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Large-Signal Stability Improvement of DC-DC
Converters in DC Microgrid

Yonghao Gui, Senior Member, IEEE, Renke Han, Member, IEEE, Josep M. Guerrero, Fellow, IEEE, Juan C.
Vasquez, Senior Member, IEEE, Baoze Wei, Member, IEEE, and Wonhee Kim, Member, IEEE,

Abstract—In DC microgrids, constant power loads (CPLs)
reduce the effective damping of the DC-DC converter and may in-
duce destabilizing effects into the DC-DC converter. To overcome
such problems regarding CPL and ensure large-signal stability
of DC-DC converters in DC microgrids, some feedforward terms
are added to V -I droop-based dual-loop controller for a DC-DC
converter based on the large-signal model. It is proven that the
feedforward terms can not only improve the transient response
but also guarantee the exponential stability of the closed-loop
system in the whole operating range in regards to a large-signal
manner, which is verified by using a singular perturbation model.
Moreover, a disturbance observer is designed to estimate the
output current, thereby enabling the removal of the current
measurement sensor. The proposed technique can be easily
plugged into a pre-defined V -I droop-based dual-loop controller
without an additional sensor being required. Ultimately, both
simulation and experimental tests verify the effectiveness of the
proposed method.

Index Terms—DC–DC converter, DC microgrid, constant
power load, exponentially stable, disturbance observer.

I. INTRODUCTION

W ITH the increased penetration of renewable energy
resources (RESs) in electrical systems, control of

power converters has been extensively discussed to increase
the performance and reliability of the electrical system [1]–
[3]. The concept of microgrid is an effective method for power
generation and distribution with the integration of RES [4]. DC
microgrids are considered to be more attractive for numerous
applications due to their several advantages, such as higher
efficiency, more natural interface to many types of RES and
energy storage system, and better compliance with consumer
electronics [5].

In DC microgrids, constant power loads (CPLs) reduce
the effective damping of the DC-DC converter and may
induce destabilizing effects into the DC-DC converter because
CPLs exhibit nonlinear dynamics and negative incremental
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impedance [6]–[8]. Various literatures analyzed the stability
for DC microgrids with CPLs. The stability around a fixed
equilibrium point have been studied based on the normal oper-
ating conditions of the CPLs considering single converter [9]–
[11] or multiple converters [12]–[16]. One of the main chal-
lenges will be the nonlinearity addressed by the CPLs [7]. As
a consequent, CPLs present a significant challenge for system
operation and control [17].

To resolve such CPL problems in DC-DC converters,
various control strategies have been designed and analyzed.
A negative input compensator was proposed to stabilize a
brushless DC motor drive by modifying its input impedance
[18]. The amplitude death methods were applied to overcome
the stabilization problems of CPLs [19]. One of the simple and
effective methods to overcome this problem was to employ a
passive damping strategy, which adds a necessary capacitor or
resistor [20] or design LC filters [21]. However, these methods
require additional cost and have physical constraints. Another
strategy is to employ active damping methods, such as virtual
resistor [22], virtual capacitor [23], and virtual impedance [24],
which overcome the CPL problems by emulating the passive
elements through the modification of control loops. How-
ever, these active damping methods can deteriorate the load
performance because they increase CPL damping. An active
damping control method to emulate the virtual resistance of
a source DC-DC buck converter that supply power to the
paralleled CPLs with their input filter was presented in [25].
However, the bandwidth of the closed-loop system is changed
to affect the system’s dynamic response. In [26], an inertia
and damping controller was proposed to improve voltage
quality. However, all these methods were designed based on a
small signal model. Although various linear control techniques
can be easily applied into the small-signal model for control
or analysis, the stability near the operating point can be
guaranteed. In addition, it is not easy to guarantee a uniform
and satisfactory control performance over the entire operating
range. If a large disturbance occurs, then these linear control
methods may become ineffective and the system may become
unstable because of the CPL [27], [28].

To overcome such problems, several nonlinear control
strategies have been designed for DC-DC converters based on
the large signal model. In [29], a model predictive control
(MPC) method was proposed for boost converters feeding
a CPL; however, its implementation may be difficult due
to the online computational burden of MPC. A state feed-
back linearization approach was proposed for a DC-DC buck
converter loaded with a CPL to improve its transient per-



formance [30]. However, the feedback linearization approach
is sensitive to noise from the output channels. To overcome
this problem, a sliding-mode duty cycle ratio controller was
proposed to stabilize the DC bus voltage in an application
of the medium voltage DC shipboard power system [31]. In
addition, a second-order sliding-mode control (SMC) method
was developed to address the regulation problem of a DC-DC
buck power converter [32]. The SMC method is insensitive to
match uncertainties and achieving a fast response. However,
it may present variable frequency switching and chattering
problems. Considering the passivity of physical systems, a
complementary proportional-integral controller based on the
adaptive interconnection and damping assignment passivity-
based control technique was designed for a DC-DC boost
converter [33]. It presents the advantages of simple imple-
mentation and robustness; however, it may be associated
with sluggish transient response during the variation of the
operating point. To compensate for the uncertainties and/or
the disturbance, the disturbance observer (DOB) based meth-
ods were proposed [34]. In [35], a robust output feedback
controller based on a nonlinear DOB was proposed for DC-
DC buck converters to handle the components’ uncertainties.
However, the authors of that study do not appear to consider
the CPL problem. Recently, a backstepping controller was
proposed to address the CPL problem. Xu et al. proposed an
adaptive backstepping and nonlinear DOB control strategy to
solve the stabilization problem of DC-DC boost converters
feeding CPL [27]. Those methods improve the performance
with the consideration of the nonlinear properties.

Our motivation is to design a simple yet robust control
method in order to improve not only the transient response
but also the stability and performance in the whole operating
range. It is shown that the destabilizing effects of the CPL
can be indirectly rejected by using the output current when
using the V -I droop-based dual-loop controller. Consequently,
a modified V -I droop-based dual-loop controller is designed
to guarantee system stability under the effect of the CPL
based on the large-signal model, which can be guaranteed the
large-signal stability of DC-DC converters in DC microgrids.
Although the feedforward terms can improve the transient re-
sponse [36], in this paper, it also can guarantee the exponential
stability of the closed-loop system in the whole operating
range in regards of large signal manner even there exist
constant power loads in DC microgrids. In addition, a DOB
is designed to estimate the output current, which can reduce
the cost of measurement sensor. The exponential stability of
the closed-loop system is verified in the whole operating
range by using a singular perturbation model because the
DC-DC converter comprises an inner fast current loop and
an outer slow voltage loop. It should be noted that although
the feedforward controller for DC-DC converters has been
designed [26], [37], [38], this paper firstly proves the exponen-
tial stability based on the large-signal model. The simulation
results show that the proposed method solves the CPL problem
and improves transient response. Finally, the experimental tests
are conducted using the 2.2 kW DC-DC converter to verify its
effectiveness. Both simulation and experimental results match
the theoretical expectations closely. The main contribution are
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Fig. 1. (a) Converter in the DC microgrid. (b) Block diagram of V -I droop-
based dual-loop control.

summarized as follows:
• Simple implementation: The proposed technique can be

easily plugged into a pre-defined V -I droop-based dual-
loop controller without the additional sensor.

• Stability and Robustness: The exponential stability of the
closed-loop system is guaranteed by the proposed method
under the constant power loads and is mathematically
proven in a large-signal manner by using the singular
perturbation theory.

II. CONTROL DC-DC CONVERTER IN DC MICROGRIDS

In this section, we introduce a DC voltage-controlled volt-
age source converter, which is controlled by using a V -I
droop controller to regulate the voltage. The DC-DC converter
supports the resistor load and CPL, as shown in Fig. 1(a).
Further, it is shown that the CPL affects the system stability
as well.

A. Converter model

In this study, the buck-type topology is used; thus, the
dynamic model with an LC filter can be presented as follows:

İL =
1

L f
V ∗−

R f

L f
IL−

1
L f

Vo

V̇o =
1

C f
IL−

1
C f

Io,
(1)

where IL is the filter current, V ∗ is the converter voltage input,
L f is the filter inductor, R f is the equivalent resistance of the
inductor, C f is the filter capacitor, and Io is the output current.
It should be noted that V ∗ is the control input of the system.

B. V -I droop-based dual-loop controller

In this study, we consider a V -I droop-based dual-loop
controller for the DC-DC converter, where the V -I droop is
used for current sharing in DC microgrids [39]. The V -I droop-
based dual-loop controller can be expressed as

Vdroop =Vre f −RdIL, (2)



where Vdroop is output of the droop control, Vre f is the voltage
reference, and Rd is the droop coefficient. Further, the dual-
control loop is generally designed as follows:

ψ̇v =Vdroop−Vo, (3a)

I∗L = KIvψv +KPv(Vdroop−Vo), (3b)

ψ̇c = I∗L− IL, (3c)

V ∗ = KIcψc +KPc(I∗L− IL), (3d)

where KIv, KPv, KIc, and KPc are the positive controller gains.
ψv and ψc are the auxiliary state variables defined for the
PI controllers of the outer and inner loops, respectively. The
control block diagram can be seen in Fig. 1(b). It should be
noted that the V -I droop-based dual-loop controller consists of
two parts. The V -I droop controller as given in (2), which is
used to generate the voltage reference for dual-loop controller
(also achieve roughly current sharing when applied for multi-
converter system). The dual-loop controller is a cascade struc-
ture consisting of two conventional PI controllers, in which,
the voltage controller is the outer loop PI controller to generate
the reference of the inner loop (current loop) and the current
loop is the inner loop PI controller to generate the control
signal for PWM generator. Essentially, the outer loop is to
guarantee the voltage tracking the reference, and the inner
loop is to limit the current response.

By combining (2) with (3), the completed voltage-controlled
voltage source converter model is shown as

ẊV SC = AV SCXV SC +
[

BV SC1 BV SC2

]
U, (4)

where

XV SC =
[

Vo IL ψv ψc
]T
,U =

[
Vre f Io

]T
.

AV SCi =


0

1
C f

0 0

a b
KPcKIv

L f

KIc

L f
−1 −Rd 0 0
−KPv −KPvRd−1 KIv 0

 ,

a =−KPcKPv +1
L f

, b =−
KPcKPvRd +KPc +R f

L f
,

BV SC1 =

[
0

KPcKPv

L f
1 KPv

]T

,

BV SC2 =

[
− 1

C f
0 0 0

]T

.

(5)

C. Load model

First, the output current, Io, consists of the currents of the
resistive load and CPL.

Io = Io R + Io CPL (v) (6)

where Io R and Io CPL (v) represent the output current for the
resistive load and the CPL, respectively. The resistive load is
considered as

Io R = GL RVo, (7)
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Fig. 2. Equivalent constant power load model..

-3500 -3000 -2500 -2000 -1500 -1000 -500 0

Real axis

-200

-100

0

100

200

Im
a
g

in
a

ry
 A

x
is

-60 -40 -20 0

122

124

126

128

130

6.4 kW

Fig. 3. Eigenvalues of the system when changing CPL from 1 to 7 kW.

where GL R represents the conductance of the resistive load.
An ideal CPL model is nonlinear; thus, it is a common practice
to linearize it in a voltage operating point, Vop, which is
expressed as follows:

Io CPL (v)≈ ICPL︸︷︷︸
a

+
(
−PCPL/V 2

op
)︸ ︷︷ ︸

b

v,
(8)

where PCPL is the constant power and ICPL = 2PCPL/Vop is the
equivalent constant current source.

In (8), part (a) is similar to a constant current load, which
leads to oscillatory behavior. Part (b) is the negative impedance
part, which can undermine the stability of the system. Each
CPL is connected to the converter through a transmission line,
as depicted in the equivalent model shown in Fig. 2. It should
be noted that v =Vo in (8) and Vop is an operating point value
(steady-state value), which is required to obtain the model as
shown in Fig. 2 Based on the above model, the instability
phenomenon in terms of CPL can be derived [40]. With the
parameters listed in Tables I and II, the eigenvalues of the
system when changing CPL from 1 to 7 kW was shown in
Fig. 3. This result was obtained for steady-state response of
a linearization model around the given operating point when
using the V -I droop-based dual-loop controller. One pair of
poles of the closed-loop system goes across the imaginary
axis to the right half plane when the CPL is changed to
approximately 6.4 kW, as shown in Fig. 3, which means that
the closed-loop system becomes unstable. Consequently, the
previous V -I droop-based dual-loop controller has limitations
in control performance. Furthermore, Io in (5), which may
make the system become unstable, should be compensated by
the controller. This will be studied in the next section.

III. CONTROLLER DESIGN

In this section, we design a controller to reject Io in DC
microgrids. Moreover, to avoid the addition of a sensor, we
design a DOB to estimate Io. Finally, the stability of the closed-
loop system is mathematically proven.



A. Feedforward method
To compensate for Io, I∗L in (3b) is changed to the following

expression:

I∗L = KIvψV +KPv(Vdroop−Vo) +Io︸︷︷︸
Feedforward

. (9)

The term Io is a feedforward term, which could be either
obtained by a sensor or calculated by a DOB. To improve
the control performance, the additional terms are included in
V (3d) as

V ∗ = KIcψc +KPc(I∗L− IL) +R f IL +Vo︸ ︷︷ ︸
additional feedforward

. (10)

We define the tracking errors as

ψv =
∫ t

0
ev(τ)dτ, ev =Vdroop−Vo

ψc =
∫ t

0
ec(τ)dτ, ec = I∗L− IL.

(11)

Further, the tracking error dynamics are as follows:

ψ̇v = ev, ėv = V̇droop−
1

C f
IL +

1
C f

Io

ψ̇c = ec, ėc = İ∗L−
1

L f
(KIcψc +KPcec).

(12)

B. Disturbance observer
Assumption 1: The disturbance Io(t) in system (1) satisfies

the two conditions as follows:
• The upper bound d∗ of |Io| for all t exists such that

d∗ = sup |Io(t)|, (13)

• İo converges to zero such as

lim
t→∞

İo(t) = 0. (14)

It should be noted that Assumption 1 is always acceptable
in DC microgrid [37], [41]. The DOB for estimating Io is
designed by

ż =− `

C f
z+

`2

C f
Vo +

`

C f
IL

Îo = z− `Vo,

(15)

where z is the intermediate state of an observer, and ` is the
observer gain. We define ed = Io− Îo. Further,

ėd =İo− ˙̂Io

=− `

C f
ed + İo.

(16)

If we select ` > 0 to guarantee the system stability, then ed
exponentially converges to zero as per (14). Fig. 4 shows
the control block diagram of the proposed method and the
DOB plugged-in the existing the V -I droop-based dual-loop
controller . It can be seen that the bottom part is the V -I droop-
based dual-loop controller including additional feedforward
terms in (10), which is indicated by a green-dashed box in
Fig. 4. Then, the feedforward term, Io, can be added into the
generation of I∗L in (9) in order to overcome the CPL problem
in DC microgrid. Io can be replaced by Îo, which is estimated
by the DOB (15) in a blue-dashed box of Fig. 4..
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C. Singular perturbation model

A general standard full singular perturbed system [42], [43]
is in the form of

ẋ = f (t,x,z,ε)

ε ż = g(t,x,z,ε),
(17)

where f and g are continuously differentiable, x ∈ Rn is
the state of the slow subsystem, z ∈ Rm is the state of the
fast subsystem, and ε is a small positive parameter. We use
x(t,ε) and z(t,ε) to denote the solution of the full singular
perturbation problem. The main objective behind using a
singular perturbation method is to divide the dynamics of
the system into two separate time-scales, so that the resulting
design problem is easier to solve than the design problem
of a full singularly perturbed system [42], [43]. From Theo-
rem 11.4 discussed in [43], if the boundary-layer model and
the reduced-order system are exponentially stable, then there
exists a positive constant ε

∗ such that for 0< ε < ε
∗, the origin

of the system (17) is exponentially stable.
Practically, in all well-designed converters, L f can play the

role of the parameter ε [43] so that the converter model can be
interpreted as the singular perturbed model. In the estimation

error dynamics (III-C), ` can be designed such that
`

C f
=

1
ε

. Further, the tracking error dynamics (12) and estimation
error dynamics can be rewritten in the form of a singular
perturbation model as follows

ψ̇v = f1(t,e1,ec,ed) = ev

ėv = f2(t,e1,ec,ed) = V̇droop−
1

C f
IL +

1
C f

Io

ψ̇c = f3(t,e1,ec,ed) = ec

ε ėc = g1(t,e1,ec,ed ,ε) = ε İ∗L− (KIcψc +KPcec)

ε ėd = g2(t,e1,ec,ed ,ε) =−ed ,

(18)

where e1 = [ψv, ev, ψc]
T .We define ēc as

ēc =−
KIc

KPc
ψc = h(ψc). (19)

Let us define ye as

ye = ec−h(ψc). (20)



Differentiating and multiplying ε on both sides of (20) results
in

ε ẏe = ε ėc− ε ḣ(ψc). (21)

With a new time variable
dτ

dt
=

1
ε

and ε = 0, the boundary-
layer system for (19) is obtained as

dye

dτ
= g1(t,e1,ye +h,ed ,0)

=−KPcye

ded

dτ
= g2(t,e1,ye +h,ed ,0)

=−ed .

(22)

If KPc > 0, the origin of the boundary-layer system (22) is
exponentially stable. Furthermore, the region of attraction of
the fast manifold covers the entire domain. From Theorem 3.1
discussed in [42], the eigenvalues of the fast dynamics can be
approximated as

λc =
−KPc +O(ε)

ε

λd =
−1+O(ε)

ε
.

(23)

Therefore, L f = ε is smaller, i.e. the fast dynamics play a small
role in the transient response. The quasi-steady-states are

ec = ēc =−
KIc

KPc
ψc

ed = 0.
(24)

Vre f is a constant value; thus, we assume that V̇droop = 0 is in
the quasi-steady-states. Moreover, İL ≈ 0 is in the outer loop,
because the current dynamics with the inner loop is faster
than the voltage dynamics [39]. Thus, the reduced-order model
dynamics are given as

ψ̇v = f1(t,e1, ēc,0) = ev

ėv = f2(t,e1, ēc,0) =−KIvψV −KPvev

ψ̇c = f3(t,e1, ēc,0) =−
KIc

KPc
ψc.

(25)

If KIc, KPc, KIv and KPv are chosen such that
KIc

KPc
> 0 and

the polynomial s2 +KPcs+KIc = 0 and s2 +KPvs+KIv = 0
are Hurwitz, then, the origin of the reduced-order model
dynamics (25) is exponentially stable. Finally, we conclude
that the origins of the boundary-layer and reduced-order mod-
els are exponentially stable. Therefore, using Theorem 11.4
discussed in [43], there exists a positive constant ε

∗ such that
for 0 < ε < ε

∗ the tracking error e exponentially converges to
zero.

Remark 1: The proposed method guarantees the expo-
nential stability of the zero equilibrium point of the closed
loop (19); thus, the proposed method guarantees robustness
against the parameter uncertainties if they are in the form of
vanishing perturbation terms. However, they are in the form of
nonvanishing perturbation terms, the proposed method guar-
antees only boundedness of the tracking error and estimation
error. The detailed robustness analysis is another problem and

TABLE I
SYSTEM PARAMETERS USED IN THE SIMULATION AND EXPERIMENT

Parameter Symbol Value Unit
DC source Vdc 200 V

Nominal bus voltage V ∗o 100 V
Filter inductance L f 1.8 mH
Filter resistance R f 0.1 Ω

Filter capacitor C f 2200 µF
Switching frequency fs 10 kHz

Sampling time Ts 0.1 ms
CPL parameter

Output DC voltage Vdc,cpl 50 V
Input filter inductance Lcpl, f 1 mH
Input filter resistance Rcpl, f 0.1 Ω

Input filter capacitor Ccpl, f 2200 µF
Output filter inductance Lcpl,o 18 mH
Output filter resistance Rcpl,o 0.1 Ω

Output filter capacitor Ccpl,o 2200 µF
Switching frequency fcpl 10 kHz

Sampling time Tcpl 0.1 ms

TABLE II
CONTROLLER GAINS USED IN THE SIMULATION.

Symbol KPv KIv KPc KIc ` Rd
Value 0.5 100 6 20 50 0.26

is beyond the scope of this study; however, it is discussed
in [44], [45].

Remark 2: Although the feedforward controller has been
designed [26], [37], this paper firstly proves the exponential
stability based on the large-signal model.

Remark 3: The convergence of the errors to the zero in
(19) is guaranteed with the assumption that lim

t→∞
İo(t) = 0. If

lim
t→∞

İo(t) 6= 0, the boundedness of the disturbance estimation

error is guaranteed as |ed(t)| ≤ e
− `

Cf
t
· ed(0)+

1
l

sup
t

İo(t). In

this case, only boundedness of the errors is guaranteed.

IV. SIMULATIONS

To validate the proposed current modulation method, MAT-
LAB/Simulink, Simscape Power Systems is used. The system
parameters are listed in Table I. In the simulations, we use
the conventional V -I droop-based dual-loop controller (3)
described in Section II-B to compare the performance of the
proposed method. The proposed method involves two aspects;
one is the output current measurement and the other is based
on the designed DOB in (15). It should be noted that, the
same controller gains are used for the V -I droop and dual-
loop in both conventional and proposed methods. In addition,
a DC-DC converter is used to emulate a CPL, where the output
voltage of the CPL is controlled at a constant value (50 V).

A. Transient Response

Fig. 5 shows the time response of the output voltage and
current of the DC-DC converter when the CPL is increased in
the microgrid. The red-dotted, green-solid, and blue-dashed
lines represent the conventional V -I droop-based dual-loop
controller, the proposed current modulation method with the
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Fig. 5. Simulation performance when the CPL is 1 kW. (a) Load power [W];
Output current [A]; (c) Output voltage [V]; (d) Filter current [A].

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Time (s)

0

1000

2000

3000

4000

C
P

L
 (

W
)

Conventional

Measurement

Proposed method

Fig. 6. Step change in CPL.

measurement sensor, and the proposed current modulation
method with the DOB, respectively. At 0.5 s, a CPL of 0.5
kW is connected to the microgrid, and the DC-DC converter
decreases its output voltage based on the droop, as shown in
Fig. 5(b). As shown in Fig. 5, the proposed method has a
smaller overshoot and faster settling time both in the output
voltage and current than those obtained using the conventional
V -I droop-based dual-loop controller.

B. Step Change of CPLs

In addition, we increase the CPL to 3.5 kW shown in Fig.
6, where the system with the conventional controller becomes
unstable, as shown in Fig. 7. However, the proposed method
with measurement or DOB can stabilize the system and have
a good tracking performance. Moreover, the proposed method
with measurement or DOB stabilizes the system even when a
larger CPL is connected as shown in Fig. 8. Consequently, we
can conclude that the proposed method enlarges the stability
region and overcomes the CPL problem.

C. Robustness

In this case study, it is assumed that there exists a parameter
mismatch in regards to the capacitor C f in (15) when the DOB
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Fig. 7. Simulation performance when the CPL is step changed. (a) Load
power [W]; (b) Output voltage [V]; (c) Filter current [A].
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Fig. 8. Simulation performance with larger CPL. (a) Load power [W]; (b)
Output voltage [V]; (c) Filter current [A].

is implemented. The control performance is compared to the
presence of C f variation. which is assumed that it has ±50%
error compared with the original value. From Fig. 9, it can be
seen that the performance of the output voltage and current is
similar to that without C f variation. It can be concluded that
the proposed method is robust to the parameter mismatch.

D. Multi Converters

The proposed method is also tested in the case study where
there are four distributed generation (DG) units to support
the load in the DC microgrid [37]. Please notice that the line
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impedances of converter 1 (DG1) and 3 (DG3) are same. At
the first case, all the DGs used the conventional V -I droop-
based dual-loop controller, where the control parameters of
DG1 and DG4 are the same but different with DG2 and
DG3. DG3 has a highest bandwidth and DG2 has a lowest
bandwidth. The droop gains were same for all DGs. At the
second case, the proposed method is applied to DG1 and DG4.
From the results as shown in Fig. 10, it can be seen that the
DG1 and DG4 have smaller overshoot and faster convergence
time than the first case. The same results are obtained as
described in Fig. 7. It should be noted that the current sharing
problem is out of this paper and further researched in the
future.

V. EXPERIMENTAL VERIFICATION

A. Experimental Setup

To verify the effectiveness and stability of the presented
control method, experimental setup was established, as shown
in Fig. 11(a), by using dSPACE 1006 as the control unit
and two Danfoss converters to emulate the DC-DC converter
and one converter load, respectively. The CPL is emulated by
using a DC electronic load from Chroma. The DC source is
provided by a Regatron programable DC power supply. The
control desk is used to establish the control interface, which is
responsible for controlling the converters and the relays. The
experimental results were captured by using the oscilloscope.
The configuration of the setup is shown as Fig. 11(b). The
converter load and the CPL were connected in parallel, an
LC filter was connected between the loads and the DC-DC
converter. In the experiments, the sampling and switching
frequency were selected as 10kHz. The detailed parameters
used in the experiment were the same as those used in the
simulations. The experimental results are presented in the
following.

B. Experimental Results

For the first test, the time response of the PI method,
proposed method with the measurement, and proposed method
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Fig. 11. (a) Experimental setup in the laboratory and (b) electrical scheme.
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Fig. 12. Measured performance when the CPL is 0.5 kW, using (a)
conventional method, (b) proposed method with measurement, (c) with DOB.

with DOB technique are shown in Fig. 12. All three methods
use the same droop coefficient and dual-loop controller gain. It
is observed that the output voltage obtained using the proposed
method with the measuremen has the smallest overshoot and
fastest convergence time as compared to those obtained using
other methods. Moreover, the proposed method that uses a
DOB produces a close result to the one obtained by the
proposed method that uses a current sensor. The three methods
for the overshoot and settling time of the output voltage as
summarized in Table III. Moreover, we test the case wherein
a disturbance is generated by connecting a 1.3 kW CPL, as
shown in Fig. 13 At this operating point, we can observe that
the system using the conventional method becomes unstable
and finally trips down because of the protection system, as
shown in Fig. 13(a). However, Figs. 13(b) and 13(c) show a
better performance with the proposed methods. Further, we
test a disturbance generated by connecting a converter in the
DC-link. In this case, the CPL1 = 0.5 kW is connected first,
where the output voltage is initially regulated at 98 V, as shown
in Fig. 14. Further, a converter load (CPL2) suddenly absorbs
0.5 kW more from the DC grid. The proposed methods; (with
measurement and DOB) improve the system performance, as
shown in Fig. 14. Consequently, it can be concluded that the
proposed method is robust to the converter load as well.
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Fig. 13. Measured performance when the CPL is 1.3 kW (full load) using (a)
conventional method, (b) proposed method with measurement, (c) proposed
method with DOB.

TABLE III
COMPARISON OF THE OUTPUT VOLTAGE PERFORMANCE.

Method Overshoot Settling time
Conventional method 5.5 V 1 s

Proposed method 1.3 V 0.04 s
Proposed method with DOB 1.5 V 0.05 s

VI. DISCUSSION

The presented results indicate that the proposed method
cannot only improve the transient response but also stabilize
the DC-DC converter when there exist CPLs in the DC
microgrid. The simulation and experimental results matched
the theoretical analysis introduced in Section III. It should be
noted that the proposed technique with the measurement can
be easily plugged into a pre-defined V -I droop-based dual-
loop controller with the additional sensor (i.e., output current
measurement). In order to remove that sensor, we applied the
DOB to the proposed technique, as shown in Fig. 4 which
can be easily implemented in the digital controller as well.
Finally, the exponential stability of the closed-loop system was
guaranteed by the proposed method under the constant power
loads and was mathematically proven in a large-signal manner
by using the singular perturbation theory. Consequently, the
enlarge stability region and robust property can be expected,
which are shown in Figs. 6-8.
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In the future work, the stability analysis of the DC microgrid
from the system level could be further analyzed when the DC-
DC converters use the proposed technique. In addition more
advanced controller could be designed based on the proposed
technique in order to improve or resolve a certain practical
problem.

VII. CONCLUSIONS

In this study, we proposed a modified dual-loop controller
for DC-DC converters to solve the CPL problems in DC
microgrids. The CPL problems can be effectively solved with
the addition of an output sensor. Furthermore, to remove the
additional sensor, we proposed the use of a DOB to estimate
the output current. The V -I droop-based dual-loop controller
using feedforward terms was designed to compensate for
the output current in the DC-DC converter. For the stability
analysis of the system using the proposed method, we used a
singular perturbation model to obtain a reduced-order system,
and it was verified that the closed-loop system with the pro-
posed method is exponentially stable. Both the simulation and
experimental results showed an improvement in the transient
response with the usage of proposed method. Moreover, the
conventional V -I droop-based dual-loop controller becomes
unstable when the CPL is increased, whereas the proposed

method stabilizes the system because the output current was
rejected by the proposed method.
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