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Abstract

Hybrid power plants (HPPs) integrating dispatchable and non-dispatchable

generation are gaining attention by generation companies due to their increased

flexibility in the operation of the power system. In this paper, an offering and

bidding framework for an HPP consisting wind, photovoltaic (PV), compressed

air energy storage (CAES), battery energy storage (BES), and thermal units in

day-ahead (DA) and intraday markets is presented. Moreover, the interaction

between the HPP and demand response providers (DRPs) through the intraday

demand response exchange (IDREX) market is incorporated into the proposed

model. The existing uncertainties such as DA, intraday, imbalance prices, along

with renewable energy and IDREX market, are tackled via a hybrid stochastic-

interval approach. The suggested structure is not only capable of handling both

stochastic and interval uncertainties but also can manage the risk associated

with both uncertainty characterization methods. To this end, the proposed risk-

constrained offering and bidding model turns into a tri-objective optimization

problem in which the normal boundary intersection (NBI) procedure is applied

for its solution. The numerical results demonstrate that the proposed framework

Preprint submitted to Journal of LATEX Templates November 23, 2020



is well capable of simultaneously reaching risk-taker and risk-averse strategies.

Keywords: Electricity markets, Hybrid Power Plant (HPP), Hybrid

stochastic-interval model, Multi-objective approach, Offering and bidding

strategies.

1. Introduction

The decarbonized electricity industry with increased infiltration of renew-

able energy sources faces numerous challenges. The intermittent nature of re-

newable production, especially coming from wind, has increased the necessity

of using energy storage systems and demand-side flexibility [1]. According to

[2], supplying notable levels of electricity demand would not be possible with-

out the utilization of energy storage systems. Batteries, pumped hydro storage

plants, and compressed air energy storage (CAES) technologies are among the

most prominent and the most widely-used energy storage technologies in elec-

tric power industries. The investigations show that increasing the usage level

of large-scale energy storage systems reduces pollution and curtailed energy in

a power system with high infiltration of renewable sources [3].

Significant interest in the offering strategy of energy storage technologies,

such as CAES and battery energy storage (BES) systems in electricity markets

has been shown in the last years [4]-[10]. Risk-based participation of a large-

scale CAES in the day-ahead (DA) market is presented in [4], while the DA

price is considered as the uncertain parameter. The authors have benefited

from the information gap decision theory to derive risk aversion and risk-seeking

strategies. In [5], the impact of thermodynamic specifications of a CAES system

on the self-scheduling problem is analyzed. The self-scheduling of a price-maker

CAES system in the electricity market for a five-year scheduling horizon is

studied in [6]. In [7], a look-ahead approach for optimal participation of a

CAES facility in the DA, ancillary service, and real-time markets has been

presented. From another viewpoint, the optimal operation of a BES system

in various electricity markets, by incorporating the battery cycle life in the
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bidding mechanism, has been assessed in [8]. In [9], a bidding framework for

optimal involvement of a price-maker energy storage facility in DA and balancing

markets was developed. In [10], the authors have presented a new pattern for

optimal involvement of a BES unit in energy and reserve markets considering

battery degradation.

At the same time, the design of appropriate decision-making tools for the

participation of intermittent energy resources in diverse electricity markets has

also been extensively studied. The comprehensive problem formulation for the

strategic operation of a wind turbines is presented in [11]. A CVaR-constrained

architecture for a price-maker wind plant is discussed in [12]. Another approach

based on the joint offering of a set of wind power plants in the DA market has

been suggested in [13]. In [14], an offering model for a photovoltaic (PV) system

in DA and intraday markets was suggested. It is worth mentioning that in works

[11]-[14], multi-stage stochastic programming has been employed to tackle the

present uncertainties efficiently.

In many cases studied so far, the offering model is based on the coordinated

operation of several production units, in order to increase their profitability. In

this regard, the final profit is considered as the main parameter for evaluating

the effectiveness of the offering mechanism. A combined offering structure for

both demand response resources and wind farms by means of stochastic pro-

gramming has been addressed in [15]. A different structure for the joint offering

of wind farms and demand response resources using a three-stage stochastic

model has been provided in [16]. In [17], the optimal behavior of electric vehicle

aggregators in DA and intraday markets has been investigated, while the inter-

action between electric vehicle aggregators and demand response resources has

been established through intraday demand response exchange (IDREX) market.

An offering strategy for a wind power installation paired with an electric vehicle

aggregator has been proposed in [18]. It has to be noted that all papers, [15],

[16], and [17], have suggested different participation types of demand response

resources in their offering framework, while all of them are profitable. Moreover,

a bidding approach for a virtual power plant in the attendance of the IDREX
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market has been developed in [19]. Another methodology for offering and bid-

ding strategies of a pumped hydro storage plant in the DA market based on the

downside risk optimization model has been suggested in [20]. It is noteworthy

to say that since hydro units are capable to provide regulation reserve services

[21], an efficient offering and bidding strategy in the ancillary service markets,

comprising regulation and spinning reserve markets, can further enhance the

profitability of hydro power producer units [22]. These are not considered in

this paper.

The variety of self-scheduling or offering/bidding strategy problems in the

literature is enormous. So here, it has been attempted to review the most

pertinent works to this study. In addition to the previously reviewed works [4]-

[20], a distributionally robust optimization-based methodology has been applied

for the bidding behavior of a wind-hydro power system in [23]. In [24], an

economic-environmental offering strategy for a wind-thermal-PV producer on

the basis of emission trading pattern has been introduced. A risk-based decision-

making tool for participation of a wind-storage generation company with linear

decision rules has been proposed in [25]. In [26], a robust chance-constrained

framework has been established for the self-scheduling of a price-maker wind-

storage system in the DA market. In [27], a distributionally robust model has

been established for the bidding strategy of a wind-BES producer in the DA

and balancing markets. A risk-based offering pattern for the joint operation

of a solar plant, a BES system, and thermal units has been studied in [28],

employing a three-stage stochastic framework to tackle related uncertainties.

The same uncertainty modeling technique for the self-scheduling of a wind-

CAES system has been applied in [29]. A robust-based model for a participation

of a thermal-BES system in the DA market by taking into account the physical

connection between thermal units and the BES system has been suggested in

[30]. Finally, a risk-involved offering approach for a wind-CAES plant on the

basis of three-stage stochastic programming was suggested in [31].

This paper focuses on the coordinated self-scheduling of a price-taker hy-

brid power plant (HPP) in DA and intraday markets under a uniform pricing
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plan. The proposed HPP possesses wind and PV units as renewable energy

sources, BES and CAES as storage facilities, and thermal units as the con-

ventional generation units. Besides, the energy procurement mechanism from

demand response providers (DRPs) through the IDREX market is embedded in

the proposed structure to decrease the HPP’s imbalance cost. The uncertainty

associated with the IDREX market is taken into account via interval numbers,

while uncertainty and volatility originating from pool prices along with renew-

able power generation are modeled via a three-stage scenario-based method.

The intended problem is then transformed into a hybrid stochastic-interval op-

timization problem. In order to facilitate the adoption of risk-based strategies

for optimal self-scheduling of the HPP, a multi-objective optimization frame-

work is proposed to manage risk associated with both interval and stochastic

parameters. In summary, the contributions of this work in comparison to pre-

vious studies in the relevant context which have been analyzed in Table 1 can

be outlined as follows:

1. We present a coordinated operation strategy for optimal participation of

an HPP containing wind, PV, BES, CAES, and thermal units in DA and

intraday markets. To the authors’ knowledge, no study in the literature

tackles the self-scheduling problem of an HPP with all these mentioned

elements. Referring to Table 1, this study is one of the most comprehen-

sive studies in the literature that provides a coordinated self-scheduling

architecture from the viewpoint of a hybrid power plant that holds the

most prominent electricity suppliers in electricity markets worldwide.

2. For the first time in the literature, we address the uncertainty concerns in

the IDREX market price using the interval arithmetic, which has not been

covered in [17] and [19]. Embedding the energy procurement capability

from the IDREX market aids the HPP to further mitigate its power de-

viations in the balancing market resulting from the electricity production

of intermittent power units, namely, wind and PV units. In this regard,

according to reviewed works [4]-[31], a very limited number of papers has
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included the IDREX market into their methodology [17] and [19], whereas

none of these works copes with the uncertainty stemming from the IDREX

market price.

3. We propose a framework for simultaneous managing the risk associated

with both interval and stochastic parameters. In this regard, to the best

of the authors’ knowledge, for the first time in the literature, two risk

measuring indices corresponding to stochastic and interval parameters,

namely, conditional value-at-risk (CVaR) and deviation of the objective

function, are simultaneously controlled. The proposed problem is trans-

formed into a tri-objective optimization problem to facilitate the adoption

of risk-based strategies. The proposed stochastic-interval model can pro-

vide a new direction for researchers in the context of power system and

operations research to simultaneously capturing the risk and uncertainty

of interval and stochastic parameters.

4. We employ the normal boundary intersection (NBI) method to solve the

developed multicriteria optimization model in 3., while the proficiency of

the suggested method in terms of covering the whole Pareto frontier is

analyzed. Most of the bi-objective stochastic programming models for

the self-scheduling problem in the existing literature have employed the

weighted sum technique [12], [14]-[16], and [31], while in this paper, the

NBI procedure is applied to resolve the weakness of the weighted sum

approach in covering the entire Pareto frontier. It is worth mentioning

that the efficiency of the NBI technique compared to the weighted sum

method is investigated in a bi-objective optimization study, whereas no

tri-objective optimization architecture exists in the literature.

Section 2 provides the stochastic coordinated operation model. Section 3

presents the proposed hybrid stochastic-interval approach. Section 4 gives the

numerical results, and lastly, Section 5 presents the conclusions.
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Table 1: Comparison between different aspects of this work and the reviewed papers.

Ref. System
Considered markets

Modeling approach
Risk

DR
Offering Bidding

DA Intraday Balancing parameter curve curve

[4] CAES Yes - - IGDT-based MINLP IGDT - Yes Yes

[5] CAES Yes - - Deterministic MILP - - - -

[6] CAES Yes - - Deterministic MILP - - Yes Yes

[7] CAES Yes - Yes Deterministic MILP - - - -

[8] BES Yes - Yes Stochastic NLP - - - -

[9] BES Yes - Yes Stochastic MILP - - - -

[10] BES Yes - - Deterministic MILP - - - -

[11] Wind Yes - Yes Two-stage stochastic MILP - - - -

[12] Wind Yes - Yes Two-stage stochastic MILP Stochastic - Yes Yes

[13] Wind Yes Yes Yes Three-stage stochastic MILP Stochastic - - -

[14] PV Yes Yes Yes Two-stage stochastic MILP Stochastic - - -

[15] Wind Yes - Yes Stochastic MILP Stochastic Yes - -

[16] Wind Yes Yes Yes Three-stage stochastic MILP Stochastic Yes Yes -

[17] EVA Yes Yes Yes Three-stage stochastic MILP - Yes - -

[18] Wind+EVA Yes - Yes Stochastic MILP Stochastic - Yes Yes

[19] VPP Yes Yes Yes Three-stage stochastic MILP - Yes - -

[20] Pumped hydro Yes - - Downside risk MILP Stochastic - Yes Yes

[23] Wind+ hydro Yes - - Distributionally robust MILP robust - - -

[24]
Wind+PV+

Yes
-

Yes Stochastic MILP - - Yes -
Thermal units

[25] Wind+BES Yes - Yes Two-stage stochastic MILP Stochastic - - -

[26] Wind+BES Yes - - Robust chance-constrained MILP Robust - - -

[27] Wind+BES Yes - Yes Distributionally robust MILP Robust - - -

[28]
PV+BES+

Yes - Yes Two-stage stochastic MILP Stochastic - Yes -
Thermal units

[29] Wind+CAES Yes - Yes Adaptive robust MILP Robust - - -

[30] BES+Thermal units Yes - - Robust MILP Robust - - -

[31] Wind+CAES Yes Yes Yes Three-stage stochastic MILP Stochastic - Yes Yes

This
CAES+BES+

Yes Yes Yes

Three-stage hybrid Stochastic+

Yes Yes Yes
work

Wind+PV+ stochastic-inteval interval

Thermal units MILP

N ote: DR-Demand Response; MINLP-Mixed Integer Nonlinear Programming; IGDT-

Information Gap Decision Theory; MILP-Mixed Integer Linear Programming; NLP-

Nonlinear Programming; EVA-Electric Vehicle Aggregator; VPP-Virtual Power Plant;

DRO-Distributionally Robust Optimization
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2. Stochastic Coordinated Operation Model

Here, the stochastic formulation of the self-scheduling problem for the in-

tended HPP in DA and intraday markets is presented, while CVaR is incorpo-

rated as the risk assessment method. The proposed self-scheduling model is ex-

pressed as a three-stage bi-objective mixed-integer linear programming (MILP)

problem, while the volatility and the uncertainty arising from output power of

renewable sources and electricity market prices are managed with stochastic sce-

narios, and the HPP’s expected profit and CVaR are two objective functions of

the self-scheduling problem. It is worthwhile to note that the considered market

framework in this work follows the structure proposed in [16]. The sequence of

decisions made at each stage of the developed three-stage architecture (Table

2) are as follows:

1. The first series of the first-stage decisions, i.e., here-and-now decisions,

includes the operation modes of conventional power units and storage

facilities. The second series named special here-and-now decisions involves

participation packages of all units in the DA market. Ref. [32] has called

the second series special here-and-now decisions since they are dependent

on DA price scenarios.

2. The second-stage decisions, i.e., 1stwait-and-see decisions, are related to

the energy transaction of the HPP in the intraday market as well as energy

procurements in the IDREX market.

3. Finally, the last-stage decisions, i.e., 2nd wait-and-see decisions, cope with

the HPP’s energy deviation in the balancing market.

Accordingly, as we express in the subsequent section, the final structure of

the self-scheduling problem would be a tri-objective hybrid stochastic-interval

optimization model by incorporating the uncertainty of the IDREX market into

the scenario-based bi-objective model proposed in this section. In the following,

first, the nomenclature list is given, and then, the mathematical formulation of

the stochastic model is presented.
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Table 2: The sequence of decisions at the elaborated three-stage stochastic programming

model.

Decisions made at each stage

First-stage Second-stage Third-stage

Here-and-now Special here-and-now 1st Wait-and-see 2nd Wait-and-see

v
ch/dis
t , u

ch/dis/s
t

χD,REt,θ , χD,Tht,θ χI,REt,θ , σI,REt,θ , χI,Tht,θ

δ+
t,θ, δ

−
t,θ, δt,θ

xg,t, yg,t, zg,t
χD,B,dist,θ , σD,Bt,θ χI,B,dist,θ , σI,Bt,θ , σI,Ct,θ

χ
D,C,dis/s
t,θ , σD,Ct,θ χ

I,C,dis/s
t,θ , νf,t,θ

Nomenclature

Indices

f Index concerning blocks of the DRP’s offer (1 to NF ).

g Index of thermal (conventional) units (1 to NG).

m Index of blocks in the linearized cost curve (1 to NM ).

q Index of objective functions (1 to NQ).

t Index of time periods (1 to NT ).

θ Index of scenarios (1 to Nθ).

Superscripts

B (C) An index reflecting BES (CAES) variables.

ch/ dis/ s Indices reflecting charging/discharging/simple-cycle mode of storage facilities.

D/ I/ IX Indices of DA/ intraday/ IDREX market variables.

HPP An index reflecting HPP variables.

RE (Th) An index reflecting renewable energy sources (thermal units) variables.

Sch An index reflecting the total scheduled power.

Parameters

CapDR Maximum offering capacity of DRPs, MW.

CapI,HPP,se(bu) Maximum permissible selling (buying) energy of the HPP in the intraday

market, MW.
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CapRE Rated capacity of renewable energy resources, MW.

CF Blocks’ slope in the linearised cost curve of thermal units (e/MWh).

ELMax Maximum permitted stored energy in storage facilities, MWh.

Htr/ER CAES heat rate (MBtu/MWh)/ energy ratio.

Maxch(dis) Maximum charging (discharging) limit of the BES, MW.

Maxco(exp) Maximum compression (expansion) limit of the CAES, MW.

MaxTh(MinTh) Maximum (minimum) allowed power of thermal units, MW.

NGP Price of natural gas, e/MBtu.

OM co(exp) CAES maintenance and operation costs during compressing (expanding)

mode, e/MWh.

RU(RD) Upward (Downward) ramping rate of conventional units.

SRD(SRU) Shut-down (Start-up) ramp limit of conventional units.

SUC (SDC) Cost of conventional units’ start-up (shut-down), e.

α Parameter indicating the confidence level.

κup(down) Minimum up (down) time of conventional units.

λ A factor for restricting the participation level of the system in the intraday market.

νMax Maximum procured energy in each block of the DRP’s offering curve, MW.

πθ Probability of stochastic scenarios.

Υ BES efficiency.

ϕIX (ϕIX) Lower (upper) bound of IDREX market price, e/MWh.

Variables

DR Total procured energy from DRPs, MW.

EL Stored energy in storage facilities, MWh.

PSch,HPP Final scheduled power of the HPP, MW.

RP Actualized production power, MW.

SU (SD) A variable indicating cost of conventional units’ start-up (shut-down), e.

v/ u Binary variables reflecting the status of the BES/ CAES system.

x/ y/ z Binary variables reflecting the start-up/ shut-down/ online status of conventional units.

γ Value-at-risk, e.

δ
−(+)
t,θ Upward (downward) imbalance in the balancing market, MWh.
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δt,θ HPP’s total energy deviations, MWh.

ηθ Ancillary variable used for CVaR computation.

ν Procured energy in each block of the DRP’s offering curve, MW.

ρ
−(+)
t,θ Upward (downward) imbalance ratio.

σ Bidding (purchasing) quantity, MW.

ϕ Energy price of electricity markets, e/MWh.

χ Offering (selling) quantity, MW.

Abbreviations

BES Battery energy storage.

CAES Compressed air energy storage.

CVaR Conditional value-at-risk.

DA Day-ahead.

DR Demand response.

DRP Demand response provider.

HPP Hybrid power plant.

IDREX Intraday demand response exchange.

MILP Mixed-integer linear programming.

NBI Normal boundary intersection.

PV Photovoltaic.

2.1. Objective functions

2.1.1. First objective function: Maximizing HPP’s expected profit

The first objective function aims at maximizing the expected profit of the

HPP through involving in multiple markets throughout the trading horizon.

This objective function can be written as:

Max H1(x) =

Nθ∑
Θ=1

πθ × [Profitθ] (1)
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Profitθ =

NT∑
t=1

[
ϕDt,θχ

D,RE
t,θ +

(
NG∑
g=1

ϕDt,θχ
D,Th
g,t,θ

)
+ ϕDt,θχ

D,B,dis
t,θ + ϕDt,θχ

D,C,dis
t,θ + ϕDt,θχ

D,C,s
t,θ

+ ϕIt,θχ
I,RE
t,θ +

(
NG∑
g=1

ϕIt,θχ
I,Th
g,t,θ

)
+ ϕIt,θχ

I,B,dis
t,θ + ϕIt,θχ

I,C,dis
t,θ + ϕIt,θχ

I,C,s
t,θ

− ϕDt,θσ
D,B
t,θ − ϕ

D
t,θσ

D,C
t,θ − ϕ

I
t,θσ

I,RE − ϕIt,θσ
I,B
t,θ − ϕ

I
t,θσ

I,C
t,θ

−

NF∑
f=1

(ϕIXf,t )(νf,t,θ)

− CFCt,θ −
(
NG∑
g=1

NM∑
m=1

CFThg,m ×
(
χD,Thg,m,t,θ + χI,Thg,m,t,θ

))

−

(
NG∑
g=1

SUg,t + SDg,t

)
−
(
ϕDt,θρ

−
t,θδ

−
t,θ

)
+
(
ϕDt,θρ

+
t,θδ

+
t,θ

)]
(2)

The total expected profit of the HPP is computed by (1), while its profit per

scenario is calculated by (2). The first five terms of (2) represent the HPP’s

revenue through selling production offers in the DA market, while the next five

terms denote the obtained income by submitting energy offers in the intraday

market. The five terms of the third row illustrate the incurred costs of the

HPP for procuring energy from DA and intraday markets. It is worthwhile

to note that offering (χ) and bidding (ϕ) quantities correspond to selling and

purchasing values, respectively. The first term of the fourth row indicates the

costs of procuring energy from DRPs in the IDREX market. The last two terms

in the fourth row are the operation costs of CAES and thermal units. For the

benefit of clarification, similar to [33], a linearized model is adopted to cover the

cost function of thermal units. Note that idling cost associated with thermal

units has been overlooked in this study. The first expression of the last row

represents the shut-down and start-up costs of conventional power units, while

the next two terms stand for HPP’s expenses and revenues in the balancing

market.

2.1.2. Second objective function: Maximizing CVaR

The risk-measuring index CVaR is taken into account to control the risk of

stochastic parameters. The CVaR for a particular confidence level α is calcu-
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lated as:

Max H2(x) = γ − 1

1− α

Nθ∑
Θ=1

πθηθ, ∀γ ∈ R (3)

where γ, πθ, and ηθ are value-at-risk, probability of each scenario, and an auxil-

iary variable employed for CVaR computation, respectively. The optimal value

of γ states the highest profit in such a way that the probability of experiencing

a profit lower than γ is lower than or equal to (1− α).

2.2. Constraints

Constraints (4) and (5) are employed to compute the CVaR.

− Profitθ + γ − ηθ ≤ 0, ∀θ, ∀γ ∈ R (4)

ηθ ≥ 0, ∀θ (5)

The total scheduled power of energy storage facilities in different operating

modes is calculated through equations (6)-(8).

χSch,Γ,dist,θ = χD,Γ,dist,θ + χI,Γ,dist,θ , ∀t,∀θ, Γ =
[
B,C

]
(6)

χSch,C,st,θ = χD,C,st,θ + χI,C,st,θ , ∀t, ∀θ (7)

σSch,Γt,θ = σD,Γt,θ + σI,Γt,θ , ∀t,∀θ, Γ =
[
B,C

]
(8)

Constraints (9) and (10) impose lower and upper limits of the total scheduled

power of the BES system in discharging and charging modes, respectively, while

corresponding limitations for the CAES system are expressed by (11) and (12).

0 ≤ χSch,B,dist,θ ≤Maxdisvdist , ∀t,∀θ, ∀vdist ∈ {0, 1} (9)

0 ≤ σSch,B,cht,θ ≤Maxchvcht , ∀t, ∀θ, ∀vcht ∈ {0, 1} (10)

0 ≤ χSch,C,Γt,θ ≤MaxexpuΓ
t , ∀t,∀θ, Γ =

[
dis, s

]
, ∀uΓ

t ∈ {0, 1} (11)
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0 ≤ σSch,Ct,θ ≤Maxcoucht , ∀t,∀θ, ∀ucht ∈ {0, 1} (12)

To ensure that energy storage facilities operate at one specific mode, restrictions

(13) and (14) are employed.

vdist + vcht ≤ 1, ∀t, ∀(vdist , vcht ) ∈ {0, 1} (13)

udist + ust + ucht ≤ 1, ∀t, ∀(udist , ust , u
ch
t ) ∈ {0, 1} (14)

The amount of the stored energy in BES and CAES systems is calculated using

equations (15) and (16), respectively, while constraint (17) enforces maximum

and minimum limits to the calculated values in (15) and (16). Note that the

external rated power limits have been exploited in these equations, while the

interested readers are referred to [34] for the internal one. Lastly, equation (18)

calculates the operational costs imposed to the system from the CAES unit.

ELBt,θ = ELBt−1,θ −
(

1

ΥB,dis

)(
χSch,B,dist,θ

)
+

ΥB,ch
(
σSch,Bt,θ

)
, ∀t,∀θ (15)

ELCt,θ = ELCt−1,θ + ER
(
χSch,C,dist,θ − σSch,Ct,θ

)
,∀t,∀θ (16)

0 ≤ ELΓ
t,θ ≤ ELMaxΓ, ∀t,∀θ, Γ =

[
B,C

]
(17)

CFCt,θ = χSch,C,dist,θ

(
HtrdisNGP +OMexp

)
+ χSch,C,st,θ (HtrsNGP +OMexp +OM co)

+ σSch,C,cht,θ (OM co) , ∀t, ∀θ (18)

Constraints (19)-(21) ensure that the production offer of thermal units does

not exceed the limit of each block in the linearized cost curve. Equations (22)

and (23) calculate the production offer of each thermal unit in the DA and

intraday markets, respectively. Equation (24) states the scheduled power of

each thermal unit, while constraint (25) defines that the this variable should be
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retained within the permissible range. Constraint (26) describes the shut-down

and start-up costs of conventional power units. Furthermore, other well-known

and frequently used restrictions of thermal units like minimum up and down

times, and upward and downward ramping rates during both normal and start-

up and shut-down circumstances are entered the optimization problem through

in (27)-(31).

0 ≤ χD,Thg,m,t,θ ≤MaxThg,m, ∀g,∀m,∀t, ∀θ (19)

0 ≤ χI,Thg,m,t,θ ≤MaxThg,m, ∀g,∀m,∀t, ∀θ (20)

0 ≤ χD,Thg,m,t,θ + χI,Thg,m,t,θ ≤MaxThg,m, ∀g,∀m,∀t,∀θ (21)

χD,Thg,t,θ =

NM∑
m=1

χD,Thg,m,t,θ, ∀g,∀t,∀θ (22)

χI,Thg,t,θ =

NM∑
m=1

χI,Thg,m,t,θ, ∀g,∀t,∀θ (23)

χSch,Thg,t,θ = χD,Thg,t,θ + χI,Thg,t,θ , ∀g,∀t,∀θ (24)

MinThg zg,t ≤ χSch,Thg,t,θ ≤MaxThg zg,t, ∀g,∀t, ∀θ, ∀zg,t ∈ {0, 1} (25)

 0

0

 ≤
 SUg,t

SDg,t

 ≥
 SUCgxg,t

SDCgyg,t

 , ∀g,∀t, ∀(xg,t, yg,t) ∈ {0, 1} (26)

t∑
n=t−κupg +1

xg,t ≤ zg,t, ∀g,∀t, ∀(xg,t, zg,t) ∈ {0, 1} (27)

 t∑
n=t−κdown+1

yg,t

+ zg,t ≤ 1, ∀g,∀t, ∀(yg,t, zg,t) ∈ {0, 1} (28)
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yg,t−1 − zg,t + xg,t − yg,t = 0, ∀g,∀t, ∀(xg,t, yg,t, zg,t) ∈ {0, 1} (29)

χSch,Thg,t,θ ≤ χSch,Thg,t−1,θ +RUgzg,t−1 + SRUgxg,t, ∀g,∀t,∀θ,

∀(xg,t, zg,t) ∈ {0, 1} (30)

χSch,Thg,t−1,θ ≤ χ
Sch,Th
g,t,θ +RDgzg,t + SRDgyg,t, ∀g,∀t,∀θ,

∀(yg,t, zg,t) ∈ {0, 1} (31)

DRPs’ involvement in the IDREX market contains a price-quantity offer, which

will be illustrated later in this paper (Fig. 1). Constraint (32) denotes that the

procured power in each block of the DRPs’ offer in the IDREX market does not

exceed its maximum value.

νf,t,θ ≤ νMax
f,t , ∀f, ∀t,∀θ (32)

The total procured energy from the IDREX market is computed by (33), while

its maximum limit is enforced through constraint (34).

DRt,θ =

NF∑
f=1

νf,t,θ, ∀t,∀θ (33)

DRt,θ ≤ CapDR, ∀t,∀θ (34)

The HPP’s total imbalance in every trading period is expressed by equation

(35), which is equal to the difference of positive and negative imbalances, while

maximum limits of negative and positive imbalances are fulfilled by (36) and

(37), respectively.

δt,θ =δ+
t,θ − δ

−
t,θ = RPREt,θ +

(
NG∑
g=1

χSch,Tht,θ

)
+ χSch,B,dist,θ

+ χSch,C,dist,θ + χSch,C,st,θ − PSch,HPPt,θ , ∀t, ∀θ (35)

δ−t,θ ≤Cap
RE +

(
NG∑
g=1

(MaxThg )zg,t

)
+
(
Maxdisvdist

)
+
(
Maxexpudist

)
+ (Maxexpust ) , ∀t, ∀θ,

∀(udist , ust , v
dis
t , zg,t) ∈ {0, 1} (36)
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δ+
t,θ ≤RP

RE
t,θ +

(
NG∑
g=1

χSch,Tht,θ

)
+ χSch,B,dist,θ + χSch,C,dist,θ

+ χSch,C,st,θ , ∀t,∀θ (37)

The offering and bidding values of comprising facilities of the HPP in the DA

market are constrained between a minimum and maximum value, which are

denoted by (38) and (39), respectively.

0

MinThg zg,t

0

0

0


≤



χD,REt,θ

χD,Thg,t,θ

χD,B,dist,θ

χD,C,dist,θ

χD,C,st,θ


≤



CapRE

MaxThg zg,t

Maxdis

Maxexp

Maxexp


∀g,∀t, ∀θ (38)

 0

0

 ≤
 σD,Bt,θ

σD,Ct,θ

 ≤
 Maxch

Maxco

 ∀t,∀θ (39)

The HPP’s offering and bidding quotas in the intraday market are calculated

using (40) and (41), respectively, although corresponding limitations concerning

these quotas are imposed through constraints (42) and (43).

CapI,HPP,se = λ

(
CapRE +

NG∑
g=1

CapThg +Maxdis +Maxexp

)
(40)

CapI,HPP,bu = λ
(
CapRE +Maxch +Maxco

)
(41)

0 ≤ χI,REt,θ +

NG∑
g=1

χI,Thg,t,θ + χI,B,dist,θ + χI,C,dist,θ + χI,C,st,θ ≤ CapI,HPP,se,

∀t,∀θ (42)

0 ≤ σI,REt,θ + σI,Bt,θ + σI,Ct,θ ≤ Cap
I,HPP,bu, ∀t, ∀θ (43)
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Equation (44) and constraint (45) computes and restricts the total scheduled

power of the HPP, respectively.

PSch,HPPt,θ =χD,REt,θ + χI,REt,θ − σI,REt,θ +

(
NG∑
g=1

χSch,Tht,θ

)
−DRt,θ

+ χSch,B,dist,θ + χSch,C,dist,θ + χSch,C,st,θ , ∀t,∀θ (44)

0 ≤ PSch,HPPt,θ ≤CapRE +

(
NG∑
g=1

(MaxThg )zg,t

)
+
(
Maxdisvdist

)
+
(
Maxexpudist

)
+ (Maxexpust ) , ∀t, ∀θ,

∀(udist , ust , v
dis
t , zg,t) ∈ {0, 1} (45)

The decreasing and non-decreasing requirements of the bidding curves along

with offering ones in the DA market are enforced by (46) and (47). Restriction

(46) states that for two different scenarios θ and θ̃, if the DA market price in

scenario θ is greater than in scenario θ̃, then the bidding quantity of the decision-

maker for scenario θ should be less than or equal to the bidding quantity for

scenario θ̃. In (48) and (49), the non-anticipativity necessity of the DA bidding

and offering curves are imposed. Correspondingly, non-anticipativity restric-

tions for the bidding and offering curves in the intraday market are represented

by (50) and (51), respectively.

σD,Γt,θ ≤ σ
D,Γ

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ ≥ ϕDt,θ̃], ∀t & Γ = [B,C] (46)

χD,Γt,θ ≤ χ
D,Γ

t,θ̃
, ∀θ, θ̃ : [ϕDt,θ ≤ ϕDt,θ̃], ∀t &

Γ =
[
RE, Th, (B, dis), (C, dis), (C, s)

]
(47)

σD,Γt,θ = σD,Γ
t,θ̃

, ∀θ, θ̃ : [ϕDt,θ = ϕD
t,θ̃

], ∀t & Γ = [B,C] (48)

χD,Γt,θ = χD,Γ
t,θ̃

, ∀θ, θ̃ : [ϕDt,θ = ϕD
t,θ̃

], ∀t &

Γ =
[
RE, Th, (B, dis), (C, dis), (C, s)

]
(49)
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σI,Γt,θ = σI,Γ
t,θ̃
, ∀θ, θ̃ : [ϕDt,θ = ϕD

t,θ̃
], ∀t & Γ =

[
RE,B,C

]
(50)

χI,Γt,θ = χI,Γ
t,θ̃
, ∀θ, θ̃ : [ϕDt,θ = ϕD

t,θ̃
], ∀t &

Γ =
[
RE, Th, (B, dis), (C, dis), (C, s)

]
(51)

3. Hybrid Stochastic-Interval Optimization Model

As already stated in the previous section, stochastic scenarios are utilized

to tackle the uncertainties associated with renewable sources and DA, intraday,

and imbalance prices. Another uncertain parameter is the IDREX market price,

which is handled via interval numbers. Most of the time, appropriate stochastic

modeling of parameters necessitates encompassing a large historical data set,

which is not practical for the decision-makers. In such circumstances, interval

arithmetic, which solely requires the upper and lower bounds of the uncertain

parameter, is a very effective uncertainty handling manner for both nonlinear

[35] and linear [36] programming problems. Fig. 1 illustrates a price-quantity

curve of the DRPs in the IDREX market with their predicted intervals. In this

regard, the optimization problem possessing an interval number which aims at

maximizing the value of objective function H(x, j), e.g., the HPP’s expected

profit, can be written in the following general form:

Max H(x, j)

s.t. R(x, j) = 0

Q(x, j) ≤ 0

j ∈ [j, j].

(52)

where x and j are the vectors of decision variables and the interval parameter,

respectively. In the presence of an interval number j ∈ [j, j], the lower and

upper values of the objective function, i.e., H(x) and H(x), with both equality

R(x, j) and inequality Q(x, j) constraints can be obtained as follows:

H(x) = Min
j

H(x, j)

H(x) = Max
j

H(x, j)
(53)
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Figure 1: DRPs’ price-quantity offer with the predicted intervals.

It must be stressed that for our problem, the upper (H1(x)) and lower (H1(x))

values of the HPP’s profit are obtained at the lower (j) and upper (j) bounds of

the IDREX market price, respectively. The reason for this lies in the fact that

the lower the price of procuring energy from the IDREX market is, the higher

the HPP’s profit would be and vice versa. Correspondingly, to seek the best

deterministic solution, the interval optimization transmutes into a bi-objective

optimization problem by employing (54), whose first objective function aims

at maximizing the mid-point values of the objective function Hm(x), and the

second one intends to minimize the deviation of the objective function Hw(x).

Hm(x) =
H(x) +H(x)

2
→ should be maximized

Hw(x) =
H(x)−H(x)

2
→ should be minimized

(54)

For the sake of clarity, Hm(x) and Hw(x) reflect the best optimal quantity

and the uncertainty degree of objective function H(x, j), respectively. Without

loss of generality, the proposed hybrid stochastic-interval self-scheduling prob-
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lem with the idea of maximizing both expected mid-point of the HPP’s profit

(H1m(x)) and CVaR (H2(x)), as well as minimizing the expected deviation of

the HPP’s profit (H1w(x)), is a tri-objective optimization problem which can

be posed as follows:

Objective function 1 : f1(x) = H1m(x)→ should be maximized

Objective function 2 : f2(x) = H2(x)→ should be maximized

Objective function 3 : f3(x) = H1w(x)→ should be minimized

Subject to :

Amended version of constraints (6)− (51) in the form of interval numbers

− Profitmθ + γ − ηθ ≤ 0, ∀θ

ηθ ≥ 0, ∀θ

ϕIXf,t ∈ [ϕIXf,t , ϕ
IX
f,t ].

(55)

It should be noted that in order to efficiently tackle the risk of stochastic

parameters in the presence of interval numbers, constraints (4) and (6)-(51)

need updating. Constraint (4) is related to CVaR computation, and thus it

has been changed to −Profitmθ + γ − ηθ ≤ 0, as expressed in (55). In addition,

Constraints (6)-(51) require amendments in the form of interval numbers. The

model presented in (55) is a multicriteria optimization problem that demands

a proper solving tool, such as NBI method [37], ε-constraint technique [38],

and non-dominated sorting genetic algorithm-II (NSGA-II) [39]. In this paper,

the Pareto solution set of tri-objective optimization problem (55) is achieved

via the hybrid implementation of lexicographic optimization [33] and the NBI

method [37]. Other well-known multi-objective optimization methods such as

the NSGA-II can be also employed to find the Pareto solutions, especially, if

the problem is expressed as a nonlinear programming problem [39]. However,

since the suggested optimization problem is linear, the NBI method is more

efficient than NSGA-II. Based on the foregoing, the flowchart of the proposed

risk-constrained hybrid stochastic-interval model is portrayed in Fig. 2.
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Figure 2: Flowchart of the proposed risk-constrained hybrid stochastic-interval model.

4. Numerical Case Studies

An HPP comprising a 60-MW PV plant, a 60-MW wind farm, two similar

25-MW thermal units, a CAES unit, and a BES system with data presented in

Table 3 is considered to verify the performance of the suggested structure. A

maximum of 10 MW involvement in the IDREX market is considered for the

DRPs. Figures 3-5 provide the information of the DRPs’ offer in the IDREX

market with the predicted intervals for three different periods, i.e., valley, off-

peak, and peak. As shown in these figures, the upper bound of the interval

parameter is assumed to be the expected value +15%, and the lower bound is

the expected value -15%. In other words, a ±15% forecast error is taken into

account as the width of the interval parameter. The cost parameters of the

thermal units, as well as their technical characteristics, have been shown in Ta-
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bles 4-5. The values of NGP and λ are 3.5 e/MBtu and 0.3, respectively. The

confidence level α for CVaR computation is set to 0.95 [40]. The actual data for

DA, intraday, and balancing markets [41], as well as wind speed and solar irradi-

ance [42] for six months period, have been collected for the scenario generation

procedure employing the roulette wheel mechanism [28]. It has to be noted

that normal, Rayleigh, and beta distributions are utilized for electricity market

prices, wind speed, and solar irradiance in the scenario generation phase, re-

spectively [43]. Afterwards, a GAMS-based software tool, namely, SCENRED2

[44], is applied to decrease the initially generated scenarios to six distinct ones

for each stochastic uncertain source. The proposed self-scheduling problem is

a multi-objective MILP problem for which CPLEX solver within GAMS is em-

ployed. CPLEX is a very powerful solver for linear, MILP, and quadratically

constrained programming problems. In MILP problems, CPLEX benefits from

the branch and cut algorithm, which is capable of finding the global optimum

solution by correctly setting the gap parameters. In order to enhance perfor-

mance, the CPLEX solver in GAMS software provides extensive solving options

to customize the optimization process for the operator. It is worth mentioning

that by converting the multi-objective optimization problem into a single ob-

jective optimization problem through the NBI method, CPLEX can be easily

employed to find the global optimum solution. For instance, in many studies,

the decision-maker may require to limit the number of iterations [45], an ability

available in CPLEX options. Detailed information about CPLEX solver can be

found in [46].

Two different analyses are conducted to investigate various aspects of the

suggested architecture as follows:

1. First Analysis: The first analysis deals purely with the stochastic oper-

ation of the HPP in the target markets, while the IDREX market uncer-

tainty is ignored.

2. Second Analysis: The second analysis concerns the proposed hybrid

stochastic-interval architecture in which the interval IDREX market price
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Table 3: Technical data on energy storage facilities.

Parameter Value Unit Parameter Value Unit

Maxexp 100 MW Htrs 8.37 MBtu/MWh

Maxco 60 MW ER 0.95 scalar

ELMaxC 20 × 100 MWh OMexp 0.87 e/MWh

Htrdis 4.185 MBtu/MWh OM co 0.87 e/MWh

ΥB,ch 80 % Maxch(dis) 40 MW

ΥB,dis 95 % ELMaxB 5×40 MWh

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

0.25×CapDR 0.75×CapDR 1×CapDR 

CapDR 
(MW)

100%

Percentage- of- Mean 
Intraday -Price

Upper -bound

Lower -bound

Expected

Figure 3: Information of DRPs’ offer with the predicted intervals in the valley period (1-9

a.m.).

is also incorporated into the previous analysis. In order to validate the

second and third proposed contributions of this paper, the intentions of

the second analysis are the risk-constrained investigation of simultane-

ous stochastic and interval parameters, and the adoption of various risk-

involved strategies for the HPP’s decision-making.
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Figure 4: Information of DRPs’ offer with the predicted intervals in the off-peak period (10

a.m.-7 p.m.).

Table 6 shows the optimization model of each above-mentioned analysis.

4.1. First Analysis: Stochastic self-scheduling model without IDREX uncer-

tainty consideration

In this subsection, three different operational strategies are used to examine

the profitability of the proposed self-scheduling structure. The first operational

strategy addresses the uncoordinated self-scheduling of all available resources,

and the second operational strategy deals with the coordinated self-scheduling,

whereas, in the third one, the interaction between the HPP and DRPs is fur-

ther considered in the self-scheduling architecture. It has to be mentioned that

the first operational strategy contains four distinct optimization processes for

CAES, BES, thermal, and wind+PV units. To avoid repetition, the math-

ematical formulation of uncoordinated resources has not been presented here

since previous studies have described it superbly [16], [31], [32]. For the second

operational strategy, the first term of the fourth row in objective function (2)
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Figure 5: Information of DRPs’ offer with the predicted intervals in the peak period (8-12

p.m.).

should be omitted, while constraints (32)-(34) have to be neglected. Further-

more, variable DRt,θ must be eliminated from equation (44). Lastly, the third

operational strategy concerns the mathematical formulation provided in this

paper (equations (1)-(51)).

Fig. 6 illustrates the expected profit versus CVaR for diverse operational

strategies. As seen, the first operational strategy provides the lowest expected

profit and CVaR for the corresponding Pareto solutions, while the third opera-

tional strategy achieves the highest values. Furthermore, the second operational

strategy, which is related to the coordinated self-scheduling of the HPP, leads to

considerable CVaR and profit gains compared to the first operational strategy.

This is better shown in Table 7, where the second operational strategy in the

risk-neutral condition provides gains of 2.68% and 3.79% in the expected profit

and CVaR, respectively. Similarly, gain values close to the risk-neutral state

are obtained for the most conservative scenario. Another important point of

attention is that adding DRPs’ interaction in the form of the third operational
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Table 4: The cost parameters of thermal units.

Unit

Piece wise linearization Cost related to each

parameters (MaxTh
g,m) (MW) block (CFTh

g,m) (e/MWh)

MaxThg,1 MaxThg,2 MaxThg,3 MaxThg,4 CFThg,1 CFThg,2 CFThg,3 CFThg,4

G1 / G2 5.3 7.2 7.2 5.3 48.41 48.78 51.84 55.4

Table 5: Technical characteristics of thermal units.

Unit MinThg MaxThg
RUg / RDg

SUCg SDCg κupg κdowng
SRUg / SRDg

G1 / G2 10 (MW) 25 (MW) 20 (MW/hr) 87.4 (e) 8.74 (e) 4 (hr) 2 (hr)

Table 6: The optimization model of the designed analyses.

Objective Functions Constraints

First Analysis
H1(x)→ should be maximized

(4)-(51)
H2(x)→ should be maximized

Second Analysis

H1m(x)→ should be maximized

[Amended version of constraints

H2(x)→ should be maximized

(6)-(51) in the form of interval numbers]

H1w(x)→ should be minimized

−Profitmθ + γ − ηθ ≤ 0, ∀θ

ηθ ≥ 0, ∀θ

ϕIXf,t ∈ [ϕIXf,t , ϕ
IX
f,t ]

strategy gives rise to approximately double expected profit and CVaR gains in

comparison with the second operational strategy.

In order to assess the proficiency of the NBI technique versus the classical

method (weighted sum) of CVaR-based offering and bidding [12], [14]-[16], and

[31], Fig. 7 shows the obtained efficient solutions for the second operational

strategy. As seen, the proposed method, in contrast to the classical approach, is

capable of covering the whole Pareto front. It is worth mentioning that evenly
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Figure 6: Expected profit versus CVaR in various operational policies.

Table 7: Profit and CVaR gains in two distinct states compared to the first operational

strategy.

Gain (%)

Risk-neutral state Most conservative state

Expected profit CVaR Expected profit CVaR

Operational
2.68 3.79 2.74 3.76

strategy 2

Operational
5.37 6.40 5.46 6.33

strategy 3

separated values are applied for both NBI and the weighted sum methods to

achieve the Pareto solution sets. However, as can be seen in Fig. 7, the classical

method is unable to discover ranges of e 119.618 and e 231.261 for CVaR

and the expected profit, respectively. Moreover, in the risk-neutral state, the

proposed approach achieves a higher value of CVaR compared to the classical

method, while the quantities of expected profit for both approaches are the
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Figure 7: Comparison of the proposed method and the classical method in terms of obtaining

Pareto solutions in the second operational strategy.

same, which reveals a more desirable solution. It is worth highlighting that the

greater the CVaR, the smaller the risk.

4.2. Second Analysis: Hybrid stochastic-interval self-scheduling model with IDREX

uncertainty consideration

This analysis is performed to appraise the risk associated with the inter-

val number (IDREX market price). All case studies in this subsection belong

to the third operational strategy, meanwhile, the risk arising from the IDREX

market price is added to the foregoing studies, and accordingly, the developed

problem in (55) is solved with the NBI method. The obtained efficient solu-

tions of the NBI technique for the second analysis are shown in Fig. 8. In

this figure, the x-axis, y-axis, and z-axis indicate CVaR, expected mid-point of

the profit, and expected deviation of the profit, respectively. As observed, the

implemented NBI method can obtain uniformly distributed Pareto solutions in

the tri-objective optimization state. The average computational time of the op-

timization algorithm on an Asus laptop with Intel Core i5 2.30 GHz CPU and

4GB RAM for each efficient solution is two minutes and two seconds.
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Figure 8: Pareto solution set in the second analysis.
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Figure 9: Comparison of the selected solutions in terms of objective functions’ values.

To assess the effectiveness of the proposed risk-based architecture, two so-

lutions, namely, Solution A and Solution B, are chosen by the HPP’s decision-

making unit. The values of all objective functions alongside with their maximum

and minimum values for the selected solutions are exhibited in Fig. 9. Solution

A represents a risk-taker strategy as it contains the highest value of the expected

deviation of the profit and the lowest CVaR. By contrast, Solution B is picked

as an arbitrary risk-averse strategy by the HPP, since both expected deviation

and expected mid-point are lower compared to Solution A, and CVaR is greater

than Solution A.
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Figure 10: HPP’s bidding and offering curves at two specific hours.

Fig. 10 portrays the DA bidding (buying) and offering (selling) curves of

the HPP for both risk-taker and risk-averse strategies at two separate hours. It

would be beneficial to note that all presented results in Figures 10-12 are the ex-

pected mid-point of output variables. According to Fig. 10, it can be observed

that neither risk-taker (Solution A) nor risk-averse (Solution B) approaches can

suffer changes in the DA bidding curves. On the other hand, a comparison be-

tween the risk-averse and risk-taker offering curves at 4 p.m. allows concluding

that as the HPP’s attitude becomes more conservative, the HPP’s production

offers are reduced for most price realizations. To be more precise, moving from

the risk-taker strategy to the risk-averse one leads to a reduction in the offering

values of the HPP at hour 16, while the HPP’s production offers at hour 3 are

approximately the same.

Fig. 11 depicts the expected mid-point of the hourly contracted DR by

the HPP in two risk-taker and risk-averse situations. A comparison between
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Figure 11: Hourly contracted DR in the IDREX market for two selected solutions.

the traded DR in both situations shows that the more risk-taker the HPP is,

the more DR is contracted by the HPP. Similarly, a risk-hedging strategy for

reducing the risk associated with the interval IDREX price results in a consider-

able reduction in the procured energy by the DRPs. Furthermore, not only the

risk-controlling level results in a change in the traded DR, but the scheduling

period (valley, off-peak, peak) also affects the participation level of the HPP

in the IDREX market. The largest share of DR contracts is devoted to valley,

off-peak, and peak periods, respectively.

Some other significant output variables regarding these two decision-making

strategies (Solutions A and B) for the whole scheduling horizon are shown in Fig.

12. All output variables shown in this figure are the total scheduled values; for

instance, blue bars represent the total selling offers minus the total purchasing

bids of the HPP in the DA market for the whole trading period. According to the

presented results, the total scheduled power in the DA market is almost equal

for both strategies. On the other hand, by shifting from a risk-seeking strategy

(Solution A) to a risk-averse one (Solution B), the total scheduled intraday

energy is reduced. Similarly, by becoming a risk-averse producer (Solution B),

both positive and negative imbalances are increased.

Finally, to further test the performance of the proposed model, a sensitivity

analysis related to the forecast error of the interval parameter, i.e., IDREX
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market price, is carried out. To this end, in addition to the forecast error

of ±15%, the optimization algorithm is executed for three more forecast errors,

namely, ±5%, ±10%, and±20%. The expected mid-point and deviation of profit

for Solution A are presented in Fig. 13. The results indicate that the greater

the forecast error, the higher the expected mid-point of profit. The same goes

for the expected deviation of profit. This implies that by enlarging the forecast

error, a higher profit under a higher risk is achievable by the decision-maker in

the suggested risk-based architecture.

5. Conclusions and future works

In this paper, a novel hybrid stochastic-interval architecture for the self-

scheduling problem of an HPP comprising thermal, wind, PV, BES, and CAES

units is proposed. A mathematical formulation for the coordinated running

of these facilities in the consecutive markets is first developed. The energy

procurement mechanism from DRPs in terms of the IDREX market is also in-

cluded in the formulation. The proposed self-scheduling is exposed to two kinds

of uncertainties, i.e., stochastic and interval parameters. In order to hedge the

decision-making against the financial risks associated with both stochastic and

interval uncertainties, an innovative multi-objective architecture is proposed.

Two different case studies are used to assess the efficacy of the proposed struc-
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Figure 13: Expected mid-point and deviation of profit in Solution A for different forecast

errors.

ture. The primary findings are:

1. The integrated operation of all resources in the electricity markets, includ-

ing DRPs, leads to profits.

2. The implemented NBI technique is fully capable of generating uniformly

distributed Pareto solutions in both bi-objective and tri-objective analy-

ses, in contrast to previous methods used for CVaR-constrained bidding

problems.

3. The proposed hybrid stochastic-interval architecture is able to provide

different risk options by obtaining numerous Pareto solutions with specific

values of the expected mid-point and expected deviation of the profit, and

CVaR.

4. Optimal traded DR in the risk-seeking strategy is considerably higher

than in the risk-averse approach. This is explained by the fact that the
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risk-taker HPP is more willing to take advantage of DRPs to substantially

reduce the incurred imbalance costs.

The developed framework could help real-world generation companies hedge

against various risk sources in different electricity markets running worldwide.

Besides, the suggested approach would be beneficial in terms of providing a

better decision-making process and offsetting the imbalances arising from in-

termittent energy resources using demand-side resources. For future work, the

proposed framework is extended to the participation of the suggested HPP in

the balancing market under a pay-as-bid pricing scheme as a practical investiga-

tion on the Italian electricity market. Furthermore, the considered framework

might be expanded to evaluate the effect of considering the prohibited operating

zones of conventional power units in the process of the self-scheduling problem.

Also, it would be interesting and challenging to analyze the impact of moving

the operation modes of storage facilities from the here-and-now stage to 1st and

2nd wait-and-see decisions on the expected profit of the producer.
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