in an area around each vertex, essentially describing how much the area
deviates from a planar surface. This is done using Equation (1), where N(F)

i is all the neighbour faces
around a point i and αj is the angle between the current vertex and the one which is incident to it.

GCi =

∣∣∣∣∣∣∣2π − ∑
j∈N(F)

i

αj

∣∣∣∣∣∣∣ (1)

Once the local curvature is calculated, a Laplacian matrix of the angles between the connected
neighbours and each vertex is derived. Finally the local roughness metric LRGC is defined as a
weighted difference between the Gaussian curvatures of each vertex and its neighbours, weighted
according to the calculated Laplacian matrix. This is shown in Equation (2), where Dij is the Laplacian

matrix and N(V)
i is all the vertices in the neighbourhood of the current one. An in-depth explanation

of the method can be seen in [27].

LRGCi =

∣∣∣∣∣∣GCi −
∑

j∈N(V)
i

(Dij · GCj)

∑
j∈N(V)

i
Dij

∣∣∣∣∣∣ (2)

This metric is robust to curved surfaces and gives gradual and smooth values. The method gives
a scale independent surface roughness measure. An example of the metric can be seen in Figure 4a,
where higher values denote higher roughness and higher risk of noise.

3.1.2. Difference of Normals (DONm)

Rationale: Noise on SfM surfaces appears as high frequency surface changes, especially on the edges of the
mesh and surrounding holes in it.

The metric is proposed by [30] and is used for surface roughness detection, point cloud
segmentation, obstacle detection, etc. It is a scale dependent local value, sensitive to specific resolutions
of roughness. Two radii r1 and r2 of different sizes are chosen around each vertex. The normals of
the area below the neighbourhood for each radius are computed and their difference gives the final
metric. Equation (3) is used for calculating the difference of normals , where n̂(p, r) is the normal of
the surface under each of the radii for every vertex i and r1 < r2. Get the final measure, the magnitude
of this vector is calculated, which is between [0, 1].

DONi =

∣∣∣∣ n̂(pi, r1)− n̂(pi, r2)

2

∣∣∣∣ (3)

In their work, [30] demonstrate that high frequency areas contain smaller details in point clouds.
SfM noise is normally represented as high frequency signal in clustered areas on the surface of the
reconstruction. This is why we focus on capturing very high frequency surface changes. After looking
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at the scale of the input data, the larger radius is set heuristically to 2% of the size of each object, while
the smaller radius is set to ten times smaller factor, as suggested in [30]. This makes it independent
from the scale of the object. With these input parameters, the difference of normals is especially
sensitive to roughness at the edges of objects and allows it to provide a more focused additional
roughness metric to LRGCm metric. The calculated metric is visualized in Figure 4b, where higher
values denote higher difference between the local normals and higher risk of noise.

(a) LRGCm - mesh-based (b) DONm - mesh-based (c) VDm - mesh-based

(d) VIEm - mesh-based (e) NCVs - setup-based (f) PFs - setup-based

(g) ViFs - setup-based (h) VPCs - setup-based (i) VAVs - setup-based

Figure 4. Visualization of all the proposed metrics as heat maps. For Local Roughness from Gaussian
Curvature (LRGC), DONm, VDm, higher values (indicated with red color) indicate higher risk of noise,
while for VIEm, NCVs, PFs, ViFs, VPCs and VAVs—higher values, indicate lower risk of noise.



Sensors 2020, 20, 5725 7 of 24

3.1.3. Vertex Local Spatial Density (VDm)

Rationale: When surface errors occur in SfM reconstructions, the resultant reconstruction contains areas
of high vertex density, even on supposedly smooth real world object areas.

This metric is based on point cloud segmentation methods like the one proposed by [31], using
area of interest spatial neighbourhood grouping like K nearest neighbours. This metric is calculated
by first computing a number of progressively larger search radii, connected to the overall size of the
reconstructed object. The size is chosen heuristically and is in the interval RVD = [0.1% : 0.5%] from
the size of the object, as this is seen as the vertex density that best explains the possibility of noise.
The mesh global maximum of neighbours for each of the radii is calculated. A percentage of these
maximum values is taken and used as a threshold in the subsequent calculations. The lower this
percentage is the less the local spatial density can be before it is viewed as problematic. For this paper
the percentage is set to 60%.

For each vertex the number of neighbours is captured for each of the radii. If the number is
above the threshold, a score is given for that vertex. The more instances get a number higher than

the threshold, the higher the final score for that vertex. This is shown in Equation (4), where N
(rj)

i

is the set of all neighbours for the current radius, N
(rj)
max is the maximum set of all neighbours, DC is

the density coefficient in percentage and s is the score. This way a vertex density score scaled to the
global density of the object on multiple size levels is achieved. This makes the metric invariant to the
scale of the object and it can be comparable between objects of different sizes. The calculated density
metric is shown in Figure 4c, where higher values indicate parts of higher vertex density and higher
risk of noise.

VDi = ∑
rj∈RVD

s(j) , for s(j) =

1, if N
(rj)

i ≥ DC · N(rj)
max

0, otherwise
(4)

3.1.4. Vertex Local Intensity Entropy (VIEm)

Rationale: SfM reconstruction tends to produce errors and noise when the object surface is featureless and
monochrome [32].

The intensity for each vertex is calculated from the texture RGB data. These intensities are then
used to calculate the local entropy of the mesh. Color has been used for mesh and depth map denoising
[25,33] and it is shown to give good results. We choose to use entropy [34], as it can be more easily
calculated locally on a point cloud, compared to other edge detection algorithms and can give a
measure of the surface color intensity change. To calculate the entropy H we use Equation (5), where
Pi is probability of the occurrence of the specific intensity level at vertex pi and N is the maximum
number of possible intensity values equal to 256. The visualization of the entropy is given in Figure 4d,
where higher values indicate higher entropy and more varied surface color, with lower risk of noise.

H = −
N

∑
i=0

Pi log2 Pi (5)

3.2. Capturing Setup-Based Metrics

The following metrics are unique for SfM meshes, as they are extracted from the camera capturing
setup and utilize the position, orientation, view density of the cameras, etc. The main factors for
selecting these metrics, are the dependencies demonstrated by [14,35,36], between the quality of the
capturing setup and the resultant reconstruction. To calculate these metrics a Unity implementation is
created for positioning the reconstruction and calculated camera positions, as well as reprojecting the
necessary data. We use the Unity engine, because of the easy programming pipeline using C#, fast ray
cast computation and the possibility to visualize and compute large 3D model relatively fast and easy.
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An overview of the used development pipeline is given in Section 4. These metrics are based on the
hypothesis observations 3, 4 and 5.

3.2.1. Number of Cameras Seeing Each Vertex (NCVs)

Rationale: To create a good SfM reconstruction, a high amount of overlap between images is required [9],
[11], which means that vertices “seen” by many cameras have a lower risk to contain noise.

To compute this metric, all the pixels of each of the calculated cameras are projected to the
reconstructed mesh. The metric is calculated by projecting the captured images from the calculated
camera positions towards the reconstructed mesh. Each vertex is scored depending on the amount of
image pixels projected onto it, meaning that the higher the score the more cameras have “seen” the
vertex. The visualization of the metric is shown in Figure 4e.

This metric gives an overview of how certain we are, whether the data created by the SfM system
is representative of the real world object. If not enough photos are taken from certain parts of the real
life objects, there is a bigger chance that the reconstruction of these parts will contain noise or holes.
The following metrics will expand on the information captured by this metric.

3.2.2. Projected 2D Features (PFs)

Rationale: To create the SfM reconstruction, 2D feature points are extracted from each image. These
features are matched between images and used in the triangulation of the sparse point cloud and the reprojection of
camera positions [37]. By projecting these points to the mesh, areas of higher certainty can be found, by exploiting
the fact that areas not containing any found and matched features, will produce lower quality reconstructions

We look at the 2D features extracted in the triangulation and camera position calculation step
of the SfM pipeline. In this step features are extracted from each image and matched between them.
In most SfM solutions, these 2D feature descriptors are not disclosed, but they are mostly variations
of SURF [38] or free alternatives like FAST [39] and ORB [40]. An example image with captured
feature points can be seen in Figure 5, where it can be seen that smooth areas like the eyes and noise of
the bunny statue have much less features. For each camera position, the already calculated feature
descriptor points are extracted. A radius around each point is set and the points under that area are
projected to the 3D reconstructed model. For each 3D point the metric as aggregated depending on
how many of these matched feature point areas are projected onto it.

Figure 5. An image used as input to the SfM solution and calculated feature points. A radius is set
around each of the features and all points that are in the area are projected to the reconstructed mesh.
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The higher the value of this metric for each vertex, the more 2D features were projected onto it.
Figure 4f shows this metric. As these 2D features are used in the reconstruction itself it is hypothesized
that a high metric will have less noise.

3.2.3. Vertices in Focus (ViFs)

Rationale: Structure from Motion matches points between images for creating the initial sparse point
cloud and camera position and orientation calculation. If parts of the object are captured out of focus, these
points would have blurring on them. This can increase the possibility for reconstruction noise to be present in
these parts.

To calculate the metric, first the near Np and far Fp focal plains are calculated for each camera
using the formulas presented in Equation (6). There H f is the hyperfocal distance, which is the distance
between the camera and the closest surface, which is in focus, when the lens is focused on infinity, while
the CoC is the circle of confusion calculated according to [41]. The focal length F and aperture A are
known from the EXIF data contained in the images and the distance to the object D is calculated from
the camera to the closest surface of the reconstruction. Because the object is scaled before capturing the
metrics, the measured distances between cameras and the object should be in correct units.

Np =
H f · D

H f + (D− F)
, Fp =

H f · D
H f − (D− F)

(6a)

H f =
F2

ACoC
, CoC =

F
1720

(6b)

A ray is cast from each pixel of the camera, to the corresponding face from the reconstructed
model and the distance between the two is calculated. Vertices of faces outside of the focal planes
are scored with −1 for cameras which have seen them, while ones that are inside the focal planes are
scored with 1. A lower score indicates more out of focus cameras having seen the vertex and a higher
chance of it being noisy. The metric can be seen in Figure 4g, where the lower the value, the more times
it has been out of focus and the higher risk for noise.

3.2.4. Vertices Seen from Parallel Cameras (VPCs)

Rationale: Even if multiple images have captured the surface of the object, if all of them “see” it from large
angles, without at least one central image to connect them, there is a possibility of SfM calculation error [42].

This metric is captured by computing the angle between each normal and the forward direction
of each of the calculated cameras that can “see” the vertex. This is achieved by using Equation (7),
where αm is the calculated angle between the normal Ni of vertex vi and the camera forward direction
vector C f for each camera seeing the vertex [0, i]. Two 3D vectors are parallel, if the angle between
them is either 180 or 0 degrees, but the camera has to be able to see the vertex, so an angle of 0 degrees
is not likely. The closer at least one angle is to 180 degrees, the less chance there is of noise. Figure 4h
shows this metric.

αi = arccos
C f · Ni

|C f · Ni|
(7a)

αmax = max
{1:i}

αi (7b)

3.2.5. Vertex Area of Visibility (VAVs)

Rationale: To capture a surface’s shape, SfM requires images from multiple positions and angles, so all
parts of the topology are visible. If only little variation is given in the imaging positions, the resultant mesh can
exhibit noise patches, surface deformations and holes [42].
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The metric requires the calculation of the area in space, from which each vertex is seen. We assume
that the object surface is visible from every camera point of view. To model this metric, first a
hemisphere is placed on the position of each vertex, oriented depending on the underlying normal.
A hemisphere is chosen, as the assumption is that the cameras need to be able to physically see surface
and the presence of self-occlusion. A ray is cast from each camera that “sees” the vertex. The points of
intersection between each ray and the hemisphere are calculated and their 3D coordinates are saved.
An example of this can be seen in Figure 6, with the camera position pulled closer and the hemisphere
colored for easier visualization.

Figure 6. Visualization of the calculated hemisphere positioned above each vertex in the mesh and
the camera position, together with the intersection points. The distance from the camera to the vertex
position is made in a smaller scale for easier visualization. Once all the intersection points are found
the area between them is calculated and the ratio between it and the whole area is used for the metric.

We then project the points in 2D, to avoid working with spherical geometry. The Lambert
azimuthal equal-area projection, is chosen as it represents correctly the area in all regions of the sphere.
For the projection Equation (8) is used, where (x, y, z) are the Cartesian coordinates of the points on
the sphere and (X, Y) are the projected ones. The metrics is calculated as a ratio between the area of
the projected points and the whole area. An example of the metric can be seen in Figure 4i, where the
higher the values are, the higher the area of visibility is and the lower the risk of noise. This means
that even if a lot of cameras have seen the point, if their angular coverage from different positions is
not large enough this would be penalized.

X =

√
2

1− z
x, Y =

√
2

1− z
y (8)

4. Implementation

In this section a short overview of the implementation pipeline is given. The different processing
environments for extracting each of the metrics are given in Figure 7. The initial data of the
reconstructed mesh, the camera positions and orientations and extracted feature points are taken
directly from the SfM software. For our current implementation Agisoft Metashape [15] is used, but the
same data can be extracted from many of the commercial and open source SfM applications. In our
case Metashape uses a Python based API for automation of the SfM pipeline, which can be also used
to extract the required data and parse it in a structure, used for metric extraction. For the purely
mesh-based metrics only the reconstruction itself is used and the processing is done directly in Python.
For extracting data and manipulating the 3D data, the library open3D [43] is used in. The extracted
features are manipulated and the areas around them calculated, by using OpenCV [44] for Python.
The capturing setup-based metrics are calculated through the use of the Unity game engine [45].
The engine uses C#, with specific optimizations for vector and GPU computations. Normally used for
making games and interactive experiences, we use the powerful 3D features of the engine, the camera
settings and the fast and easy ray calculating capabilities. The data from the Metashape Python API in
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these cases is saved to a custom format containing all the mesh data—vertices, faces, normals, color
information, as well as camera positions and orientation. For these metrics, the EXIF data from each
image is also used, for calculating the proper field of view and depth of field of each of the cameras.
The setup-based metrics are calculated per mesh vertex, by casting rays from each pixel of the camera
positions to the reconstructed surfaces. An example view of the Unity implementation is given in
Figure 8a, where the reconstruction together with the calculated camera positions and their forward
direction vectors are given. The projected points on the mesh are used to calculate the NCV metric and
show which parts of the object are seen by the particular camera. The input photo and the equivalent
view from the Unity camera are given in Figure 8b,c.

Figure 7. Overview of the implementation pipeline, showing what input and programming
environments are used to calculate each of the metrics. The mesh-based metrics are directly computed
in Python, while the capturing-setup based ones use a combination between Python and the Unity
game engine.

(a) View from NCV metric calculation

(b) Input image (c) Unity camera view

Figure 8. Views from the Unity implementation used for the capturing setup-based metric extraction.
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5. Testing and Results

Testing the proposed metrics was done in a number of steps. First the correlation between the
different metrics was calculated. This gave an initial idea if any of them gave redundant information,
too similar to the others. The second step was to create a dataset of images and SfM reconstructions.
These objects had varied sizes, shapes, roughness levels and were made from different materials
with different textures. We then manually annotated each one of the reconstructions on a vertex
level—as noise and not noise. This annotation was used as ground truth for testing the accuracy of the
proposed metrics.

We then separated the reconstructed objects into testing and training data and used the metrics
together with the annotated data to train a number of supervised learning classification methods.
The accuracy of the proposed metrics could then be evaluated for segmentation of the testing data into
noise and not noise vertices.

To evaluate if all metrics were useful for detecting noise, we first calculated the correlation
between the appearance of noise and each of the metrics. We then used that information to retrain the
best performing supervised classification method on different subsets of the metrics and evaluate the
resultant accuracy.

Finally, we also evaluated the proposed solution in a wider industrially relevant context, by using
a reconstruction of a wind turbine blade for testing and evaluating the results from it.

5.1. Data Gathering

To ensure the robustness of the proposed metrics, objects with different shape, size, roughness
and color, as well as material were used. All the objects are shown in Figure 9. Special care was taken
to create a diverse set of objects, to lower the possibility of bias in the proposed metrics. Some of the
ways the dataset could be separated:

1. By size of the objects—we had objects ranging from 150 mm (cups shown in Figure 9i,j, etc.) to
800 mm (the black vase Figure 9d and sea vase Figure 9f), together with the wind turbine blade
segment, which was more than 1500 mm long;

2. By material—we had objects made from stone, ceramics, plastic, clay, wood and metal.
This guaranteed that we could have varying surface properties like reflectivity, texture and
color variation;

3. By shape complexity—we had objects with simple shapes and repeated patterns like the different
cups and vases, as well as objects complex shapes, with all the possible problems that could arise
from that—self-occlusion (Figure 9c) or thin and narrow regions (Figure 9g,h).

A Canon 5Ds DSLR camera was used for capturing images of the objects. The resolution was set
to 8688 × 5792 and a zoom lens with a variable focal length of 30–105 mm was used. The zoom lens
was used, so the focal length can be easily changed depending on the size of the object. The focal length
was set at the start of the capturing process for each object and kept the same throughout, only being
changed if needed, once a new object is selected. This was done to guarantee that the captured object
was always in frame and most parts of it also in focus. The focal length was changed depending on the
size of the object. For the initial and subset tests 36 images were taken in a circle around each object in
one horizontal band. The camera was setup to such a height, so it stayed perpendicular to the side of
the objects. The research by [14], shows that this one vertical band capturing setup ensures that the
objects can be reconstructed, but there is a possibility of geometrical noise on their surfaces. For the
industrial context test 2 × 17 images in vertically stacked horizontal bands were used, because of the
larger size of the wind turbine blade, compared to the objects used in the initial and subset. This way
the front of the blade can be captured and reconstructed. All the objects were reconstructed using
Agisoft Metashape and all the required data—camera positions, orientations, internal parameters,
etc., were extracted from the program workflow, as explained in Section 4. To make them more
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manageable to work with the reconstructions were sub-sampled to around 50k vertices. The actual
number depended on the size and complexity of the shape of the object.

(a) Bunny (b) Bird Bath (c) Angel (d) Black Vase

(e) Plastic Vase (f) Sea Vase (g) Duck (h) Rooster

(i) Squares Cup (j) Stripes Cup (k) Grey Cup (l) Orange Cup (m) White Cup (n) Flower Cup

Figure 9. Objects selected for the robustness test. These objects have widely varying shape, size,
roughness profiles and materials.

The processing times of the reconstructions was between 15 and 20 min, with extracting the
two types of metrics using the Python and Unity processing pipeline added around 10 min more.
The processing time for the capturing setup ones was heavily dependent on the number of used images
and the resolution of the captured images. The mesh-based metrics’ processing time depends on the
number of vertices in the input reconstructions.

For testing the proposed solution and training the classification methods, a roughness/noise
ground truth was created for all the used objects. The ground truth was made manually by annotating
all the reconstructed meshes and masking all vertices of surfaces containing noise or any other
topological defects. The software used for annotation of the mesh vertices was also developed in Unity
(Figure 10) and at the end of the process the information for each vertex for each of the objects was
saved into an array of values—showing 0 for clear surfaces and 1 for noise and geometrical defects.
This annotated data were also used for testing the correlation between the appearance of noise and the
different metrics.

5.2. Correlation Analysis

The correlation between the different independent metrics needed to be tested, to ensure that
highly correlated ones were removed, as they did not give any new information and could introduce
uncertainty and interfere the detection of the noise. In addition, the correlation between the metrics
and the appearance of noise was also analyzed. To compute the correlation between the metrics a
correlation matrix was calculated using the Pearson correlation coefficient [46]. The matrix is shown in
Figure 11.
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Figure 10. View from the annotation tool used for creating the roughness versus noise ground truth for
each of the meshes. The vertices painted red are set as reconstruction noise.

Figure 11. Correlation matrix of the used metrics, together with the dependent variable. For easier
visualization the metrics are shown with their coded names—VPCs: vertices seen from parallel camera,
VAVs: vertex area visibility, ViFs: vertices in focus, NCVs: number of cameras seeing each vertex,
PFs: projected 2D features, VIEm: vertex local color entropy, LRGCm: local roughness from Gaussian
curvature, DONm: difference of normals and VDm: vertex local spatial density.

We chose to consider a cutoff between metric correlation higher than 0.5 and with the dependent
variable lower than 0.1. From the correlation matrix it can be seen that one of the metrics had a high
correlation with the others—the number of cameras seeing each vertex (NCVs). Because this metric
was quite generic and much of the information that it carried was present in the vertices seen from
parallel camera (VPCs), with correlation of 0.65 and the vertex area visibility (VAVs), with correlation
of 0.53, as well as projected 2D features (PFs) metric, we chose not to include NCVs in the final set
of metrics.

The correlation between the independent variable metrics and the dependent variable, which
in our case was the presence of noise and geometric inaccuracies, was further explored. From the
correlation matrix in Figure 11, we could deduce that three mesh roughness metrics LRGCm, DONm

and VD had the highest correlation with the presence of noise. This was expected as these metrics
were directly connected to the topology of the mesh. From the capturing setup-based metrics the
most correlated ones to the presence of noise were PFs, NCVs, ViFs, but NCVs was removed from



Sensors 2020, 20, 5725 15 of 24

consideration dues to the high correlation with the other metrics. These observations will be used in
Section 5.4, when different subsets of the metrics are tested out.

5.3. Initial Testing

For the initial test we used all the proposed metrics, except NCVs. Further testing of subsets of
metrics will be given in Section 5.4. The metrics were used to train a number of supervised learning
classification methods—support vector machines (SVM), K-nearest neighbours (KNN), naive Bayes
(NB), decision trees (DT), as well as more complex ensemble methods—random forests (RF) and
AdaBoost (AB). The implementations were taken from Scikit-learn [47]. The hyperparameter used
for each classifier are given in Table 2. Because of the limited number of test objects, we used a cross
validation, where we trained on all but one and tested on it. We did this for each of the objects. Because
the two classes—noise and not-noise were not balanced, an oversampling strategy was deployed when
pre-processing the training data. The oversampling was done using Synthetic Minority Over-Sampling
Technique (SMOTE) [48].

Table 2. Used hyperparameters for the tested classification methods—support vector machines
(SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision trees (DT), random forests (RF)
and AdaBoost (AB).

Method Parameters

SVM C = 8, kernel = linear, gamma = scale
RF n_estimators=150, max_depth=10, min_sample_split = 3
AB n_estimators=150, learning_rate = 0.5

KNN n_neighbors = 5, weights = uniform, algorithm = auto
NB default parameters
DT criterion= entropy, max_depth=10, min_sample_split = 2

Because of the imbalanced dataset, we focused not only on the accuracy, but on the precision,
recall and F1-score, which are shown in Table 3. The table presents the average of all calculated
performance factors for all the tested objects. From these, the AdaBoost classifer provided the best
results, depending on the combination of the calculated factors.

Table 3. Average results from the 14 objects and the chosen classical classifiers—support vector
machines (SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision trees (DT), random forests
(RF) and AdaBoost (AB).

Method ACC Precision Recall F1

SVM 0.816 0.569 0.842 0.679
RF 0.824 0.580 0.879 0.699
AB 0.851 0.630 0.844 0.742

KNN 0.812 0.568 0.789 0.660
NB 0.809 0.558 0.832 0.668
DT 0.824 0.578 0.885 0.699

All the tested classifiers gave satisfactory results, with high recall, which indicated that it classified
noise vertices as such. On the other hand they also classified non-noise vertices as noise, which was
shown by the low levels of precision. This shows that metrics could be useful for signalling to possible
areas under risk of noise and could be a part of a semi-automatic SfM noise estimation pipeline, where
a user then verifies the results. For an easier visualization of the performance of the achieved noise
risk assessment, the pseudo-colored visualizations of the annotated and classified noise vertices are
also given in Figure 12. Looking closer at these visualizations, some problems can be seen in the
classified noise from rough objects like the bird bath (Figure 12h) and the sea vase (Figure 12l), where
the noise and roughness had a very closely related appearance. The same can be seen on objects like
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the bunny (Figure 12g) and the angel statue (Figure 12i), where the small rougher surface patches
could sometimes closely resemble noise, especially close to self areas of self-occlusion, because of their
more complex shapes.

Further complicating the non-trivial task were the manually annotated areas. For example, in the
case of the two white cups (Figure 12e,f) the overall low reconstruction accuracy meant that there was
noise with different levels of severity. Where the cutoff between acceptable surface and noise was
could become very arbitrary, without classifying the whole surface as noisy. One way to alleviate this
was to have multiple people annotate the same objects and get an average annotation. This will be
further explored in the Conclusion and Future Work Section 6.

(a) Squares Cup (b) Stripes Cup (c) Grey Cup (d) Orange Cup

(e) White Cup (f) Flower Cup (g) Bunny (h) Bird Bath

(i) Angel (j) Black Vase (k) Plastic Vase (l) Sea Vase

(m) Duck (n) Rooster

Figure 12. The annotated ground truth vertices on the left and the same classified vertices using our
proposed method on the right. The noise vertices are colored red, while the non-noise ones are blue.

5.4. Subset Testing

The calculated results in the previous section were based on all metrics except NCVs. To test
how much influence each of the metrics had on the calculated performance, a number of subset tests
were performed. A total of five main tests were set up as shown in Table 4. Because both the LRGCm

and DONm are used in the literature for point cloud classification, they were used separately, as a
baseline naive first test for detecting noise on SfM reconstructions. The second test checked if NCVs

would have negative influence on the results, because of its high correlation with VPCs and VAVs
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metrics. All other metrics were used for this test scenario. Using the information gathered in Section
5.2, the LRGCm, DONm and VDm were set as main metrics, because of their high correlation with the
presence of noise. The third scenario tested how important are the mesh and capturing setup-based
metrics for the performance of noise estimation. The fourth test took the three designated main metrics
and created five subsets, but adding each of the capturing setup-based metrics, to see how important
they were separately. The final test again took the main metrics and combined them with the other
ones, which were either more correlated or less correlated to the noise.

Table 4. The four main subset test scenarios. Each of the scenarios is designed to test the impact of
different metrics or combination of metrics on the final results.

Testing Scenario Description

1 LRGCm and DONm separately
2 All metrics, with and without the most correlated metric—NCVs
3 Mesh-based versus capturing setup-based metrics
4 Each capturing setup-based metric’s impact on the results
5 Impact on the results from different combinations of setup-based metrics

The best performing classification method from the initial test was chosen for this
scenario—AdaBoost. It was retrained with the different subsets of metrics and the results are given in
Table 5. Again the average of the calculated performance factors using the left one out strategy for
cross validation. For visualization purposes the resultant detected noise from each subset for one of
the test objects is shown in Figure 13, together with the ground truth annotated noise.

Table 5. Results from testing different subsets of the proposed metrics. Each of the subsets is used
to train the best performing classification method from the first testing scenario AdaBoost. Different
subsets are created to test the posed question in Table 4.

Subsets ACC Precision Recall F1 Testing Scenario

Only LRGCm 0.723 0.492 0.652 0.574 1
Only DONm 0.686 0.407 0.788 0.537 1
All, without NCVs 0.889 0.674 0.863 0.756 2
All, with NCVs 0.852 0.635 0.848 0.725 2
LRGCm, VDm, DONm 0.828 0.592 0.833 0.692 3
LRGCm, VDm, DONm, VIEm 0.837 0.611 0.822 0.701 3
VPCs, VAVs, ViFs, PFs 0.707 0.425 0.753 0.544 3
LRGCm, VDm, DONm, PFs 0.840 0.615 0.829 0.706 4
LRGCm, VDm, DONm, ViFs 0.838 0.615 0.809 0.699 4
LRGCm, VDm, DONm, VAVs 0.837 0.612 0.811 0.698 4
LRGCm, VDm, DONm, VPCs 0.839 0.614 0.824 0.704 4
LRGCm, VDm, DONm, NCVs 0.831 0.603 0.799 0.701 4
LRGCm, VDm, DONm, PFs, ViFs 0.814 0.565 0.869 0.683 5
LRGCm, VDm, DONm, VIEm, VPCs, VAVs 0.839 0.615 0.822 0.703 5
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Figure 13. Visualization of the noise estimation results, using different subsets of metrics, together with
the ground truth annotation. The different testing scenarios are separated for easier comparison.

The naive approaches to using only the LRGCm and DONm yielded overall lower results, showing
that only analyzing the roughness profile of the reconstruction could not completely separate noise
from real world surface roughness. The results also showed that, as expected, the mesh-based metrics
gave the highest effect on the performance of the classification method, meaning that they were the
most useful in discriminating between noise and surface roughness. The texture metric VIEm helped
boost the overall accuracy and precision of the detection. This can be seen in Figure 13, with a lot less
random noise vertices, compared to the purely LRGCm, VDm, DONm trained detector. The capturing
setup-based metrics on their own were too vague to properly discern between noise and surface
roughness, as seen from the lower overall accuracy. When introducing them to the mesh-based metrics,
it could be seen that they also boosted the overall performance when segmenting the noise from
the roughness. Overall different combinations of the metrics could be useful in different situations,
depending if it was more important to detect more of the noise correctly, but also mis-classified some
of the roughness as noise, or vice-versa. The combination between the mesh-based metrics with the
different capturing-setup metrics also showed that depending on the structure of the objects different
capturing metrics could be useful. Larger objects benefited more from the ViFs and VPCs metrics,
while smaller objects benefited more from VAVs and VPCs metrics. The PFs metric was the one that
always gave positive impact to the performance, as it was directly connected to the captured 2D
feature points.

5.5. Industrial Context Test

The final test was made to give a wider industrial application context to the proposed metrics.
We wanted to test if the described metrics could be used on data from different areas. This would
also provide a better understanding on the generalization capabilities of the proposed metrics. We
chose to test on wind turbine blade data, as this is an industrial inspection area which has began to use
SfM for capturing information more and more and research is focused on ensuring the high quality
of the reconstructions [49]. In addition, wind turbine blade data are hard to acquire, because of the
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requirements by blade manufacturers, that blades in use are not normally imaged. If the proposed
metrics can be used to train noise recognition methods on generic data and then can be used no wind
turbine blade surface reconstructions, it would make researching and benchmarking SfM results from
blades surfaces much more easily accessible.

For the test, a decommissioned wind turbine blade segment was selected (Figure 14a). To ensure
that the blade had different types of surface roughness and damaged areas, it was additionally
sandblasted. The image capture was done in an outdoor environment. Because the object was
considerably larger than the ones used in the previous tests and normally the leading edge and sides of
blades are inspected, a different image capture pattern was selected. Two vertical bands of 17 images
in a semi-circle pattern are captured, leading to 34 images in total. The best performing classifier was
chosen from the first two tests—AdaBoost.

We chose also the best performing combination of metrics—all except NCVs. All the
reconstructions used in the previous testing scenarios were used as training data for AdaBoost. To
evaluate the performance of the metrics on the blade, ground truth noise and roughness annotations
were also made for it. The calculated classification results had an accuracy of 0.843, while the precision
was 0.786 and recall was 0.877. For this test the precision-recall curve was also calculated for giving
a better idea of the performance of the trained model using the proposed metrics (Figure 14b). We
chose to use it instead of a ROC curve, on the basis of the unbalanced dataset. This way the calculated
results were going to be less skewed and “optimistic” [50]. The area under the curve (AUC) of the
precision-recall curve is 0.877. Finally, the pseudo-colored visualization of the classified and annotated
vertices for the wind turbine blade model are given in Figure 14c. Overall the metrics provided
acceptable results, by capturing all the problem areas around the top, bottom and back of the object,
without misclassifying the real damaged areas of the edge of the blade. This showed that a transfer
learning effect could be used, where the training could be done on more easily accessible generic 3D
reconstruction objects and how noise was seen on them, and then the trained classifier could be used
on specialized input data like wind turbine blades, with high level of accuracy.

(a) (b) (c)

Figure 14. The wind turbine blade used for the second testing scenario (a), together with the
precision-recall curve of the classification model (b) and the visualized annotation compared to
classified vertices (c). Red vertices are noise, blue are non-noise.

6. Conclusions and Future Work

The problem of detecting noise and geometric disturbances of 3D reconstructed meshes resulting
from SfM is a non-trivial one. In these meshes noise and regular surface roughness can exhibit the
same characteristics, making it difficult for detecting noise without miss classifying the roughness.
This is why in this paper we present a number of metrics based on both the mesh surface and on
the capturing setup. This combination of metrics is chosen, as it has been observed from the state
of the art in SfM testing and benchmarking, that the appearance of geometrical errors and noise on
the reconstructions is highly correlated to the quality of the capturing setup, the used camera and
the number of images taken. By combining these metrics and analysing their performance we are
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trying to address a gap in the knowledge of SfM results and how they can be used in applications like
industrial inspection and surface roughness estimation. In addition, none of the proposed metrics
require external sensor data and can be easily integrated in normal SfM production pipeline.

To test the metrics a dataset of images is captured from a number of objects with different shapes,
sizes, textures and materials. These objects are then reconstructed and the metrics are captured from
them. The amount of correlation between the metrics and between the metrics and the presence of
noise is computed and is seen that only one of the metrics—the NCVs is highly correlated to the others.
A number of classical supervised learning classification methods are trained on the metrics, together
with ground truth manually annotated data. The results from classifying the meshes as noisy and not
noisy vertices are shown to be usable, with the metrics generally giving a good overview which parts
of the meshes contain noise, with some noise miss-classified as roughness. On the other hand surface
patches, which contain real life damages are correctly classified as not noise. The captured dataset of
images, together with the ground truth annotations will be available online for use for training and
testing purposes.

Different combinations of the proposed metrics are also tested, to see how individual metrics
influence the performance of detecting noise. We demonstrate that a naive approach of just using
the roughness of the surface of the reconstruction does not yield high quality results, with an
overall accuracy between 0.68 to 0.72. The results could be dramatically improved by introducing
a combination of all the mesh-based metrics proposed in the paper, pushing the accuracy to 0.85.
The mesh-based metrics manage to describe the rough parts of objects, but tend to be less discriminative
between the parts with high roughness and the ones with geometrical errors. The use of capturing
setup-based metrics is shown to be helpful in discerning between the two, as they pinpoint areas of
the reconstructed surface, that have been reconstructed under sub-optimal conditions. Combining
them with the mesh-based metrics yield at least another 5–6% increase in the performance of the noise
estimation, depending on which mesh-based metrics, they are combined with.

Finally we test the larger context of the proposed metrics for detecting noise on 3D reconstructions,
which have significant difference from the data used for capturing the training metrics. This way
such robustness can be tested. A wind turbine blade is selected, as their inspection has become of
particular research interest. The blade also has a different size, shape and material from all the other
tested objects. We demonstrate that we can achieve usable results, without miss-classifying any surface
damage as reconstruction noise. This result also shows that the proposed metrics can be used as a
form of transfer learning, where a noise detector can be trained on generic widely available data and
then used on specialized data, which does not contain a large enough dataset, like wind turbine blade
surfaces. The produced results of 0.843 accuracy 0.786 precision and 0.877 recall, show that the same
level of quality of noise estimation can be achieved for wind turbine blades, which can be seen as an
extended general applicability of the presented research.

The next step in verifying the results of the publication, would be comparing the reconstructed
meshes to ground truth of the object, captured with a high resolution scanner. The difference between
the two can be used, as a more objective noise ground truth, which can be then used to compare to the
estimated noise risk. A look into global deformations in the overall shape of the reconstructed objects,
as well as self-occlusions and fractal parts of the objects, can also be used to further introduce more
metrics for assessing the risk of noise. Finally, one can also look even more into the influence of the
camera specifications on the possibility of noise, such as the use of fixed focus lens versus an automatic
focus one, as well as the use of rolling versus a global shutter.

Our future work would build on the results from this paper, by comparing them to both
traditional mesh denoising algorithms and newer point cloud and mesh classification methods using
convolutional and deep neural networks. For this a larger dataset of SfM object reconstruction is
being build, so enough data are present. Finally, it is deemed interesting to look into detecting the
illumination levels of the environment and see if they can be used as reliable indicators, as the role of
the capturing setup lighting in the presence of noise, requires more research.
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Abbreviations

The following abbreviations are used in this manuscript:

SfM Structure from Motion
LRGC Local Roughness from Gaussian Curvature
DON Difference of Normals
VD Vertex Local Spatial Density
VIE Vertex Local Intensity Entropy
NCV Number of Cameras Seeing Each Vertex
PF Projected 2D features
ViF Vertices in Focus
VPC Vertices Seen from Parallel Cameras
VAV Vetex Area of Visibility
GC Gaussian Curvature
SVM Support Vector Machines
KNN K-nearest Neighbours
NB Naive Bayes
DT Decision Trees
RF Random Forest
AB AdaBoost
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