
 

  

 

Aalborg Universitet

Towards Adversarial Phishing Detection

Panum, Thomas K.; Hageman, Kaspar; Hansen, Rene Rydhof; Pedersen, Jens Myrup

Published in:
13th USENIX Workshop on Cyber Security Experimentation and Test

Creative Commons License
Unspecified

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Panum, T. K., Hageman, K., Hansen, R. R., & Pedersen, J. M. (2020). Towards Adversarial Phishing Detection.
In 13th USENIX Workshop on Cyber Security Experimentation and Test USENIX - The Advanced Computing
Systems Association. https://www.usenix.org/system/files/cset20-paper-panum.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 06, 2025

https://vbn.aau.dk/en/publications/d3c67244-39c9-4433-ae13-9bdbd52fc2cb
https://www.usenix.org/system/files/cset20-paper-panum.pdf


Towards Adversarial Phishing Detection

Thomas Kobber Panum
Aalborg University

Kaspar Hageman
Aalborg University

René Rydhof Hansen
Aalborg University

Jens Myrup Pedersen
Aalborg University

Abstract
Over the recent decades, numerous evaluations of automated
methods for detecting phishing attacks have been reporting
stellar detection performances based on empirical evidence.
These performances often neglect the adaptive behavior of
an adversary seeking to evade detection, yielding uncertainty
about their adversarial robustness. This work explores the
adversarial robustness of highly influential and recent detection
solutions, by assessing their common detection strategies.
Following discussions of potential evasion techniques of these
strategies, we present examples of techniques that enable
evasion through imperceptible perturbations. In order to enable
and improve future evaluations for adversarial robustness, a
set of design guidelines is proposed.

1 Introduction

Protecting digital infrastructure against malicious attacks
has become essential as computational systems increasingly
store and exchange private information of interest. This has
motivated the design of initiatives to make the systems under
attack fundamentallymore secure, causing adversaries to adopt
attacks that circumvent these initiatives by exploiting the social
behavior of users of the systems rather than the system itself.
A type of these attacks, phishing has had increased frequency
in recent years [1, 22], and was described as the most widely
adopted method for criminals to get unauthorized access to
private networks in 2017.
Phishing attacks seek to exploit users by deceiving them,

through some form of non-physical interaction, to release
sensitive information for the benefit of the adversary [19].
Since their discovery, over two decades ago, numerous re-
search initiatives have tried to design solutions for automating
identification of these attacks, in order to actively prevent them
from reaching their targets [37]. This has yielded solutions
that demonstrate high accuracy for detecting these attacks,
yet it has been highlighted that this performance is seemingly
counter-intuitive and in contradicting to the observed volume
of attacks [32].

Following this, it was deemed that the used evaluation
methodologies influenced this phenomenon, emphasizing that
a very limited set of methods accounted for the adaptive behav-
ior of adversaries in their evaluation. Thereby, these solutions
could potentially be relying on attributions of phishing attacks
that are exploitable, and potentially enable adversaries to find
attacks that evade detection. The absence of these considera-
tions serves as the main motivation behind this work, as stated
performance might be causing a false sense of security, as
evaluations are unable to reflect the true adversarial setting
that a detection solution faces in practice.

Firstly, we cover related work that has addressed problems
of evaluation methods for the non-adversarial setting, and
address the situation of varying definitions of phishing attacks
(Section 2). Following this, we introduce a new terminology
for phishing attacks, and their associated adversarial environ-
ment, that is independent of implementations and applications
(Section 3). We then introduce a set of axioms for phishing at-
tacks, that encapsulate the functional properties of the attacks,
and serve as abstract guidelines for selecting information to
use for inferring attacks in a given context (Section 4). Using
the introduced terminology and axioms, we then assess two
groups of existing work, highly influential and recent, by pre-
senting four common strategies that the selected methods use
for inferring attacks. The robustness of these strategies, to an
adversary with an objective of creating phishing attacks that
avoid detection, is then discussed and examples of perturba-
tions that enable evasion are presented (Section 5). Based on
the knowledge obtained throughout the assessment, we present
a set of design guidelines for designers of future detection
solutions to adopt, in order to enhance robustness to adaptive
attacks and enable evaluations of their solution (Section 6).
The contributions provided by this work can be summarized
as:

• Propose a set of axioms for phishing attacks using a
terminology that is independent of the application envi-
ronment.

• Demonstrate and discuss the adversarial robustness of



common detection strategies among highly influential
and recent detection solutions.

• Following the assessment, put forward a set of design
guidelines to enable and improve evaluations of adver-
sarial robustness.

The implementation of the experiments for the con-
ducted assessment, including reproductions of detec-
tion solutions and perturbation methods, is provided
with open access at https://github.com/tpanum/
towards-adversarial-phishing-detection.

2 Background

In 1995 criminals performed a large scale attack on users of
the chat service America Online (AOL), that involved tricking
users into sharing their passwords, as the criminals exploited
software to impersonate staff members of AOL [38, 45]. This
incident is often associated with the origin of phishing attacks,
and despite numerous initiatives to combat the attack, certain
sources state that phishing attacks have never been more
frequent [1, 5, 36, 41]

Marchal et al. highlighted that this fact is counter-intuitive
to the the fact that existing phishing detection solutions are
reporting detection accuracy of over 99.9% [32, 44]. They
suggested that the cause might be design limitations of the
methods, making them infeasible to deploy in real-world
settings, or that evaluations of these methods are biased [32].

Following this, they propose a systematic methodology with
recommendations for future designers of detection solutions,
that covers the topics of: data usage, evaluation metrics and
temporal resilience. Within the scope of temporal resilience,
they emphasize that these solutions are likely to see active
attempts of evasion over time and deem that detection solutions
should seek to become robust against these attempts. We refer
to the ability for the solutions to resist these evasion attempts
as adversarial robustness and cover it in greater detail in
Section 3. Marchal et al. finds that a limited set of methods
have directly addressed their adversarial robustness, which
could potentially cause them to be open to evasion in the
setting with an adversary.
While phishing attacks have been studied thoroughly, a

recent meta-analysis of scientific publications showed that
a variety of definitions of phishing attacks exist across the
literature [24]. The cited analysis examined 536 publications
containing 113 definitions, highlighting that definitions have
varied globally across time and internally among research
groups. Taking all of these definitions and their variations into
account, Lastdrager et al. arrived at the following definition
of phishing:

Definition 1 (from [24]). Phishing is a scalable act of de-
ception whereby impersonation is used to obtain information
from a target.

Here, it is essential to clarify that scalable refers to the
relative effort for an adversary to perform the attack. Lastdrager
et al. states that this formulation encapsulates highly targeted
attacks, often referred to as spear phishing, while disallowing
face-to-face interaction and phone calls as valid measures for
conducting phishing attacks. Impersonation as a measure for
obtaining information can be exemplified by falsely claiming
to be a policeman in order to see an identity card with sensitive
information.

Despite this definition being able to express commonalities
among historical definitions for various environments, it does
not cover the properties of the environments hosting these
attacks. We seek to establish more clarity of the problem of
phishing detecting and address this gap, defining terminology
capable of expressing the shared properties of these environ-
ments in conjunctions with elements of phishing detection.
Following this,we decompose Definition 1 into a set of axioms
of phishing attacks expressed using the established terminol-
ogy. This will serve as language for clarifying the adversarial
setting in which phishing detection solutions exist, and the
challenges that arise when seeking adversarial robustness.

3 Terminology

Phishing attacks are known to exist across multiple environ-
ments, such as: instant messaging, websites, and emails. These
environments share common properties that enable them to
host phishing attacks. Throughout this section we seek to
derive these properties, by establishing a terminology for
phishing attacks, their related entities, and the interference
conducted by detection solutions.

Definition 1 clearly states that the objective for the adversary
conducting the phishing attack, is to obtain information. In
order for this to be feasible, the environment must have some
ability to exchange information across certain subjects. We
denote the exchanged information asmessages and the method
of exchange as a channel. Each message has some content and
a pair of subjects that reflect the sender and the recipient. We
refer to an environment with these abilities as a messaging
environment, which effectively serves as the foundation for
phishing attacks to exist.
Attacks are carried by messages and are only functional

when recipients receive and read them. This fact serves as the
motivation for the design of phishing detection solutions, that
seek to effectively filter out messages being sent that contain
attacks, such that they never reach their recipient. Throughout
this work we refer to these solutions as detectors and detection
solutions interchangeably.

Naturally, the objective for these detectors is to categorize
messages as benign or phishing with limitedmisclassifications.
In order for a detector to categorize a message as phishing,
it relies on a set of attributes that messages with phishing
attacks are expected to have. We refer to these attributes
as phishing attributes, for which each detector has a set of
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phishing attributes that effectively serves as the requirements
for a message to be considered a phishing attack.
Let a detector be a function, that maps a message < to a

set of phishing attributes from a set of candidate attributes
AD , such that D(<) ⊆ AD . The candidate set AD serves as
a specification of features that a message must have to be
considered phishing for the respective detector. A message
< is considered to be a phishing attack if, and only if, the
detector yields the entire set of phishing attributes from the
candidate set, such that D(<) ⊇ AD . Note that this discrete
formalization does not directly encapsulate applications re-
lying on probabilistic approaches. However, ultimately these
solutions are used for classification, effectively forcing them
to be discrete functions as they predict discrete classes. See
Section 5.4. Importantly, this formulation intents to empha-
size the scope of information used for inferring attacks, thus
excluding more complex compositions of logic for simplicity
purposes.
Given that detectors need to specify a candidate set of

phishing attributes, the extent to which these definitions reflect
the ground-truth set of attributes is uncertain, as obtaining
completeness of this set is deeply philosophical. However,
observations of successful attacks can serve as samples of
empirical evidence of messages that contain the ground-truth
set of attributes. Here we let the ability to obtain ground-truth
categorizations ofmessages be expressed by an oracle function
that maps a message <, to a set of phishing attributes from
the ground-truth candidate set of phishing attributes A�) ,
such that O(<) ⊆ A�) . Similar to detectors, a message < is
a phishing attack if the oracle yields the ground-truth set of
phishing attributes in its entirety.
Using this formulation, the natural objective for adver-

saries is to find a message < that satisfies the constraint
O(<) ⊇ A�) . When a detection solution is introduced into
a previously undefended environment, it challenges the adver-
saries by requiring that the message must also be incorrectly
classified by the detector. Thereby, the given message < must
also satisfy D(<) ⊂ AD to be a valid attack. We refer to this
constraint as circumvention.
Occurrences of messages that satisfy circumvention is

caused by over-attribution. Over-attribution is an inherit prob-
lem of the assumptions of phishing attacks adopted by a
given detector. Concretely, it occurs when the set of phish-
ing attributes used by the detector AD includes attributes
that are unrelated to the ground-truth, such that AD * A�) .
Thereby, the detector relies on attributes of the message that
are unrelated to its ability to carry an attack.

Conversely, when the detector’s candidate set of attributes
is a subset of the ground-truth candidate set, AD ⊂ A�) , it
can cause the detector to have overly defensive behaviour.
We refer to this behaviour as under-attribution, and it can
cause benign messages to falsely be considered attacks. Such
situations are highly undesirable, as it can cause the detectors
to become inapplicable for practical settings.

4 Axioms

The fact that the true attributes of phishing attacksA�) are not
directly observable, remains the core challenge for the process
of designing detection solutions. Knowing this has driven
the community to create numerous definitions [24], which is
undesirable for establishing common progress. As a measure
to improve upon this situation, and as an attempt to establish a
common perception of the problem of phishing, we propose a
set of axioms. These axioms serve as abstractions of phishing
attributes, which detection solutions should explicitly account
for in their method of inference. We derive these axioms by
examining and decomposing Definition 1.
Definition 1 initially states Phishing is a scalable act [...],

emphasizing that the act (of phishing) has to be scalable,
giving name to the first decomposed axiom.

Axiom Scalable. Being scalable in the context of phishing
attacks means that the method of carrying out the attack should
be inexpensive. Importantly, this axiom does not address the
volumes of attacks, and thereby the more targeted variations
of email phishing, such as spear phishing, that also satisfy this
axiom [24].
Remark. Cost is context dependent, and the boundary for
inexpensive is largely determined by a threat model for the
respective environment. Examples of scalable attacks are
phishing attacks conducted using inexpensive channels, such
as email, as opposed to face-to-face communication which is
considered expensive. For most practical environments, the
use of a certain channel is often associated with a foreseeable
and invariant cost. If such a cost is considered inexpensive,
solutions acting in an environment, that uses solely such a
channel, can implicitly satisfy this axiom.

Following this, additional specifications of the mentioned
act are covered by: [...] of deception whereby impersonation
is used [...]. Here, impersonation is described as a method
of deception, serving as a functional dependency of the men-
tioned act. We decompose this functional dependency of
impersonation into an axiom of the same name.

Axiom Impersonating. An essential ability of phishing at-
tacks, is the ability to deceive victims into believing that the
sender’s identity, of a message carrying an attack, is gen-
uine and benign. Adversaries exploit identities across various
abstractions of subject identities, varying from identities of
specific subjects to mimicking a class of subjects. Exem-
plifying this in a context of websites, an adversary might
seek directly replicate the appearance of a specific bank, e.g.
Bank of America, or alternatively construct an appearance
that resemble a generic identity of banks as a class.
Remark. This axiom implies that recipients of messages are
to a certain degree responsible for validating the identities of
senders. Additionally, their ability to do this must be imperfect
in order for adversaries to exploit this axiom.



Lastly the definition states that the adversarial objective of
the attack is: [...] to obtain information from a target. This
objective suggests that the attack should induce some action
that leads to the exchange of information, we capture this by
the following axiom.

Axiom Inducive. As phishing attacks seek to exploit the
users of a system rather than the system itself, it is necessary
for the recipient of the attack message to conduct some action
that allows for the attacker to fulfill his objective of obtaining
information. This axiom encapsulates the fact that users must
act upon interpreting the received message, that cause the
adversary to obtain desired information.

5 Assessment of Existing Methods

Numerous initiatives from academia and industry have pro-
posed methods for detecting phishing attacks without human
intervention [23]. These solutions have reported impressive
performance measures based on historical observations of
phishing attacks. It is often implicit or unknown to which
extent these observations reflect the posterior measures that
adversaries are likely to adopt for evading a detection solution,
while maintaining functional attacks. This naturally yields
uncertainty about to which extent the work accounts for eva-
sion techniques. A study, that has analyzed lateral phishing
attacks at large-scale, suggests that adversaries are willing
to invest additional time into avoid being detected by their
victims (opposed to a detection solution) 1 [18].

Therefore, we seek to assess the ability of existing work
to perform under these conditions, through an assessment of
their adversarial robustness. For the assessment, we include
methods of two categories, namely highly influential and
recent. For highly influential methods, we aggregated the
union of the ten most cited (or highest ranked) publications
among the search results from a series of well-established
search engines commonly used by the scientific community 2.
Throughout these searches we used search queries related
to phishing detection 3. Most of the publications within this
group have impacted a network of succeeding solutions that
either adopt a similar methodology or directly extend the given
method. As a measure to explore if adversarial robustness
has changed over time, and acknowledging that high citation
counts favors older publications, we furthermore manually
select a group of recently published methods that use novel
methodologies for inference. The full list of methods selected
for the assessment can be seen in Table 1.
The selected methods are designed for a limited set of

messaging environments, suggesting that these environments,

1Importantly, as more time is invested into individual attacks, fulfillment
of the axiom of scalability decreases.

2Search engines: Web of Science, Scopus, IEEE Xplore, Google Scholar.
3The searches were conducted during September and October 2019 and

used the queries “phishing detection” and “phishing classification”.

namely the web and email, remain of highest interest. The
web is an environment in which websites are exchanged across
publishers and consumers, through servers and clients typically
using theHTTP protocol as a channel. Email is an environment
for exchange of text-basedmessages sent across the channels of
SMTP, POP3 and IMAP. We speculate that this dominance of
environments is largely caused by the large volume of phishing
attacks in these environments, serving as a natural starting
point for solutions seeking to detect attacks. Importantly, as
suggested by the proposed axioms in Section 4, attacks are
not strictly limited to only exist in these environments.
Examining the selected methods is challenged by the fact

that none of themprovide a publicly accessible implementation.
Additionally, reproducing an implementation of these methods
is challenged by the the fact they often rely on private datasets
or third-party components that are unrecoverable, such as
older search engines. This inherently makes evaluations of
adversarial robustness difficult, as perturbations for evasion
requires access to the output of an implementation to validate
their performance. Additionally, most of the methods do not
explicitly state the entire set of attributes that their method
relies on for classifying a message as a phishing attack. In
respect to our notation, this effectively leaves the candidate set
of phishing attributes, for a given detector,AD to be unknown.
We address this by only assessing common attributes and
methodologies that are thoroughly covered across multiple
methods which expressed core ideas of the inference design.

These common attributes and ideas are expressed as strate-
gies, for which we identified four among the selected methods:
Visual Similarity (VS), Statistical Modelling (SM), Reverse
Search Credibility (RSC), Channel Meta-information (CI).
We seek to either show perturbations that enable evasions of
the given strategy, or discuss fundamental problems that are
likely to enable evasions.
Only two of the recently proposed methods [3, 11] have

been evaluated with respect to adversarial robustness. We
attempt to reproduce one of the solutions and find evidence
suggesting that the reported adversarial robustness is flawed.
More details are contained within Section 5.4.

5.1 Visual Similarity
Human perception is often the centrepiece of impersonation,
known to be an axiom of phishing attacks, as it is exploited
to deceive recipients into misinterpreting the identity of the
sender. Certain solutions use a strategy that seeks to detect
attacks by mimicking human perception of messages’ visual
identity and ideally is able to differentiate between messages
that appear to have similar and unique visual identities. These
similarity measures are then used in conjunction with ap-
pearances of known benign messages, to detect the visual
similarity of future messages. If a message is similar to the set
of known benign messages, while originating from a different
source, then it is considered to be impersonation and for some
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VS • • • • • •
SM • • • • • • • • • • • • •
RSC • • • •
CI • •

ENV W W W E W W W* W W W E W W W W W W** W

Table 1: Methods selected for assessment and their identified strategies: Visual Similarity (VS), Statistical Modeling (SM),
Reverse Search Credibility (RSC), and Channel Meta-information (CI). Messaging environments (ENV) cover email (E) and web
(W), for which W* is restricted to only e-banking websites and W** being phishing websites created using phishing toolkits.

methods this is the only attribute required to be considered
a phishing attack. This strategy is expressed in the following
derived attribute of phishing attacks:

Phishing Attribute 1. Sharing visual identity with an already
observed benign message while originating from a different
source.

Fu et al. implements this strategy by measuring the visual
similarity using the Earth Mover’s Distance for pixel intensity
values of rendered websites [15]. Chen et al. use Normalized
Compression Distance for byte-representations of rendered
websites’ pixel intensities [9,10]. Mao et al. introduce amethod
that implements this attribute by comparing aggregations of
a page’s HTML elements, including respective CSS styles
for each element, thus assuming similarities across these
aggregations are identical to their rendered representations [30,
31]. Corona et al. introduce a two-fold method for detecting
attacks, for which one component uses image descriptors,
in the form of Histogram of Oriented Gradients, and color
histograms to measure for visual similarity among websites
that host phishing attacks from phishing kits [11].
We argue that Phishing Attribute 1 is a direct adoption of

Axiom Impersonating, thereby serving as a useful attribution
for inferring attacks. However, measuring the correctness of
models, that seek to mimic human perception, is difficult and
the inability to do so can lead to potential imperfections. These
imperfections can potentially serve as an opportunity for ex-
ploitation that would enable adversaries to create attacks that
circumvent detection. For demonstrative purposes, we employ
a perturbation technique that yield seemingly imperceptible
changes, and thereby are expected not to affect Phishing At-
tribute 1. However, this perturbation technique significantly
changes the similarity values of NCD [9,10]. The technique
is based on the fact that colors, in their binary representation,

are completely distinct while color perceptions of humans are
more fluid [13].

Thereby, conducting color perturbations that are small in the
perception space of humans still yield large distinctive changes
in the binary changes. We exploit the HSL (hue, saturation,
light) color space, for which changes in its continuous values
reflect human perception better than similar changes conducted
in the frequently used RGB (red, green, blue) color space. For
the implementation of this color space, we use HSLuv [8], and
perturb images of websites by increasing saturation values by
1% and projecting the values to respective numerical limits.
Let the similarity measure for two websites G8 and G 9 be
specified byNCD(G8 , G 9 ) →R ∈ [0;1], forwhich higher values
reflect more similarity. Additionally, let a given appearance
of a website be G, for which G ′ is the perturbed variant of
G. The experiments showed that the perturbation technique
dropped the similarity scores significantly, effectively causing
NCD(G, G ′) ≈ 0, for the most popular websites of the Tranco
list [26]. Given that phishing attacks often impersonate popular
websites, this suggests that this perturbation technique could
potentially lead to a consistent method for circumventing
detection. Examples of perturbations, and the ability of the
technique to influence the similarity score, can be seen in
Figure 1.
While our perturbation technique for NCD illustrates that

specifically NCD is not adversarial robust, we argue that
similar imperfections will exists for any method using the VS
strategy until human perception have been effectively verified
to be reproduced in a computational setting.

5.2 Reverse Search Credibility

Search engines are a fundamental tool for finding and ranking
information from the Internet using search queries of provided
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Figure 1: Visual appearances of the two most popular websites from the Tranco list [26], being perturbed by tiny shifts in the
HSL color space. For visualization purposes, the perturbations are enhanced by a multitude. These perturbations cause significant
drops, NCD(G, G ′) −NCD(G, G) = −0.96±0.01, in the visual similarity scores of NCD while being seemingly imperceptible.

keywords. This strategy is based on the assumption that search
engines only display trustworthy and credible websites in their
search results. Consequently, the absence of given websites in
search results can be attributed to a website being a phishing
attack, expressed in the following derived attribute:

Phishing Attribute 2. Absence of a given website in the most
relevant search results returned by querying search engines
with a signature derived from the given website.

Zhang et al. and Xiang et al. implement this attribute by
using the term frequency of infrequent words, from a corpus
of websites, for creating signatures of individual websites used
for querying the Google search engine [47, 48]. Dunlop et al.
expand upon this strategy by deriving the text ofwebsites using
Object Character Recognition (OCR), in order to be more
robust against imperceptible text to image transformations
of website content [12]. Chiew et al. introduce a method
extracting logos of websites, using them as signatures for
reverse image searches [27].

These studies demonstrate promising empirical evaluations
using real-world data. However, we question their adversarial
robustness as Phishing Attribute 2, suffer from some funda-
mental assumptions that can be exploited by an adversary.
Firstly, we argue that the related attribute of the strategy does
not align with any of the proposed axioms in Section 3, thereby
causing over-attribution. Secondly, the strategy puts forward
strong assumptions on the algorithmic functionality of the
search engines, which remain undocumented due to commer-
cial interest, thus creating uncertainty about the functionality
of crucial components for the design.

This uncertainty could potentially lead to exploits that allow
for circumvention. Concretely, the solutions relying on the
text documents of websites could suffer from injected rare
words that would affect the extracted signature without altering
the rendered interpretation for the user in the browser [12].
Effectively this would cause the appearance of the website to
remain unchanged while the signature could be altered to the
desire of the adversary. Additionally, for solutions relying on

OCR to extract signatures, it has been shown that OCR systems
are vulnerable to imperceptible noise that gains the adversary
some control of the set of recognized characters [39].
For these reasons, we find this strategy insufficient for

achieving adversarial robustness.

5.3 Channel Meta-information
Phishing attacks are carried by messages and require that
these messages are exchanged in order to reach their target.
The channel responsible for this exchange typically relies
on user-controlled information that could potentially carry
attributions of phishing attacks. This strategy is based on
the assumption that attacks can be inferred purely based on
meta-information of messages, and thereby independently of
message content. Effectively, this restricts the set of allowed
attributes to be within a certain domain of information that
the channel exposes.

A common implementation of this strategy for websites, is
to infer attacks solely based on similarities across the Uniform
Resource Locators (URLs) [16, 25]. Unknown URLs are then
compared to a set of URLs from known benign websites, in
order to infer attacks, as resemblance is a sign of impersonation,
as derived in the following attribute.

Phishing Attribute 3. URLs resembling a URL from a
known benign source.

Garera et al. implement this attribute by creating a statistical
model that uses lexical information contained in URLs, in
conjunction with Google PageRank information, in order to
proactively prevent attacks prior to visiting websites [16]. Le
et al. propose a method that uses lexical features of URLs
while being resistant to common obfuscation techniques used
by adversaries for client-side inference of attacks [25].
We argue that solutions adopting this strategy, using only

content-independent-attributes, are prone to under-attribution.
This stems from the inability to include attributions that align
with Axiom Inducive. Additionally, we question to which



extent Axiom Impersonating can be fully determined from
content-independent attributes. However, we acknowledge
that content-independent attributes can influence Axiom Im-
personating.

5.4 Statistical Modeling
Deriving a set of concrete phishing attributes for a given mes-
saging environment that prove to be useful and robust is the
fundamental challenge of phishing detection. This difficulty
has lead many researchers to learn these attributes using data
of messages and statistical modeling. In particular, machine
learning, a class of statistical modeling, has a significant pres-
ence in the selected methods. Machine learning is based on
the popular approximation technique Empirical Risk Mini-
mization [43], where the objective is to learn some probability
distribution by minimizing the risk, typically represented as
the weighted sum of some goodness of fit measure over the
used data points. The learned probability distribution is then
expressed as a model, that can be used for inference.

For phishing detection it is desired to learn some probability
distribution of a given message containing a phishing attack,
with respect to some set of information desired for inferring
attacks. This information serves as a bound of information
in which attributes of phishing can be learned by solving the
stochastic optimization problem of minimizing the objective
function. Naturally, the ability to approximate this probability
distribution influences the chances of finding a distribution
with low uncertainty to be useful for inference. Additionally,
even if the ideal probability distribution is found, it might
not even be useful for inference, if the information used for
inference is seemingly uncorrelated with phishing attacks.
For certain models, including information that is strongly

uncorrelated to the learning objective can hinder the ability of
uncovering a useful probability distribution, thereby requiring
manual labor for removing them prior to the learning process.
However, progress over the last decade has allowed for more
flexible models that are less sensitive to inclusion of uncor-
related information, such as Deep Neural Networks (DNNs).
After the learning process is over for the statistical model,
information that is associated with increased probability of the
presence of attacks can effectively be addressed as phishing
attributes of phishing attacks.

This strategy does thereby not impose the of use a specific
attribute of phishing, it only expresses that attributes should
be uncovered using patterns contained within data points.
Whittaker et al. use a random forest classifier that was

trained using more than 3000 features in order to infer web-
sites containing phishing attacks. Abdelnabi et al. exploit the
potential of DNNs, by using a model named WhiteNet that
has more than 100M trainable parameters for translating pixel
intensity values of websites’ appearances into a set of visual
metrics.
Despite these methods showing promising results during

evaluation, the ability to interpret the inference conducted by
these models is difficult, thereby challenging the ability to
validate and uncover the underlying phishing attributes. Vali-
dating these attributes is valuable, as the methods are prone
to learn bias in high-dimensional spaces [20]. In addition,
approaches such as DNNs also suffer from a fundamental
problem named adversarial examples, for which tiny perturba-
tions of legitimate input cause unexpected large changes in the
predictions of the model [7,42]. A perturbation is expressed as
some noise X ∈ R� for a given model input G ∈ R� , such that
its perturbed variant is given by G ′ = G + X. Typically a threat
model for these attacks is defined by a perturbation bound n ,
such that for any given noise X it must satisfy n ≤ ‖X‖? for
some p-norm. To reduce this problem of these perturbations,
and thereby making models more robust, it was proposed
to use a training technique named adversarial training that
includes perturbed input into the training process [29]. This
technique has shown to reliably increase robustness.

WhiteNet uses a variation of this technique, to suit the train-
ing objective of metric learning, and improve the robustness
of the model. The evaluation of the original model reports an
accuracy of 65% (closest match) against adversarial examples
generated using the Fast Gradient Sign Method (FGSM) [17]
(n ≤ 0.01). This accuracy is considered, in contrast to other
applications being attacked by adversarial examples [6], rel-
atively high in relation to the 81% accuracy for the original
data. Using the adversarial training lifts this accuracy to 71%
against adversarial examples.

This decreased performance led us to hypothesize that the
reported high robustness could stem from two causes: the
Siamese Neural Network (SSN) architecture used byWhiteNet
has some inherent robust properties or the evaluation was
performed incorrectly. Importantly, SSNs use a fundamentally
different training procedure than typical machine learning
classifiers, as the loss function takes triplets of data points as
parameters.

As a measure to explore our hypotheses, we replicate the
WhiteNet model using a similar data set of 37043 websites
across 2449 domains, gathered using the Kraaler tool [35].
Our implementation achieves a significantly lower accuracy
of 24.6% against adversarial examples prior to adversarial
training, with an increase to 30.8% after using adversarial
training, as seen in Table 2. During the generation of the attacks
we adopted a larger batch size for attacks, as it have previously
been discovered that the sampling of triplets can greatly
influence the calculated loss during training [46]. Given that
the loss function is also used for attacking, we hypothesize that
a similar importance should be accounted for during attacks.
We speculate that the increase in batch size, and thereby
better sampling, enabled us to create substantially stronger
attacks. Following these results, we conclude that the reported
robustness measures of WhiteNet are not representative for
actual robustness towards adversarial examples.



Model Unperturbed n = 0.005 n = 0.01
Traditional Training

WhiteNet 81.0% 72.8% 62.5%
WhiteNet (replica) 87.8% 30.0% 24.6%

Adversarial Training
WhiteNet 81.0% 79.0% 73.1%
WhiteNet (replica) 90.3% 33.3% 30.8%

Table 2: Precision (closest match) forWhiteNet and our replica
model across perturbations created using the FGSM attack
for various threat models n .

6 Design Guidelines

Assessing existing detection solutions in Section 5 highlighted
problems related to the ability of evaluating adversarial robust-
ness and attaining it, concretely: inaccessible implementations,
implicit attributes, and over-attribution. As a measure to pre-
vent future detection solutions from inheriting these problems,
we propose three design guidelines: Accessible, Explicit At-
tributes, and Axiom Alignment.

Accessible. Adversaries are adaptive by nature, this fact
should be reflected in the ability for the scientific community
to be able to continuously evaluate solutions as new attacks
emerge. Currently, most of the methods we have assessed do
not provide widely available implementation, thus making it
challenging to independently evaluate their performance. For
certain methods it is infeasible to even reproduce the results,
namely the data driven approaches that use private datasets in
conjunction with not sharing the trained model weights.
To combat this phenomenon, we encourage that more au-

thors make their methods easily accessible to the community.
Ideally, this would be open access to the implementation, used
throughout the original evaluations, or as a bare minimum
ensure reproducibility. For methods relying on statistical mod-
eling, this would include either making training data, or the
found model weights, widely available. We deem that higher
accessibility of solutions could contribute to the establishment
of a community for perturbation techniques, that will prove
useful for systematic evaluations of adversarial robustness.

Explicit Attributes. Defining phishing attacks has been
shown to be difficult, causing a variety of definitions to ex-
ist [24]. When designing a phishing detection solution, the
fundamental task is to design some mechanism capable of
quantifying attacks, typically based on some intuition of at-
tacks. If the adaption of the intuition of attacks into concrete
design decisions remain unclear, it can potentially disguise
strong assumptions of attacks that can be violated and exploited
in the adversarial setting.

We suggest that designers of detection solutions explicitly
state, to the best of their ability, which information is con-

sidered as attribute(s) of a given message being a phishing
attack for their respective domain. For statistical modeling,
we suggest either using models for which causality can be
directly studied at test-time or adopt methods for exploring the
underlying attributions during inference [28, 40]. This should
be conducted to reduce the risk of the model inheriting bias
from the underlying training data, causing undesired effects for
the generalization performance. This guideline seeks to ensure
that assumptions adopted throughout the design, namely the
phishing attributes, become more explicit and thereby make
the identification of potential cases of bias, over-attribution,
or under-attribution, more effective.

Align with Axioms. Throughout the introduced terminol-
ogy we have covered the consequences of having phishing
attributes that are unaligned with true set of attributes, namely
over-attribution and under-attribution. Unfortunately, the as-
sessment highlighted that some of the common strategies
adopted by the selected methods could be affected by these
consequences. As a first measure for combating this phe-
nomenon, we introduced a set of axioms of phishing attacks in
Section 4. Effectively, these axioms serve as abstract phishing
attributes, independent of messaging environments, that one
has to account for and transform into concrete information
for inference in a given environment of application. Thereby,
we suggest that designers explicitly document the relationship
between their phishing attributes used for inference and the
proposed axioms. Additionally, it must be ensured that the
used set of phishing attributes cover the full set of axioms.

7 Conclusion

Detection solutions for identifying phishing attacks are contin-
uously challenged by adversaries trying to adapt their attacks
to evade detection. Across the influential and recent methods,
most of these solutions do not account for this challenge in
their evaluation, yielding uncertainty about their adversarial
robustness. In order to clarify the conditions of this adversarial
setting, we introduced a terminology that is independent of
environment and application for respective methods. Based
on a consensual definition of phishing, we presented three
axioms of phishing attacks, that any detection solution should
account for to avoid using incorrect attributes for inference.
Following this, the adversarial robustness of highly influential
and recent work were assessed by decomposing their meth-
ods of inference into a set of strategies. The ability to evade
detection for the respective strategies was then discussed, and
examples of perturbations that enabled evasions for certain
methods were discovered. These findings let us to define a set
of design guidelines for the community of phishing detection
to adopt to both enable and improve evaluations of adversarial
robustness.
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