Capacitor ESR and C Monitoring in Modular Multilevel Converters

Deng, Fujin; Heng, Qian; Liu, Chengkai; Cai, Xu; Zhu, Rongwu; Chen, Zhe; Chen, Wu

Published in:
IEEE Transactions on Power Electronics

DOI (link to publication from Publisher):
10.1109/TPEL.2019.2939185

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Capacitor ESR and C Monitoring in Modular Multilevel Converters

Fujin Deng, Senior Member, IEEE, Qian Heng, Chengkai Liu, Xu Cai, Rongwu Zhu, Member, IEEE, Zhe Chen, Fellow, IEEE and Wu Chen, Senior Member, IEEE

Abstract- The capacitor is one of the weakest components in the module multilevel converter (MMC). The rise of equivalent series resistance (ESR) is a prominent character to monitor the lapsed capacitor, but current researches only focus on capacitance and neglect ESR of capacitors in the MMC. This paper proposed a sorting-based monitoring strategy for capacitors in the MMC, which monitors not only the capacitance but also the ESR of capacitor. This paper reveals the relationship among the capacitor’s ESR, capacitance, current and energy. Based on the relationship, the ESRs and capacitances of submodule (SM) capacitors in the arm are indirectly sorted, respectively, and only the capacitor with biggest ESR and the capacitor with smallest capacitance in the arm are monitored. The proposed strategy not only realizes both ESR and capacitance monitoring in the MMC, but also proposes a simplified monitoring algorithm for MMCs with large number of capacitors. The simulation and experimental results confirm the effectiveness of the proposed monitoring strategy for MMCs.

Index Terms- Capacitance, monitoring, equivalent series resistance, modular multilevel converter.

I. INTRODUCTION

The modular multilevel converter (MMC) has become an attractive topology for medium/high-voltage and high-power applications due to its modularity and scalability [1, 2]. The MMC not only produces a multilevel voltage with the flexible operation but also reduces average switching frequency without degrading the power quality [3]. Owing to the easy construction, assembling and flexibility, the MMC becomes promising for motor drives [4], energy storage [5], electric railway supplies [6] and microgrid [7], etc.

The capacitor is one of the weakest components in the MMC [8]. Due to the advantages of high energy density and low cost [9], the electrolytic capacitor is popular for MMCs in some applications, such as microgrid and motor drives [10-12]. Owing to chemical process, aging, etc., the capacitor would gradually deteriorate and the capacitor’s parameters would be changed [13]. Normally, the capacitor is needed to be replaced with the new one when its capacitance drops below 80% of rated value or its equivalent series resistance (ESR) is over 2 times of rated value [14]. Therefore, the condition monitoring for capacitors in the MMC is essential.

To date, several studies have paid attention to the capacitor monitoring in the MMC. Reference [15] presents a monitoring scheme for the submodule (SM) capacitors in the MMC, where each SM capacitance is estimated by a recursive least square algorithm based on the information of capacitor voltage, arm current and SM switching state. However, an ac current is injected into the circulating current, which increases the capacitor voltage ripple and affects the MMC performance. Reference [16] presents a Kalman filter algorithm to estimate the SM capacitance in the MMC, where each SM capacitance is estimated based on the capacitor voltage and current. Reference [14] presents a simplified condition monitoring algorithm to estimate the capacitance based on the relationship between the arm average capacitance and the capacitance of each SM. Reference [17] proposes the reference SMs for capacitor condition monitoring in the MMC, where the SM capacitance can be estimated based on the relationship between the monitoring SM capacitor voltage and the reference SM capacitor voltage. The above capacitor monitoring methods still have some limitations as 1) the capacitor is seen as an ideal one, which only considers the capacitance without considering another important parameter, ESR; 2) all SM capacitors in the MMC are monitored, which occupies a large amount of computing resources, especially for the MMC with a large amount of SMs.

Fig. 1 Capacitor deterioration curve.
IEEE POWER ELECTRONICS REGULAR PAPER

The ESR is an important parameter in the capacitor. In comparison with the reduction of capacitance, the increase of ESR is normally more pronounced in the deteriorated capacitor [18-20], as shown in Fig. 1, because the ESR normally has already increased to 2 times of its rated value when the capacitance declines to 80% of its rated value, which means that the existing methods cannot detect the lapsed capacitor in time. To make up this gap, the capacitor monitoring method considering not only the capacitance but also the ESR is needed urgently, which can improve the reliability of the MMC. To date, several ESR monitoring methods have been reported such as recursive least square algorithm [21], discrete Fourier transform algorithm [22], Newton-Raphson algorithm [23], short time least square Prony’s algorithm [24] and the artificial neural network algorithm [25], etc. However, the above methods are suitable for the converters with few capacitors, which are not suitable for the MMC with large number of capacitors because of complicated computation.

In this paper, a sorting-based condition monitoring strategy is proposed for the MMC to estimate capacitor’s ESR and capacitance. The ESRs and capacitances of SM capacitors in the arm are indirectly based on the relationship among capacitor’s ESR, capacitance, current and energy, and only the capacitor with biggest ESR and the capacitor with smallest capacitance in the arm are estimated. The advantages of the proposed strategy are 1) estimating not only the capacitance but also the ESR of capacitors, which has not been considered in [14-17]; 2) studying the characteristics of ESR, capacitance, voltage, current, and energy variety of capacitors in the MMC; 3) simplifying monitoring algorithm.

This paper is organized as follows. Section II introduces the characteristics of capacitors in the MMC. Section III introduces the operation principles of the MMC. Section IV analyzes the capacitor characteristics of the MMC. Section V proposes the sorting-based condition monitoring strategy for capacitors in the MMC. Sections VI and VII present the system simulation and experimental tests, respectively, to verify the effectiveness of the proposed monitoring strategy. Finally, the conclusions are presented in Section VIII.

II. CAPACITORS IN MMCs

The detailed equivalent circuit of the electrolytic capacitor is shown in Fig. 2(a) [24,26]. The \(C_{AK} \) is the ideal anode-cathode capacitance, which equals to \(\varepsilon S/d \) and is independent of capacitor current frequency \(f \), \(\varepsilon \) is the dielectric constant, \(S \) is the plate surface area, \(d \) is the thickness of the dielectric between the plates. \(R_p \) is the parallel resistance due to leakage current. \(R_l \) is the series resistance of connections, frames and separator, which decreases with the increase of frequency. \(L \) is the series equivalent inductance of connections and windings, which is independent of frequency. The \(L \) of the capacitor is normally on the order of \(nH \) [26] and the main frequencies of the capacitor current in the MMC are low, which results in that the inductive reactance of the capacitor in MMC can be negligible. As a result, the capacitor in the MMC can be simplified as the capacitance in series with the ESR, as shown in Fig. 2(b), which can be expressed as

\[
C = C_{AK} \cdot \left(1 + \frac{1}{4\pi^2 \cdot R_p^2 \cdot C_{AK}^2 \cdot f^2}\right) \quad \text{(1)}
\]

In the MMC, the capacitance is normally on the order of mF [1, 3, 5], which makes the parallel resistance \(R_p \) is on the order of MΩ [26]. Accordingly, the \(C \) can be considered to be the same as \(C_{AK} \) and ESR can be considered to be the same as \(R_l \), which means that \(C \) is independent of frequency and ESR decreases with the rise of frequency.

![Fig. 2 (a) Capacitor equivalent circuit. (b) Simplified capacitor equivalent circuit in the MMC.](image)

III. OPERATION PRINCIPLES OF MMCs

A three-phase MMC is shown in Fig. 3(a), which consists of six arms and each arm contains \(n \) identical SMs and an arm inductor \(L_s \). Fig. 3(b) shows the \(i \)-th SM (\(i=1, 2, \ldots, n \)) in the upper arm of phase \(A \), which consists of two switches \(T_i, T_j \), two diodes \(D_1, D_2 \) and a dc capacitor \(C \) [27]. Normally, the \(i \)-th SM is controlled with a switching function \(S_{ani} \), which determines the state of the SM, as shown in Table I. When \(S_{ani} = 1 \), the SM is at “ON” state. Here, the charge or discharge of the capacitor \(C_{ani} \) relies on the direction of the arm current \(i_{ani} \). If \(i_{ani} > 0 \), the capacitor is charged and capacitor voltage \(u_{ani} \) increases; otherwise, the capacitor is discharged and the \(u_{ani} \) decreases. When \(S_{ani} = 0 \), the SM is at “OFF” state. Here, the capacitor is bypassed and the capacitor voltage remains unchanged [28]. As a result, the capacitor current \(i_{ani} \) of the \(i \)-th SM is

\[
i_{ani} = S_{ani} \cdot i_{ani}. \quad \text{(2)}
\]

![Fig. 3 (a) Structure of a three-phase MMCs. (b) Structure of a SM.](image)
Table I

<table>
<thead>
<tr>
<th>SM state</th>
<th>(S_{\text{mm}})</th>
<th>(i_{\text{mm}})</th>
<th>(C_{\text{mm}})</th>
<th>(u_{\text{mm}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>1</td>
<td>(\geq 0)</td>
<td>Charge</td>
<td>Increased</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(< 0)</td>
<td>discharge</td>
<td>Decreased</td>
</tr>
<tr>
<td>Off</td>
<td>0</td>
<td>(\geq 0)</td>
<td>or 0</td>
<td>Bypass</td>
</tr>
</tbody>
</table>

IV. MMC Capacitor Characteristics Based on ESR and C

The chemical process, aging, etc., would cause capacitor deterioration, which results in not only the drop of capacitance but also the increase of ESR [13]. The ESR is one of the important capacitor parameters, while the current researches on the capacitor monitoring of MMCs [14–17] only consider the capacitance and neglect the ESR in the capacitor, which cannot distinguish the lapsed capacitor in time.

A. Capacitor Current Characteristics

Fig. 4 shows the upper arm of phase A in the MMC, where both ESRs \(R_{\text{a1}} \sim R_{\text{a2}} \) and capacitances \(C_{\text{a1}} \sim C_{\text{a2}} \) are considered.

![Fig. 4 Upper arm of phase A based on ESR and C.](image)

Suppose the second-order harmonic circulating current is suppressed, the upper arm current \(i_{\text{mm}} \) is

\[
i_{\text{mm}} = \frac{1}{2} I_\text{m} \sin \omega_1 t + \frac{i_\text{dc}}{3}.
\]

where \(I_\text{m} \) is the amplitude of the ac current \(i_\text{m} \), \(\omega_1 \) is the fundamental angular frequency and \(\omega_1 = 2 \pi f_1 \), \(f_1 \) is the fundamental frequency. \(i_\text{dc} \) is the dc-link current of the MMC.

The reference \(y_{\text{mm}} \) for the upper arm of phase A is

\[
y_{\text{mm}} = m \sin(\omega_1 t + \phi).
\]

where \(m \) is modulation index. \(\phi \) is the phase angle.

Suppose that the capacitor voltages \(u_{\text{a1}} = u_{\text{a2}} \) shown in Fig. 4 are kept the same with the voltage-balancing control [2], the equivalent reference \(y_{\text{er,mm}} \) for the \(i \)-th SMs in the arm is mainly related to \(C_{\text{a1}} \sim C_{\text{a2}} \) as shown in (5) [16], because the capacitor’s ESR is much smaller than its capacitive reactance at lower frequency [26] and the voltage of the ESR is much smaller than that of the capacitive reactance.

\[
y_{\text{er,mm}} = \left(\frac{C_{\text{a1}}}{1} - 1 \right) + \frac{C_{\text{a2}}}{1} y_{\text{mm}}.
\]

According to (3)–(5), the capacitor current \(i_{\text{mm}} \) of the \(i \)-th SM can be obtained as

\[
i_{\text{mm}} = i_{\text{mm}} + \frac{1}{2} y_{\text{er,mm}} = i_{\text{mm}} + \frac{1}{2} \left(\frac{C_{\text{a1}}}{1} - 1 \right) + \frac{C_{\text{a2}}}{1} y_{\text{mm}}.
\]

where \(i_{\text{mm}} \) and \(\beta_{i,j} \) are the amplitude and angle of the fundamental component \(i_{\text{er,mm}} \) of the capacitor current in the \(i \)-th SM. \(I_{\text{2m}_1} \) and \(\beta_{2,j} \) are the amplitude and angle of the 2nd-order harmonic component \(i_{\text{er,mm}} \) of the capacitor current in the \(i \)-th SM. In the steady state, the dc component in the capacitor current is zero and \(i_{\text{mm}} = \text{Fundamental component} + \text{2nd-order harmonic component} \).

\[
\begin{align*}
I_{1m,j} = & \frac{n C_{\text{a1}}}{\sum_{i=1}^{n} C_{\text{a1}}} \sqrt{\left(\frac{I_{\text{m}}}{2} \right)^2 + \left(\frac{m \omega_1}{3} \right)^2 + \left(\frac{m \omega_1 I_{\text{dc}} \cos \phi}{3} \right)^2} \\
\beta_{1,j} = & \arctan \left(\frac{2 m \omega_1 \sin \phi}{3 I_{\text{m}} + 2 m I_{\text{dc}} \cos \phi} \right) \\
I_{2m,j} = & -\frac{n m I_{\text{dc}} C_{\text{a1}}}{8 \sum_{i=1}^{n} C_{\text{a1}}} \\
\beta_{2,j} = & \frac{\pi}{2} + \phi
\end{align*}
\]

where \(I_{1m,j} \) and \(\beta_{1,j} \) are the amplitude and angle of the fundamental component \(i_{\text{er,mm}} \) of the capacitor current in the \(i \)-th SM. \(I_{2m,j} \) and \(\beta_{2,j} \) are the amplitude and angle of the 2nd-order harmonic component \(i_{\text{er,mm}} \) of the capacitor current in the \(i \)-th SM. In the steady state, the dc component in the capacitor current is zero and \(i_{\text{mm}} = \text{Fundamental component} + \text{2nd-order harmonic component} \).

Fig. 5 shows the amplitudes \(I_{1m,j}, I_{2m,j}, I_{3m,j}, I_{4m,j} \) and \(I_{5m,j} \) of the fundamental component, 2nd-, 3rd-, 4th-, and 5th-order harmonic component, respectively, in the capacitor current under various power, which is derived from the simulation in Section VI. It can be observed that the \(I_{1m,j} \) and \(I_{2m,j} \) drop along with the decrease of active power and the \(I_{1m,j} \) and \(I_{4m,j} \) are quite small and can be neglectable.

![Fig. 5 Amplitudes of fundamental component, 2nd-, 3rd-, 4th, and 5th-order harmonic component in capacitor current under various power.](image)
IEEE POWER ELECTRONICS REGULAR PAPER

B. Capacitor Impedance Characteristics

Since the capacitor current mainly contains the i_{caui}_{1f} and i_{caui}_{2f}, the capacitor’s ESR mainly considers the fundamental component R_{caui}_{1f} and the 2nd-order component R_{caui}_{2f}. Fig. 6 shows the capacitor impedance characteristics in the MMC considering both ESR and C, which can be described as

$$
\begin{align*}
R_{\text{caui}}_{1f} &= \tan \delta / \omega C_{\text{caui}} \\
R_{\text{caui}}_{2f} &= \tan \delta / \omega C_{\text{caui}} R_{\text{caui}}_{1f}/2 \\
Z_{\text{caui}}_{1f} &= R_{\text{caui}}_{1f} + j / \omega C_{\text{caui}} \\
Z_{\text{caui}}_{2f} &= R_{\text{caui}}_{2f} + j / \omega C_{\text{caui}} R_{\text{caui}}_{1f}/2.
\end{align*}
$$

(8)

(9)

where Z_{caui}_{1f} and Z_{caui}_{2f} are the capacitor impedance corresponding to i_{caui}_{1f} and i_{caui}_{2f}. δ is the capacitor loss angle. $\tan \delta$ is capacitor dissipation factor, which is nearly a constant at low frequency [18, 26] such as fundamental frequency and double-line frequency, $\omega_0 = 2 \pi$.

Fig. 6 Capacitor characteristics in the MMC.

C. Capacitor Voltage Characteristics

In Fig. 6, the capacitor voltage ripple u_{caui}_{1f} and u_{caui}_{2f} caused by i_{caui}_{1f} and i_{caui}_{2f} are

$$
\begin{align*}
u_{\text{caui}}_{1f} &= i_{\text{caui}}_{1f} / \omega C_{\text{caui}} \\
u_{\text{caui}}_{2f} &= i_{\text{caui}}_{2f} / \omega C_{\text{caui}}
\end{align*}
$$

(10)

with

$$
\begin{align*}
u_{\text{caui}}_{1f} &= i_{\text{caui}}_{1f} / \omega C_{\text{caui}} R_{\text{caui}}_{1f} \\
u_{\text{caui}}_{2f} &= i_{\text{caui}}_{2f} / \omega C_{\text{caui}} R_{\text{caui}}_{2f} \\
u_{\text{caui}}_{2f} &= i_{\text{caui}}_{2f} / \omega C_{\text{caui}} R_{\text{caui}}_{1f}/2.
\end{align*}
$$

(11)

(12)

where u_{caui}_{1f} and u_{caui}_{2f} are voltage ripples caused by C_{caui}, i_{caui}_{1f} and i_{caui}_{1f}, respectively. u_{caui}_{2f} and u_{caui}_{2f} are voltage ripples caused by C_{caui}, i_{caui}_{2f} and R_{caui}_{2f}, respectively.

According to (6) ~ (12), the capacitor voltage ripple Δu_{caui} in the i-th SM can be obtained as

$$
\Delta u_{\text{caui}} = U_{1m_{i}} \sin (\alpha_1 t + \alpha_1) + U_{2m_{i}} \sin (2 \alpha_1 t + \alpha_2).
$$

(13)

with

$$
\begin{align*}
U_{1m_{i}} &= 1 \left(R_{\text{caui}}_{1f} + \frac{1}{\omega C_{\text{caui}} R_{\text{caui}}_{1f}} \right)^{1/2} \\
\alpha_1 &= \beta_1_{i} - \arctan \left(\frac{1}{\omega C_{\text{caui}} R_{\text{caui}}_{1f}} \right) \\
U_{2m_{i}} &= \frac{1}{2} I_{2m_{i}} \left(R_{\text{caui}}_{1f} + \frac{1}{\omega C_{\text{caui}} R_{\text{caui}}_{1f}} \right)^{1/2} \\
\alpha_2 &= \beta_2_{i} - \arctan \left(\frac{1}{\omega C_{\text{caui}} R_{\text{caui}}_{2f}} \right)
\end{align*}
$$

(14)

where $U_{1m_{i}}$, α_1, α_2, β_1_{i} and β_2_{i} are amplitude and angle of the fundamental component u_{caui}_{1f} in capacitor voltage. $U_{2m_{i}}$ and α_2 are amplitude and angle of the 2nd-order harmonic component u_{caui}_{2f} in capacitor voltage.

The capacitor voltage ripple in the i-th SM is composed of u_{caui}_{1f} and u_{caui}_{2f}. Owing to that the arm capacitor voltages are kept the same by voltage-balancing control, the $U_{1m_{i}} - U_{1m_{n}}$ in arm SM capacitors would be the same as $U_{1m_{i}}$, the $U_{2m_{i}} - U_{2m_{n}}$ in arm SM capacitors would be the same as $U_{2m_{i}}$.

Fig. 7 shows the amplitudes of the fundamental component, 2nd-, 3rd-, 4th- and 5th-order harmonic component in the capacitor voltage under various power of the MMC, which is derived from the simulation in Section VI. It can be observed that U_{1m} and U_{2m} decline along with the decrease of power; U_{3m}, U_{4m} and U_{5m} are quite small and can be neglectable.

Fig. 8 shows the amplitudes $U_{1m_{c}}$ and $U_{2m_{c}}$ of u_{caui}_{1f} and u_{caui}_{2f}, respectively, under various power of the MMC. $U_{1m_{c}}$, $U_{2m_{c}}$, $U_{1m_{r}}$ and $U_{2m_{r}}$ decline along with the decrease of the power of the MMC. Compared with $U_{1m_{c}}$, $U_{2m_{c}}$, $U_{1m_{r}}$ and $U_{2m_{r}}$ are quite small and can be neglectable. In addition, the $U_{1m_{c}}$ and $U_{1m_{r}}$ are much bigger than $U_{2m_{c}}$ and $U_{2m_{r}}$.
IEEE POWER ELECTRONICS REGULAR PAPER

V. PROPOSED CAPACITOR ESR AND C MONITORING STRATEGY FOR MMCs

The ESR is one of the important capacitor parameters. A sorting-based monitoring strategy is proposed in this Section to estimate capacitor’s ESR and Capacitance in the MMC.

A. Capacitor Energy Characteristics

According to (6) − (9), (13) and [16], the capacitor energy variety \(W_{\text{ai}} \) of the \(i \)-th SM within a fundamental period \(T_1 \) \((T_1=2\pi/\omega_1)\) can be obtained as

\[
W_{\text{ai}} =\int_0^{T_1} \left(\frac{V_{\text{ai}}}{n} + \Delta u_{\text{ai}} \right) t \text{dt} = W_{\text{ai}_1} + W_{\text{ai}_2} .
\]

with

\[
W_{\text{ai}_1} =\int_0^{T_1} u_{\text{ai}_1} i_{\text{ai}_1} \text{dt} = \frac{2\pi U_{\text{ai}}^2}{\omega_1} / R_{\text{ai}_1} + 1/(\omega_1 C_{\text{ai}})^2 / R_{\text{ai}_1},
\]

\[
W_{\text{ai}_2} =\int_0^{T_1} u_{\text{ai}_2} i_{\text{ai}_2} \text{dt} = \frac{4\pi U_{\text{ai}}^2}{\omega_1} / R_{\text{ai}_2} + 1/(\omega_1 C_{\text{ai}})^2 / R_{\text{ai}_2}.
\]

where \(W_{\text{ai}} \) represents the energy consumption of ESR in the capacitor. \(W_{\text{ai}_1} \) and \(W_{\text{ai}_2} \) are the energy consumption caused by \(R_{\text{ai}_1} \) and \(R_{\text{ai}_2} \), respectively.

Fig. 9 shows the capacitor energy variety \(W_{\text{ai}_1} \) and \(W_{\text{ai}_2} \) under various power of the MMC, where \(W_{\text{ai}_1} \) and \(W_{\text{ai}_2} \) decline with the decrease of power. In addition, \(W_{\text{ai}_1} \) is much bigger than \(W_{\text{ai}_2} \), which means that \(R_{\text{ai}_1} \) results in the main energy consumption in the capacitor and is the main cause of accelerating the aging process in comparison with \(R_{\text{ai}_2} \).

Substituting (8), (16) into (15), the \(W_{\text{ai}} \) can be rewritten as

\[
W_{\text{ai}} = \frac{2\pi U_{\text{ai}}^2}{\omega_1} / R_{\text{ai}_1} + 1/(\omega_1 C_{\text{ai}})^2 / R_{\text{ai}_1} .
\]

From (17), it can be observed that the \(W_{\text{ai}} \) in the SM of the arm is determined by corresponding \(R_{\text{ai}_1} \) and \(C_{\text{ai}} \), as shown in Fig. 10, as follows.

1) \(W_{\text{ai}} \) & \(C_{\text{ai}} \): \(W_{\text{ai}} \) increases along with the increase of \(C_{\text{ai}} \) and vice versa, as shown in Table II.

2) \(W_{\text{ai}} \) & \(R_{\text{ai}_1} \): the SM capacitance \(C_{\text{ai}} \) in the MMC is normally on the order of \(mF \) [10-12], which results in that \(R_{\text{ai}_1} < 1/(\omega_1 C_{\text{ai}}) \) [18]. Hence, \(W_{\text{ai}} \) increases along with the increase of \(R_{\text{ai}_1} \) and vice versa, as shown in Table III.

B. ESRs Relationship Among Arm SMs

According to (14) and (17), the variation \(K_{\text{ai}} \) is defined as

\[
K_{\text{ai}} = \frac{W_{\text{ai}}}{T_{\text{ai},i}} = 2\pi R_{\text{ai}_1} \frac{U_{\text{ai}}^2}{\omega_1} / (1 + 2U_{\text{ai}}^2 / \omega_1^2) .
\]

The \(K_{\text{ai}} \) of the \(i \)-th SM is proportional to \(R_{\text{ai}_1} \), where \(K_{\text{ai}} \) increases along with the increase of \(R_{\text{ai}_1} \) and \(K_{\text{ai}} \) reduces along with the decrease of \(R_{\text{ai}_1} \), as shown in Table IV.

C. Capacitance Relationship Among Arm SMs

Since \(R_{\text{ai}_1} \) is much smaller than \(1/\omega_1 C_{\text{ai}} \) [24], (14) can be rewritten as

\[
U_{\text{ai}} = \frac{I_{\text{ai}_1}}{\omega_1 C_{\text{ai}}} .
\]

The \(I_{\text{ai}_1} \) of the \(i \)-th SM is proportional to the \(C_{\text{ai}} \), where \(I_{\text{ai}_1} \) increases along with the increase of \(C_{\text{ai}} \) and \(I_{\text{ai}_1} \) declines along with the decrease of \(C_{\text{ai}} \), as shown in Table V.

D. Proposed Sorting-Based Monitoring Strategy

Based on above analysis, a sorting-based monitoring strategy for capacitor’s ESR and capacitance in the MMC is proposed, as shown in Fig. 11(a). Owing to ESR corresponding to fundamental frequency is nearly double ESR corresponding to double-line frequency and is the main energy consumption, only the ESR corresponding to fundamental frequency is estimated here so as to simplify the computation.

In the proposed strategy, the \(K_{\text{ai}} \) and \(I_{\text{ai}_1} \) are calculated with the characteristic variables calculation (CVC) block based on the capacitor voltage \(V_{\text{ai}} \), switch function \(s_{\text{ai}} \) and arm current \(i_{\text{ai}} \), as shown in Fig. 11(b). In the CVC block, the capacitor current can be obtained based on (2). And then, the
fundamental component of capacitor current $i_{c_{\text{int}},f}$ can be obtained by a band-pass filter (BPF) tuned at the fundamental frequency, which is used to calculate its amplitude $I_{1m,i}$. The K_{int} is obtained based on (15) and (18).

According to the obtained $K_{\text{int}}=K_{\text{int}}$, the corresponding SM$_1$~SM$_n$ are sorted in ascending order, so as to find the SM with biggest K_{int} among the n SMs in the arm, because the SM with biggest K_{int} has the biggest ESR. Afterwards, the ESR corresponding to the fundamental frequency in the SM with biggest K_{int} will be calculated based on the ESR estimation method in [22], which utilizes the average capacitor power divided by the square of capacitor current at the fundamental frequency to obtain the ESR. To date, the accuracy of the ESR estimation methods is about 4%~10% [9, 21-24].

On the other hand, based on the obtained $I_{1m,1}$~$I_{1m,n}$, the corresponding SM$_1$~SM$_n$ are sorted in descending order to find the SM with smallest I_{1m} among the n SMs within the arm, because the SM with smallest I_{1m} has the smallest capacitance. Afterwards, the capacitance of the SM with the smallest I_{1m} will be calculated based on the capacitance estimation method in [15], which derives the capacitance based on the relationship between the capacitor voltage variation and capacitor current integration. Normally, the accuracy of the capacitance estimation method is below 1% [15].

In order to reduce the effect of measurement noises in the real MMC system and improve the capacitor monitoring accuracy, several sets of ESRs and capacitances are estimated such as ten sets. Removing the maximum and the minimum among the estimated ESRs and the estimated capacitances, respectively, the average values of the rest ESRs and the rest capacitances are calculated as the ESR and capacitance monitoring results, respectively.

Once the ESR monitoring result, which is the biggest ESR in the SMs of the arm, is over the threshold value $C_{\text{lim,init}}$ or the capacitance monitoring result, which is the smallest capacitance in the SMs of the arm, is below the threshold value $C_{\text{lim,init}}$, the corresponding capacitor would be considered to be replaced with the new one. For electrolytic capacitors, the threshold value $C_{\text{lim,init}}$ is normally 2 times of the ESR rated value and $C_{\text{lim,init}}$ is normally 80% of the capacitance rated value [13, 19]. The proposed capacitor monitoring strategy is implemented periodically with some interval, which can effectively monitor capacitor’s ESR and capacitance in MMC.

E. Analysis of Proposed Monitoring Strategy

Based on above analysis, the proposed capacitor monitoring strategy indirectly sorts the SMs’ ESRs and capacitances in the arm, respectively, and only estimates the biggest ESR and the smallest capacitance in the arm. For the MMC with n SMs per arm, the proposed capacitor monitoring method may require about $(143n+155)/150$ μs to implement the estimation algorithm once based on the digital signal processing (DSP) TMS320F28335, which mainly contains the operation about $(2n+4)$ plus, $(n+1)$ multiple, $(n+2)$ divide, $(n+1)$ integral and $2(n-1)$ comparison. If the capacitor’s ESR and capacitance are estimated with the conventional capacitor monitoring method [22], [15], all SMs’ ESRs and capacitances in the arm are required to be estimated, which may require $270n/150$ μs including operation about $7n$ plus, $17n$ multiple, $2n$ divide and n integral to implement the estimation algorithm once. Fig. 12 shows that the operation time of the proposed and conventional estimation algorithm increases along with the increase of SM number in the arm. The operation time of the proposed estimation algorithm is almost half of that of the conventional algorithm.

Fig. 11 Proposed capacitor monitoring strategy. (a) Flowchart of the monitoring algorithm. (b) Characteristic variables calculation for $K_{\text{int}}=K_{\text{int}}$ and $I_{1m,1}~I_{1m,n}$.

Fig. 12 Operation time of proposed and conventional estimation algorithm.
IEEE POWER ELECTRONICS REGULAR PAPER

VI. SIMULATION STUDIES

To verify the proposed ESR and capacitance monitoring strategy for the MMC, a three-phase MMC is built with the professional tool PSCAD/EMTDC, as shown in Fig. 13. The system parameters are shown in the Table VI.

Fig. 13 Schematic diagram of the simulation system.

<table>
<thead>
<tr>
<th>TABLE VI SIMULATION SYSTEM PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Active power (MW)</td>
</tr>
<tr>
<td>Reactive power (MVar)</td>
</tr>
<tr>
<td>DC-link voltage V_d (kV)</td>
</tr>
<tr>
<td>Grid line-to-line voltage (kV)</td>
</tr>
<tr>
<td>Grid frequency (Hz)</td>
</tr>
<tr>
<td>Transformer rating voltage</td>
</tr>
<tr>
<td>Transformer leakage reactance</td>
</tr>
<tr>
<td>Number of SMs per arm n</td>
</tr>
<tr>
<td>Nominal SM capacitance C (mF)</td>
</tr>
<tr>
<td>Nominal SM ESR (mΩ)</td>
</tr>
<tr>
<td>Inductance L_1 (mH)</td>
</tr>
<tr>
<td>Inductance L_6 (mH)</td>
</tr>
</tbody>
</table>

Capacitor Bank

3 in series

Fig. 14 Capacitor bank in the simulation system.

<table>
<thead>
<tr>
<th>TABLE VII CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

The aluminum electrolytic capacitor (JiangHaiCD293), whose rated capacitance and rated voltage is 2.2 mF and 400 V, respectively, is considered to construct the capacitor bank in each SM. Referring to its datasheet, the nominal ESR of the capacitor under 120 Hz is typically 63 mΩ. Hence, the nominal ESR of the capacitor under 50 Hz can be calculated as $63 \times 120 / 50 = 151.2$ mΩ according to (8). In each SM, the capacitance of the capacitor bank is 13.2 mF and the nominal voltage of the capacitor bank is 1 kV. Hence, the capacitor bank in each SM is constructed with 3 capacitors connected in series and 18 capacitors connected in parallel, as shown in Fig. 14. Hence, the R_{au} of the capacitor bank is 25.2 mΩ. The R_{au} of the capacitor bank is half R_{au} according to (8).

To verify the proposed strategy, various ESRs and capacitances are considered in the upper arm SMs of phase A, as shown in Table VII, where the capacitance drops along with the rise of ESR.

Fig. 15 shows the performance of the MMC. Fig. 15(a) and (b) show the output voltages u_{ab}, u_{bc}, u_{ca} and currents i_a, i_b, i_c of the MMC. Fig. 15(c) shows the upper arm current i_{au} and the lower arm current i_{al} in phase A. Fig. 15(d) shows the upper arm capacitor voltages U_{capu} and U_{capl} in phase A.

Fig. 16 shows the performance of the proposed capacitor monitoring strategy for the MMC. Fig. 16(a) shows that $K_{au1} < K_{au2} < K_{au3} < K_{au4} < K_{au5} < K_{au6}$, which is consistent with the relationship among $R_{au1-lf} < R_{au2-lf}$, as shown in Table VII. Owing to K_{au6} is the biggest one among them, the ESR in the SM6 is decided to be monitored. At 1.04 s, R_{au6-lf} in the SM6 is estimated as 52.15 mΩ and the error is approximately 3.47%, as shown in Fig. 16(b). Fig. 16(c) shows that $I_{1m,1} > I_{1m,2} > I_{1m,3} > I_{1m,4} > I_{1m,5} > I_{1m,6}$, which is also consistent with the relationship among $C_{au1} - C_{au6}$, as shown in Table VII. Owing to $I_{1m,6}$ is the smallest one among them, the C_{au6} in the SM6 is decided to be monitored. At 1.04 s, the C_{au6} is estimated as 10.49 mF and the error is approximately 0.66%, as shown in Fig. 16(d).
IEEE POWER ELECTRONICS REGULAR PAPER

TABLE VIII
EXPERIMENTAL SYSTEM PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-link voltage V_{dc} (V)</td>
<td>200</td>
</tr>
<tr>
<td>Rated frequency (Hz)</td>
<td>50</td>
</tr>
<tr>
<td>Inductor L_i (mH)</td>
<td>3</td>
</tr>
<tr>
<td>Load inductor L (mH)</td>
<td>5</td>
</tr>
<tr>
<td>Load resistor R (Ω)</td>
<td>10</td>
</tr>
<tr>
<td>Carrier frequency (kHz)</td>
<td>4</td>
</tr>
</tbody>
</table>

A. Case I

In this case, the reference values of C_{al1}–C_{al4} and R_{al1}–R_{al4} in the capacitors of the upper arm of phase A are listed in Table IX, which are measured by the LCR meter HIOKI 3522-50. Fig. 18 shows the performance of the MMC. Fig. 18(a) shows the output voltage u_{ab}, u_{bc}, u_{ca} of the MMC. Fig. 18(b) shows the output current i_a, i_b, i_c of the MMC. Fig. 18(c) shows the upper arm current i_{al} and the lower arm current i_{bl} of phase A.

TABLE IX
CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A

<table>
<thead>
<tr>
<th>SM</th>
<th>C_{al} (mF)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{al} (Ω)</td>
<td>0.049</td>
<td>0.049</td>
<td>2.23</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Fig. 17 Photo of the three-phase MMC prototype.
The error between the ESR average value and the capacitance reference value is 1.74 mF.

The capacitance average value is close to each other between Case I, II and III.

(b) Estimation error of capacitance.

The capacitance average value is monitored in SM4, as shown in Fig. 20(b).

In this case, the reference values of $C_{\text{sm1}}-C_{\text{sm4}}$ and $R_{\text{nsm1,1f}}-R_{\text{nsm2,1f}}$ in the capacitors of the upper arm of phase A are listed in Table X, which are measured by the LCR meter HIOKI 3522-50. Fig. 23 shows the MMC voltage $u_{\text{ub}}, u_{\text{bc}}, u_{\text{ca}}$, arm current i_u, i_b, i_c, and arm current $i_{\text{nsm1,1f}}$ of phase A.

TABLE X
CAPACITOR PARAMETERS IN THE UPPER ARM OF PHASE A

<table>
<thead>
<tr>
<th>SM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{sm} (mF)</td>
<td>2.25</td>
<td>2.27</td>
<td>2.19</td>
<td>1.73</td>
</tr>
<tr>
<td>$R_{\text{sm1,1f}}$ (Ω)</td>
<td>0.049</td>
<td>0.047</td>
<td>0.052</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Fig. 24(a) shows capacitor voltages $u_{\text{ca}}-u_{\text{sm4}}$, switching functions $S_{\text{sm1}}-S_{\text{sm4}}$ and arm current i_{sm}. Fig. 24(b) shows that K_{sm} corresponding to SM4 is the biggest one among $K_{\text{sm1}}-K_{\text{sm4}}$, which is consistent with the relationship among $R_{\text{nsm1,1f}}-R_{\text{nsm2,1f}}$ in Table X. Fig. 24(c) shows that I_{nsm4} corresponding to SM4 is the smallest one among $I_{\text{nsm1,1f}}-I_{\text{nsm4}}$, which is consistent with the relationship among $C_{\text{sm1}}-C_{\text{sm4}}$ shown in Table X. As a result, the capacitor in SM4 is monitored. Ten sets of ESRs and capacitances in SM4 are estimated, as shown in Figs. 20(a) and (b). Removing the maximum and the minimum, the ESR average value is 62.3 mΩ and the capacitance average value is 1.74 mF, as shown in Fig. 20. The error between the ESR average value and the ESR reference value is about 2.06%, as shown in Fig. 21. The error between the capacitance average value and the capacitance reference value is about 0.57%, as shown in Fig. 22.
IEEE POWER ELECTRONICS REGULAR PAPER

C. Case III

In this case, the reference values of the C_{au1}~C_{au4} and R_{au1}~R_{au4} in the capacitors of the upper arm of phase A are measured by the LCR meter HIOKI 3522-50 and listed in Table XI. Fig. 25 shows the MMC voltages u_{ab}, u_{bc}, u_{ca}, and arm currents i_{au}, i_{al}, i_{au}, and i_{al} of phase A.

<table>
<thead>
<tr>
<th>Table XI</th>
<th>Capacitor Parameters in the Upper Arm of Phase A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>1</td>
</tr>
<tr>
<td>C_{au} (mF)</td>
<td>2.25</td>
</tr>
<tr>
<td>R_{au} (Ω)</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Fig. 23 Performance of the MMC. (a) u_{ab}, u_{bc}, u_{ca}. (b) i_a, i_b, i_c. (c) i_{au} and i_{al}.

Fig. 24 (a) u_{cau1}~u_{cau4}, S_{au1}, S_{au2}, S_{au3}, S_{au4} (30V/div), i_{au} and i_{al} (4A/div). Time base is 5 ms. (b) K_{au1}~K_{au4}, (c) I_{au1}~I_{au4}.

Fig. 25 Performance of the MMC. (a) u_{cau1}~u_{cau4}, S_{au1}, S_{au2}, S_{au3}, S_{au4} (30V/div), i_{au} and i_{al}.
The three cases show that the proposed capacitor monitoring method can effectively estimate both ESR and capacitance in the capacitors of the MMC to impose system reliability, which has not been considered in the other capacitor monitoring methods [14–17]. To estimate the ESR and capacitance for the MMC with 4 SMs per arm, the proposed monitoring method requires about 4.7 μs to implement the estimation algorithm once while the conventional monitoring method [15], [22] requires about 7.3 μs to implement the estimation algorithm once.

VIII. CONCLUSION

The existing studies about the MMC capacitor monitoring consider the capacitor as an ideal one, which only consider the capacitance without considering ESR. However, the increase of ESR is normally more pronounced in the deteriorated capacitor in comparison with the reduction of capacitance, which makes the ESR a better characteristic to detect the deteriorated capacitor. In this paper, both capacitor’s ESR and capacitance in the MMC are monitored. The ESR of the capacitor in the MMC is mainly composed of the fundamental component and the second-order component. The energy variety of the capacitor in the MMC is analyzed, which increases along with the rise of the ESR and decreases along with the drop of the capacitance. Based on the relationship among the capacitor’s ESR, capacitance, energy and current, a sorting-based capacitor monitoring strategy is proposed, where the capacitors’ ESRs and capacitances in the arm are indirectly sorted, respectively, and only the capacitor with biggest ESR and the capacitor with smallest capacitance in the arm are monitored. The proposed sorting-based monitoring strategy does not have to monitor the ESRs and capacitances of all capacitors in the arm, which simplifies the monitoring algorithm. The simulation and experiment studies are conducted and the results show the effectiveness of the proposed capacitor ESR and C monitoring in the MMC.

REFERENCES

IEEE POWER ELECTRONICS REGULAR PAPER

Fujin Deng (SM’19) received the B.Eng. degree in electrical engineering from China University of Mining and Technology, Jiangsu, China, in 2005, the M.Sc. Degree in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 2008, and the Ph.D. degree in energy technology from the Department of Energy Technology, Aalborg University, Aalborg, Denmark, in 2012.

He joined the Southeast University in 2017 and is currently a Professor in the School of Electrical Engineering, Southeast University, Nanjing, China. From 2013 to 2015 and from 2015 to 2017, he was a Postdoctoral Researcher and an Assistant Professor, respectively, in the Department of Energy Technology, Aalborg University, Aalborg, Denmark. His main research interests include wind power generation, multilevel converters, high-voltage direct-current technology, DC grid and offshore wind farm-power systems dynamics.

Qian Heng received the B.Eng. from Nanjing University of Aeronautics and Astronautics, Jiangsu, China, in 2017. Currently, she is working towards the M.Sc. degrees in the School of Electrical Engineering, Southeast University, Nanjing, China. Her main research interests include multilevel converters and high-voltage direct-current technology.

Chengkai Liu received the B.Eng. degree from Chien-Shiung Wu College of Southeast University, Nanjing, China, in 2018, majoring in electrical engineering. He is currently working toward the Ph.D. degree in the School of Electrical Engineering, Southeast University, Nanjing, China. His main research interests include multilevel converters and dc grid.

Xu Cai received the B.Eng. degree from Southeast University, Nanjing, China, in 1983, and the M.Eng. and Ph.D. degrees from China University of Mining and Technology, Jiangsu, China, in 1988 and 2000, respectively, all in electrical engineering.

He was with the Department of Electrical Engineering, China University of Mining and Technology, as an Associate Professor from 1989 to 2001. Since 2002, he has been a Professor with Shanghai Jiao Tong University, Shanghai, where he has also been the Director of the Wind Power Research Center since 2008. He was the Vice Director of the State Energy Smart Grid R&D Center, Shanghai, China, from 2010 to 2013. His current research interests include power electronics and renewable energy exploitation and utilization, including wind power converters, wind turbine control system, large power battery storage systems, clustering of wind farms and its control system, and grid integration.

Rongwu Zhu (S2-M5) received the B.Eng. in Electrical Engineering from Nanjing Normal University, Nanjing, China, in 2007 and Ph.D. degree in energy technology from Department of Energy Technology, Aalborg University, Aalborg, Denmark, in 2015. From 2011-2012, he was a guest researcher with Aalborg University. He is currently a Senior Researcher with Chair of power electronics, at Christian-Albrechts-University of Kiel (Germany). He has published over 60 technical papers (over 20 of them in international peer-review). His research interests include high-power multilevel modular converters, DC-grid and wind-farm power systems, smart transformer-fed distribution system, reliability and lifetime of power converters, modelling and stability of the power electronic-based electric grid.

Zhe Chen (M’95-SM’98-F’18) received the B.Eng. and M.Sc. degrees all in Electrical Engineering from Northeast China Institute of Electric Power Engineering, Jilin City, China, MPhil in Power Electronic, from Staffordshire University, England and the Ph.D. degree in Power and Control, from University of Durham, England.

Dr Chen is a full Professor with the Department of Energy Technology, Aalborg University, Denmark. He is the leader of Wind Power System Research program at the Department of Energy Technology, Aalborg University and the Danish Principle Investigator for Wind Energy of Sino-Danish Centre for Education and Research.

His research areas are power systems, power electronics and electric machines; and his main current research interests are wind energy and modern power systems. He has led many research projects and has more than 400 technical publications with more than 10000 citations and h-index of 44 (Google Scholar).

Dr Chen is an Associate Editor of the IEEE Transactions on Power Electronics, a Fellow of the Institution of Engineering and Technology (London, U.K.), and a Chartered Engineer in the U.K.

Wu Chen (SM’17) was born in Jiangsu, China, in 1981. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2003, 2006, and 2009, respectively.

From 2009 to 2010, he was a Senior Research Assistant in the Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong. In 2010-2011, he was a Postdoctoral Researcher in Future Electric Energy Delivery and Management Systems Center, North Carolina State University, Raleigh. Since September 2011, he has been an Associate Research Fellow with the School of Electrical Engineering, Southeast University, Nanjing, China, where he has been a Professor since 2016. His main research interests include soft-switching converters, power delivery, and power electronic system integration. He serves as an Associate Editor for IEEE TRANSACTIONS ON INDUSTRIAL.