

Aalborg Universitet

Breeding unicorns

Developing trustworthy and scalable randomness beacons

Dharanikota, Samvid; Jensen, Michael Toft; Kristensen, Sebastian Rom; Michno, Mathias
Sass; Pignolet, Yvonne Anne; Hansen, René Rydhof; Schmid, Stefan
Published in:
PLOS ONE

DOI (link to publication from Publisher):
10.1371/journal.pone.0232261

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Dharanikota, S., Jensen, M. T., Kristensen, S. R., Michno, M. S., Pignolet, Y. A., Hansen, R. R., & Schmid, S.
(2020). Breeding unicorns: Developing trustworthy and scalable randomness beacons. PLOS ONE, 15(4),
Article e0232261. https://doi.org/10.1371/journal.pone.0232261

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 06, 2025

https://doi.org/10.1371/journal.pone.0232261
https://vbn.aau.dk/en/publications/4732210a-65e1-4b43-8a13-21318d76542c
https://doi.org/10.1371/journal.pone.0232261

RESEARCH ARTICLE

Breeding unicorns: Developing trustworthy

and scalable randomness beacons

Samvid Dharanikota1, Michael Toft Jensen2, Sebastian Rom Kristensen2, Mathias

Sass Michno2, Yvonne-Anne PignoletID
3, René Rydhof Hansen2, Stefan Schmid1*

1 Faculty of Computer Science, University of Vienna, Vienna, Austria, 2 Department of Computer Science,

Aalborg University, Aalborg, Denmark, 3 DFINITY, Zurich, Switzerland

* stefan_schmid@univie.ac.at

Abstract

Randomness beacons are services that periodically emit a random number, allowing users

to base decisions on the same random value without trusting anyone: ideally, the random-

ness beacon does not only produce unpredictable values, but is also of low computational

complexity for the users, bias-resistant and publicly verifiable. Such randomness beacons

can serve as an important primitive for smart contracts in a variety of contexts. This paper

first presents a structured security analysis, based on which we then design, implement,

and evaluate a trustworthy and efficient randomness beacon. Our approach does not

require users to register or run any computationally intensive operations. We then compare

different implementation and deployment options on distributed ledgers, and report on an

Ethereum smart contract-based lottery using our beacon.

1 Introduction

A randomness beacon is a service emitting unpredictable random values at regular intervals,

defined in 1983 by Michael O. Rabin who used it to add probabilistic security in several proto-

cols [1]. Randomness beacons can help a group of users to agree on some random outcome,

even though they do not trust each other. In particular, the main purpose of the randomness

beacon is not to produce “better” local random numbers than, e.g., using /dev/urandom; it

allows users to agree on the same random value. Randomness beacons come with many appli-

cations, e.g., in cryptographic, security, and distributed systems protocols. Example applica-

tions include generation of protocol parameters and seeding elliptic curves [2, 3], privacy

preserving messaging [4–6], anonymous browsing [7–9], electronic voting and secure elec-

tions [9], gambling and lottery services, or preventing selfish mining [10–12]. Randomness

beacons are considered a “tool of democracy” [2].

Not surprisingly, there is an abundance of approaches for the design of publicly-verifiable,

bias-resistant and unpredictable randomness beacons. There are two main strands of beacon

research with different computational requirements on the users. One type of beacons require

a beacon operator which provides its users with random values. In such approaches, the bea-

con operator bears the main computational burden. In the second type of design, all partici-

pants are equal and share the computational complexity more equally. Depending on the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dharanikota S, Jensen MT, Kristensen

SR, Michno MS, Pignolet Y-A, Rydhof Hansen R, et

al. (2020) Breeding unicorns: Developing

trustworthy and scalable randomness beacons.

PLoS ONE 15(4): e0232261. https://doi.org/

10.1371/journal.pone.0232261

Editor: He Debiao, Wuhan University, CHINA

Received: September 8, 2019

Accepted: April 10, 2020

Published: April 28, 2020

Copyright: © 2020 Dharanikota et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are in:

(https://github.com/randomchain/randbeacon).

Funding: The authors received no specific funding

for this work. The first four authors were

immatriculated as students at university during the

study, while the last three authors acted as

supervisors and individual contributors.

Competing interests: There are no competing

interests. In particular, the affiliation of Yvonne-

Anne Pignolet with DFINITY does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

http://orcid.org/0000-0003-0837-7948
https://doi.org/10.1371/journal.pone.0232261
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232261&domain=pdf&date_stamp=2020-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232261&domain=pdf&date_stamp=2020-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232261&domain=pdf&date_stamp=2020-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232261&domain=pdf&date_stamp=2020-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232261&domain=pdf&date_stamp=2020-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232261&domain=pdf&date_stamp=2020-04-28
https://doi.org/10.1371/journal.pone.0232261
https://doi.org/10.1371/journal.pone.0232261
http://creativecommons.org/licenses/by/4.0/
https://github.com/randomchain/randbeacon

application and the computational constraints of the actors involved in a use case, one or the

other of the two is more appropriate. In this paper, we focus on the first case, with a powerful

beacon operator offering its service to light-weight users.

While in early versions of randomness beacons of the first type, the beacon operator itself

needed to be trusted (i.e., it is an unbiased third party), with obvious implications for security,

recent literature has sought to design beacons where the need to trust the beacon operator is

reduced or removed entirely.

In keeping with this trend, we design and implement a randomness beacon that works

under the most pessimistic assumption possible: everybody (in particular, this includes the

beacon operator) is secretly colluding against the user and is willing to invest money and

resources towards manipulating or biasing the randomness. Specifically, we seek a design that

minimizes the trust required by a user and also allows each user to decide how much they

want to trust the beacon such that, a user will know that under self-chosen trust assumptions,

the randomness has not been manipulated.

Randomness beacons are of particular interest in the context of distributed ledgers and

smart contracts, steering the interaction of mutually distrusting parties. In such scenarios

trustworthy randomness can speed up computations and break symmetries. Although many

potential implementations and practical solutions are discussed in the literature on random-

ness beacons, very few actual implementations of public, general-purpose beacons have been

published or made available. We describe the design and deployment options for our random-

ness beacon on a smart contract platform and their implications.

In summary, this paper makes the following contributions. After a thorough threat analysis,

we design, implement and evaluate a practical, secure, and trust-minimizing randomness bea-

con based on the transparent authority model which relies on user input. The design captures

the requirements derived through the structured analysis of threats to a randomness beacon

and builds upon the unicorn protocol devised by Lenstra and Wesolowski [2], but can be

employed more generally. It allows users to send inputs and consume beacon values at any

time and at low overhead without a registration procedure. Our implementation relies on par-

allelized computation, which minimizes the possibility of malicious operation while avoiding

idle periods. Furthermore and unlike other approaches of transparent authorities, the beacon

operator in our beacon design has no private information: all inputs are hashed and are

released to the public in batches before the computation. The beacon also offers users to make

subtle decisions on when to trust the output. Our beacon uses Merkle trees as the data struc-

ture for inputs to reduce the computation proof size. Our experiments with a first prototype

demonstrate the scalability of our approach.

We further illustrate how this beacon can be deployed on distributed ledger platforms. We

compare different (partial) on- and off-chain deployment options and discuss our experience

and evaluation of Ethereum smart contracts for a lottery with our beacon.

To ensure reproducibility of our results as well as to facilitate follow-up work, we share our

implementations on https://github.com/randomchain/randbeacon.

Bibliographic note. A preliminary version of this paper was presented at the IEEE Block-

chain conference 2019 [13]. We extend this work with a security taxonomy and threat analysis,

an extended evaluation and a more thorough survey of related work.

2 Basic beacon concepts and related work

Randomness beacons and related functionality have been studied intensively in the literature

already, see [10–12, 14–20] for a list of but a few examples.

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 2 / 22

https://github.com/randomchain/randbeacon
https://doi.org/10.1371/journal.pone.0232261

The two main concepts of a random beacon concern its input and beacon operation. The

input describes what sources are used to calculate the beacon value, while the beacon operation

describes the design of the protocol, i.e. how to collect the input, perform the computation and

publish the output.

Input sources can be split into three categories. A beacon operator can use its private source
of data to produce randomness. This potentially allows users to consume randomness of high

quality at a high rate, but denies users access to inspect the process and thus requires users to

trust the beacon and its randomness. It does not align with our stated security goals, since the

beacon outputs cannot reliably be distinguished from carefully crafted values that appear to be

random. An example of this input source model is the NIST randomness beacon, developed

by the National Institute of Standards and Technology (NIST), which observes quantum

mechanical effects to produce what is claimed to be high-quality randomness [14, 16]. As

such, the users need to blindly trust the beacon operator, i.e., NIST in this case [21–23]. Bea-

cons based on publicly available sources cover input from sources that are publicly available

and which everyone can agree on the value of, e.g., financial data [18], lottery numbers [17] or

bitcoin block hashes [15, 19]. The users must trust the source to be sufficiently random, which

may be fine for the examples mentioned. Finally, beacons can also rely on user input in which

a user is allowed to directly provide input to the beacon. The idea is that a user provides a

value that they believe is sufficiently random. The beacon then performs an operation on the

set of user-supplied inputs, yielding an output that allows all users

1. to verify the inclusion of their input and

2. to verify the validity of the computation.

If these are satisfied, the user knows that a value they trust to be random has been part of

the random output generation. The computation performed by the beacon should ensure that

users cannot knowingly bias the output to anyone’s disadvantage. As such, users know their

input was not knowingly “counteracted” by another user.

We can distinguish between three models for beacon operation, detailed below. In the auto-
cratic collector model, a beacon is run by a party which requires blind trust from the users. As

such, the computation is a black box with no possibility for proof of honesty. An alternative is

to use specialized MPC where users utilize Multi-Party Computation (MPC) to collectively

produce randomness, typically from their own inputs. Given an honest majority, this type of

beacon produces randomness that is not biased against the participants. Despite significant

work in the field, this approach is difficult to scale to large groups since any addition or

removal of a user requires a new setup phase [10, 11, 20]. This type of beacon is therefore not

well-suited for public settings with vast numbers of users, but might fit in a controlled private

context. Finally, in a transparent authority model, a single entity collects inputs and publishes

them with a focus on transparency. Users can, by observing the beacon, verify that it behaves

according to the protocol. This does not directly prevent Byzantine behavior, but rather makes

it difficult to hide such behavior. This type also supports a wide variety of implementations,

and can be scaled to a public setting. In this paper, we focus on transparent authorities and

provide a scalable implementation of such a randomness beacon. One of its crucial advantages

is the fact that it does not require users to register or run any computationally intensive

operations.

The “zoo approach” [2], describes a protocol reminiscent of a beacon which collects data

from a variety of sources before running them through a verifiable delay function called sloth.

Sloth is a strictly sequential function which is orders of magnitude faster to inverse for verifica-

tion. The time-hardness prevents last-draw attacks, as attackers have to dedicate large amounts

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 3 / 22

https://doi.org/10.1371/journal.pone.0232261

of time to compute how to bias the output, during which new inputs can render their efforts

pointless. The sloth delay function is a also key part of our randomness beacon. However, the

supporting structures driving the beacon are designed differently and we analyse the security

of both the protocol and the beacon operator in more detail; in particular, we assume the bea-

con operator can be malicious. A unicorn protocol is then used to combine input collection

from multiple sources and then compute the output of a delay function. This protocol resem-

bles that of the transparent authority beacon computation model, and is done by a single

entity. Lenstra and Wesolowski suggest feeding sloth with an aggregation of user inputs. Fur-

thermore, the authors present a protocol named trx, which utilizes the output of the unicorn

protocol. While they guarantee random unpredictable outputs even if all other users are mali-

cious, they do not explore the scenario of a malicious operator, who colludes with adversarial

users. We built upon their approach and design a system that can tolerate a malicious beacon

operator, while keeping the communication and computation cost for users low. Other

approaches that require users to register and entail a communication complexity of O(n2)

(e.g., [20]) and rely on the assumption of at most 1/3 Byzantine nodes in the system. In con-

trast, in our system users need to interact with the beacon operator two times, once to submit

their input and once to obtain the output. If they want to verify their input has been considered

and the output is valid, the complexity is in O(log n) due to the Merkle tree structure.

There exist other verifiable delay functions beyond sloth. Bünz et al. [19] evaluate the com-

putation and verification of delay functions based on modular square roots and the hashing

functions Keccak-256 (SHA3) and SHA-256. Subsequently, [24] formalized the notion and

present functions that achieve an exponential gap between evaluation and verification time.

Note that sloth could be replaced by these functions in our implementation and most likely

achieve better performance. Since the focus of this paper is on more general system aspects, we

omit an evaluation of these functions in this paper.

3 Threat analysis

We start by performing a threat analysis, considering possible threats to a generic randomness

beacon in order to understand the threat environment.

3.1 DREAD analysis

Our analysis assumes the user input model of input as well as a beacon based on the transpar-
ent authority model. In our setting, randomness is the fundamental resource that adversaries

would attempt to threaten and control. Thus we consider the availability and integrity of the

randomness beacon output to be the primary targets for attackers. We furthermore distinguish

between insiders and outsiders: an insider is anyone with the capabilities of the beacon operator

(for example the beacon operator itself), but for all intents and purposes may as well be anyone

gaining insider access to the beacon, e.g., by hijacking it. Because the beacon operator should

not be trusted either, we see no reason to distinguish between a legitimate beacon operator, a

malicious beacon operator, or an adversary maliciously acquiring access to the inside of the

beacon. In this context, an outsider is anyone who can only influence the beacon operation

from the outside network, and thus does not have inside access.

In order to structure our threat analysis, we employ the well-known DREAD framework

(with a slight modification commonly used) [25]. In this framework, potential threats are eval-

uated against five criteria and given a score on a simple scale 1 (indicating a low score) over 2

(indicating a medium score) to 3 (indicating a high score). The individual scores are based on a

qualitative assessment by the analyst. Threats are then assigned a final DREAD score, compris-

ing the sum of the individual scores, yielding a ranking of threats in which those with high

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 4 / 22

https://doi.org/10.1371/journal.pone.0232261

(final) scores are those that are considered the most dangerous, i.e., attacks that can cause a lot

of damage and are (relatively) easy to carry out score higher than threats that are unlikely or

very difficult to realize. It is important to note that these scores are qualitative and abstract and

thus mainly useful for relative ranking of threats and should not be assigned any particular

quantitative interpretation. The five individual evaluation criteria are as follows

1. DAMAGE: How harmful would such an attack be? This includes considerations of breach of

safety, loss of privacy, financial loss.

2. REPRODUCIBILITY: How easy is it to reproduce such an attack? This includes robustness of

exploits (e.g. portability of attack across platforms and platform variations), (financial) cost

of performing an attack.

3. EXPLOITABILITY: How much (or rather, how little) work is required to launch the attack (with

the 3 being the least amount of work)? This includes the amount of preparation for an

attack, degree of specialisation needed for an attack, e.g., custom designed attacks.

4. AFFECTED USERS: How many users will be impacted? This is used as a rough measure of the

impact of the attack.

5. DISCOVERABILITY: How easy is it to discover the vulnerability? This is an estimate of the

amount of work and resources necessary to detect a vulnerability. Note that for some criti-

cal applications, it is recommended to assume the highest score for discoverability to avoid

“rewarding” security by obscurity. Indeed, most of the threats detailed below, have high dis-

coverability, as they are mostly obvious, but may be hard or expensive to implement.

Table 1 summarizes the findings of our threat analysis and in the following we will briefly

describe these in more detail, using a shorthand notation for indicating the (numerical) results

of our DREAD analysis, e.g., “Input Flooding
D R E A D S

2 3 2 3 3 13
”, where each of the cap-

ital letters refer to the corresponding DREAD category and S refers to the total DREAD score,

where anything equal to or above 12 is considered high risk.

3.1.1 Threats to availability. We start by describing some of the potential threats to avail-
ability. Such threats are often hard to protect against and can have serious consequences for

users and applications that depend on timely computation of random numbers.

• Shutdown
D R E A D S

2 2 2 3 3 12
A malicious beacon operator can shut the beacon down,

completely denying availability. This threat is impossible to prevent for a beacon run by a

single operator, although the beacon operator will likely not get away with it.

Table 1. Attacks and their DREAD score.

Insider Outsider

Threats to availability Beacon shutdown (12)

Withholding output (12)

Input flooding (13)

Eclipse beacon (10)

Eclipse select users (8)

Threats to integrity Input manipulation (14)

Leak output (14)

Emit false output (11)

Input biasing (12)

Output degradation (13)

Man in the middle (11)

Cyptography exploit (10)

https://doi.org/10.1371/journal.pone.0232261.t001

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0232261.t001
https://doi.org/10.1371/journal.pone.0232261

• Withholding Output
D R E A D S

2 2 2 3 3 12
The operator can withhold outputs that are

not favorable to its interests. This threat is also quite significant and may be difficult to

detect/prove.

• Input Flooding
D R E A D S

2 3 2 3 3 13
Outsiders can overwhelm the beacon with inputs

to prevent other users from contributing their own input, or simply perform a Denial-of-

Service (DoS) attack on the beacon server. This is a serious threat as the attack is quite easy

to execute.

• Eclipsing (Select) Users
D R E A D S

2 1 1 1 3 8
An outsider can deny select users from

accessing the beacon to provide input or receive output. This is arguably a smaller threat, as

it is difficult to prevent a determined party from accessing the beacon, and such an eclipse

would still only affect that party.

• Eclipsing the Beacon
D R E A D S

2 1 1 3 3 10
An outsider can deny all users from provid-

ing input or receiving the output by infiltrating the inbound and outbound connection to

the beacon. This may be a difficult attack to execute, but if successful the outsider can poten-

tially eclipse the beacon from all users.

3.1.2 Threats to integrity. These threats can be far more damaging than threats to avail-

ability if not detected: Where availability is binary and users obviously cannot use a missing

output, successful integrity attacks provide an output, that appears legitimate, but is biased.

We consider using a biased output the worst thing for any user, which makes these threats

critical.

Input Biasing
D R E A D S

3 2 2 3 2 12
An outsider can provide input that biases the output to

their benefit. In this attack the outsider constructs an input such that it affects the output in

a known way despite other users contributing input later. If the outsider has the capability

of providing the last input, it may launch a last-draw attack. This is a severe threat to the

beacon, as the adversary is able to freely manipulate the output with their input, and violates

the unpredictability of the random number. The attack can be executed by anyone with

access to the input collectors given that they have the ability to pre-compute outputs.

Input Manipulation
D R E A D S

3 3 2 3 3 14
The operator can manipulate the input to bias

the output of the beacon. It can also selectively exclude inputs from certain users to deny

them availability. This threat is severe as the operator may manipulate the inputs, in a way

that cannot be detected. It is also easy for any operator capable of pre-computing the out-

put, and affects the randomness given to all users.

Output Degradation
D R E A D S

2 3 3 2 3 14
Adversaries can supply “bad” input to reduce

the quality of the output. This is also a serious threat as it will affect the quality of

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 6 / 22

https://doi.org/10.1371/journal.pone.0232261

randomness provided to all users, a randomness which may not even be usable. In addition,

it is easy to do given access to the input collectors, and could even happen by accident.

Man in the Middle
D R E A D S

3 1 1 3 3 11
Adversaries can intercept and change data sent

between user and beacon. This threat could be significantly damaging but also extremely

hard to execute for adversaries. Due to the nature of beacons we recommend using them

when you need to agree on some random number—thus, to intercept and manipulate

inputs and outputs, the adversary would have to distribute the manipulated number to all

users, as they would otherwise disagree on the numbers, leading to the manipulation being

discovered.

Emitting False Output
D R E A D S

2 1 2 3 3 11
A malicious operator can output false results

of the computation that benefit him. While this is technically a threat to the integrity of the

beacon, the effects should be similar to those of a withholding attack. This is due to the fact

that simply publishing false output would rapidly be discovered in a transparent authority

beacon, making the output unusable, but also removing any faith in the operator.

Leaking Output
D R E A D S

3 3 2 3 3 14
The operator can give access to the output earlier to

some parties than others—potentially selling early access. This threat can be quite severe, as

we do not know how early access can be granted compared to when the randomness is

used. It also violates the unpredictability property of the beacon, and is easily executable for

any malicious operator of the beacon. In the worst case it would affect all users.

Cryptography Exploit
D R E A D S

3 2 1 3 1 10
Weaknesses or exploits may exist in the cryp-

tographic techniques that protect the beacon. While we estimate it will be hard to find such

exploits, hence the low discoverability score, they would likely be relatively easy to apply

once found, and would affect all users. In this case one might also consider the effect quan-

tum computers would have on the use of cryptography, which could also threaten the

beacon.

4 Design

This section describes our beacon design, aiming to mitigate the threats identified above.

4.1 Requirements

This section lists the requirements for a randomness beacon suitable for our security goals and

the threats that exist towards beacons. We decided on using the transparent authority type of

beacon, which requires a high level of transparency, and as such we build requirements on top

of that.

• Transparent Operation Users should be able to oversee that the beacon operates according to

the protocol and thus catch any deviations from it. Being able to verify whether their own

input has been used, allows users to determine whether they should trust the output. Fur-

thermore, users should be able to repeat the process on their own computers as a means of

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 7 / 22

https://doi.org/10.1371/journal.pone.0232261

verification. This also requires the process to be deterministic. However, the output should

still be unpredictable, even to the beacon operator.

• Open and Secure Protocol Anyone should be able to easily contribute to the beacon protocol

to influence the random generation. There should be no requirements imposed on users to

limit their contribution rate besides denial of service protection. The protocol should be

secure meaning that even if only a single user is honest, the output is still unpredictable.

• Timely Publishing The protocol should enforce that input, output, and any data needed for

verification of an output is published as soon as possible to make the beacon more transpar-

ent. By having a requirement of timeliness at the protocol level, we restrict the time a mali-

cious operator has available to diverge from protocol before users will suspect them.

Giving users all the tools to replicate and oversee the process makes it difficult for adversaries

to covertly manipulate the beacon to their benefit, and allows users to complete output com-

putation themselves if the beacon stalls. This in turn mitigates one of the greatest threats

from the operator, input manipulation (see below). A beacon that does not reveal which

inputs were used before publishing the output will essentially be admitting that they picked

the inputs to bias the output.

We should note that despite having this property the beacon does not guarantee outputs on

any specific wall-clock time, e.g., at 12:00:00, 12:01:00, and 12:02:00. Instead, it will output as

soon as possible after each period of input collection. Barring any attacks, this will provide a

regular stream of outputs.

• Practicality Scalability of all components is important to be suitable for many use cases.

Therefore, it should scale to at least several thousand users contributing with user input in

every output. It will be beneficial to allow different channels for input and output, both to

make the beacon easier to access for users, but also to make it resilient to having any single

channel attacked. We also consider fault tolerance a valuable property to have, and having

multiple channels still allows users to input if one fails.

4.2 Service oriented architecture

To meet the requirements of modular input and output and fault tolerance, we use a service

oriented architecture (SOA) in the beacon design. This architecture splits the system into ser-

vices that each serve a single purpose. Communication between services is done according to a

well-defined protocol. In addition to scalability, a service oriented architecture provides loose

coupling and further simplifies fault tolerance since individual services can easily be

replicated.

A randomness beacon designed as a service oriented architecture consists of a number of

INPUT COLLECTOR services that collect input from many different sources. An INPUT PROCESSOR

service aggregates the input from all collectors and forwards it to the COMPUTATION service,

which commits to the aggregated input and runs the computation to generate an output.

Finally, various PUBLISHER services publish the commitment, output, and any relevant proofs to

different outlets. Fig 1 illustrates this architecture.

4.3 Security design

A major security concern is the operator’s ability to predict or manipulate the output. Our

solution for this problem is to ensure that each published output is paired with a commitment

which can be used in the verification of the beacon. As a novel design decision, the

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 8 / 22

https://doi.org/10.1371/journal.pone.0232261

commitment must contain all data required for the computation and all inputs. This is differ-

ent from the approach based on a trusted operator where the operator can work with the

inputs [2]: In Unicorn, the beacon operator commits to an input that is revealed when publish-

ing the next output [2]. In order to replace the operator and implement it in a distributed way,

commits are useful.

The transparency allows any party, as a strategic choice, to compute the randomness along-

side the beacon operator. It ensures that the operator cannot cause much damage by withhold-

ing output or by deciding not to open a traditional, e.g., hashed commitment. This hence

reduces the “value” of the output: depending on the timing, it is less attractive to leak output,

i.e., sell early access to the output, as everyone can just compute it. Put differently, while this

does not prevent the operator of performing a withholding attack, it minimizes the effects of it.

Note that the user has a choice here: depending on the user’s preferences, it can choose to

invest more resources and compute the output from the commitment and obtain the valid out-

put itself; as a different design choice, the user may be fine with learning the output slightly

later but efficiently.

To further decrease the possibilities of the operator trying different commitments before

releasing them, we use a verifiable delay function. Delay functions can be seen as black

box functions that require a given amount of time to run and are inherently sequential, mean-

ing they cannot benefit from parallel execution. It ensures that the output cannot be instantly

computed, and that the operator cannot try more than one commitment before running out of

time. As such, the operator is unable to perform the input manipulation attack in a meaningful

way. In order to avoid excessive computation by users performing verification, delay functions

used in randomness beacons should be hard to compute and easy to verify, i.e., they must be

asymmetrically hard. The operator is of course able to exclude or change output, but not in a

way that knowingly benefits anyone because the effect of the manipulation is hidden behind

the delay function.

The delay function also protects against last-draw attacks, where an adversary attempts to

bias the output by crafting an input to produce favorable randomness. The adversary needs to

compute the result of adding a specific input as the last input. Delay functions make this signif-

icantly more difficult to attempt due to the time needed to compute the result. Given a delay

function that takes five minutes to complete, an adversary must dedicate five minutes of pro-

cessor time to any given input he attempts to use. This means he must dedicate large amounts

of resources to perform any significant number of attempts, and more importantly if a single

Fig 1. An abstract beacon architecture based on services. Solid boxes illustrate services and arrows represent data

flow.

https://doi.org/10.1371/journal.pone.0232261.g001

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 9 / 22

https://doi.org/10.1371/journal.pone.0232261.g001
https://doi.org/10.1371/journal.pone.0232261

input is added to the beacon within that five minute period, all of his work will be null, and he

will be forced to restart.

We use the delay function sloth [2]. As mentioned earlier, there is no secret input to the

delay function in our design. Note that in [2], a different attacker model is used. More pre-

cisely, the beacon operator wanted to safeguard against adversaries trying to manipulate the

outcome. In this work, we consider the beacon operator as potentially malicious. Therefore,

we proposed that the operator produced a commitment to a set of inputs, while also revealing

the inputs. This effectively means that anyone can calculate the delay function, and potentially

be faster than the operator. We deemed that by having the operator include a secret input, to

prevent anyone from computing the outcome before himself, the trust implications are too

severe, as a user would have to trust that the operator did not try multiple secret values in par-

allel and chose the most beneficial outcome. In our design, an adversary may know the out-

come earlier than an honest participant that waits for the beacon operator to announce it.

However, the adversary cannot bias the outcome, as long as there is at least one honest party.

This can hence be considered a design tradeoff, as everyone can learn about the output imme-

diately by investing the resources to compute the value once the commits are known.

Rational trust assumptions. In our approach we want to push beyond the need for honest

operators and naïve users. To achieve this we extend the work of [2] to quantify trusting the

beacon and determine thresholds for reasonable behavior when using delay functions. This

provides a measure of rational trust, where users decide for themselves if what they observe is

adequate.

We present a property which, if satisfied, means a user can trust that the beacon operator is

not capable of fooling them. This property is true if the user determines that nobody is able to

compute the delay function in the time between the users input and the user receiving the bea-

con’s commitment to the input for the delay function. This can be condensed to

tCOMMITMENT � tINPUT < TDELAY FUNCTION

where tINPUT is the time when the user sent the input, tCOMMITMENT is when the user received

the commitment, and TDELAY FUNCTION is the fastest computation of the delay function. So for

users to be more likely to trust a beacon, the time between sending the input and receiving the

commitment must be significantly smaller than the time between the commitment and the

output. In fact, it must be smaller than the shortest time the user thinks the operator could

compute the delay function.

An example could be that a user believes that the world’s fastest computer can compute the

delay function in two minutes. In this case the users can trust the output if they see a commit

to a set of inputs containing their input within two minutes of their input having been sent.

This relation between the time taken to compute the delay function and the time before a com-

mitment is seen allows users to flexibly adjust their willingness to trust the outcome has not

been biased against them.

A similar threshold is also described by [2], where they advise a ratio of no more than one

fifth of the computation time spent collecting inputs. In their paper, the authors furthermore

state that participants will always try to minimize the time between their input and the com-

mitment. We see this as potentially problematic, since such behavior can create congestion in

the system, which might result in some inputs not being used in the intended output computa-

tion. This means that users whose inputs were not included cannot trust the output of the

given beacon iteration.

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0232261

4.4 Parallelization

Taking all this into consideration we present a beacon operation protocol which can be

adjusted to increase or decrease the ratio and thereby the limit for probabilistic trust. The oper-

ation must be sequential which means that we must collect input before computing the delay

function. Accordingly, we propose to decouple input collection and computation, and to par-

allelize the latter. This means that several delay functions run in parallel, but are offset in time

and on different input, illustrated in Fig 2 (left).

We observe that no input collection is run in parallel nor overlapping, which resembles a

constant stream of input collection. In addition, the computation resources can be reused for

future beacon computations, thereby eliminating the need for spinning up new computation

services, as depicted in Fig 2 (left), where the beacon would output at each circle shown in the

diagram.

4.4.1 Number of computation nodes. The number of computation nodes at least

required in this fashion is given by the duration of the delay function divided by the duration

of input collection. As computational times typically vary slightly, this can cause the beacon

output to be more skewed compared to the initial output frequency. To remedy this, we

account for possible extra time δ for each delay function. In this case,

Number of Nodes ¼ d
TDELAY FUNCTIONþ d
TINPUT COLLECTION

e

If, for example, the delay function is guaranteed to finish at most 2 minutes later than the

expected time of 10 minutes, i.e., a worst-case time of 12 minutes, and the input collection is 2

minutes, 6 nodes in total are necessary to guarantee a node is always ready every 2 minutes.

5 Prototype implementation

In this section we give a brief overview of the implementation of our beacon design. Our pro-

totype has been implemented mainly using Python 3 with a few subcomponents written in C

for performance.

The message passing infrastructure of our SOA is implemented using the ZeroMQ frame-

work for asynchronous message passing and concurrency (available at http://zeromq.org). We

can directly employ the “publish/subscribe” pattern provided by ZeroMQ between computa-

tion nodes and publisher. This pattern handles the message routing based on subscription pre-

fixes, resulting in less traffic on the network. Furthermore, the fan-in for input collectors is

implemented with a “push/pull” socket pair which ensures fair operation, thereby avoiding

starvation of components. Lastly, ZeroMQ guarantees atomic delivery of messages, which

means that we can assume all parts of a message or none at all.

Fig 2. Parallelized beacon protocol, with offset input collection (left) and stream input collection (right). Beacon

output is published after computation, last vertical lines (left) and circles (right).

https://doi.org/10.1371/journal.pone.0232261.g002

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 11 / 22

http://zeromq.org
https://doi.org/10.1371/journal.pone.0232261.g002
https://doi.org/10.1371/journal.pone.0232261

To avoid implementing heavy service discovery functionality and to simplify configuration,

we deploy proxies at key points in the pipeline: one between input collectors and the input pro-

cessor and one between computation and publishers.

5.1 System interface

As previously mentioned, the system boundaries, i.e. where users and the outside world inter-

acts with the beacon, are handled by input collectors and publishers. We implement these and

the surrounding infrastructure, as well as vertical scaling if the load becomes too high on a sin-

gle component.

To limit the space of potential messages and message sizes passed around inside of our sys-

tem, we sanitize the user inputs by hashing them at the entry point with the SHA512 hashing

algorithm. Realistically, allowing any input could be seen as an invitation by some users to

post messages or even files, e.g. illegal or inappropriate content. Our choice of hashing at entry

point will mitigate this. Given a substantial number of users, receiving and hashing inputs may

become a costly affair performance-wise. Fortunately, the state of an input collector is only rel-

evant to a single input request, meaning that scaling and even distributing across many

machines is a trivial task. When we hash an input, as a convenience we return the hashed

input as a response. As such, they will later be able to confirm that their hashed input was used

in the output of the beacon. To allow users to verify correct hashing, the hashing algorithm

should be made publicly known. Currently we use the SHA512 hashing algorithm since its

digest size is 64 bytes, which gives us reasonably sized messages flowing through the system,

while still having 2512 possible different values. It could be argued that the 32 bytes of SHA256

are more than enough for any use case. However, SHA512 is actually roughly 1.5 times faster

than SHA256 on a 64-bit CPU [26]. Therefore, we see no reason to limit the possibilities to

2256, since we do not expect 512 bits per input to be too much data. We implement the system

such that the chosen hashing algorithm can be configured at beacon start.

5.2 Combining inputs

One of the most important tasks of our implementation is to combine the (hashes of the) col-

lected input both as a preparation for the computation phase, but also to derive commitment

data that can be verified by users. As a novel contribution, our implementation uses a Merkle
tree for this purpose. A Merkle tree is a special binary tree where the value of each node is the

hash of the concatenation of its two children; here the leaf nodes are the hashes of user inputs

and the root node is then the condensed output.

Merkle trees as commitment data allows third-party applications to provide verification,

since the inclusion of a given leaf node in a Merkle tree can be verified by providing all siblings

to the nodes on the path up to the root. This greatly limits the amount of data which the user

needs to fetch and process to O(log n) where n is the number of leaf nodes in a Merkle tree.

The commitment data consist of an ordered list of the leaf nodes.

Another property of the Merkle tree is that, like hashing a concatenation of all collected

inputs, each leaf node equally affects the root node, due to the diffusion property of the hashing

algorithm. This means that any change to the set of inputs changes the root node in the Merkle

tree.

5.3 Parallel computation

As discussed, we need parallel and time offset computations in the beacon. This is achieved by

letting the input processor handle the scheduling of computations: The beacon is configured

to process inputs at a lower bounded interval, which means that the input processor will send

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 12 / 22

https://doi.org/10.1371/journal.pone.0232261

work at fixed times, given an available computation component. It should be noted that if no

such computational component is available, the input processor will just continue collecting

input. If no computation service becomes available within a given threshold, the input proces-

sor will give a warning to the system operator.

The worker announcements and subsequent work assignments are facilitated with Zer-
oMQ’s “router/dealer” socket pair which allows asynchronous addressed messaging. When a

computational node connects to the input processor it sends a READY message, receives an

OK , and proceeds to wait for incoming work; this process, accompanied by what follows

inside the computational node, can be seen in Algorithm 1. The input processor then keeps

track of each announced worker, and when the time comes, sends condensed processing out-

put and commitment data to the next free worker.

If the worker does not acknowledge the work with an OK response, the inputs are repro-

cessed, and the next free worker is assigned. This cycle continues until a worker accepts the

work, while new incoming inputs are included in each reprocessing of inputs. Having duplex

communication between the input processor and the computation nodes is a practical com-

promise between a strict pipeline pattern and a monolithic input processor/computation

node.

Algorithm 1 Specification of computational node outlining the communication pattern

with the input processor.
1 procedure INITIALIZATION()
2 CONNECTTo(input processor, publishing proxy)
3 end procedure
4 procedure MAINLOOP()
5 repeat
6 SENDTOINPUTPROCESSOR(READY)
7 if OK received before timeout then
8 W RECEIVEWORK() . blocking call
9 if W is valid then
10 SENDTOINPUTPROCESSOR(OK)
11 STARTCOMPUTATION(WINPUT)
12 SENDTOPUBLISH(WCOMMIT)
13 wait for computation to finish
14 C COLLECTCOMPUTATIONRESULT()
15 SENDTOPUBLISH(COUTPUT, CPROOF)
16 else
17 SENDMESSAGE(ERROR)
18 end if
19 else
20 continue
21 end if
22 until the end of time
23 end proceodure

5.4 Delay function

For the computation phase we implement a delay function based on sloth, the function pro-

posed to be used in the unicorn protocol [2]. The general idea behind sloth is to iterate through

modular square root permutations of a large prime number and thereby construct a time hard

algorithm, while containing a trapdoor for fast reversal, i.e., verification. Essentially, the verifi-

cation calculates squares of the output from the computation. When implementing delay func-

tions in systems that rely on their time guarantees, it is important to focus on performance,

since an obvious yet undeployed optimization of execution time would compromise the “time

hardness” of the algorithm. We implement sloth as a Python module with a C-extension for

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 13 / 22

https://doi.org/10.1371/journal.pone.0232261

the actual algorithm. In the C-extension the GNU MP library https://gmplib.org/ is used to

perform integer arithmetics with large numbers.

6 Performance evaluation

We conducted several experiments to explore potential system bottlenecks to gauge reasonable

throughput. We also investigate our chosen delay function sloth and different configurations

of it.

All experiments are executed on a server with an Intel Core i7-2600 CPU, which runs at

3.40 GHz. The server has four cores and can hence run 4 simultaneous sloth computations.

We use SHA512 as the hashing algorithm in both the Merkle tree and in the sloth delay

function.

6.1 Bottleneck analysis

We examine the potential bottlenecks which require the most effort to scale horizontally: the

proxies and the input processor.

6.1.1 Proxies. As discussed, our beacon contains two proxies. While the forward proxy

between computation and publishers is unproblematic in any real world randomness beacon

deployment (it only forwards outputs, commitments, and proofs), the stream proxy situated

between input collectors and input processors may become a bottleneck, as it has to handle a

constant stream of input messages. Recall that this proxy facilitates fan-in and fan-out pipelin-

ing with fair message distribution using a round-robin strategy. Hence, we test the throughput

of the proxy in different configurations of input collectors and input processors. For simplicity

and benchmark consistency, we utilize “dummy” components for this. The input collectors are

referred to as pushers and fan in at the proxy, while the input processors are called pullers and

fan out. In the tests we transmit messages which resemble those of an actual beacon in size, i.e.

64 bytes of application data plus any ZeroMQ packaging; in this case one byte which serves as a

flags field, and one byte to denote the message length.

In Fig 3 (left) we see how the aforementioned different configurations affect the throughput

of messages in the proxy. Firstly, every combination shows a throughput of at least 200k mes-

sages per second: likely sufficient even for popular real world beacons. It is the scenario of one

pusher to sixteen pullers that results in the lowest throughput, which can be caused by the

overhead of the fair message distribution enforcement. However, as we add pushers at sixteen

Fig 3. Configuration effect on throughput of messages in proxy. (Left) 64 bytes message throughput per second of

stream proxy, with different numbers of pullers and pushers. (Right) Correlation between number of leaves and the

time it takes to build a Merkle tree with those leaves.

https://doi.org/10.1371/journalpone.0232261.g003

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 14 / 22

https://gmplib.org/
https://doi.org/10.1371/journal.pone.0232261.g003
https://doi.org/10.1371/journal.pone.0232261

pullers, a slight increase in throughput can be seen, suggesting that fair distribution is easier

with more suppliers.

Another observation we can make from Fig 3 (left) is that increasing the number of pushers

does not affect the throughput as much as adding pullers does. This illustrates that fan-out is a

considerably more expensive task than fan-in—a fortunate fact, since a deployment of our bea-

con most likely will consist of remarkably more pushers than pullers.

We can conclude that the proxies in our system are unlikely to be bottlenecks, and we

should rather look further down the pipeline for issues; hence we next examine the input

processor.

6.1.2 Input processor—Building merkle trees. The most expensive task in our input pro-

cessor is building the Merkle tree. This task is done periodically when it is time to compute a

new random output. It is critical that this computation is fast, as this step can extend the time

between the last seen input and publishing the commitment. As such, we examine how the

number of leaves, i.e. inputs, affects the building time of the Merkle tree. In Fig 3 (right), a lin-

ear growth in build time is seen as a factor of the number of leaves. The growth is slow and is

negligible in our beacon. Well over 2M leaves are needed to result in a build time over 3s.
Admittedly, the build time could be a problem if significantly many inputs are used. How-

ever, in this case one might reimplement the input processor in a more performant language

than Python, e.g., C. In addition, the construction of Merkle trees is trivially parallelized. Our

evaluation results presented here do not take advantage of this fact. Thus building subtrees in

multiple processes and merging them to form the final tree provide a significant speed-up with

a factor close to the number of available CPU cores.

6.2 Sensitivity analysis of sloth
The computation and verification time of the delay function, sloth, can be configured by

adjusting two parameters: (1) the number of bits of the prime number used in the computa-

tion; and (2) the number of times to iterate through the permutation process of said prime.

To evaluate the sloth delay function and its sensitivity on the parameters, we run a series of

tests of the algorithm. During the tests we sample multiple rounds with random inputs and

take the average. Fig 4 (left) illustrates the correlation between the two parameters, and the

time it subsequently takes to do a computation with a given combination of bits and iterations.

An increase in the number of bits used for the prime number results in an exponential growth

of the computation time, while an increase in number of iterations cause a linear growth.

Fig 4. Execution time of sloth computation and verification with different parameters. (Left) Bits and iterations vs

time of computation. (Right) Computation time vs verification time with the logarithmic z-axis.

https://doi.org/10.1371/journalpone.0232261.g004

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 15 / 22

https://doi.org/10.1371/journal.pone.0232261.g004
https://doi.org/10.1371/journal.pone.0232261

While computation time is important for the delay function, another significant metric is

verification time—especially in relation to the computation time. Fig 4 (right) illustrates this

relationship, where the z-axis shows how many more times it takes to compute the output rela-

tive to how long it takes to verify. Although the data is more scattered than in the previous fig-

ure, we see a trend where the growth of this factor levels out just above one hundred. This

means that in configurations with more than roughly 3K iterations, the computation time is

always more than two orders of magnitude larger than the verification time.

We also observe that the number of bits does not affect the factor except for some irregular-

ities in the data. These irregularities are caused by the extra time it potentially can take to ini-

tially find the prime number; an operation which can vary in time depending on how close the

numeric representation of the hashed input string is to a prime. Since larger primes (given by

number of bits) can be more difficult to find, the data fluctuates more at larger number of bits.

7 Blockchain applications and implementations

The big promise of blockchains is to facilitate business interactions between mutually distrust-

ing parties, ranging from virtual currency transfers to smart contracts, enabling the trusted

execution of arbitrary code. More precisely, the tamperproof nature of an append-only distrib-

uted ledger realized by a blockchain protocol, forms the basis for platforms to run smart con-

tracts. In essence, a smart contract is a piece of code stored at an address on the ledger.

Sending a message to this address triggers the execution of the code with the arguments in the

message, and the resulting state is stored on the ledger. A blockchain consensus protocol

ensures that all parties agree on the operations and their sequence, as well as the resulting

state, despite the presence of malicious participants and the lack of trust.

Since randomness beacons let parties that do not trust each other base decisions on a

trusted source of randomness, we study the implications of an implementation of our beacon

in a blockchain environment. Smart contracts between mutually distrusting parties can benefit

from unbiased trustworthy randomness to speed up computations and break symmetries, e.g.,

in games. Since openness to any users is key in our design, an implementation providing ran-

domness on a public permissionless blockchain, which allows any interested entity to partici-

pate, makes most sense. We first compare different implementation options and then report

on a blockchain-based implementation of a lottery application using our beacon.

7.1 Design choices

There are essentially two options for the implementation:

• The actual beacon operator is run as a smart contract.

• The beacon operator runs separately from the blockchain, but publishes some of its artifacts

as part of smart contract on the blockchain.

While a fully blockchain-based solution offers benefits in terms of decentralization (no sin-

gle point of trust/failure, more robust to attacks including DoS, . . .), this solution is costly as

each computation in the smart contract consumes virtual currency. This ties the beacon into

the monetary incentive structures that dictate smart contract behavior. Due to the high cost,

this option requires many users to compensate for the large on-chain computation cost.

The second implementation option offers several variants with different trade-offs. The ver-

ification can, for example, be done either on-chain in a smart contract, or by each interested

user on their own. This has the advantage that expensive on-chain computations are avoided.

Which artifacts and computation are on-chain and what parameter size are appropriate is an

application-specific tradeoff between security and costs.

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 16 / 22

https://doi.org/10.1371/journal.pone.0232261

E.g., storage cost is proportional to the size of data stored on-chain, thus storing (parts of

the) data off-chain, e.g., one blockchain-backed distributed hashtables or IPFS, may provide a

solution with some guarantees that tampering with the commitment and output will be

detected, yet with a lower price tag.

The time necessary for a proposed transaction to be in a block that can be considered

immutable may be highly variable depending on the nature of the underlying blockchain.

Since the time interval between submitting an input and receiving a commitment from the

beacon operator is the basis of trust for a user, the blockchain latency must be taken into

account when configuring the delay function. Moreover the variability of the blockchain

latency may tarnish the trust assumption of users. In addition, since parts of the beacon would

still be off-chain, those parts will depend on an operator and are vulnerable to DoS attacks.

We study a lottery application based on our beacon, and to compare different implementa-

tions more systematically, we consider the following 3 players:

• Owner—Runs the lottery (e.g., smart contract owner)

• User—Takes part in the lottery by sending a small payment to the lottery smart contract

• Beacon—Beacon operator that provides a random value for the drawing of a lucky winner

The main goal of the lottery owner is to shave off some of the users’ participation payments

as a reward. In other words, not all of the user payments are given to the lucky winner, some of

it is transferred to the lottery owner. Users only want to participate in a lottery when they have

a reason to trust that the random value provided by the beacon is not biased, i.e., if they sent

some input to the beacon to influence the generated random value and received a commitment

within their trust time bound (on or off-chain).

We consider the following implementations, ordered by increasing on-chain smart contract

complexity:

• Maximum off-chain (OFF): In this implementation all beacon-related logic is off-chain: only

the lottery logic is on-chain. The users send their inputs to the beacon off-chain and obtain

the commitment off-chain. Thereafter they send the lottery payment to the smart contract.

When the off-chain beacon value computation has finished, the lottery smart contract

fetches the value with an oracle. Using this value, it then determines the winner of the lottery.

Users can verify if the beacon matches the commitment and complain off-chain and decide

not to trust this beacon in the future. This has no influence on the outcome of the current

draw of the lottery. Both the owner and the winning user receive rewards through the execu-

tion of the smart contract, while the beacon operator is remunerated off-chain.

• Adding beacon incentive and on-chain commitment (ITV): To allow the beacon operator to

be compensated with the smart contract, the following changes can be made to the simple

contract proposed above. In a first step, the beacon publishes its public key and a nonce and

locks some funds in the smart contract. Users send their input to the beacon off-chain and

once they see their input included in the commitment, they send (i) the Merkle tree root

signed by the beacon operator together with the nonce locked earlier and (ii) their participa-

tion payment to the smart contract. In this scenario, the beacon operator submits the next

beacon value to the smart contract directly or it is fetched with an oracle call. The verification

of the correct execution of sloth on the Merkle root is performed on-chain. The beacon loses

its locked funds if verification fails. If the verification succeeds, the owner, beacon and win-

ner receive rewards.

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 17 / 22

https://doi.org/10.1371/journal.pone.0232261

• On-chain inputs (INP): This version moves the input inclusion verification done by the user

in the previous versions to the smart contract. In this case the user can send their input on-

chain together with the lottery payment and it is then up to the beacon operator to send the

corresponding commitment in time to avoid losing its locked funds. Thus the user does not

have to worry about the commitment after selecting an input. Verification and reward distri-

bution is analogous to ITV. To reduce the cost for on-chain memory and computation, a

sequential commit representation is advantageous in this and the following variant.

• Optimistic (OPT): Since verification is costly and needs to be paid by the smart contract

owner, the beacon operator and the users, another option is to add a complaint phase instead

of carrying out the verification computation for every draw. In this case, an entity can submit

evidence within a certain time frame to the smart contract that shows that the beacon value

has not been computed correctly. Upon the successful verification of the evidence, this entity

then receives part of the beacon funds currently stored in the contract, the beacon loses its

funds and all users get reimbursed an equal fraction of the remaining beacon funds and their

lottery fees. If the complaint phase expires without such evidence being presented, the value

is assumed to be valid and the winner, owner and beacon operator are rewarded

correspondingly.

The different variants as well as their advantages and disadvantages are summarized in

Table 2.

7.2 Implementation and evaluation

We have implemented an Ethereum smart contract for the OFF and ITV models (INP and

OPT are very similar to ITV from an implementation point of view) on a private test network

and analyzed the gas costs for the implementations. In both the cases, the smart contract uses

an oracle service to obtain the necessary data from the beacon.

Fig 5 shows the gas costs for fetching the value from the beacon and drawing a winner for

different number of users in the lottery, for the OFF model. As expected, we observe a linear

increase of the gas cost with number of users.

The main implementation difference between the OFF and the other variants is the fact

that in the later, the verification computation can be done on-chain. Thus we compute the gas

requirements for the verification (modular squaring for sloth verification) in isolation. Using

delay functions that require modular squaring for verification in smart contracts is discour-

aged [19], owing to the high gas consumption. But the addition of a ‘pre-compiled’ contract to

perform modular exponentiation as a part of EIP198 [27] significantly reduces the gas cost

required to perform verification. The gas needed for modular exponentiation can be calculated

based on the formula given in [27].

Table 3 shows the gas requirements for sloth verification performed for different sizes of

witness, prime modulus and number of iterations. The values in the last row of the table show

that for the largest evaluated witness and modulus sizes, the sloth verification cost amounts to

around 5 times the cost for the rest of the smart contract with 70 users. For ITV and INP the

lottery smart contract owner must set the participation fee high enough to be able to make a

profit despite the verification cost. In the OPT variant, the verification computations are only

executed on chain if someone submits a complaint. Thus with OPT, the owner can set a much

lower participation fee as long as the locked funds by the beacon can cover the bounty and the

computation cost of a successfully verified complaint.

Note that in addition to the increase due to sloth verification computation, the amount gas

required for parsing, preprocessing and validating beacon inputs, commitments, output and

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 18 / 22

https://doi.org/10.1371/journal.pone.0232261

proof parameters including their signatures on chain has to be considered. Parsing and pre-

processing can be done in multiple ways (e.g., by making multiple calls to the oracle to obtain

each value individually, or making a single call and parse the returned data on-chain, and so

on). It also depends on how the beacon values are encoded when sent to the contract. In

Table 2. Lottery implementation options using the transparent randomness beacon.

Delay Function on-chain Delay Function off-chain, growing contract complexity

Step\Version Full on-chain beacon OFF ITV INP OPT

Preprocessing - - Beacon locks fund and

nonce on-chain (to be

released if not enough users

participate within a certain

time frame)

Like ITV Like ITV

User Input On-chain, together with

lottery fee payment

Off-chain Off-chain On-chain, together with

lottery fee payment

Like INP

Beacon

Commitment

Not necessary Off-chain. After users see

their input committed in

time, they send lottery fee

payment

Users send Merkle root

obtained off-chain (with

beacon signature on root

and nonce) with lottery fee

payment to contract

Commitment is stored on-

chain, if delivered timely

and including all inputs in

the commitment, else users

are refunded and beacon

loses fund

Like INP

Beacon

Computation

On-chain Off-chain, independent of

lottery

Off-chain, after

commitment is stored on-

chain.

Like ITV Like ITV

Beacon

Output

On-chain Store beacon value on-chain Like OFF Like OFF Like OFF

Post-

processing

- User verify beacon and

complain off-chain, may

decide to not trust this

lottery in the future (no

influence on outcome of this

draw)

On-chain verification. If

verification is unsuccessful,

beacon forfeits funds and

users get lottery fees back

Like ITV If evidence submitted by

user, on-chain verification,

if successful, users receive

beacon funds and lottery

fees, beacon forfeits funds

Reward Owner and winning user

receive rewards

Owner and winning user

receive rewards

Owner, beacon and winning

user receive rewards

Like ITV Like ITV

Pros Users do not have to worry

about verification

Simple to implement, low

gas consumption

Beacon compensated for its

service

Beacon compensated, user

only needs to interact with

the contract

Beacon compensated,

verification only executed

on chain if someone

complains

Cons Requires many users to

offset the on-chain

computation cost, simpler

and cheaper solutions

without delay functions are

possible for this scenario

Owner and user must know

and adhere to timing of

beacon, trust stems from

incentives to repeat lottery

execution. Beacon operator

remunerated off-chain.

User interacts with off-chain

beacon operator and smart

contract. All honest users

submit the same data.

Verification executed on-

chain for every draw

Verification executed on-

chain for every draw, even

though the beacon would

typically be incentivised to

be honest in this scenario

User must execute

verification off-chain fast

enough to react within the

complaint window

https://doi.org/10.1371/journalpone.0232261.t002

Fig 5. OFF gas consumption for different number of users.

https://doi.org/10.1371/journalpone.0232261.g005

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 19 / 22

https://doi.org/10.1371/journal.pone.0232261.t002
https://doi.org/10.1371/journal.pone.0232261.g005
https://doi.org/10.1371/journal.pone.0232261

addition to this, the gas costs to use the oracle service depends on the amount of data fetched.

However, this part of the gas cost is dominated by far by the verification cost, so we do not

report on these numbers.

7.3 Discussion

When using a blockchain to run (parts of) a randomness beacon, the incentive structure of all

involved parties needs to be considered in a security analysis, which may include miners in

public permissionless blockchains. As an example, for the trust assumption of everyone being

against the user, the user would have to mine blocks to guarantee interaction with the beacon,

which is a steep requirement.

We also note that using smart contracts interacting with an off-chain beacon, a beacon can

also be used on a deeper level of a distributed ledger, namely as a means to speed up consensus

with shared randomness. If all the members in a distributed environment trust and agree on

the random value generated by the beacon, it can be used to select leaders, committees and/or

rank block proposals in an otherwise trust-lacking blockchain scenario. Recent consensus

algorithms leverage this idea [28, 29] with MPC beacon generation. If and how a transparent

authority beacon can be applied in this context is an interesting open question.

8 DREAD robustness analysis

Before concluding, we revisit the threats a randomness beacon is exposed to and discuss how

our proposed solution addresses them. Regarding the availability of a randomness beacon we

identified the following threats: beacon shutdown, withholding output, input flooding, beacon

and user eclipsing. In our design, the beacon operator’s role is to provide a service on behalf of

the users, yet each of the users could replace the beacon. Thus a beacon shutdown or withhold-

ing attack is more an inconvenience than a severe threat once the input has been submitted. If

the beacon or part of it is implemented on a smart contract platform, as proposed in the previ-

ous setting, the availability of the chosen platform is crucial for the availability of the beacon.

With respect to input flooding, the stream proxies mitigates this threat to some extent as it sep-

arates the computation from the input processing and state-of-the-art load balancing and DOS

prevention measures can be implemented for them. When implementing the input collection

part of the beacon on-chain (option INP, OPT or full), the DOS resistance of the blockchain

platform is inherited, which also holds for the eclipsing attacks.

Input manipulation, output degradation, man-in-the-middle, false or leaking output and

cryptographic exploits threaten the integrity of randomness beacons, The integrity of our solu-

tion relies on cryptographic assumptions and thus input manipulation, output degradation

and biasing are only possible if the assumptions do not hold or if the design and implementa-

tion of the cryptographic primitives contain bugs that can be exploited. State-of-the-art man in

the middle prevention mechanisms should be used for crucial applications (not implemented

in our version, since this is not the focus of this paper). Since the beacon output can be verified,

false output can be detected. In the case of a blockchain implementation according to the

Table 3. Verification gas cost for different parameter sizes.

Size of Witness (bits) Size of Prime Modulus (bits) Iterations Gas

512 512 1024 159,129

1024 1024 1024 517,171

512 512 2048 368,844

1024 1024 2048 1,198,745

https://doi.org/10.1371/journalpone.0232261.t003

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 20 / 22

https://doi.org/10.1371/journal.pone.0232261.t003
https://doi.org/10.1371/journal.pone.0232261

options ITV, INP, OPT false output can be punished with a forfeited deposit, while a correct

full on-chain implementation guarantees a correct output. Leaking output to interested parties

earlier is possible, yet the value of it is questionable, since every party could compute it itself if

willing to carry the cost.

9 Conclusion

We designed, implemented and evaluated a randomness beacon with sensible guarantees for

any single user; i.e. given their random input to the beacon, they can easily and rapidly verify

the computation, and decide if they deem it trustworthy. Our implementation allows all users

to run the delay function in parallel or instead of beacon operator, thus mitigating the effect of

a (maliciously or inadvertent) output withholding attack. Our beacon is attractive for applica-

tions based on smart contracts and distributed ledgers with minimal trust assumptions, illus-

trated with an Ethereum lottery application.

Author Contributions

Conceptualization: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen,

Mathias Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Formal analysis: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen,

Mathias Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Investigation: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen, Mathias

Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Methodology: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen, Mathias

Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Software: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen, Mathias Sass

Michno.

Supervision: Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Validation: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen, Mathias

Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Visualization: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen, Mathias

Sass Michno.

Writing – original draft: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristen-

sen, Mathias Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid.

Writing – review & editing: Samvid Dharanikota, Michael Toft Jensen, Yvonne-Anne Pigno-

let, René Rydhof Hansen, Stefan Schmid.

References
1. Rabin MO. Transaction protection by beacons. Journal of Computer and System Sciences. 1983; 27

(2):256–267. https://doi.org/10.1016/0022-0000(83)90042-9

2. Lenstra AK, Wesolowski B. Trustworthy public randomness with sloth, unicorn, and trx. International

Journal of Applied Cryptography. 2017; 3(4):330–343. https://doi.org/10.1504/IJACT.2017.10010315

3. Baigneres T, Delerablée C, Finiasz M, Goubin L, Lepoint T, Rivain M. Trap Me If You Can-Million Dollar

Curve. IACR Cryptology ePrint Archive. 2015; 2015:1249.

4. Wolinsky DI, Corrigan-Gibbs H, Ford B, Johnson A. Dissent in numbers: Making strong anonymity

scale. In: Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 12); 2012. p. 179–182.

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 21 / 22

https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1371/journal.pone.0232261

5. Van Den Hooff J, Lazar D, Zaharia M, Zeldovich N. Vuvuzela: Scalable private messaging resistant to

traffic analysis. In: Proceedings of the 25th Symposium on Operating Systems Principles. ACM; 2015.

p. 137–152.

6. Goel S, Robson M, Polte M, Sirer E. Herbivore: A scalable and efficient protocol for anonymous commu-

nication. Cornell University; 2003.

7. Goulet D, Kadianakis G. Random number generation during Tor voting. Tor’s protocol specifications-

Proposal. 2015; 250.

8. Ghosh M, Richardson M, Ford B, Jansen R. A TorPath to TorCoin: Proof-of-bandwidth altcoins for com-

pensating relays. NAVAL RESEARCH LAB WASHINGTON DC; 2014.

9. Adida B. Helios: Web-based Open-Audit Voting. In: USENIX security symposium. vol. 17; 2008.

p. 335–348.

10. Syta E, Jovanovic P, Kogias EK, Gailly N, Gasser L, Khoffi I, et al. Scalable bias-resistant distributed

randomness. In: Symposium on Security and Privacy; 2017. p. 444–460.

11. Cascudo I, David B. SCRAPE: Scalable Randomness Attested by Public Entities. IACR Cryptology

ePrint Archive. 2017; 2017:216.

12. Bonneau J, Clark J, Goldfeder S. On Bitcoin as a public randomness source. IACR Cryptology ePrint

Archive. 2015; 2015:1015.

13. Dharanikota S, Hansen RR, Jensen M, Kristensen SR, Michno MS, Pignolet YA, et al. Breeding Uni-

corns: Developing Trustworthy and Scalable Randomness Beacons. In: Proc. IEEE International Con-

ference on Blockchain (Blockchain); 2019.

14. National Institute of Standard and Technology. NIST Randomness Beacon; 2019. Available from:

https://www.nist.gov/programs-projects/nist-randomness-beacon [cited 2019-08-05].

15. Bentov I, Gabizon A, Zuckerman D. Bitcoin Beacon. CoRR. 2016;abs/1605.04559.

16. Fischer MJ, Iorga M, Peralta R. A public randomness service. In: Proceedings of the International Con-

ference on Security and Cryptography; 2011. p. 434–438.

17. Baignères T, Delerablée C, Finiasz M, Goubin L, Lepoint T, Rivain M. Trap Me If You Can—Million Dol-

lar Curve. IACR Cryptology ePrint Archive. 2015; 2015:1249.

18. Clark J, Hengartner U. On the Use of Financial Data as a Random Beacon. EVT/WOTE. 2010; 89.

19. Bünz B, Goldfeder S, Bonneau J. Proofs-of-delay and randomness beacons in Ethereum. IEEE Secu-

rity and Privacy on the blockchain (IEEE S&B). 2017.

20. Schindler P, Judmayer A, Stifter N, Weippl E. HydRand: Efficient Continuous Distributed Randomness.

eprintiacrorg/2018/319. 2018.

21. Huergo J. NIST Removes Cryptography Algorithm from Random Number Generator Recommenda-

tions; 2014. NIST News announcement. Available from: https://www.nist.gov/news-events/news/2014/

04/nist-removes-cryptography-algorithm-random-number-generator-recommendations [cited 2018-06-

06].

22. Perlroth N. Government Announces Steps to Restore Confidence on Encryption Standards; 2013.

Available from: https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-

confidence-on-encryption-standards/ [cited 2018-06-06].

23. Perlroth N, Larson J, Shane S. N.S.A. Able to Foil Basic Safeguards of Privacy on Web; 2013. Available

online http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html. Available from:

http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html.

24. Boneh D, Bonneau J, Bünz B, Fisch B. Verifiable Delay Functions. IACR Cryptology ePrint Archive.

2018; 2018:601.

25. Meier JD, Mackman A, Dunner M, Vasireddy S, Escamilla R, Murukan A. Improving Web Application

Security: Threats and Countermeasures; 2003. Available online https://msdn.microsoft.com/en-us/

library/ff649874.aspx. Available from: https://msdn.microsoft.com/en-us/library/ff649874.aspx.

26. Gueron S, Johnson S, Walker J. SHA-512/256. Information Technology: New Generations—ITNG

2011. 2011; p. 354–358.

27. Buterin V. EIP 198: Big integer modular exponentiation; 2017. Available from: https://eips.ethereum.

org/EIPS/eip-198.

28. Hanke T, Movahedi M, Williams D. Dfinity technology overview series consensus system. Whitepaper;

2018. Available from: https://arxiv.org/abs/1805.04548.

29. Kiayias A, Russell A, David B, Oliynykov R. Ouroboros: A provably secure proof-of-stake blockchain

protocol. In: Annual International Cryptology Conference. Springer; 2017. p. 357–388.

PLOS ONE Breeding unicorns: Developing trustworthy and scalable randomness beacons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232261 April 28, 2020 22 / 22

https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://msdn.microsoft.com/en-us/library/ff649874.aspx
https://msdn.microsoft.com/en-us/library/ff649874.aspx
https://msdn.microsoft.com/en-us/library/ff649874.aspx
https://eips.ethereum.org/EIPS/eip-198
https://eips.ethereum.org/EIPS/eip-198
https://arxiv.org/abs/1805.04548
https://doi.org/10.1371/journal.pone.0232261

