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Abstract—Accurate estimation of the state of health (SOH) of 

batteries is essential for maximizing the lifetime of the battery and 

improving the safety and economy of any energy storage system. 

Data-driven methods can use measurement data to effectively 

estimate the SOH, but the estimation performance depends on the 

relevance between the selected feature and SOH. In this paper, 

fuzzy entropy (FE) of battery voltage, is proposed as a new feature 

for SOH estimation and validated on Li-ion batteries. Compared 

with the traditional sample entropy, the FE can capture the 

variation of voltage during the battery degradation more 

efficiently in terms of the parameter selection, data noise, data size 

and test condition. Moreover, the aging temperature variation is 

involved in the established SOH estimator as the temperature is a 

disturbance variable in the real applications. The FE-SOH is used 

as the input-output data pair of the support vector machine, and a 

single-temperature model, a full-temperature model, and a 

partial-temperature model are established. As a result, the FE-

based method has better estimation accuracy under aging 

temperature variation. The FE-based method also decreases the 

dependence on the size of the required training data. Finally, the 

effectiveness of the proposed method is verified by experimental 

results. 

 
Index Terms— Li-ion battery, state of health estimation, sample 

entropy, fuzzy entropy, aging temperature variation, support 

vector machine, short-term current pulse. 

I. INTRODUCTION 

I-ION batteries are extensively used in a wide range of 

applications including electric vehicles and energy storage 

systems [1]-[3]. However, similar to any energy storage device, 

their performance is subject to degradation (i.e., capacity fade 

and power decrease) during long-term operation. Hence, in 

order to ensure a reliable operation and economic viability, it 

becomes necessary to know the state of health (SOH) of the 

batteries at every time during their use [4]-[6]. SOH is a figure 

of merit of the condition of the battery. It is usually related to 

the battery capacity, resistance or to both, as these are the main 

parameters that are describing the battery performance behavior 

during their entire life. Various battery SOH estimation 

methods have been proposed [7]-[20]. The most 

straightforward approach is to measure the charge transferred 

through the battery during charging or discharging [7, 8]. 

However, in real applications, this method needs high-precision 

current sensors and requires the battery to be taken out of the 

regular operation, which is not feasible. Therefore, other 

estimation methods have to be considered. Based on 

electrochemical models or equivalent-circuit models, state 

observers such as multi-scale extended Kalman filter [9, 10], 

multi-scale nonlinear predictive filter [11], and the particle filter 

[12] have been designed for the joint estimation of battery state 

of charge (SOC) and SOH. Due to the complex internal 

principles and uncertain working conditions, it is difficult to 

establish an accurate battery model that can exhibit the battery 

dynamic characteristics. Data-driven methods are based on the 

battery aging features and evolution rules according to battery 

data (current, voltage, temperature). They are gaining 

increasing interest due to their flexibility and being battery 

model-free. These methods include amongst others, support 

vector machine [13, 14], relevance vector machine [15, 16], 

artificial neural network [17, 18], Gaussian process regression 

[19, 20], and ensemble learning [21], etc. Moreover, with the 

development of big data technology, real-time monitored 

parameters such as voltage, current, and temperature are 

processed in the cloud platform, which also decreases the 

requirements of the microcontrollers and improves the SOH 

estimation accuracy [5]. 

Because the data-driven SOH estimation methods model the 

battery degradation by mapping the external features against the 

capacity loss, high-quality datasets are required for the training 

purpose. Therefore, the feature should contain sufficient aging 

information to improve the estimation accuracy, and the 

convenience of feature extraction should be considered in 

practical applications. In [22], Saha et al. found that changes in 

the battery internal parameters such as the double layer 

capacitance and the charge transfer resistance are related to 

battery degradation, so they extract the features from the 

electrochemical impedance spectroscopy to estimate the SOH. 

However, such features are hard to be obtained in real-life 

applications due to the requirements and limitations of the 

measurement method and device. Based on the fully charge 

voltage profiles measured during the aging process, the 

incremental capacity (IC) peak, valley, and their corresponding 

voltage values [23, 24] can be extracted and related to the 

battery SOH. Nevertheless, obtaining the fully charging profile 

requires a long measurement time, which is not always feasible 

neither in laboratory research nor in practical applications. In 
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order to shorten the test time for obtaining the features, Stroe et 

al. [25], and Xiong et al. [26] develop an effective feature for 

SOH estimation considering a partial charging voltage curve. In 

addition, the current pulses are added during the charging 

period of a battery. Based on the short-term pulse test, the direct 

current resistant [27], the geometric shape of the voltage 

profiles [28], and the knee points of voltage response to pulse 

test [14, 29] are extracted as the feature to estimate the SOH. 

In addition, sample entropy (SE), as a powerful statistic for 

measuring the complexity of a signal, has been used for SOH 

estimation [30]-[33]. Li et al. monitored the surface 

temperature of batteries during the charging process, and 

utilized its SE for the battery capacity prediction [25]. Hu et al. 

calculated the SE of the voltage data under a short pulse test, 

and the SOH was estimated by the polynomial fitting [31] and 

the sparse Bayesian prediction [32]. Moreover, high accuracy 

of the entropy-based SOH estimation will be achieved when 

the battery SOC enters into the polarization zone [33]. 

However, SE shows high sensitivity to the parameter 

selection and noise because the Heaviside step function is used 

in its similarity degree computation [34]. Moreover, SE cannot 

reflect the information contained in the aging data accurately 

when the aging temperature is considered. In this paper, fuzzy 

entropy (FE) is applied for battery SOH estimation in order to 

improve the estimation accuracy. Because FE is an improved 

measure of time series regularity, FE of voltage will be more 

consistent and robust to parameter variation (i.e., test condition 

and date size) [35]. The advantages of FE-based method are 

verified from three aspects i.e., freer parameter selection, 

stronger robustness to noise, less dependence on data size, and 

more independent on aging test condition. Since the aging 

temperature has a significant effect on the battery’s degradation 

behavior [36, 37], in this work, the performance of the proposed 

SOH estimation method for different temperature is studied in 

detail. According to the aging data under different aging 

temperature condition, the FE, SOH, and temperature are used 

as input variables. The FE-SOH mapping is established based 

on SVM, as shown in Fig. 1. Compared with the SE-based 

method, the effectiveness of the proposed method is verified by 

experiments. 

The rest of this paper is organized as follows. The theory of 

SE and FE algorithms as well as the SVM-based method for 

SOH estimation are introduced in Section II. Section III 

compares the performance of FE-based and SE-based methods 

based on the cyclic aging test. Under the calendaring aging tests 

with different temperatures, the SOH estimation results are 

given in Section IV. Section V gives the conclusion of this work. 
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Fig. 1. Schematic diagram of the proposed algorithm. 

II. FUZZY ENTROPY-BASED SOH ESTIMATION 

A. The theory of FE and SE algorithm 

SE or FE is the negative natural logarithm of the conditional 

probability (CP) that a dataset of length N, having repeated 

itself for m points within a boundary, will also repeat itself for 

m+1 points [34]. The specific algorithms of FE and SE are 

described in Fig. 2.  

 

 

Fig. 2. Flowchart of fuzzy entropy and sample entropy algorithms. 
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There are two differences in the calculation of SE and FE, 

which makes FE more accurate in extracting the information 

contained in the original data than SE. Firstly, the similarity 

degree is computed by the Heaviside step function in SE; in this 

case, the contributions of two points that are far apart but within 

the boundary are treated equally, while the points just outside 

the boundary are left out. For example, there are four points d1, 

d2, d3 and the original point d0 in the series, as shown in Fig. 3. 

Because the Heaviside function has a rigid boundary, d2 and d3 

have the same similarity degree with the original point d0, i.e., 

2 0 3 0
1d d d dD D  . However, the point d1, which is close to d2, 

is considered dissimilar with d0, just because d1 is outside the 

boundary. As a result, a small variation of r will cause the 

saltation of SE value and SE maybe invalid in case of small 

parameter r [35]. FE improves the SE by using an exponential 

function as fuzzy function to describe the similarity degree of 

two vectors. In this case, the larger the distance between two 

points, the lower their similarity degree. Therefore, the fuzzy 

function can obtain more details of the data and it makes FE 

more accurate in quantifying the regularity of a dataset and freer 

in parameter selection. Secondly, the m-dimensional vector 

Vm(i) is generated directly from the original series in SE. Then 

the distance between Vm(i) and Vm(j) is defined as the maximum 

absolute difference of their scalar elements. Under the 

definition, the similarity degree in SE is determined by the 

absolute coordinates of the vectors. However, the mean of the 

match templates is removed in the case of FE calculation, so 

that the similarity of the vectors is measured based on their 

shapes rather than their absolute coordinates. Therefore, FE can 

maintain a stronger relative consistency when there are 

fluctuations in the original series. From a theoretical 

perspective, FE has strong robustness to the data noise and the 

test condition. The good performance of FE is also 

demonstrated in the following sections. 

 

Fig. 3. The similarity function used to calculate SE and FE. The Heaviside 

function and the exponential function is for SE and FE calculation, 

respectively. 

Typically, the parameter m is suggested to be set at 2 or 3, 

and r is to be set between 0.1 and 0.25 times the standard 

deviation of the data [35]. As these suggestions do not always 

demonstrate the best results for all kinds of datasets, the FE and 

SE algorithm can be tested using a range of parameter 

combinations (m = 2 and 3, r ranging from 0.1–0.3 times the 

standard deviation of the data) [38]. Then, the parameter can be 

chosen based on the minimization of the maximum 

sample/fuzzy entropy relative error [39]. In the strategy for the 

optimal selection of r, the standard approximation is used and 

its expression is 

 ( ) '( )g CP CPg CP   (1) 

where g(CP)=−log(CP). Then, 

 
( ) '( )

log( )

CP

g FE CPg FE
CP CP


  


 (2) 

 
( ) '( ) CP

g CP CPg CP
CP


    (3) 

where g(FE) and g(CP) are the relative errors of the FE and CP 

estimates, respectively. The parameter r can be selected by 

minimizing the quantity 

 max ,
log( )

CP CP

CP CP CP

  
 
 

  (4) 

B. SOH estimation based on SVM 

SVM is an effective method to deal with nonlinear 

regression problems, which uses kernel technique to map 

features vectors to high-dimensional space [14]. In this work, 

an SVM model is established to capture the nonlinear 

relationship between features (i.e., FE and SE) and SOH. In 

general, the SVM model is defined as 

 ˆ ( ) ,     ,  ( ) , T d dy b R R b R      w x x x  (5) 

where x is the feature vector, y is the SOH value, and ψ(∙) is the 

mapping that makes the input data linear in the new feature 

space. The ε-insensitive loss function, as expressed in (6), is 

used in the SVM model. 

  
ˆ0,  

ˆ, ,  {1, 2, , }
ˆ ,  otherwise

y y
y y i n

y y






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  

 

 (6) 

The objective of the SVM is to find the optimal coefficients w 

and b on the basis of the following constrained optimization 

problem, 
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 (7) 

where n is the sample number, C is a positive constant 

regulating the penalty, 
i  and 

*

i  are the slack variables 

creating a soft-margin. The Lagrangian function can be 

introduced to transfer such a problem into its dual problem 

which satisfies the Karushe-Kuhne-Tucker conditions [40]. 

Therefore, the following equations can be obtained. 

  *
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*
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n
T
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i
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Finally the regression function can be described as: 

 
1

( ) ( ) ( , )
n

T

i i i

i

f K b 



  x x x  (12) 

where K(xi, x) is the radial basis function kernel with the form 

of  2
( , ) exp 2i iK   x x x x , i


 and 

i  are Lagrange 

multipliers. In order to avoid the overfitting problem, the 

optimal model parameters are obtained through 5-fold cross-

validation [15]. The initial dataset denoted as D is randomly 

split into five mutually exclusive subsets D1, D2, …, D5, and the 

model is trained and tested five times repeatedly. In each time, 

the model is trained on D\Di and tested on Di, where i∈{1, 2, 

…, 5}. The output of the cross-validation is the average of all 

the five testing errors. 

III. EXPERIMENTAL TEST AND AGING RESULTS 

The main electrical parameters of the tested Li-ion battery 

cells are listed in Table 1. The experimental setup, as shown in 

Fig. 4, consists of a FuelCon programmable battery test station 

which is used to perform the reference measurements (i.e., 

capacity test and pulse test), and a host computer which is used 

for data acquisition and analysis. 
TABLE I 

THE DATASHEET OF THE LI-ION BATTERY 

Item Value 

Chemistry LFP/C 

Nominal capacity 2.5 Ah 

Nominal voltage 3.3 V 

Maximum voltage 3.6 V 

Cut-off voltage 2.0 V 

Maximum continuous charge current 10 A 

Maximum continuous discharge current 50 A 

Battery

Voltage +

Current +

Voltage -

Current -

Temperature Sensor

Host computer

FuelCon

Temperature Chamber
 

Fig. 4. Experimental setup. 

During all the measurements, the battery cells were placed 

inside climatic chambers in order to reach and maintain the 

desired temperature. The temperatures mentioned in this paper, 

are the temperatures measured on the cell surface. Generally, 

battery aging can be divided into the calendar aging and cyclic 

aging. The calendar aging corresponds to the irreversible 

capacity loss caused by storage while the cyclic aging is 

associated with the impact of the charge/discharge cycles of the 

battery. In order to fully verify the effectiveness of the proposed 

FE feature, both aging dimensions were considered when aging 

the battery cells. 

A. Cycle aging test 

The whole test consists of three parts: the aging test, the 

capacity test, and the pulse test, as shown in Fig. 5. Firstly, the 

Li-ion battery was aged with a mission profile from the energy 

storage system providing primary frequency regulation to the 

grid [3]. Secondly, a capacity test was conducted to measure the 

battery capacity, as shown in Fig. 6(a). The capacity test 

consists of a 1C-rate constant current full charging procedure 

and a full discharging procedure. In this work, the battery SOH 

is calculated as the ratio between the current maximum 

available capacity and the initial maximum available capacity. 

Thirdly, using a 1C-rate constant current, the battery was 

charged to 20% SOC, 50% SOC and 80% SOC, respectively, 

and at each SOC level, a pulse test was conducted for FE/SE 

features extraction. Each pulse test lasted for 30s, including a 

20 seconds of 4C-rate charging and a 10 seconds of relaxation. 

The obtained voltage datasets are shown in Fig. 6(b), where the 

behavior of the voltage curve changed during the degradation 

process of the battery. After the whole test, the battery reached 

its end-of-life criteria, which was predefined at 20% capacity 

fade. The aging mission profile had a length of one week, time 

in which the battery is subjected to approximately 600 Ah 

throughput (i.e., 120 full equivalent cycles (FEC)). The aging 

profile was repeated 38 times, resulting in a load of 4560 FECs 

for the tested battery.  

B. Calendar aging test under various temperatures 

The calendar aging test was carried out to simply analyze the 

effect of aging condition (in this case the aging temperature) on 

the performance of FE-based SOH estimation. The test process 

of calendar aging is similar with that of cyclic aging. As shown 

in Fig. 7, six battery cells, numbered C.1 to C.6, were aged at 

three different calendar conditions. These battery cells were 

charged to 50% SOC and they were stored at 55oC, 47.5oC, and 

40oC, respectively. After each one-month calendar aging, the 

chamber was set to 25℃, then the capacity test and the pulse 

test were conducted. Each pulse test lasted for 33s, including a 

10 seconds of 4C-rate charging, a 3 seconds of 4C-rate 

discharging, and two 10 seconds of relaxation. Fig. 8(a) and 

Fig. 8(b) show the measured SOH and the collected voltage 

datasets of training cells, respectively, from the calendar aging. 

According to the obtained voltage data, the SE and FE can be 

extracted and the SOH estimation can be achieved by the SVM 

method. The data of the tested battery are divided into two parts: 

one part is used for SVM training, and the other part is used for 

verification. The root-mean-squared error (RMSE), the 

absolute percentage error (APE), and the mean absolute 

percentage error (MAPE) are used to evaluate the performance 

of the proposed method, which are defined as: 

  
2

1

1 ˆ
TN

i i

iT

RMSE SOH SOH
N 

   (13) 
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ˆ
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i i

i
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SOH SOH
APE

SOH


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1
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N SOH
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 
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where NT is the total number of validation data, ˆ
iSOH  and  

iSOH is the estimated SOH and the real SOH of the ith 

validation data point, respectively. 
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Fig. 5. Flowchart of the cyclic aging test schedules. 
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(a)                                                                                                                    (b) 
Fig. 6. Experimental data obtained from the cyclic aging test. (a) SOH curve of the tested battery cell during the cyclic aging . (b)Voltage datasets 

obtained during the current pulse test. 
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Fig. 7. Flowchart of the calendar aging test schedules. 
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Fig. 8. Experimental data obtained from the calendar aging test. (a) SOH curves of the tested battery cells during the calendar aging, (b) Voltage datasets 

obtained during the current pulse tests. 
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IV. PERFORMANCE COMPARISON OF FE-BASED AND SE-

BASED METHOD 

This section compares the characteristics of FE and SE when 

estimating the battery SOH in a dynamic operation condition. 

The 38 weeks of cyclic aging data are used to extract the 

features (SE and FE of voltage) and the SOH, which are used 

as input and output of the SVM model. Among these data, 28 

feature-SOH pairs were used for model training and the other 

10 data pairs were used for validation. Based on the 

experimental test, the effect of three factors on the estimation 

accuracy is considered respectively, i.e., the selection of 

parameter r, the noise and the size of the training data. 

A. Effect of parameter selection on estimation accuracy 

In terms of parameter selection, m is fixed to 2 and N is 30 

(as there are total 30 voltage points in each pulse). Different 

values for r are selected to study its effect on the estimation 

accuracy. It can be seen from Fig. 9 that with the decreasing of 

r from 0.048 to 0.01, FE increases slightly and SE becomes 

scattered. Especially when r is set to 0.01, SE is invalid for SOH 

estimation. The SOH estimation results in terms of the variation 

of r are presented in Fig. 10(a) and Fig. 10(b). As shown in Fig. 

10(a), both methods show high estimation accuracy when r is 

set to 0.048. However, according to Fig. 10(b), the estimation 

error of FE-based method is lower than 4% when r is 0.024, 

while the SOH estimated by the SE-based method shows large 

fluctuations. 
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Fig. 9. SVM training results using different parameter r. 
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(b) 

Fig. 10. Estimation resulrs with different paremeter r. (a) Estimation results 

when r=0.048, (b) Estimation results when r=0.024. 

B. Effect of noise on estimation accuracy 

In order to study the effect of noise on the estimation 

performance of FE-based and SE-based methods, Gaussian 

noise with a signal-to-noise ratio of 50 dB is added to the 

original voltage. The original voltage and noisy voltage are 

shown in Fig. 11. In this part, the parameter m and r are fixed 

to 2 and 0.048 for both methods, respectively. By calculating 

the entropy on the original voltage and noisy voltage, the 

variation of FE and SE can be seen in Fig. 12. One can observe 

that the monotonous relationship between FE and SOH is 

maintained when noise is added to the voltage signal. The noisy 

data causes the saltation of the SE, so the SE-based method 

becomes invalid for estimating the SOH. According to Fig. 13, 
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the FE-based method shows better accuracy and consistency 

when noisy data are used for SVM training and validation. 
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Fig. 11. Original voltage and noisy voltage. 
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Fig. 12. Entropy value of original voltage and noisy voltage. 
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Fig. 13. Estimation results with Gaussian noise. 

C. Effect of data size on estimation accuracy 

The parameters m, r are still set at 2, 0.048 for FE and SE 

algorithms, and the number of data pairs for training varies from 

16 to 29. As shown in Fig. 14(a), the FE-based method shows 

higher accuracy than SE-based method no matter how many 

data are used for SVM training. In addition, as shown in Fig. 14 

(b), 2% MAPE can still be obtained for FE-based method using 

only approximately half of the data (16 FE-SOH data pairs), 

while SE-based method needs at least 24 SE-SOH data pairs to 

achieve the same error. Compared with the conventional SE-

based method, the FE-based method can reduce the required 

data size effectively, which results in a less required effort for 

measurements either in laboratory or in real-life operation. 
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Fig. 14. Estimation results with different data size. (a) RMSE (b) MAPE. 

D. Effect of SOC on estimation accuracy 

In the previous sections (IV.A – IV.C), the SE and FE 

features were extracted from a voltage data set, which was 

measured at 80% battery SOC level (as seen in Fig. 6(b)). In 

this section, the effect of the SOC on the estimation accuracy of 

the battery SOH is analyzed. Thus, the SE and FE features were 

extracted for the three SOC levels and the obtained entropy 

values were related to the battery SOH. 

As it can be observed in Fig. 15, SE obtained only for one 

SOC level cannot be used for predicting the battery SOH. On 

the other hand, FE feature obtained at a single SOC level can 

accurately predict the battery SOH. Furthermore, as illustrated 

in Fig. 15(b), the SOH estimation is less sensitive to the SOC at 

which the FE feature is obtained. This suggests that for the 

considered SOC levels (i.e., 20%, 50%, and 80% SOC), the 

battery SOH can be estimated accurately without the need of 

estimating correctly the SOC beforehand. Subsequently, the 

proposed feature and SOH estimation method is feasible in real-

life applications as the battery system should not reach a certain 

SOC level before the 30 seconds current pulse is applied. 
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Fig. 15. Entropy values extracted from the voltage under single pulse test with 
different SOC levels. (a) SE, (b) FE. (Take the single pulse test at 47.5oC 

for an example). 

V. SOH ESTIMATION CONSIDERING TEMPERATURE VARIATION 

The entropy feature may be invalid as the battery exhibits 

different degradation behavior when the aging temperature is 

varied. In order to avoid the effect of the current and SOC, and 

to simply investigate the effect of aging temperature on the 

SOH estimation accuracy, calendar aging tests under three 

temperatures were conducted. The temperature is added as an 

input variable and the coefficient of the SOH estimation model 

can be acquired by the SVM method. 

Before estimating the SOH considering the aging 

temperature, the paper first studies the minimum pulse time 

required for FE/SE calculation. As illustrated in Section III. B, 

a 33-second pulse test was conducted at 20% SOC, 50% SOC 

and 80% SOC, respectively (i.e., Pulse1, Pulse 2, and Pulse 3). 

It can be seen from Fig. 16 that when only the voltage data 

under one pulse is used for feature calculation, the obtained SE 

has no monotonous relationship with the SOH disappears. On 

the contrary, the obtained FE is still valid for SOH estimation. 

Here the single pulse test at 80% SOC for is taken as an 

example. Of course the same result can be also obtained for 

single pulse at other SOC levels (as seen in Fig. 15). Table II 

summarizes the training RMSE when using different pulse test 

data to calculate the FE and SE feature. It can be seen that 33-

second pulse test (there are only 13 seconds of pulse current 

applied to the battery) is not enough for SE-based method to 

estimate the SOH. However, for FE-based method, its RMSE 

values keep lower than 0.015 when FE feature is obtained by 

using different amounts of voltage data in the range of 33 to 99 

seconds. The results show that the pulse test containing at least 

20-seconds pulse current is needed for SE-based method, while 

the FE-based method only requires a pulse test containing a 13-

second pulse current. 
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Fig. 16. Entropy values extracted from the voltage under single pulse test. (a) 

SE, (b) FE. (Take the single pulse test at 80% SOC for an example). 

TABLE II 
TRAINING RMSE WHEN USING DIFFERENT PULSE TEST DATA TO EXTRACT FE  

Feature Battery cell Pulse 1 Pulse 2 Pulse 3 
Pulse 1+Pulse 

2 

Pulse 1+Pulse 

2+Pulse 3 

FE 

C. 1@55℃ 0.011 0.015 0.011 0.013 0.011 

C. 3@47.5℃ 0.015 0.009 0.009 0.012 0.014 

C. 5@40℃ 0.013 0.012 0.012 0.012 0.012 

SE 

C. 1@55℃ /a / / 0.018 0.014 

C. 3@47.5℃ / / / 0.017 0.014 

C. 5@40℃ / / / 0.014 0.016 

a. The SE extracted by the data under the specific condition is invalid for SOH estimation 

In order to compare the performance of SE-based and FE-

based SOH estimation method, all the 99 voltage data are used 

for the feature calculation. Based on the minimization of the 

maximum FE or SE relative error, m, r, N were considered as 2, 

0.04, 99 for the FE algorithm and 2, 0.08, 99 for the SE 

algorithm. As shown in Fig. 17(a) and 17(b), the SE/FE curves 

have the same shapes but shift to different degree along the 

horizontal axis when the aging temperature is changed. Fig. 

17(a) shows that for a fixed SOH point, the distance between 

the SE values at adjacent temperature (i.e., 55oC and 47.5oC) is 

approximately 0.03; however, for the FE curves in Fig. 17(b), 

the distance is smaller than 0.003. Consequently, it can be 

concluded that FE is more robust to temperature variation than 

the SE. 
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Fig. 17. Entropy values extracted from the combination voltage under three 

single pulses. (a) SE, (b) FE. 

A. Single-temperature model 

The mutual validation approach is used, where the battery 

cells are divided into two groups. One is the training group (C.1, 

C.3, and C.5) and the other is the validation group (C.2, C.4, 

and C.6). The data from only one temperature of aging test is 

used to train and validate the SVM model. Accordingly, three 

single-temperature models are established at 55℃, 47.5℃, and 

40℃, respectively. As shown in Fig. 18, both methods can 

achieve an accurate SOH estimation and the maximum error is 

less than 4% at 55℃ and 47.5℃. While the SE-based method 

shows a big fluctuation and its APE even reaches 12% for the 

battery aged at 40℃. Meanwhile, FE-based method improve 

the estimation accuracy significantly, and the errors in most 

estimate values are less than 3%. Consequently, according to 

Fig. 19, the performance of both methods are approximately the 

same when the battery were aged at 55oC and 47.5℃. However, 

SE-based method at 40℃ shows a large estimation error, and 

its RMSE and MAPE is 0.034 and 3.25%, respectively. On the 

contrary, FE-based method shows better estimated accuracy at 

40℃, and the RMSE and MAPE are only about 0.5 times and 

0.4 times smaller than that of SE-based method. It can be 

concluded that the FE-based method is more robust to the 

temperature variation than the SE-based method. 

B. Full-temperature model 

All the SE/FE-SOH data pairs at three temperatures are used 

for SVM training and a full-temperature model is established. 

In comparison to the SE-based method, as shown in Fig. 20 and 

Fig. 21, the FE-based method improves the estimation accuracy 

at 40℃. The RMSE of FE-based method decreases from 0.028 

to 0.018, and the MAPE decreases from 2.44% to 1.39%. 

In addition, the FE-based method is more robust to 

temperature variation than the SE-based method. According to 

Fig. 20, for all cases of validation, the APE of the FE-based 

method is consistently less than 3% (except for the 46th month 

estimate value of C.6 at 40℃). On the other hand, the errors at 

some points are larger than 3% for the SE-based method and 

the maximum APE is about 8% especially for C.6, which was 

aged at 40℃. Accordingly, one can observe from Fig. 21 that 

the RMSE of FE-based method changes slightly from 0.012 to 

0.018, and the MAPE changes from 0.96% to 1.46%. It is worth 

noting that both the RMSE and the MAPE of the SE-based 

method show large fluctuation over a wide range temperature. 

That is because in the established SE-based model, there is a 

tendency towards data fitting at the intermediate temperature. 

As a result, for the SE-based method at 47.5℃, the RMSE and 

MAPE reach the smallest values which are only 0.011 and 

1.12%. However, both errors increase obviously at the other 

two temperatures, especially for C.6 at 40℃, the RMSE and 

MAPE is 0.028 and 2.44%, respectively. It can be concluded 

that the FE-based method is more robust to the temperature 

variation than the SE-based method, and it will produce a 

relatively small estimation error independent on the battery 

aging temperature. 

 
(a)                                                                       (b)                                                                       (c) 

Fig. 18. Estimation results of single-temperature models. (a) C.2 at 55℃, (b) C.4 at 47.5℃, (c) C.6 at 40℃. (Each model is only trained with aging data at one 

temperature, and verified with the aging data of another battery at the same temperature). 
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(a)                                                                                                      (b) 

Fig. 19. Estimation errors of single-temperature models. (a) RMSE, (b) MAPE. 
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(a)                                                                       (b)                                                                       (c) 

Fig. 20. Estimation results of full-temperature model. (a) C.2 at 55℃, (b) C.4 at 47.5℃, (c) C.6 at 40℃. (The model is trained using all data from C.1@55℃, 

C.3@47.5℃, and C.5@40℃, while the validations are performed separately for the aging data at each temperature). 
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(a)                                                                                                      (b) 

Fig. 21. Estimation errors of full-temperature model. (a) RMSE, (b) MAPE. 

C. Partial-temperature model 

In order to illustrate the advantage of FE-based method in the 

dependence of data size, the partial-temperature model is 

established by reducing the input temperatures from three to 

two. The training batteries (i.e., C.1 and C.5) are aged in the 

highest and the lowest temperature, and the validation battery 

C.4 was aged at the intermediate temperature. In comparison 

with the SE-based method, as shown in Fig. 22, the estimation 

errors of FE-based method are smaller than that of SE-base 

method in most of the time range. Moreover, according to Fig. 

23, the RMSE and MAPE of FE-based method decrease from 

0.012 to 0.011 and from 1.15% to 0.9%, respectively. Hence the 

FE-based method has better estimation accuracy than the SE-

based method with less data, which illustrates that the FE-based 

method relies on less training data than the SE-based method. 
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Fig. 22. Estimation results of partial-temperature model. (Training battery are 

C.1@55℃ and C.5@40℃, validation battery is C.4@47.5℃). 
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Fig. 23. Estimation errors of partial-temperature model for C.4. (a) RMSE, (b) 

MAPE. 

VI. CONCLUSIONS 

This paper proposes the FE of voltage as a new feature for 

Li-ion battery SOH estimation, and the nonlinear relationship 

between the SOH and the FE is established by SVM. A cyclic 

aging test is used to assess the performance of both SE- and FE-

based methods. The results show that FE is more suitable than 

SE to estimate the SOH in three aspects. Firstly, FE is more 

stable with the variation of parameter r. Secondly, FE shows 

better consistency when noise is added to the voltage data. 

Thirdly, the FE-based method has higher accuracy when 

reducing the training data size. Fourthly, FE is more 

independent on the aging condition (i.e., the SOC level and the 

aging temperature).  

In order to further validate the advantages of the FE-based 

method over the SE-based method, the performance for both 

methods in terms of the temperature variation is considered. 

Using the aging temperature as the input variable, the single-

temperature model, full-temperature model, and partial-

temperature model are established based on data obtained from 

three calendar aging tests. For the single-temperature model, 

the SE-based method shows a large estimation error while the 

FE-based method still has a high estimation accuracy. This is 

because the temperature variation in the training data can be 

regarded as noise, and SE is sensitive to the noise. For the full-

temperature model, the model for the SE-based method has a 

tendency towards fitting data at one specific temperature. 

Consequently, the estimation error will be large in the other 

temperatures and will only be small at a specific temperature. 

On the contrary, the FE-based method always shows a 

relatively high estimation accuracy independent on the aging 

temperature. For the partial-temperature model, the data at the 

lowest and the highest temperature are used to estimate the 

SOH at the intermediate temperature. The FE-based method 

again shows a higher estimation accuracy than the SE-based 

method (i.e., 0.9% MAPE for the FE-based method and 1.15% 

MAPE for the SE-based method), which suggests that the 

proposed FE-based method is more robust to the data size than 

the traditional SE-based method. 
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