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Abstract

Dietary nitrate (N@) supplementation via beetroot juice (BR) has breported
to lower oxygen cost (i.e., increased exerciseiefficy) and speed up oxygen
uptake (VQ) kinetics in untrained and moderately trainedvidiials, particularly
during conditions of low oxygen availability (i.dwypoxia). However, the effects
of multiple-day, high dose (12.4 mmol NQ@er day) BR supplementation on
exercise efficiency and Vi Xinetics during normoxia and hypoxia in well-trath
individuals are not resolved. In a double-blindeshdomized crossover study, 12
well-trained cyclists (66.4 + 5.3 ml mirkg?) completed three transitions from
rest to moderate-intensity (~70% of gas exchangeskiold) cycling in hypoxia
and normoxia with supplementation of BR or nitrdépleted BR as placebo.
Continuous measures of Y@nd muscle (vastus lateralis) deoxygenatitiHb,
using near-infrared spectroscopy) were acquirethdull transitions. Kinetics of
VO, and deoxygenatiomHHb) were modelled using mono-exponential
functions. Our results showed that BR supplemesrtatid not alter the primary
time constant for V@or AHHb during the transition from rest to moderate-
intensity cycling. While BR supplementation lowetee amplitude of the VO
response (2.1%, p=0.038), BR did not alter stetatg & Q derived from the fit
(p=0.258), raw VQ@data (p=0.231), moderate intensity exercise efficy
(p=0.333) nor steady statddiHb (p=0.224). Altogether, these results demonstrat
that multiple-day, high-dose BR supplementationsduogt alter exercise
efficiency or oxygen uptake kinetics during norneand hypoxia in well-trained
athletes.

Keywords: Nitric oxide; beetroot juice; oxygen kiles; hypoxia; muscle
oxygenation;
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1.1 Introduction

For work rates within the moderate-intensity domaimd below the lactate
threshold (LT) or gas exchange threshold (GET)nuaulary oxygen uptake (\Ap
rises rapidly to attain a new steady-state leve).(Zhis process is tightly
regulated and defined by the mono-exponential kisetf VO, (27).

The amplitude of the VO response is mainly determined by the work rate an
exercise efficiency, such that a lower amplituda given power output reflects
improved exercise efficiency. The time constahof VO, defines the capability
for upregulation of oxidative phosphorylation, dadter kinetics (lowet) is
accompanied by reduced reliance on anaerobic etengyver at exercise onset
and during intensity transitions (27, 35). Therefatrategies to improve exercise
efficiency and VQ kinetics are of great interest in improving exsedolerance

and performance.

Nitrate (NGQ') supplementation, typically in the form of congat¢d beetroot
juice (BR), has been reported to lower the ampditativVO, during submaximal
exercise, in some (3, 15, 31, 38, 39, 44, 59) buah studies (8, 16, 40, 50, 51).
Also, BR has been reported to speed up ¥i@etics during submaximal cycling
in some (11, 30, 31) but not all studies (3, 16l @iscrepancy in the literature is
likely influenced by several factors, including @onmental conditions (oxygen
availability), study population, and supplementatstrategy (28). Specifically,
the effects of BR have been proposed to be augehé@mmonditions of lower
oxygen availability (i.e., hypoxia) (59, 60). Keky al. (31) showed that, in

physically active individuals (58.3 ml mirkg™), BR lowered the amplitude of



79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

the VO, response and reduced MQ@uring moderate-intensity cycle exercise in

hypoxia, but not in normoxia.

The majority of studies reporting beneficial efleof NO; on VO, kinetics have
been conducted in untrained or moderately traindviduals (VQmax < 60 ml
mintkg™) (3, 37, 44), while the studies conducted in virglined individuals
(VO,max > 60 ml miit-kg™) show minor (7, 15, 52, 59) or no effects (1, 518
51). Relative to less trained individuals, wellited individuals have elevated
resting levels of N@, which may partly explain the attenuated effe¢tBR in
this population (16, 55, 56). Further, a largeradgsof NQ may be required to
elicit the benefits of the supplementation in fpulation (26). Therefore,
several studies propose a supplementation strateyying several days of NO
loading, with a higher N©dose to raise plasma levels of N@nd NQ’, and
enhance the benefits of BR supplementation (26683866). Previous studies
examining VQ kinetics and exercise efficiency in well-traingtlates, have used

either a single dose (50) or multiple-day, lowesalpe supplementation (9, 16).

Recently, we showed that 4-7 days of a high doss@#plementation improved
10 km cycling performance of well-trained individsig66.4 ml min* kg?) in
both normoxia and hypoxia (58). The factors resg@$or improved time trial
performance after BR supplementation are not resplbut enhanced exercise
efficiency, improved oxygen uptake kinetics as veslloptimized blood flow
distribution may all contribute (20, 28, 58). Néafrared spectroscopy (NIRS)

can provide insights about the interaction betw@gdelivery and utilization at
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the level of the exercising muscle (22). Changeateioxygenated hemoglobin
(AHHD) during rest-to-exercise transitions refle@ balance between,delivery
and Q utilization at the muscle level (22). Further, thge constant ciHHDb
Kinetics represents an index of local muscle oxygdraction during exercise
transients (34). LinkingHHb and VQ, the ratio oiAHHb-to-VO,is proposed to
reflect the dynamic relationship betweenetraction and @utilization during
the adjustment phase at exercise onset (45, 4Qués a reduction in theHHb-
to-VO,ratio suggests improved microvasculard@livery and reduced reliance

on G extraction for a given V&X(45, 47, 61).

To our knowledge, no previous study has examinecktfects of multiple-day
high-dose N@ supplementation on exercise efficiency, Mdd muscle
deoxygenation kinetics in normoxia and hypoxia gllstrained individuals. The
purpose of the present study was, therefore, talteshypotheses that multiple
days of high-dose, BR supplementation would loweramplitude of V@and
reduce the V@ in hypoxia and normoxia, during transitions froestrto
moderate-intensity cycling, in well-trained indiv@s. Also, we hypothesized
that BR supplementation would lower thelHb-to-VO, ratio in hypoxia and
normoxia, suggesting that BR improves microvascOladelivery during exercise

onset.
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2.1 Materials and Methods

2.1.1 Sudy design

The study design has previously been reported (B8gfly, 12 well-trained
cyclists (66.4 + 5.3 ml mihtkg™) reported to the laboratory on five separate
occasions. The first visit consisted of a habitatrial and an incremental
maximal exercise test to determine GET andvéx. Visits 2-5 all involved
experimental trials. Each experimental trial cotesif three step transitions
from rest to moderate intensity cycling at a poawtput corresponding to 70% of
the GET (measured in normoxia). Each six-minutediteon was separated by six
minutes of rest. The step transitions were perfarmeconditions of normoxia
(20.9%) or hypoxia (15%), with supplementation & Br nitrate-depleted BR as
a placebo (PLA). The experimental trials were ranided in a counterbalanced-
crossover design and double-blinded for supplenientand single-blinded for
inspiratory conditions. The protocol and procedwssd in the current study were
conducted in accordance with the Declaration os&l and approved by the
Ethics Committee of Northern Jutland (N-20150049) participants signed
informed consent prior to enrollment. Experimese&tup and descriptive data
from these participants have previously been repowith a different aim (58)
2.1.2 BR supplementation

Participants ingested BR or PLA for seven conseeuwtays. Specifically,
participants consumed 140ml of concentrated BR .4-frinol nitrate) or 140ml
of nitrate-depleted BR (PLA; ~0 mmol nitrate) (B&e$Sport, James White Drinks
Ltd., Ipswich, UK) per day; one dose (70 ml) in therning and one dose (70 ml)

in the evening. On the days of the experimentalsti.e., days four and seven),
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participants were instructed to consume the taiakdi.e., 140 ml) 2-h before
arriving at the laboratory (~2.5h before commendheystep transitions). Further,
subjects were asked to refrain from using antibadtenouthwash.
Experimental trials 2.1.3
Each experimental trial started with a blood sangken from the antecubital
vein. Determination of plasma nitrate and nitrit@swerformed according to the
method described by Hezel et al. (25). Restingdlo@ssure (BP) was measured
three times (Omron M4-1, Omron Matsusaka, Japad)the average was used for
further analysis. Participants then rested 5-mmotethe bike ergometer while
breathing the gas mixture corresponding to the itimmdfor that specific trial
before commencing exercise.
VO, kinetics 2.1.4
Pulmonary VQ was measured using a metabolic cart (Jaeger, ¥YDRX,
Carefusion). Breath-by-breath data obtained duthegstep transitions were
examined and data points lying more than four Skesysdrom the local mean
were considered outliers and removed. The data wesgolated on a second-by-
second basis and then averaged across the thneéitmas. This approach
enhances the signal-to-noise ratio and improvedance in the parameters
derived from the modeling process (64). Furthe fitst 20s of data (the initial
cardiopulmonary phase) was removed ang Wi@etics was modeled using the
following mono-exponential function(16):

VO,(t)= Baseline + A(1-TP)
where VQ(t) reflects absolute V&Xor a given time in seconds. The baseline was

calculated as the mean Y®om 90-30s before the onset of exercisg. D, and



175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

T were amplitude, time delay, and time constanpeesvely, describing the
fundamental response in Y@bove baseline. The average of three step transiti
for an exemplar participant is presented in Fidgure

NIRSkinetics 2.1.5

Measures of oxygenated (HpOdeoxygenated (HHb), and total (THb)
hemoglobin were recorded continuously at 2 Hz (OComyivK 111, Artinis

Medical Systems, Netherlands). The probe was plagedthe belly of the Vastus
Lateralis muscle of the right leg using double-diddhesive tape and identical
placement was ensured between tests by markingdabhement with a permanent
pen. The data were expressed as relative chanyé®in the baseline value.
The kinetics oAHHDb in response to exercise was modeled using amon
exponential function, similar to the function ugedVO, kinetics(18, 46). At the
onset of exercise, theHHb profile consists of a time delay, followed bynano-
exponential increase mHHb(18, 46). The time delay fatHHb (AHHbp) was
determined by the time interval between onset ef@ge to the nadikHHb just
before a systematic increase in fit¢Hb. The fitting ofAHHb commenced from
the end of thé\HHbp and was constrained to 90s for each transition4@3,
ThetA[HHDb] described the time course for the increas&Hitib, while the

overall time course cAHHb from the onset of the exercise was describethéy
effectivet’ A[HHb] (AHHbp+ tAHHDL)(18, 46). The average of three step
transitions for an exemplar participant is preseémerFigure 2. Kinetics oAHbO,
andATHb do not approximate a mono-exponential model,\aere therefore
reported as changes from baseline to the averddles entire work period (0-

360s), and the last minute (300-360s) of the werkogl.
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The overallAHHb-to-VO; ratio for the adjustment during the early stageb®
exercise transition was derived by first normalig{0-100%) the second-by-
secondAHHb and VQ data, such that 0% corresponded to the baseline va
while 100% reflected the steady-state value. Hezea¥ O, data was left-shifted
by 20s to appropriately time-align the Y@nd NIRS-derived signal. Hereby, we
account for the phase | component of the,\é@nal due to the inherent
circulatory transit time lag between the exercigimgscles and the lung (46). The
normalized and left-shifted data were averaged%stbins and the overall ratio
was then calculated as the mean of the 5s bins 2@1420s of the transition (46,
47).
Mean VQ for the last 2-minutes from each step-transitios wsed to determine
gross mechanical efficiency (GE) calculated as:

GE= external bike load (kJ/min) / energy turnovel/hin) x 100%
With energy turnover being estimated as,Wltiplied by the energetic value of
O, accounting for the oxidation of fat and carbohyesadetermined from the
RER-values(54).
Satistical analysis2.1.6
Differences in physiological parameters were exachinsing linear mixed
models for repeated measures. We used this methenthtyse our data, as it has
the advantage of preventing listwise deletion dumissing data. For
clarification, the number of missing data (MD) &ach analysis has been noted in
Tables 1 and 2. The variable of interest was edterto the model
as the dependent variable. Supplementation (BRMA), condition (hypoxia vs.

normoxia), and supplementation-by-condition wereeesd as fixed effects in the



223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

model, while subject id was included as a randdecefAll data are presented as
means * SE, unless stated otherwise, with statldignificance being accepted
when p<0.05. All statistical tests were performsthg SPSS 25 (IBM Corp.,

Armonk, USA) or STATA (Texas, USA) version SE 13.

3.1 Results

3.1.1 Plasma nitrate, nitrite and BP

Results for plasma NOQand NQ™ have been reported previously (58). Briefly,
there were significant main effects of supplemeotadbn NQ" and NQ (both
p<0.001) such that BR elevated NQPLA 34 + 4 vs. BR 713 £ 39 um) and NO
(PLA 0.246 £ 0.03 vs. BR 0.669 + 0.07 nm) with rifeets of condition
(p>0.542), supplementation-by-condition (p>0.6873lifferences between
supplementation for 4 or 7 days (p>0.231).

Resting blood pressure was unchanged with BR (sysBR 126 + 3.1 vs. PLA
124.2 £ 3.1 mm Hg, p=0.283; diastolic: BR 70.2 2 ?s. PLA 70.5 £ 2.2 mm
Hg, p=0.852)

3.1.2 Moderate-intensity exercise

The moderate-intensity exercise elicited oxygerakgicorresponding to ~60-
62% VOmax with no significant effects of condition (p=073, supplementation
(p=0.210) or supplementation-by-condition (p=0.8a0)ere was a significant
effect of condition on HR and SpQrable 1), such that hypoxia increased HR
and decreased Sp@uring moderate-intensity cycling, with no effeofs

supplementation and no supplementation-by-conditimractions.

10
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3.1.3VO; kinetics

Data from analysis of V&kinetics are presented in Table 1 and Figuresdl3an
There were significant effects of condition®fO,, VO,TD, VCO,, VE and RER
such that hypoxia increasedO,, VCO,, VE and RER, while VEI'D was
reduced in hypoxia. There were no effects of supplgation or
supplementation-by-condition interactions for theagables.

The amplitude of the V&response derived from the mono-exponential fit was
significantly reduced with BR, despite no signifitaffects of supplementation
on steady-state VQlerived from the fit, steady-state Y@erived from the raw
VO, data, baseline VQor exercise efficiency (GE). There were no effatts

condition or supplementation-by-condition interans for any of these variables

(Table 1).
3500 3500
3000 3000
2500 = 2500 )
£
2000 € 2000 f
d“ b
- .
1500 E 1500
1000 Q 1000 f
: oH-PLA  «H-BR
500 500 W
0 0
120 60 0 60 120 180 240 300 360 120 60 0 60 120 180 240 300 360
Time (s) Time (s)

Fig 1. Pulmonary oxygen uptake (VQ) averaged across the three step transitions for an
exemplar participant with placebo (open circles) ad beetroot (filled circles) in normoxia (left)
and hypoxia (right).
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Fig 2. Muscle deoxyhemoglobin (HHb) averaged across therée step transitions for an exemplar participan
with placebo (open circles) and beetroot (filled ccles) in normoxia (left) and hypoxia (right). O rgpresents
exercise onset. Standard error bars show intra-subict variability for the exemplar participant with p lacebo
(plus) and beetroot (minus). AU, arbitrary units.
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Fig 3. Parameters from the mono-exponential fit opulmonary oxygen kinetics (top) and muscle oxygenitketics
(bottom) averaged across the three step transitionsith placebo (PL) and beetroot (BR) in hypoxia (H)and
normoxia (N). *Significant effect of condition. tSignificant effect of supplementation.
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Linear mixed model effects

MD N-PL N-BR H-PL H-BR
Supplement Condition  Interaction

VO, S 7 14.4+1.3 149+1.3 20.7+1.4 186+ 1.4 p42.3  p=0.000 p=0.140
VO,Ap, mimin 7 2615 + 80 2568 + 80 2584 + 80 2523 + 81 p=0.038 p=0.131 p=0.777
VO,Base, mimin™ 7 521 +25 539 +23 535 + 25 575 + 25 p=0.139 p88.  p=0.578
VO,TD, s 7 155+1.3 15.0+1.2 10.8+1.3 12.5+1.3 p=0.300 p=0.001 p=0.101
VO, (fit), ml-min™ 7 3137+ 79 3107 + 78 3114+ 79 3096 + 79 p=0.258 p=0.417 p=0.779
VO, (raw), mimin* 7 3092 + 76 3069 + 76 3117+ 76 3084 + 77 p=0.231 p=0.253 p=0.802
VCO,, mkmin* 7 2859 + 83 2888 + 82 2985 + 83 3000 + 85 p=0.399 p=0.007 p=0.796
VE, L'min™ 7 71.1+3.6 71.7+35 84.0+3.6 84.3+3.7 p%0.7  p<0.001 p=0.936
RER, 7 0.93+£0.0 0.94+£0.0 0.96 £ 0.0 0.97 £ 0.0 p=0.153 p=0.019 p=0.876
GE, % 7 18.0+0.4 18.2+0.4 17.6+0.4 17.9+0.4 p=0.333 p=0.112 p=0.656
HR, - min* 4 131.3+3.8 132.2+3.7 145.6 + 3.8 145.7 + 3.8 p=0.689 p<0.001 p=0.711
SpQ, % 10 98.9+0.9 99.2+0.9 85.0+0.9 84.7+0.9 p=0.988 p<0.001 p=0.778

260 Table 1. Ventilatory and cardiopulmonary data aveaged across the three transitions. MD

261 denotes the number of missing datapoints (total nubrer of datapoints = 48). Values are

262 means + SE.

263

264  3.1.4 NIRS measurements

265 Data from NIRS measurements are presented in Padtel Figures 2 and 3.

266  There were significant effects of condition wx{HHb], T’ A[HHb], AHHbp,

267  AHHbeng AHHbDa g, AHDOzeng AHBOzayg SUCh that hypoxia increased[HHD],

268  T[HHD], AHHbeng AHHDayg While AHDO,engandAHDBO, g Were reduced in

269  hypoxia. There were no significant effects of sepmentation or any

270  supplementation-by-condition interactions for afyhe NIRS measurements.

271

272

273
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Linear mixed model effects

MD N-PL N-BR H-PL H-BR
Supplement  Condition Interaction

TA[HHD], s 3 7.5+0.6 7.0+0.6 10.0+ 0.6 9.7+0.6 p=0.258 p<0.0001 p=0.836
AHHbyp, s 3 8.4+0.7 9.1+0.7 7.9+0.7 8.1+0.7 pea.3  p=0.005 p=0.385
T A[HHb], s 3 15.9+0.7 16.3+0.7 17.9+0.7 17.8.7 p=0.776 p=0.0001 p=0.581
AHHb-to-VO, 13 0.94 +0.03 0.95 + 0.03 0.96 + 0.03 0.96 80.0 p=0.573 p=0.032 p=0.629
AHbO,end, AU 4 -14.3+16 -13.1+1.6 -17.8+1.6 4%.1.6 p=0.357 p=0.005 p=0.684
AHbO, avg, AU 4 -16.3+1.7 -15.1+1.6 -18.5+1.7 -18.2+1.6 =0p@33 p=0.027 p=0.638
AHHb end, AU 4 10.5+2.0 9.7+1.9 145+2.0 1819 p=0.231 p=0.004 p=0.725
AHHb avg, AU 4 9.1+20 8.2+20 11.9+2.0 10.8.9 p=0.224 p=0.040 p=0.902
ATHb end, AU 4 -1.5+0.8 -1.3+0.8 -2.0+0.8 -8.0.8 p=0.257 p=0.936 p=0.415
ATHb avg, AU 4 -2.1+0.8 -2.3+0.8 -2.9+0.8 -20.7 p=0.780 p=0.411 p=0.528

274  Table 2. NIRS data including steady staty measureemts andAHHb kinetics averaged

275 across the three step transitions. MD denotes thaumber of missing datapoints (total

276 number of datapoints = 48). Values are means + SE.

277  Discussion 4.1

278  To our knowledge, this is the first study to exaenihe effects of multiple-day,

279  high-dose BR supplementation on exercise efficiepaimonary VQ kinetics,

280 and local muscle deoxygenation kinetics during maigeintensity cycling in

281  normoxia and hypoxia in well-trained individualdiefmain findings were that 1)

282  BR supplementation did not alter Y&r muscleAHHDb kinetics, 2) BR

283  supplementation lowered the amplitude of the,Y¥&3ponse, while steady-state

284 VO, exercise efficiency, and steady-statéHb were unaffected. Taken together,

285 these results show that multiple days of high-d8Resupplementation does not

286  alter oxygen uptake kinetics or exercise efficiedaying moderate intensity

287  exercise in normoxia and hypoxia, in well-trainadividuals.

288

289
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4.1.1 Supplementation strategy

The majority of studies conducted with BR suppletagon in well-trained
athletes have not used an optimized supplementstiiategy. The use of a
multiple-day, high dose BR supplementation strat@gihe present study,
elicited markedly elevated levels of N@nd NQ’, as described previously (58).
Levels of plasma N@and NQ" were markedly higher than plasma levels
reported in studies using single dose (1, 44, 9ppbmultiple-day, lower
dosages (1, 9, 16, 23, 44, 65) of NQheoretically, this approach would favor
nitrate storage capacity in muscle (48) and in@dlas availability of N@ and
NO, and therefore enhance the possibility of deteqtimgsiological effects of

BR.

4.1.2 Seady-state VO,

Multiple days of BR supplementation reduced the lgoge of the VG response
(derived from the mono-exponential fit) by 53.4 (m2.1%). However, BR did
not alter steady-state \iQ@erived from the mono-exponential fit, ~0.7%
reduction), steady-state \dQaveraged raw data, ~0.9% reduction), or exercise
efficiency (~0.1% improvement). Thus, the small, significant, reduction in the
VO, amplitude with BR results from a non-significarghrer baseline V@(~5%)
combined with the non-significant lower steady&tO,. Nonetheless, exercise
efficiency and measures of steady-state, {#Dsolute values) were unaltered
indicating that the oxygen cost of submaximal eiserdid not change with BR

supplementation.
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Our findings are consistent with results from stégdn normoxia (4, 6, 8, 16, 43,
49, 51) showing no effects of BR supplementatioroxygen cost during
submaximal exercise in well-trained athletes. Fewliss in well-trained athletes
have been conducted in hypoxia, with the majoritgtodies reporting no effect
of BR on oxygen cost (13, 40, 50). However, in @ugrof individuals with a
broad range of training level (\M®ax range 44-77 ml mihkg™), Shannon et al.
(59) showed that acute high-dose BR supplementé&tidB.2 mmol nitrate)
lowered oxygen uptake and increased Sg@ing moderate-intensity running
exercise in hypoxia. Notably, 6 of the 12 indivithjan that study, were classified
as recreationally or physically active. Thus, tHigding of lowered oxygen
uptake could be influenced by including less trdimalividuals. This
interpretation is consistent with studies reportimgt NQ lowered the oxygen
cost of submaximal exercise in untrained and mdedlr&rained individuals
(VO,max < 60 ml miit-kg™), but not in well-trained individuals (Vfhax > 60

ml min*-kg™) (14, 55). As we did not find any condition-by-plgmentation
interactions for measures of oxygen uptake or Sp&ygen availability does not
appear to modulate the effects of BR on exercieieicy or arterial saturation
in well-trained individuals during moderate intagsiycling. These results
contradict the proposed hypothesis that hypoxiareungs the effects of BR
supplementation via enhanced reduction of nit@atattic oxide (31, 33, 60).
However, the lack of effect of hypoxia in the prasgtudy may relate to the
training status of the participants as well-traieedurance athletes already have
higher NQ" plasma levels (29, 56) and greater NO releasg i{g@rased NOS

activity (42) and a higher percentage of type idg(21).
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4.1.3 Effects of BR on VO, and muscle deoxygenation kinetics

There were no effects of BR aWO,, reflecting the rate of oxygen usage from
rest to moderate-intensity exercise in well-traiaidetes. This finding is
consistent with results from previous studies pentd in normoxia in both
untrained (55), moderately trained (55) and welirted athletes (6, 16, 55). On
the contrary, in physically active men (~58 ml thkg™), Kelly et al. reported
fastertVO,in hypoxia but not in normoxia during the trangitioom rest to
moderate-intensity cycling after multiple-day higse BR supplementation. The
supplementation strategy and exercise intensitgt bgeKelly et al. (31) were
similar to our approach, suggesting that differsnperesults between studies are

explained by differences in training status of plaeticipants.

To assess the kinetics of muscle oxygen extracienmeasured changes in
AHHDb from the vastus lateralis muscle at the onsekercise throughout the 6
min bout of moderate-intensity cycling. Consisterth the VG, kinetics results,

we found no changes tAHHb with BR, suggesting that BR did not enhance the
rate of muscle @extraction in the vastus lateralis, which is imesgment with
results from previous studies (11, 31). Further,d8dRnot alter the\HHb-to-VO,
ratio implying that BR did not improve the matchioigO, delivery-to-muscle ©
utilization. In addition, BR supplementation didt miter steady-state levels of
AHHD or relative changes in THb or Hp@uring moderate-intensity cycling.
Together, these results indicate that BR supplemtientdoes not alter the balance
between @delivery and utilization at the muscle level dgrmoderate intensity

cycling in well-trained individuals. While thesestdts are in agreement with
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384

previous studies in well-trained athletes showingeffects of BR on muscle
oxygenation during submaximal whole-body exercg& 60), other studies have
provided evidence indicating that BR can improvecuar control, and ©
delivery to the exercising muscle (20, 21, 57)rgkson et al. (20) showed that
BR augmented muscle,@elivery predominantly in fast twitch muscle fiber
during locomotory exercise in rats. In humans, Bidk et al.(57) demonstrated
that BR increased muscle blood flow during handgrercise via local
vasodilation. However, considering differences imsuie fiber type composition
(rat versus human) and exercise modality (handexgrcise versus whole body
exercise), these findings may not translate inforomed muscle blood flow

during cycling exercise.

4.1.4 Effects of hypoxia on VO, and muscle deoxygenation kinetics

Our results revealed that hypoxia slowed)\kihetics, which is in agreement
with results from previous studies (10, 31, 41, &lowed VQ kinetics in
hypoxia have been proposed to occur via a) redOgetklivery to the muscle
during the transition, b) limitation in Qliffusive transport, and/or c) a change in
the control of the intracellular metabolic adjusitse(10, 19, 36). Accompanying
slowed VQ kinetics, hypoxia also slowed muscle deoxygendtiaastics (i.e.,
greaterrA[HHb] andt’ A[HHD]) during the transition from rest to moderate-
intensity exercise, which likely contributed to lewed VQ kinetics. Studies
have demonstrated that exercise in hypoxia is apaared by a compensatory
increase in muscle blood flow to maintain oxygetramotion and usage (12, 53).

However, this compensatory increase in muscle bflmyd may not sufficiently
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preserve bulk @supply during the adjustment phase (12, 36). ppett of a
limitation related to @delivery and/or diffusion during hypoxia, we fouad
increase in thaHHb-to-VO, ratio with hypoxia. This result implies an increds
reliance on @extraction for a given V&during the on-transient in hypoxia (45,
47, 61).

Hypoxia induced a shorter initial time delayHHbrp) preceding the increase in
AHHD, suggesting that lower oxygen availability ppisna mismatch between
local G, delivery and utilization. This could possibly beansequence of hypoxia
‘priming’ the intramuscular oxidative metabolic nhawery, eliciting a faster onset
of deoxygenation and £&xtraction at exercise onset (19, 24, 46). A g€ndine
delay suggests that slowed YKnetics in hypoxia did not occur as a result of a
limitation within the control of the intracellulanetabolic adjustment. Together
these results indicate that the slowed,\kidetics during hypoxia in well-trained
athletes is accompanied by impairegid@livery to the active muscle tissue. This
interpretation is supported by the results fromrigpeet al. (61).

In agreement with results from previous studies 43}, hypoxia increased
steady-statdAHHb, and amplified the reduction AHbO,, indicating that lower
oxygen availability, verified by lower levels of Sp(~85%), increased muscle

oxygen extraction during cycling at the same submakpower output.

4.1.5 General experimental considerations
In the same group of participants, we recently skbthat BR supplementation
improved 10 km cycling performance (58). The curstndy demonstrates that

BR supplementation does not alter exercise effayenr G, kinetics, however
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these factors are assessed during transition festrt@ moderate intensity cycling,
eliciting ~60% VQmax, and not at higher exercise intensities.

Others have reported beneficial effects of BR oseteioxygenation and VWO
kinetics in the transition from moderate to sevietensity work rates, but not
from unloaded to moderate work rates (11, 17),durchg cycling with high
cadence but not in cycling with low cadence (2)eSéhresults suggest that
beneficial effect of BR on V@&may be more pronounced in conditions with
greater involvement of fast-twitch muscle fibergatably, unaltered steady state
exercise efficiency, with BR, extends our previfindings of unaltered power-to-
VO, ratio (proxy of exercise efficiency) during tinrét cycling (58), reinforcing
that the effects of BR on exercise performanceyefi trained individuals, are not
mediated via improved exercise efficiency.

Time trial cycling (vs. steady state exercise)liik@cruits a greater proportion of
fast twitch muscles fibers, which may explain why Bupplemenation (via
augmented @delivery predominantly in fast twitch fibers (2E))cits a larger
utilization of VO,max and hence improved exercise performance (58yeder,

this hypothesis warrants further examination inlstreined individuals.

5.1 Conclusion

In summary, multiple-day, high-dose BR supplemimedid not improve
muscle Q or VO, kinetics nor exercise efficiency during moderatensity
cycling in normoxia and hypoxia in well-trained leties. These results provide
new information demonstrating that an optimized ®fRplementation strategy

failed to improve exercise efficiency or oxygenaks kinetics during rest-to-
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moderate intensity transitions in well-trained induals. It is possible, however,
that BR may evoke beneficial effects on exercisieiehcy and oxygen uptake
kinetics during higher exercise intensities invotygreater recruitment of fast-

twitch muscle fibers.
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NOj3 supplementation does not alter moderate-intensity VO, or HHb kinetics

Oxygen uptake during moderate-intensity cycling were unchanged in trained athletes
The effects of NO3 supplementation were not different between hypoxia and normoxia
Beetroot juice did not improve exercise efficiency in well-trained athletes

NOj3 supplementation did not change muscle deoxygenation kinetics of well-trained



