Diabetic Peripheral Neuropathy: Diagnosis and Treatment

Johan Rødkjer¹*, Carsten Dahl Mørch¹ and Niels Ejskjaer²

¹Department of Health Science and Technology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark; ²Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

Abstract: Background: Diabetic peripheral neuropathy (DPN) is traditionally divided into large and small fibre neuropathy (SFN). Damage to the large fibres can be detected using nerve conduction studies (NCS) and often results in a significant reduction in sensitivity and loss of protective sensation, while damage to the small fibres is hard to reliably detect and can be either asymptomatic, associated with insensitivity to noxious stimuli, or often manifests itself as intractable neuropathic pain.

Objective: To describe the recent advances in both detection, grading, and treatment of DPN as well as the accompanying neuropathic pain.

Methods: A review of relevant, peer-reviewed, English literature from MEDLINE, EMBASE and Cochrane Library between January 1st 1967 and January 1st 2020 was used.

Results: We identified more than three hundred studies on methods for detecting and grading DPN, and more than eighty randomised-controlled trials for treating painful diabetic neuropathy.

Conclusion: NCS remains the method of choice for detecting LFN in people with diabetes, while a gold standard for the detection of SFN is yet to be internationally accepted. In the recent years, several methods with huge potential for detecting and grading this condition have become available including skin biopsies and corneal confocal microscopy, which in the future could represent reliable endpoints for clinical studies. While several newer methods for detecting SFN have been developed, no new drugs have been accepted for treating neuropathic pain in people with diabetes. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors and anticonvulsants remain first line treatment, while newer agents targeting the proposed pathophysiology of DPN are being developed.

Keywords: Peripheral, neuropathy, diagnosis, treatment, diabetic.

1. INTRODUCTION

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, involving as much as 50% of all people with diabetes [1,2]. It is most commonly classified into injury to small-diameter, thinly myelinated (Aδ) and unmyelinated (C) nerve fibres responsible for e.g. pain and temperature sensation and injury to myelinated, large-diameter (Aα and Aβ) nerve fibres responsible for perception, vibration and proprioception. Despite the frequent occurrence, screening for DPN is often neglected leading to a considerable diagnostic delay and insufficient preventative measures. The reasons are many, but most important are the lack of quick and reliable screening methods alongside the lack of neuropathy-specific preventative pharmacological treatment. Current clinical practise is therefore limited to enhanced glycaemic control and cardiovascular prevention, while the examination of neuropathy often only includes screening for severe large fibre damage and loss of protective sensation (LOPS) with either 10-g monofilament or by testing vibration sensation with either tuning fork or biothesiometry. Over the last decades, the interest in small fibre neuropathy has increased mostly due to a growing agreement that it is detectable years in advance of large fibre damage [3-8]. Unfortunately, early detection of small fibre neuropathy has proven a diagnostic challenge, as clinicians and researchers currently lack an agreement on a standard gold method. However, several promising candidates have emerged over the latest years.

Painful diabetic neuropathy (PDN) is often a debilitating manifestation of DPN occurring in more than 20% of people with peripheral neuropathy [9]. Although many of the patients experience spontaneous improvement, the condition has shown to significantly influence the quality of life and incurs severely increased health care costs. Over the last
decades, our understanding of this condition has gradually improved, although the exact underlying pathophysiological mechanisms are not yet fully elucidated. Therefore, treating the condition remains a challenge, and although several pharmacological options are currently available, they are often non-specific and poorly tolerated or have an insufficient effect.

In the following review, we describe the recent advances in the detection and grading of DPN, as well as the current possibilities and consensus regarding the prevention and pharmacological treatment of accompanying neuropathic pain.

2. SEARCH STRATEGY

All data for this review was collected from electronic literature searches of MEDLINE, EMBASE and the Cochrane Library. All searches were performed from January 1, 1967 to January 1, 2020 and were comprised of relevant terms like drug names or names of diagnostic methods in combination with different versions of “diabetes” or “painful diabetic neuropathy”. Literature restrictions were English language and publication in a peer-reviewed journal. We also identified the most recent reviews relevant for the specific method or drug, and manually screened the reference lists for eligible studies. No limitations regarding drug dosage or treatment duration were applied. For pharmacological treatment, we primarily searched for randomised-controlled trials (RCTs), but larger observational trials were also studied.

2.1. Detecting Peripheral Neuropathy in People with Diabetes

Early detection and monitoring of DPN are recommended in most clinical guidelines, including consensus statements from the Toronto Diabetic Neuropathy Expert Group [10] and the American Diabetes Association [11]. Assessment of DPN can be carried out using symptom questionnaires, composite neurological scores, quantitative sensory testing (QST) or nerve conduction studies (NCS), which are all validated methods. Unfortunately, these methods have continuously failed as robust endpoints in clinical trials, as they lack the sensitivity to detect minor changes happening over the course of a study period [12–16]. Therefore, more time-consuming and equipment-heavy methods have emerged over recent years, aiming to provide researchers with more reliable clinical endpoints for future studies (Tables 1 and 2).

Table 1. Advantages and disadvantages of different methods for assessing diabetic peripheral neuropathy.

<table>
<thead>
<tr>
<th>Method</th>
<th>Detects</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite neurological scores</td>
<td>Large and small fibre neuropathy</td>
<td>Non-invasive, simple, quick, easy to perform, does not require special equipment</td>
<td>Not sensitive, not reproducible, not good for grading</td>
</tr>
<tr>
<td>Quantitative sensory testing</td>
<td>Large and small fibre neuropathy</td>
<td>Non-invasive, quantifiable, relatively easy to perform</td>
<td>Largely subjective, low-moderate reproducibility, time-consuming, requires specialised equipment</td>
</tr>
<tr>
<td>Nerve conduction studies</td>
<td>Large fibre neuropathy</td>
<td>Non-invasive, sensitive, objective, quantifiable, considered gold standard</td>
<td>Requires specialized equipment, moderate inter-rater reproducibility</td>
</tr>
<tr>
<td>Skin biopsies (IENFD)</td>
<td>Small fibre neuropathy</td>
<td>Quantifiable, sensitive, good reproducibility, considered gold standard</td>
<td>Invasive, costly, requires specialized equipment and personal, associated with risk of wounds and infection at biopsy site, describes only morphology and not function</td>
</tr>
<tr>
<td>Corneal confocal microscopy (in vivo)</td>
<td>Small fibre neuropathy</td>
<td>Non-invasive, quick, sensitive, quantifiable, decent reproducibility</td>
<td>Requires specialized equipment and personal, not disease-specific</td>
</tr>
</tbody>
</table>

Table 2. Most commonly used agents for treatment of PDN and their most common side effects

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dosage</th>
<th>Common Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants (TCA)</td>
<td></td>
<td>Dry mouth, urinary retention, sedation, vertigo, constipation, weight gain, arrhythmias</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>10-100 mg daily</td>
<td>Dry mouth, urinary retention, sedation, vertigo, constipation, weight gain, arrhythmias</td>
</tr>
<tr>
<td>Desipramine</td>
<td>10-150 mg daily</td>
<td>Dry mouth, urinary retention, sedation, vertigo, constipation, weight gain, arrhythmias</td>
</tr>
<tr>
<td>Serotonin-norepinephrine reuptake inhibitors (SNRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duloxetine (FDA approved)</td>
<td>60-120 mg daily</td>
<td>Nausea, somnolence, hyperhidrosis, anorexia, vomiting, constipation, fatigue, dry mouth</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>75-225 mg daily</td>
<td>Nausea, somnolence, ECG changes</td>
</tr>
</tbody>
</table>
Over the latest decades, a large number of composite neurological scores have been developed and validated in DPN. The most widely used ones include the Michigan Neuropathy Screening Instrument (MNSI) [17], the Neuropathy Disability Score (NDS) [18,19] and the modified Toronto Clinical Neuropathy Score (mTcNS) [20]. Common for all of these composite scores is the fact that they mostly excel in identifying or denying the presence of DPN, although neuropathy grading based on the total score has been widely used in the literature (i.e. NDS < 3, NDS 3-6 or NDS > 6). Other validated composite neurological scores include the Clinical Neurological Examination (CNE) [21,22], the Diabetic Neuropathy Examination (DNE) [23], the Neuropathy Symptom Profile (NSP) [24], the Diabetic Neuropathy Symptom Score (DNS) [25], the Neuropathy impairment Score (NIS) [26], the Neuropathy impairment Score in the Lower Limbs (NIS-LL) [27,28], the Neuropathy Symptom Score (NSS) [18,19], the Toronto Clinical Scoring System (TCSS) [29], the Michigan Diabetic Neuropathy Score (MDNS) [17], the Neuropathy Symptom and Change Score (NCS) [30], the Neuropathy Total Symptom Score 6 (NTSS-6) [31], the Total Neuropathy Score (TNS) [32] and the Total Symptom Score (TSS) [33].

QST has for many years been considered the gold standard in neuropathy research and especially so in neuropathic pain research. This method is painless, non-invasive and aim to diagnose both small and large fibre damage as well as both gain and loss of sensory function. Throughout the years, several protocols have been developed, including the protocol from the German Research Network on Neuropathic Pain [34], which holds a large database of standardized material from healthy controls and which have recently been validated all over Europe [35]. However, labour intensity, relatively poor sensitivity, low reproducibility and disease-specific sensitivity remain important concerns, limiting the use of QST as a reliable endpoint in clinical trials [36,37]. Recently, international consortiums focused around neuropathic pain have performed subgrouping of people with PDN and other neuropathic conditions based on QST data, increasing diagnostic accuracy and potentially paving the way for the use of the method in more symptom specific trials [38].

Conventional NCS are currently considered the gold standard test for detecting large fibre neuropathy in people with diabetes [39]. This test is objective, non-invasive and reasonably quick, but requires specialized equipment and only detects changes in the largest nerve fibres. Furthermore, NCS have previously show poor inter-rater reproducibility, due to varying conditions including electrode placement, room temperature and examination routines, which presents a huge challenge in multicentre trials [40,41]. A positive NCS is not required for a definite diagnosis of DPN, but is useful to distinguish the condition from other neuropathies in case of an atypical presentation. Classic findings in people with DPN include reduced amplitude of compound muscle action potential, prolonged F-wave latency, slower conduction velocity and altered H-reflex [42].

Skin biopsy is a novel technique developed to evaluate intra-epidermal nerve fibre density (IENFD) in the most superficial layers of the skin [43,44]. The technique is used to detect small fibre damage, and is widely considered the new gold standard [45,46]. The examination is invasive and requires specialized laboratories and stains, but excels due to the fact that it is objective, reproducible and not confounded by height and weight, although age and gender-specific decline has been reported [47–49]. Inter-observer reliability is generally considered high using this method [50–52], although some smaller studies have shown significant differences [53]. Normative reference values for IENFD at the distal leg adjusted for sex and age are available for the most widely used techniques (bright-field microscopy and immunofluorescence) [49,54], which also seems to have acceptable agreement [55]. Currently, one of the most important concerns regarding the broad usage of skin biopsies in large multicentre trials, is the fact that only a limited number of studies have examined the intra-person variability in unhealthy subjects where IENFD might potentially vary significantly from site to site [56]. A further concern is that the IENFD only relates to morphological changes of the nerve fibres, while the functionality remains inaccessible. However, axonal swellings visualized by specialized stains in skin biopsies, have recently been proposed as pre-degenerative changes that might predict loss of intra epidermal nerve fi-
bles, although their actual role is yet to be fully determined [57,58].

Corneal confocal microscopy (CCM) is a promising new ophthalmic imaging technique proposed as a new surrogate endpoint for small fibre neuropathy [59,60]. The method exploits the fact that Bowman’s layer, located between the superficial epithelium and the stroma in the cornea of the eye, can be visualized using this technique, giving insight into the area with the largest density of nerve endings found in the body [60]. The method is rapid, non-invasive and reproducible, and have high inter-observer correlation [61–63]. CCM has previously shown small fibre repair following pancreatectomy in people with type 1 diabetes (T1DM) [64,65], and was recently assessed in a large multicentre trial displaying promising results [66]. Three methodological measurements of CCM have been developed over the course of the last decades, but recently only the latest addition, the laser scanning confocal microscopy, have seen use in clinical studies as it offers higher resolution and clearer visualization of the cornea [67]. The measurements that can be assessed by CCM include corneal nerve fibre density (CNFD), corneal nerve fibre length (CNFL), corneal nerve branch density (CNBD) and corneal nerve fibre tortuosity (CNFT), although CNFT recently has fallen out of favour due to inconsistent results. CCM was previously compared with IENFD measured by skin biopsies [68,69], and was recently proposed as a method for distinguishing ordinary DPN from PDN [70]. While most studies support the use of CCM in DPN, some larger studies failed to distinguish people with and without neuropathy [71]. Critics of the technique argue that CCM is too unspecific for evaluating DPN, as a long list of different diseases has been associated with the reduction of CNFL, CNFD and CNBD [72]. Internationally generated normative values now also exist for CCM, which enhances its use in clinical trials [73].

Other modalities for studying DPN include laser Doppler-examinations [74,75], electrochemical skin conductance [76,77], sweat gland activity [78,79], bedside NCS [80] and other electrophysiological examinations like threshold tracking techniques [81,82], although these methods currently remain purely experimental. An exciting new addition to the traditional array of examinations used to study the distal neurons and nerve endings is the introduction of neuropathic itch, which has been proposed to be partially mediated by a subset of cutaneous small fibres (most C fibres) in combination with a reduced descending inhibition from the central nervous system [83]. The current state of the neuropathic itch research evolves around the use of either histamine or cocaine, which seems to activate not only C fibres, but also slowly conducting mechanically-insensitive Aδ fibres or mechanically-sensitive Aδ fibres, respectively [84].

2.2. Preventing Neuropathy in People with Diabetes

Although the possibilities of early detection of DPN remain a challenge, the preventative possibilities, when detected are unfortunately even more sparse. As of now, there are no disease-modifying treatments for DPN approved by the US Food and Drug Administration (FDA) or the European Medicines Agency (EMA), which is why optimization of glycaemic control to prevent progression remains the clinicians’ most important tool. Several large clinical trials have shown beneficial effects of tight glycaemic control in preventing DPN in people with T1DM [85]. The DCCT/EDIC-study was one of the hallmark studies indicating a beneficial effect of intensified glycaemic control even years after terminating the intervention [86]. For people with type 2 diabetes (T2DM) the evidence of beneficial effects of tight glycaemic control in preventing DPN is less convincing. In a small Japanese study the authors found a relatively small beneficial effect [87], but several larger studies including the UKPDS, ACCORD-, ADDITION, Steno 2- and VADT-studies [88–92], all failed to show significant results regarding DPN, although other microvascular complications generally improved. Previous clinical trials in both people with T1DM and T2DM have demonstrated beneficial effects of angiotensin-converting enzyme (ACE)-inhibitors on mainly autonomic neuropathy but also DPN, although larger studies are still needed to confirm the findings [93–95]. Also statins and fibrates have been shown to halt the progression of DPN [96,97], but might rarely induce neuropathy on their own [98].

2.3. Treating Neuropathic Pain in People with Diabetes

Treatment of PDN is generally limited due to the lack of knowledge concerning the pathophysiology of the condition. Both pharmacological and non-pharmacological treatments are therefore, mainly focused around symptomatic treatment attempting to relieve or soothe the symptoms and to improve quality of life. Unfortunately, almost all pharmacological options are vitiated by side effects, with a small therapeutic window between beneficial effect and at times incapacitating side effects. Furthermore, co-morbidities like nephropathy or ischemic heart disease may further limit the availability of many of the pharmacological options, which is why the correct management of the condition often require personalised treatment regimes. Monotherapy with only one analgesic is often insufficient for pain relief, and peripheral analgesics like paracetamol or Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are rarely adequate and generally not recommended for chronic pain conditions like PDN, although a small placebo-controlled study of older date has indicated beneficial pain-relief of NSAIDs [99]. Safety and efficacy of therapeutic drugs are often compared using the number needed to treat (NNT)- and number needed to harm (NNH)-principles. Still, although these numbers often form the foundation of clinical guidelines, they may vary slightly due to differences in the criteria employed when defining efficacy and side effects. However, most guidelines and recommendations encourage the use of tricyclic agents (TCAs), serotonin-norepinephrine reuptake inhibitors (SNRIs) and γ-aminobutyric (GABA) analogues as first line treatment, often followed by opioids and topical treatment [100,101]. Data on direct comparison of the first line agents are still quite sparse, but a large multicentre-study comparing amitriptyline, duloxetine and pregabalin (OPTION–DM) is currently running in the United Kingdom with results expected in 2020 [102]. Mentionable is also the COMBO-DN study [103], where authors compared duloxetine 120 mg daily or pregabalin 600 mg daily with a combination of duloxetine 60 mg daily and pregabalin 300 mg without finding significant
differences between high dosage monotherapy with either drug and combination therapy.

TCAs are originally antidepressant agents with multimodal actions, including blocking the serotonin and noradrenaline reuptake and inhibiting the anticholinergic receptor. Some agents from this class might also act as partial sodium channel blockers, although the exact mechanism is not fully elucidated. The most commonly used TCAs includes amitriptyline, clomipramine, desipramine, imipramine and nortriptyline, which all appear to have a comparable effect although amitriptyline is the drug that has been thoroughly investigated in PDN. TCAs have been evaluated versus placebo in 21 RCTs, of which only five were included in a Cochrane review from 2007 due to insufficient data reportage in the remaining studies. An analysis of these five smaller studies indicated NNT for improvement of symptoms of 1.3 (95% CI 1.2-1.5) in PDN [104]. Since this meta-analysis, no new evidence comparing TCAs with placebo has become available, although a rather small study compared amitriptyline to duloxetine and pregabalin without significant differences in neither efficiency or side effects [105]. Despite their relatively low NNT, the clinical use of TCAs is often associated with a significant burden of side effects, limiting clinical use of the doses tested in clinical trials. In a meta-analysis of efficacy and safety comparing amitriptyline, duloxetine, gabapentin, pregabalin, valproate and venlafaxine, the authors found that amitriptyline was the least safe agent for this indication [106]. Side effects commonly associated with TCA-usage include anticholinergic side effects like xerostomia, urinary retention, obitation and difficulties with accommodation as well as cardiac- and psychological side effects like cardias arrhythmias, somnolence, fatigue, dizziness and insomnia [107]. TCAs are also associated with a clinically significant increase in body weight.

SNRIs are antipsychotic agents used to treat painful neuropathy. The group primarily consists of duloxetine and venlafaxine, where duloxetine has an additional weak effect on the reuptake of dopamine. Duloxetine was evaluated against placebo in seven RCTs, including 2,203 people with DPN displaying a standardized mean difference (SMD) between the active drug and placebo of 1.33 (95% CI 1.82-0.86) [108–115]. Six of these studies were also included in a Cochrane meta-analysis from 2014 with a corresponding NNT for at least 50% pain reduction of 5.0 (95% CI 4.0-7.0) for treatment with 60 mg duloxetine daily [116]. Venlafaxine was previously tested in only two RCTs (n=304), which were both included in a Cochrane meta-analysis from 2015 reporting an SMD between venlafaxine and placebo of 1.53 (95% CI 2.41-0.65). However, the authors also concluded that the level of evidence supporting the use of venlafaxine was very sparse and stated that only some third-tier evidence of benefit was available and that this arose from studies with methodological limitations and considerable risk of bias [117]. Based on the largest study alone, the NNT for a 50% reduction in pain intensity for 150 mg venlafaxine in PDN was 6 (no CI reported), but was associated with clinically meaningful electrocardiogram changes [118]. Other side effects commonly associated with SNRI-usage include nausea, somnolence, dizziness, constipation and dyspepsia, while rare, but serious, adverse events like Steven-Johnson syndrome and glaucoma have also been reported. In contrast to other first-line treatments, SNRIs do not cause weight gain [107].

Sodium channel blockers exercise their effect by blocking voltage-gated sodium channels to lower the excitability of peripheral nerves. The drug group mainly consists of carbamazepine and its successor oxcarbazepine, which was only evaluated in three RCTs (n= 634) with an SMD of 0.45 (95% CI 0.68-0.21) [115,119–121]. However, only a single trial was included in a Cochrane meta-analysis from 2017 [122]. From this trial, the authors found an NNT with oxcarbazepine 600-1800 mg daily of 6.0 (95% CI 3.0-41.0) for a 50% pain reduction. Still, the drug was later withdrawn from clinical trials due to significant side effects, including toxic drug eruption and the need for close monitoring of blood concentrations [121]. Due to its mechanisms of action oxcarbazepine has also been analysed as a potential drug for personalised treatment of specific phenotypes of PDN [123]. In that study, the authors found that subgrouping their study-population based on QST-measurements could reduce the NNT from 6.9 (95% CI 4.2-22.0) in the total sample to 3.9 (95% CI 2.3-12) in the sub-group population. Other anti-convulsants like topiramate and lamotrigine have also been tested in PDN, but generally produced disappointing results [124,125]. Side effects associated with the use of sodium channel blockers include dizziness, somnolence, vomiting and agitation [107].

Calcium channel modulators are another group of drugs used to treat PDN through inhibition of the a2δ unit of the calcium channel. The group consists of pregabalin, gabapentin and ziconotide, with the latter being limited by its need for intrathecal administration and lack trials conforming its effectiveness in PDN [126]. Pregabalin is one of the most extensively studied agents for the treatment of PDN [127–136]. In a large meta-analysis from 2014 that included 9 trials involving 2,056 participants, the authors found an NNT to achieve a 50% pain reduction of 7.7 (95% CI 5.0-20.0) with a corresponding SMD of 0.79 (95% CI 1.15-0.48) [137]. Since the publication of this meta-analysis, a few new RCTs have become available. Amongst these is a large Chinese study comparing pregabalin 300 mg daily to placebo has become available, including 623 people with PDN [138]. In the study, pregabalin failed to reach statistical significance concerning the primary outcome, which was change in mean pain score over a week, although a post-hoc analysis excluding a single site with questionable compliance changed this completely (p-value from 0.056 to 0.014). Pregabalin did however, reach statistical significance in several secondary endpoints, including measurements as more than 50% reduction in pain intensity [138]. Another newer study is an international multi-centre study focusing on PDN and pain on walking (n= 203) [139]. In this study, pregabalin 150-300 mg daily also failed to reach its primary outcomes, which were a mean pain score over the last 7 days and pain on walking, although the study did have several limitations, including potential carryover effect and low pregabalin dosage. Gabapentin has been studied in seven RCTs, which were all included in a Cochrane meta-analysis updated in 2017 [136,140–146]. In this analysis (n= 1,331), the authors report an NNT of 6.6 (95% CI: 5.0-9.7) with gabapentin 1200-3000 mg daily to achieve a 50% reduction in pain intensity indicating comparable intra-class drug effectiveness.
The corresponding SMD for gabapentin versus placebo have previously been reported to be 0.73 (95% CI: 1.54-0.09) [115]. Since this review, no new evidence regarding efficiency has become available through RCTs. Common side effects include somnolence, dizziness, headaches and elevated liver enzymes, as well as a significant increase in body weight [107].

N-methyl-D-aspartic receptor (NMDA) antagonists are traditionally used to treat post-operative pain, but has also been studied in people with PDN. A relatively small study found that the agent dextromethorphan (30 mg daily) had pain-relieving properties in PDN, and these findings were later confirmed in combination with quinidine (45 mg daily) in a larger multi-centre trial [147,148].

Opioids are well-examined pain-reducing medication, which mimic the actions of endogenous opioid peptides by interacting with the μ, δ, or κ opioid receptors. However, the use of opioids in the management of PDN remains controversial due to the lack of large trials with long duration and well-established NNT/NNH-ratios. Furthermore, long-term treatment with opioids is often associated with decreasing efficiency as well as opioid dependency and abuse, while adverse effects like nausea, dizziness, constipation, itching and orthostatic hypotension also remain common occurrences [149]. Some of the most used opioids with indication for neuropathic pain are oxycodeone, tramadol and tapentalol. Oxycodeone was evaluated for the use in neuropathic pain in a Cochrane meta-analysis in 2016, including 637 patients from five RCTs [150]. Here, the authors report little evidence supporting the long-term treatment with oxycodeone in PDN, reporting an NNT for 30% pain reduction of 5.7, but with a corresponding NNH of 4.6. Tramadol is one of the oldest drugs used to treat PDN [151], which was also tested for long-term use in PDN [152], but since the indication for treatment of PDN, a limited amount of RCTs have been conducted regarding its efficacy. However, two RCTs have recently examined the drug in PDN, although one used it as a comparator to a potential new drug labelled GRT9906 [153,154]. The NNTs reported for more than 50% pain reduction were 4.3 (95% CI 2.4-20) and 3.9 (95% CI 2.4-11.5), respectively. Tapentalol is an opioid with a unique dual action that combines norepinephrine reuptake inhibition with weak affinity for the μ-opioid receptor resulting in reduction of the classic side effects associated with opioid use. Tapentalol was initially only available in solution from or as an immediate-release tablet, but later became available as an extended-release (ER) film coated tablet for oral administration, that has now been approved for treatment of neuropathic pain and PDN. Tapentalol ER has been studied in several RCTs. In an open-label 3-week phase III trial in 588 people with PDN poorly responsive to previous analgesics, treatment with 200-500 mg tapentalol daily resulted in a significant pain reduction compared to placebo [155]. The 395 responders were then randomly assigned to tapentalol or placebo for further 12 weeks using individualised dosages, resulting in at least 30% pain reduction in 54% in the treatment group [155]. Atypical opioids (tramadol and tapentalol) were evaluated together based on treatment of 1,177 persons with PDN in 5 different RCTs with a SMD of 0.69 (95% CI 0.80-0.56) [115].

Pathogenic treatment is a pharmacological treatment thought to influence directly on some of the proposed mechanisms behind the development of DPN. This is in contrast to most of the therapeutic options mentioned earlier, which generally target multiple organs and even multiple receptors, thus increasing the number of adverse events related to the treatment. The most mentionable products include α-lipoic acid, C-peptide, benfotiamine and aldose-reductase inhibitors [101]. However, none of these products has been approved for treatment of PDN by the FDA. α-Lipoic acid is an antioxidant meant to protect against oxidative stress, and as increased free-radical production and defective antioxidant mechanisms are thought to be some of the mechanisms behind the development of PDN, α-lipoic acid is thought to halt development of neuropathy and might improve symptoms of PDN [156]. α-Lipoic acid has mostly been studied as a drug for intravenous administration (300-600 mg), where a recent meta-analysis has found significant pain-lowering effects with a good safety profile, although many included studies suffer from poor methodological quality [157]. α-Lipoic acid has also been studied as oral treatment (600-1800 mg) with positive results, although the clinical relevance remains uncertain due to the lack of definitive evidence from large RCTs [158]. Aldose reductase inhibition has also been suggested as a potential therapeutic target, as aldose reductase acts as an important enzyme in the polyol pathway involved in the metabolism of glucose when the high glucose levels caused by diabetes saturate the hexokinase [159,160]. Therefore, several aldose reductase inhibitors (ARIs) have been developed and examined in both DPN and PDN with mixed results mainly due to their significant adverse effects, but also limited efficacy [161,162]. One ARI, epalrestat, has been studied in a prospective 3-year follow-up study, indicating potential preventive abilities in halting the development of DPN[163]. Benfotiamine is a lipid-soluble derivate of vitamin B1 that allows penetration of nerve membranes. Benfotiamine can reduce the presence of advanced glycation end products (AGE), which are thought to be a major player in the pathophysiology of especially type 1 diabetes, by indirectly stimulating the Na+/K+-ATPase[169]. C-peptide is an amino acid component of proinsulin traditionally used to evaluate endogenous insulin-production. However, studies in diabetic rats-models have suggested that C-peptide can reverse some structural and functional changes caused by mainly type 1 diabetes, by indirectly stimulating the Na+/K+-ATPase[169]. C-peptides has only been tested in few human studies, but displayed promising results in some smaller trials[170,171].

Other treatments for PDN include local or topical treatment with either capsaicin, clonidine, isobide dinitrate, lidocaine or botulinum toxin A. Capsaicin is an alkaloid derived from red chilli peppers and has been tested in PDN as either 0.075% capsaicin cream applied four times daily[172–174] or recently as a 8% capsaicin patch (Qurtenza[175]. Capsaicin has also been examined in other doses and in combina-
tion with doxepin 3.3%, which led to a 20% reduction in skin irritation otherwise associated with topical capsaicin treatment although this was not specific to PDN[176]. Based on a review of 5 RCTs using capsaicin 0.075% the treatment was considered low efficiency[115]. Clonidine is a presynaptic α-2-adrenergic receptor agonist. Clonidine is mostly used in neuropathic pain as topically applied clonidine gel, which was accessed in a meta-analysis from 2015 including a total of 344 people with PDN[177]. Unfortunately, clonidine gel was no better than placebo for inducing more than 50% pain reduction, although a slight significance was found compared to placebo when analysing the data as more than 30% pain reduction although the clinical meaning remains uncertain. Based on this data, the NNT would be 8.3 (95% CI 4.3-50.0) although evidence is sparse. Isorbidine dinitrate has been proposed as a pain-reducing agent in PDN due to the proposed mechanisms of nitric oxide in the pathogenesis of DPN. Isorbidine dinitrate has only been assessed as a spray in one small RCT with limited evidence[178]. Lidocaine is an analgesic that alters signal conduction in neurons by prolonging inactivation of voltage-gated sodium channels[179]. The pain-reducing probabilities of lidocaine were studied in 204 persons with PDN as 5% lidocaine plasters and compared to pregabalin in one open-label, non-inferiority RCT[180]. In this study, lidocaine was non-inferior to pregabalin regarding response-rate and seemed to have a more favourable safety-profile with fewer side effects. However, further studies are needed to confirm the efficacy. Lidocaine has also been examined with positive results as intravenous infusions in intractable PDN[181,182], and as the oral analogue, mexiletine, with limited efficiency[183–186]. Botulinum toxin type A is a neurotoxic protein that exerts its effect by inactivating key proteins required for nerve activation. Its use in PDN was studied in two small RCTs indicating a beneficial effect although larger studies are needed to confirm the results[187,188].

Some people with PDN may not achieve adequate pain-relief using traditional pharmacological intervention due to either lacking efficiency or overwhelming side effects. Therefore, several nonpharmacological alternatives have been proposed, including transcutaneous electrical nerve stimulation, percutaneous electrical nerve stimulation and frequency-modulated electromagnetic neural stimulation [101, 189]. A meta-analysis from 2013 including eight studies (n= 318), which mainly consists of RCTs with lower quality, found that six of the eight studied showed significant improvements in the treatment arms, indicating a beneficial effect, although high quality evidence is currently not available[190]. A few studies have also examined the effect of spinal cord stimulation in PDN[191,192], with one study indicating beneficial effects even after 24 months of follow-up[193]. While the evidence of this treatment remains sparse new studies are currently in the pipeline for the future[194]. Acupuncture has also been proposed as a good alternative treatment option for intractable neuropathic pain in diabetes displaying uniformly good results. However, a systematic review from 2013 evaluating the available RCTs concluded, that no clinically relevant conclusion could be drawn from available literature, due to a high risk of bias and lack of internationally acknowledged endpoints[195].

CONCLUSION

DPN and PDN are complex conditions associated with significant morbidity and equally high mortality. Despite the high number of new methods proposed to diagnose the conditions, researchers and clinicians are still challenged by the lack of well-validated methods for early detection as well as for grading and risk stratification of people with diabetes. Furthermore, the continuous usage of old bedside methods solely detecting abnormalities in the largest nerve fibres limits the possibility for early detection and intervention, which again limits the chance for successful clinical trials.

Treatment that restores nerve function has yet to be found and translated into large clinical trials, and even though several pathogenic treatments have been proposed, clinicians still struggle to treat PDN due to limited efficiency of current treatment options in combination with broad contraindications and significant side effects. While several studies concerning treatment effect of various drugs exist, only a few studies have been conducted in recent years, and even fewer provides a direct comparison of the proposed first line drugs.

PERSPECTIVES FOR THE FUTURE

Despite a large number of new and exciting methods for early detection of particularly small fibre neuropathy, the lack of a well-established gold standard to validate novel methods against, have led to the fact that both researchers and clinicians are yet to agree on and standardize the use of many of the newer methods. To perform meaningful multicentre trials, the research community must first have agreeable, standardized, highly sensitive methods for quantification of nerve fibre function, so that a potentially beneficial effect of disease modifying treatment can be detected even though the initial effect is small. Therefore, more studies comparing the different methods and their relation to the clinical manifestation of DPN are needed, so that future studies can be provided with reliable endpoints and quantitative measurements of pain. If future studies should be reliant on one endpoint alone, or a combination of measurements, remains unknown, but the fact that enhanced diagnostic tools will benefit future treatment is undeniable. One of the first steps towards the agreement on new gold standards would be a direct quantitative method comparison. However, such an analysis has proven difficult to preform, mainly due to the fact that the field of neuropathic research is characterized by varying study designs, different definitions and a broad spectrum of outcomes measures. Furthermore, sub-classification of PDN and personalized treatment regimens based on disease subtype accessed through deep phenotyping may pave the way for improved NNT/NNH-ratios for both new and existing drugs. Finally, enhanced classification and personalization should also lead to an increased usage of agents targeting the proposed pathophysiologic mechanisms of DPN, so that global side effects associated with the unspecific targeting of the symptomatic treatment could be reduced. Novel agents that target the pathophysiology of DPN have also been of increasing interest, and while only a few of them have been tested specifically in PDN, the most prominent ones could potentially be studied in people with diabetes in the future. For example, an angiotensin II type 2 receptor...
(AGTR2)-antagonist named EMA401 is currently being developed. This drug was previously tested in a phase Ia study demonstrating efficacy and safety in postherpetic neuralgia[196], thus might have potential in PDN as well. Another example is the development of subtype-selective sodium channel blockers specific for Na\(\alpha_1.7\) channels. Here, several trials are ongoing, including studies on compounds named BIBB074[197] and TV-45070[198].

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
Not applicable.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest in preparing the manuscript. The authors received no specific grant from any funding agency. Aalborg University and Steno Diabetes Center North Jutland paid salary to investigators but were otherwise not involved in the preparation or content of the article. The conclusions in the article reflect the opinions of the authors and not their affiliated institutions.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES
Diabetic Peripheral Neuropathy

http://dx.doi.org/10.1371/journal.pone.0180175 PMID: 28719619

http://dx.doi.org/10.1038/s41596-020-60422-7 PMID: 32099076

http://dx.doi.org/10.1016/j.jdiacomp.2018.09.016 PMID: 30309785

http://dx.doi.org/10.2147/opht.s1490 PMID: 19668734

http://dx.doi.org/10.2337/dc14-2311 PMID: 2563665

http://dx.doi.org/10.1002/ana.40290604 PMID: 1892361

http://dx.doi.org/10.1042/cs0800249 PMID: 1850685

http://dx.doi.org/10.5402/2012/103714 PMID: 22830040

http://dx.doi.org/10.1016/j.diabet.2010.05.004 PMID: 20739207

http://dx.doi.org/10.1177/1932296814551044 PMID: 25221114

http://dx.doi.org/10.1002/(SICI)1097-4598(199802)21:2<137::AID-MUS1>3.0.CO;2-C PMID: 9466589

http://dx.doi.org/10.1002/mus.25234 PMID: 27366884

http://dx.doi.org/10.1111/j.1365-2221.2011.03791.x PMID: 21645138

http://dx.doi.org/10.3389/fmed.2019.00167 PMID: 3138059

http://dx.doi.org/10.1056/NEJM199309303291401 PMID: 8366922

http://dx.doi.org/10.2337/dc13-2114 PMID: 24356595
We are unable to provide a natural text representation of this document as it appears to be a mix of unrelated medical references and bibliographic citations, rather than a coherent block of text. If you have a specific question or need to reference a particular section from this document, please let us know!

Morello CM, Leckband SG, Storer CP, Moorhouse DF, Sahajian GA. Randomized double-blind study comparing the efficacy of ga...

http://dx.doi.org/10.1002/14651858.CD007963.pub3

http://dx.doi.org/10.1016/j.ejpain.2004.05.010

http://dx.doi.org/10.1111/j.1600-0404.2006.00631.x

http://dx.doi.org/10.1016/j.ejpain.2004.04.014

http://dx.doi.org/10.1002/14651858.CD007963.pub3

http://dx.doi.org/10.1111/j.1600-0404.2004.00336.x

http://dx.doi.org/10.1016/j.ejpain.2006.09.040

http://dx.doi.org/10.2174/1705159x146616021042056

http://dx.doi.org/10.1001/jama.280.21.1831

http://dx.doi.org/10.1016/S0002-9343(00)00398-3

http://dx.doi.org/10.1002/14651858.CD007938.pub4

http://dx.doi.org/10.1002/14651858.CD007938.pub4

http://dx.doi.org/10.1086/397217

http://dx.doi.org/10.1002/14651858.CD007093.pub4

http://dx.doi.org/10.1002/14651858.CD007093.pub4

[196] Rice ASC, Dwarkin RH, McCarthy TD, et al. EMA401-003 study group. EMA401, an orally administered highly selective angioten-

[198] Price N, Namdari R, Neville J, et al. Safety and Efficacy of a Topi-

DISCLAIMER: The above article has been published in Epub (ahead of print) on the basis of the materials provided by the author. The Editorial Department reserves the right to make minor modifications for further improvement of the manuscript.