

Aalborg Universitet

Systemic photoprotection in 2021

Searle, T.; Ali, F.R.; Al-Niaimi, F.

Published in: Clinical and Experimental Dermatology

DOI (link to publication from Publisher): 10.1111/ced.14697

Creative Commons License CC BY-NC 4.0

Publication date: 2021

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Searle, T., Ali, F. R., & Al-Niaimi, F. (2021). Systemic photoprotection in 2021. *Clinical and Experimental Dermatology*, *46*(7), 1189-1204. https://doi.org/10.1111/ced.14697

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 05, 2025

DR FAISAL REHMAN ALI (Orcid ID: 0000-0002-8588-791X)

Article type : Review Article

Systemic photoprotection in 2021

T., Searle, 1 F.R. Ali2 and F. Al-Niaimi3

¹University of Birmingham Medical School, Birmingham, UK

²Dermatological Surgery & Laser Unit, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK

³Department of Dermatology, Aalborg University Hospital, Aalborg, Denmark.

Corresponding author: Dr Firas Al-Niaimi.

Email: firas55@hotmail.com

Running title: Systemic photoprotection

Funding sources: None

Conflicts of Interest: None declared

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/CED.14697

Abstract

Systemic photoprotection aims to negate the negative effects of ultraviolet radiation-induced DNA damage. Systemic supplements might be used as a monotherapy or in combination with topical sunscreens. Using the keywords 'carotenoids,' 'flavonoids,' 'systemic photoprotection,' 'polyphenols' and 'polypodium leucotomos extract," we searched the databases MEDLINE and EMBASE to find relevant English-language articles. Few trials have supported the use of any of these supplements as a monotherapy, impeding the recommendation of these systemic supplements as an alternative to sunscreen for photoprotection. Nicotinamide has exhibited clinically relevant benefits in reducing non-melanoma skin cancers in trials and could be recommended as an adjunctive therapy in those most vulnerable. Further research is required that is of higher statistical power, using more clinically meaningful outcome measures with comparison to the current gold standard of care, topical photoprotection, to support the use of alternative therapies in clinical practice.

Background

Systemic photoprotection aims to reduce the damaging effects of ultraviolet radiation (UVR), visible light and infrared radiation on photoageing, photodermatoses, pigmentary disorders and skin cancer caused by reactive oxygen species and DNA damage.¹ Systemic photoprotective agents appear to work through their anti-inflammatory and anti-oxidant capacities. Currently, gold standard photoprotection includes photoavoidance and topical sunscreens. We review the current evidence available to support the use of systemic photoprotective therapies. Studies included include randomised controlled trials (RCT), longitudinal and case-control studies with patients typically treated for 12 weeks. Outcomes included the UVB-induced minimal erythema dose (MED) and UVA-induced minimal pigmentation dose in many trials. In addition, trials used histological indices of photodamage and photoprotection which may be of unproven clinical significance.

Carotenoids

Carotenoids are precursors of vitamin A and are anti-oxidant micronutrients found in fruits and vegetables. The main carotenoids are β-carotene and lycopene found in carrots and

tomatoes.² Other examples include lutein, zeaxanthin, xanthophylls and astaxanthin. They have a role in gene signalling and expression and are reported to augment the skin's resistance to UV damage.²

In a double-blind RCT (*n*=65),³ patients were treated with a lycopene-rich tomato nutrient complex (TNC), lutein or placebo (Table 1). TNC and lutein inhibited UVA1 and UVA/B-induced upregulation of intercellular adhesion molecule-1 and matrix metallopeptidase-1 mRNA, both indicators of oxidative stress and photodamage.³

In a double-blind RCT (n=60), patients receiving a composite carotene supplement (β -carotene, α -carotene, lutein, zeaxanthin) taken three times daily for 12 weeks showed a significant increase in skin carotenoid levels, UVB-induced MED and UVA-induced minimal pigmentation dose compared to the control group.⁴ This suggests daily supplementation with carotenoids protects human skin against UVR-induced erythema and pigmentation.⁴

A separate double-blinded RCT⁵ (*n*=60) used a similar supplement (lycopene, β-carotene, and *Lactobacillus johnsonii*) for 12 weeks in patients with polymorphic light eruption (PLE). After 12 weeks, the supplement significantly reduced the PLE score following one irradiation with UVA1 in the treatment group. At a molecular level, those in the treatment group had reduced expression of ICAM-1 mRNA after irradiation compared with the placebo. This difference was not significant after two UVA1 exposures.⁵ Lycopene in capsule form and tomato paste was compared in a 10-week RCT of 20 subjects. There was a marginally significant MED increase for the capsule compared with the tomato paste possibly due to the reduced palatability of paste after a prolonged time, possibly accounting for a higher rate of dropouts in this group. In clinical practice, this highlights the importance of selecting the most appropriate method of delivery of supplementation.⁶

Carrascosa *et al* also found their formulation (astaxanthin, β -carotene, vitamin E, vitamin C, lutein, lycopene) imparted photoprotection against erythemal radiation in a double-blind RCT (n=43) in patients with Fitzpatrick skin types II and III.⁷ Further evaluation of the effects of this formulation on UVA and infrared is needed, as well as the individual effects of each component in this formulation.⁷ In addition, the authors did not adhere to

the intention-to-treat principle which would have allowed more rigorous analysis of their findings.

In a single-blinded RCT (*n*=20),⁸ 55g tomato paste (containing 16mg lycopene) consumed daily for 12 weeks had significant defensive properties against UVR erythema and protection against immediate UVR-induced tissue damage, with inhibition of UVR-induced matrix-metalloproteinase-1 expression. Processed tomatoes elicited this response more readily than fresh tomatoes.⁸ In a separate study, participants who had received tomato paste (16mg/day lycopene)

had 40% lower solar-induced erythema at ten weeks compared with controls (n=19; p=0.02).

In a 12-week open prospective single centre trial (*n*=30), the efficacy of a food supplement containing vitamins A, C, D3, E, selenium, lycopene, lutein, green tea, polypodium and grape extracts upon MED was evaluated.¹⁰ Significant improvement was found in MED levels, skin radiance and elasticity.¹⁰

It is unclear whether these findings translate to direct clinical benefit. A large randomised 12-year primary prevention trial appeared to show no benefit of β -carotene supplementation on the development of non-melanoma skin cancers (NMSC) (n=22,071). Conversely, some groups have reported benefit of β -carotene supplementation on symptoms of erythropoietic protoporphyria (EPP) with doses between 90-180mg due to its anti-oxidant properties. 12,13

Polypodium leucotomos extract

Polypodium leucotomos (PL) is a fern from Central America, whilst Fernblock® (IFC Group, Spain) is an extract from these leaves with anti-oxidant and photoprotective capacity. PL inhibits matrix metalloproteinases, whilst increasing expression of tissue inhibitors of metalloproteinases. Fernblock® when stimulated by UVR, also inhibits the transcription of activator protein-1 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB). Fernblock® also inhibits cyclooxygenase-2 expression. 14

In a RCT, oral PL extract (240mg twice daily for 12 weeks), given alongside sunscreen and hydroquinone, was associated with significant and expedited reduction in melasma severity and quality of life indices compared with placebo (hydroquinone and sunscreen only) (n=40) (Table 2).¹⁵

A separate study of 61 patients found that oral PL treatment significantly reduced the sensitivity of UVR with increased MED scores in patients with a history of malignant melanoma (MM) or familial MM.¹⁶ There was no comparator in this study and there is a need for RCTs to support this finding and to investigate whether this would translate to fewer melanomas. This finding could be clinically relevant to those at risk of MM in whom oral supplementation might have most benefit alongside topical sunscreens and photoavoidance.¹⁶

Afamelanotide

Afamelanotide is a potent α -melanocyte stimulating hormone (α -MSH) analogue that has been used to treat EPP and solar urticaria. It works by increasing epidermal melanisation protecting UVR induced damage and acts locally on melanocytes unlike natural α -MSH. It is typically administered as a subcutaneous implant for slow delivery of the drug, reducing side-effects, such as local hyperpigmentation at the injection site. Recent review articles have clarified that afamelanotide is unlikely to be related to melanoma, as had been reported previously.

A longitudinal study of 115 patients with EPP treated with afamelanotide 16mg implants over eight years demonstrated improved quality of life scores, high compliance, few side-effects (except nausea), and low dropout rates (dropouts were unrelated to side-effects) (Table 2).¹⁷ This observational study allowed for the evaluation of afamelanotide treatment, in a rare disease such as EPP, where a RCT would not be feasible, allowing for an estimate of clinical effectiveness. In terms of clinical significance, anecdotal evidence found that patients could resume employment and familial tasks that they previously had been unable to do before this treatment.¹⁸

Barnetson and colleagues treated 65 Caucasian patients with subcutaneous afamelanotide 0.16mg/kg for three, ten-day cycles over three months in a RCT, finding

that melanin density increased in all subjects with the greatest increase in those with the lowest baseline melanin levels, who were the participants most at risk of sun damage.¹⁸ Five patients with solar urticaria treated with a single dose of 16mg afamelanotide implant subcutaneously in winter, demonstrated a significant increase in melanin density as well as a significant fall in wheal area found across a wide range of wavelengths (300-600nm).¹⁹ The validity of using melanin density as a proxy for photoprotection in many of these studies might be too narrow an outcome measure and whether this transfers clinically to photoprotection requires further exploration.

Nicotinamide

The over-the-counter supplement nicotinamide (vitamin B3) offers protection against UVR-induced immunosuppression and appears to confer protection against NMSCs.²⁰ This is clinically relevant for patients at high risk of NMSCs, including immunosuppressed patients such as organ transplant patients. In a double-blind RCT (*n*=61), patients given oral nicotinamide (1500 or 500mg daily) had significantly reduced UV-induced immunosuppression on irradiated skin possibly through nicotinamide's role in cellular metabolism and DNA repair; however, nicotinamide did not protect against sunburn (Table 2).²¹ A phase III RCT randomised patients to receive nicotinamide 500mg twice daily or placebo for 12 months (*n*=386). The treatment group had a statistically significant 23% relative difference in the rate of NMSCs (p=0.302; 95% CI 4-38) and a statistically significant 11% reduction in actinic keratosis (p=0.01). No safety issues were observed in this study and the authors recommended that nicotinamide might be a safe and effective treatment for renal transplant patients. Phase III clinical trials are needed to support this claim.²² Nicotinamide has few significant side-effects that preclude its use, but it can cause flushing and headaches and less frequently gastrointestinal disturbances.²⁰ At a dose of 3g/day it tends to be well-tolerated.²⁰

Isoflavones

Isoflavone phytoestrogens are found in soybeans and clover, with most research investigating genistein (a soybean isoflavane) which has been proposed to have clinically significant photoprotective effects.²³

Oral isoflavones (100mg/day isoflavone soy extract) reduce histological features of photoaging when given for six months (Table 2).²⁴

Dietary botanicals

Pomegranate extract

Pomegranate extract has anti-inflammatory and anti-oxidant actions and is photoprotective with inhibition of UVR-stimulated synthesis of free radicals, erythema, DNA damage and cell proliferation.²⁵

In a RCT (*n*=70), healthy women were assigned to be treated with pomegranate extract or placebo drink for 12 weeks (Table 3).²⁶ The treatment group had increased MED following UVB, suggesting pomegranate has photoprotective properties. Clinical implications of this photoprotective effect needs to be studied further.

Flavonoids

Green tea polyphenols

Dietary flavonoids from green tea might offer photoprotection. In a 12-week double blind RCT participants randomised to receive a drink with green tea polyphenols exhibited a significant 25% reduction of UV-induced erythema, skin elasticity, roughness, scaling density and water homeostasis were improved compared to controls (n=60) (Table 3).²⁷

Cocoa extract

Cocoa extract is a flavonoid that appears to confer dose-dependent photoprotection (Table 3).²⁸ Twenty-four participants were treated with either high- or low-flavanol cocoa powder for 12 weeks.²⁹ Following irradiation, UV-stimulated erythema was significantly lower in the high-flavonol participants by 25%, with no change in the low-flavonol group. Skin thickness increased, trans-epidermal water loss decreased and there was a significant diminution in roughness and scaling by week 12. It was posited that dietary flavonols confer photoprotection through augmentation of dermal blood vessels.²⁹ These findings were supported in a subsequent study demonstrating double the MED after consuming high-flavanol chocolate for 12 weeks.³⁰

Rosemary and grapefruit

In a randomised parallel group study, 90 volunteers were treated with a combination of rosemary and grapefruit with treated participants demonstrating a decrease in skin erythema and an improvement in signs of skin photoageing thought to be due to inhibition of UVR-stimulated oxygen damaging species and reduction in inflammatory cytokines (Table 3).³¹

Probiotics

In a prospective double-blind RCT, 57 patients were treated with either synbiotics or placebo for 12 weeks and melasma severity evaluated (Table 3). 32 At 12 weeks, the melasma score was significantly lower in the treatment group (p=0.008). It is possible that synbiotics have anti-inflammatory action, protecting the skin from reactive oxygen species as well as from UVR through inhibition of tyrosinase. 33

Summary

At present, various systemic supplements have been investigated for their use in photoprotection as an adjunctive treatment in combination with topical sunscreens. Nevertheless, few trials have shown efficacy of any treatments compared to sunscreens, precluding the recommendation of these oral supplements as an alternative to sunscreens for photoprotection. Nicotinamide has demonstrated clinically relevant benefit in reducing NMSC in trials and could be most useful as a systemic adjunct in photoprotection. The other possible beneficial systemic photoprotection supplement is afamelanotide, however, there are limited studies comparing afamelanotide to established treatments to change clinical guidelines. Evidence supporting the other supplements is also currently inadequate to change clinical practice. It is unclear whether the use of MED as an outcome measure throughout the studies directly relates to UVB (as one would expect), UVA or visible light and further clarity is therefore needed to establish the clinical impact of any findings related to this outcome. Larger, more statistically powered trials, which use clinically meaningful outcome measures are required to support the use of any of these supplements the most susceptible individuals.

Learning points

- The main carotenoids are β -carotene and lycopene found in carrots and tomatoes. They have a role in gene signalling and expression with evidence supporting their use for photoprotection by augmenting the skin's resistance to ultraviolet damage.
- Afamelanotide is a potent α-melanocyte stimulating hormone analogue that has been used to treat erythropoeitic protoporphyria and solar urticaria.
- Polypodium leucotomos extract has antioxidant and photoprotective capacity. It is thought to inhibit matrix metalloproteinases, whilst increasing expression of tissue inhibitors of metalloproteinases.
 - Nicotinamide has demonstrated clinically relevant benefit in reducing NMSC in trials could be most useful as a systemic adjunct in photoprotection.
 - Dietary botanicals such as flavonoids and probiotics also have a role in systemic photoprotection.

References

- (1) Taylor J, Rosen C. Systemic Photoprotection. *Curr Derm Rep* 2020; 9:181-188.
- (2) Stahl W, Sies H. β-Carotene and other carotenoids in protection from sunlight. *Am J Clin Nutr* 2012; 96(5):1179S-84S.
- (3) Grether-Beck S, Marini A, Jaenicke T, Stahl W, Krutmann J. Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double-blinded, placebo-controlled, crossover study. *Br J Dermatol* 2017; 176(5):1231-1240.
- (4) Baswan SM, Marini A, Klosner AE, *et al.* Orally administered mixed carotenoids protect human skin against ultraviolet A-induced skin pigmentation: A double-blind, placebo-controlled, randomized clinical trial. *Photodermatol Photoimmunol Photomed* 2020; 36(3):219-225.
- (5) Marini A, Jaenicke T, Grether-Beck S, *et al.* Prevention of polymorphic light eruption by oral administration of a nutritional supplement containing lycopene, β-carotene, and Lactobacillus johnsonii: results from a randomized, placebocontrolled, double-blinded study. *Photodermatol Photoimmunol Photomed.* 2014; 30(4):189-94.
- (6) Sokoloski L, Borges M, Bagatin E. Lycopene not in pill, nor in natura has photoprotective systemic effect. *Arch Dermatol Res.* 2015; 307(6):545-9.
- (7) Carrascosa JM, Floriach N, Sala E, Aguilera J. Increase in minimal erythemal dose following oral administration of an antioxidant complex based on a mix of carotenoids: Double-blind, placebo-controlled trial. *Photodermatol Photoimmunol Photomed* 2017; 33(5):284-286.
- (8) Rizwan M, Rodriguez-Blanco I, Harbottle A, Birch-Machin MA, Watson RE, Rhodes LE. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. *Br J Dermatol* 2011; 164(1):154-62.
- (9) Stahl W, Heinrich U, Wiseman S, Eichler O, Sies H, Tronnier H. Dietary tomato paste protects against ultraviolet light-induced erythema in humans. *J Nutr* 2001; 131(5):1449-51.

- (10) Granger C, Aladren S, Delgado J, Garre A, Trullas C, Gilaberte Y.

 Prospective Evaluation of the Efficacy of a Food Supplement in Increasing

 Photoprotection and Improving Selective Markers Related to Skin Photo-Ageing.

 Dermatol Ther (Heidelb) 2020; 10(1):163-178.
- (11) Frieling U, Schaumberg D, Kupper T, Muntwyler J, Hennekens C. A randomized, 12-year primary-prevention trial of beta carotene supplementation for nonmelanoma skin cancer in the physician's health study. *Arch Dermatol* 2000; 136(2):179-84.
- (12) Mathews-Roth MM. Carotenoids quench evolution of excited species in epidermis exposed to UV-B (290-320 nm) light. *Photochem Photobiol* 1986; 43(1):91-3.
- (13) Thomsen K, Schmidt H, Fischer A. Beta-carotene in erythropoietic protoporphyria: 5 years' experience. *Dermatologica* 1979; 159(1):82-6.
- (14) Zamarrón A, Lorrio S, González S, Juarranz Á. Fernblock Prevents Dermal Cell Damage Induced by Visible and Infrared A Radiation. *Int J Mol Sci* 2018; 19(8):2250.
- (15) Goh C, Chuah S, Tien S, Thng G, Vitale M, Delgado-Rubin A. Double-blind, Placebo-controlled Trial to Evaluate the Effectiveness of *Polypodium Leucotomos* Extract in the Treatment of Melasma in Asian Skin: A Pilot Study. *J Clin Aesthet Dermatol* 2018; 11(3):14-19.
- (16) Aguilera P, Carrera C, Puig-Butille JA *et al.* Benefits of oral Polypodium Leucotomos extract in MM high-risk patients. *J Eur Acad Dermatol Venereol.* 2013; 27(9):1095-100.
- (17) Biolcati G, Marchesini E, Sorge F, Barbieri L, Schneider-Yin X, Minder EI. Long-term observational study of afamelanotide in 115 patients with erythropoietic protoporphyria. *Br J Dermatol* 2015; 172(6):1601-1612.
- (18) Barnetson R, Ooi T, Zhuang L, *et al.* [Nle4-D-Phe7]-alpha-melanocyte-stimulating hormone significantly increased pigmentation and decreased UV damage in fair-skinned Caucasian volunteers. *J Invest Dermatol* 2006; 126(8):1869-78.

- (19) Haylett A, Nie Z, Brownrigg M, Taylor R, Rhodes L. Systemic photoprotection in solar urticaria with α-melanocyte-stimulating hormone analogue [Nle4-D-Phe7]-α-MSH. *Br J Dermatol* 2011; 164(2):407-14.
- (20) Forbat E, Al-Niaimi F, Ali FR. Use of nicotinamide in dermatology. *Clin Exp Dermatol* 2017 r;42(2):137-144.
- (21) Yiasemides E, Sivapirabu G, Halliday G, Park J, Damian D. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans. *Carcinogenesis* 2009; 30(1):101-5.
- (22) Chen AC, Martin AJ, Choy B, et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N Engl J Med. 2015; 373(17):1618-26.
- (23) Wei H, Saladi R, Lu Y, *et al.* Isoflavone genistein: photoprotection and clinical implications in dermatology. *J Nutr* 2003; 133 (11 Suppl 1):3811S-3819S.
- (24) Accorsi-Neto A, Haidar M, Simões R, Simões M, Soares J Jr, Baracat E. Effects of isoflavones on the skin of postmenopausal women: a pilot study. *Clinics* (*Sao Paulo*) 2009; 64(6):505-10.
- (25) Torres A, Luk K, Lim H. Botanicals for photoprotection. *Plast Aesthet Res* 2020;7:57.
- (26) Li Z, Henning S, Yang J, Heber D. Pomegranate Juice and Extract Provide Photoprotection against UV-Induced Erythema and Changes the Skin Microbiome. *Innov Aging* 2018; 2(Suppl 1):348.
- (27) Heinrich U, Moore CE, De Spirt S, Tronnier H, Stahl W. Green tea polyphenols provide photoprotection, increase microcirculation, and modulate skin properties of women. *J Nutr* 2011; 141(6):1202-8.
- (28) Calzavara-Pinton P, Calzavara-Pinton I, Arisi M *et al.* Cutaneous Photoprotective Activity of a Short-term Ingestion of High-Flavanol Cocoa: A Nutritional Intervention Study. *Photochem Photobiol* 2019; 95(4):1029-1034.
- (29) Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. *J Nutr* 2006; 136(6):1565-9.
- (30) Williams S, Tamburic S, Lally C. Eating chocolate can significantly protect the skin from UV light. *J Cosmet Dermatol* 2009; 8(3):169-73.

- (31) Nobile V, Michelotti A, Cestone E, *et al.* Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols. *Food Nutr Res* 2016; 60:31871.
- (32) Piyavatin P, Chaichalotornkul S, Nararatwanchai T, Bumrungpert A, Saiwichai T. Synbiotics Supplement Effectively Improves Melasma. *J Cosmet Dermatol* 2021; [epub ahead of print].

 Table 1. Carotenoids in systemic photoprotection

Study	Populati	Interve	Tolerabil	Comparato	Durat	Outcome	Efficacy	Strengths	Weaknesses	Level of
	on	ntion	ity	rs	ion	measures				evidence
Grether-	65	5mg	Diarrhoe	TNC, lutein	12	Skin was	TNC and	Large,	Weakness in	1b
Beck et	healthy	Lycop	a after	or placebo	week	irradiated	lutein	double-	crossover	
<i>al</i> , 2016 ³	voluntee	ene-ric	lycopen		S	and 24 h	inhibited	blind	design with	
	rs	h	e in one			later	UVA1 and	RCT.	possible	
		tomato	patient			biopsies	UVA/B-	Crossove	inappropriate	
4		nutrien	for a first			were	induced	r design	washout	
		t	few days			taken from	upregulati	–large	phases in the	
		compl	after			untreated,	on of	power	lutein arm.	
		ex	treatmen			UVAB and	intercellul	and		
		(TNC)	t.			UVA1	ar	decrease		
4		or				irradiated	adhesion	d		
		lutein				skin for	molecule-	confound		
		10mg.				reverse	1 and	ers.		
		Washo				transcripta	matrix			
		ut				se	metallope			
		phase				polymeras	ptidase-1			

		of 2 weeks				e chain reaction	mRNA (<i>p</i> <0.05),			
		followe				analysis of	both			
		d by				gene	indicators			
3		12				expressio	of			
		weeks				n.	oxidative			
		of					stress and			
		treatm					photodam			
4		ent.					age.			
aswan	60	Nutrilit	None	Placebo	12	UVB-MED	The	Double	Use of a non-	1b
al,	participa	е™	reported		week	,	treatment	blind	clinically	
20 ⁴	nts with	Multi			S	UVA-indu	group	RCT.	meaningful	
	(Fitzpatri	Carote				ced	demonstra		outcome	
	ck types	ne				minimal	ted a		such as MED.	
	II-IV)	supple				persistent	significant			
		ment				pigmentati	increase			
		(β-caro				on dose	in skin			
		tene,				and skin	carotenoid			
							levels,			

α-carot	carotenoid	UVB-
ene,	levels	induced
lutein,	measured	MED
zeaxa	at	(p<0.000)
nthin).	baseline,	and UVA-
	4, 8, and	induced
	12 weeks	minimal
	of	pigmentati
	interventio	on dose
	n. Skin	(from
	colour	baseline
	was by	15.19±1.4
	colorimetr	9 to
	y and	15.50 ± 1.
	evaluated	55
	by	At 12
	exports.	weeks
	Carotenoi	<i>p</i> <0.000)
	d levels	compared

measured to the

0
0
Marini <i>et al</i> , 2014 ⁵
7
te
2

						by the	control			
						Biozoom®	group.			
						device.				
ni <i>et</i>	60	Lycop	None	Placebo	12	PLE	After 12	Double	The study	1b
014 ⁵	patients	ene, β-	reported		week	score.	weeks,	blind	design does	
	with PLE	carote			S	Skin	the	RCT.	not allow for	
		ne,				biopsies	suppleme		identification	
1		and				were	nt		of the extent	
1		Lactob				taken	significantl		of each	
		acillus				before	y reduced		ingredient in	
		johnso				and after	the PLE		the	
		nii.				suppleme	score		supplement.	
						ntation	following			
						from	one			
						unexpose	irradiation			
						d and	with UVA1			
						exposed	in the			
						skin, and	treatment			
						intercellul	group			

```
ar (p<0.001).
```

adhesion At a

molecule molecular

1 (ICAM- level,

1) mRNA those in

expressio the

n treatment

evaluated group had

by real- reduced

time expressio

polymeras n of

e chain ICAM-1

reaction. mRNA

after

irradiation

compared

with the

placebo.

This

difference,

however,
was not
significant
after two
UVA1
exposures

20 non-	Synthe	None	Tomato	10	MED 24	There was	Good	Small sample	1b
smoking,	tic	reported	paste	week	hours	а	adherenc	size. Use of a	
healthy	lycope			S	after UVB	marginally	e of the	non-clinically	
patients	ne				and	significant	subjects	meaningful	
aged	capsul				variation	MED	to the	outcome	
from 20	es				of colour	increase	dietary	such as MED.	
to 40,					a.	for the	regime		
Fitzpatri						capsule	due to		
ck II or						compared	rigorous		
Ш						with the	follow up.		
						tomato			
						paste.			

Marginal
significanc
e in
difference
of colour
after
10 weeks
marginally
significant
(<i>p</i> =0.054),
greater for
capsule
use
(<i>p</i> =0.066).

Carrasc	43	The	Reduce	Placebo	56	MED 28	At day 57,	Combinat	Small sample	1b
osa et	healthy	active	d		days	and 56	mean	ions of	size. Use of a	
<i>al</i> , 2017 ⁷	voluntee	formul	palatabili			days after	MED was	antioxida	non-clinically	
	rs, aged	ation	ty of			treatment	1.58	nts and	meaningful	
2)	18-60	(Geno	tomato					carotenoi	outcome	

with	sun	paste	(SD=0.44)	ds	such as MED
Fitzpatri	oral®)		in the	investigat	which also
ck II or	contai		treatment	ed. An	ignores the
III	ned		group (a	oral	effect of UVA.
	astaxa		20.51%	therapy	Unclear as to
	nthin		increase	means	the extent of
	(4 mg)		from	do not	effect of each
	,		baseline)	need to	element of
	β-carot		compared	rely on	the
	ene		to a 1.4	technique	supplement.
	(4.8 m		(SD=0.33)	of	
	g),		in the	applicatio	
	vitami		control	n of	
	n E		group (an	topical	
	(6 mg)		8.63%	photoprot	
	,		increase	ection.	
	vitami		from		
	n C		baseline),		
	(40 mg		which		
			significantl		

),					y different			
	lutein					(p=0.049).			
	(2.4 m								
	g) and								
	lycope								
	ne								
	(2.4 m								
	g).								
20	55 g	None	Olive oil	12	MED pre	Presupple	Use of	Greater	1b
healthy	tomato	reported	alone	week	and post	mentation,	mitochon	clarity on the	
women	paste			S	suppleme	UVR	drial DNA	clinical	
from 21-	(16 mg				ntation	induced	(mtDNA)	implications	
47	lycope				and	an	as a	of these	
years,	ne) in				biopsies	increase	biomarke	biomarkers is	
Fitzpatri	olive				from	in MMP-1	r for	required.	
ck I or II	oil.				unexpose	(baseline	potential		
					d and	12.21±1·0	photoprot		
					UVR-	6;	ection		
					exposed		which		

UVR16-39	has been
±1·12;	found to
p=0·01)	be a
and a	sensitive
reduction	biomarke
in	r for
fibrillin-1	cumulativ
(baseline,	e UVR
3.42	exposure
±0·14;	
UVR,	
3·02±0·19	
<i>p</i> =0·03).	
Post-	
suppleme	
ntation,	
UVR-indu	
ced	
MMP-1	
	$\pm 1 \cdot 12$; $p=0.01$) and a reduction in fibrillin-1 (baseline, 3.42 ± 0.14 ; UVR, 3.02 ± 0.19 $p=0.03$). Postsuppleme ntation, UVR-indu ced

was
reduced in
the
tomato
paste
compared
with the.
control
group
(15·28±1·
48;
<i>p</i> =0·04)

Stahl et	22	Tomat	None	Olive oil	10	Intensity	The	Findings	Evaluation of	1b
al, 2000 ⁹	healthy	0	reported	alone	week	of	treatment	are	the technique	
	adults,	paste			S	erythema	group had	compara	of application	
1)	26-67	(40 g)				by	40% lower	ble to	of the paste	
	years	- 16				chromato	solar-	that in	is warranted.	
	old.	mg/d				metry	induced	the		
	Fitzpatri	of				before	erythema	literature.		

with

Fitzpatri

ck I-III

ck II	lycope				and 24h	at ten		
	ne				after	weeks		
	with				irradiation.	compared		
	10 g of					with		
	olive					controls		
	oil.					(baseline		
						erythema		
						formation		
						0.37±		
						0.08; at		
						10 weeks		
						0.72 ±		
						0.07		
						; <i>p</i> =0.02)		
30	Food	One	None	12	Primary	The MED	Secondar	The majority
subjects	supple	subject		week	endpoint -	levels	у	of subjects

MED and

t capacity

increased

antioxidan significantl

у

2b

were female.

establish the

Difficult to

outcomes

with

clinical

reported

difficulty

in

ment

contai

ning

with	vitami	digestin	of the	compared	relevance	individual
clinical	ns A	g the	skin.	to		effects of
ageing	(800µg	product	Secondar	baseline		each
signs), C	а	y endpoint	throughou		ingredient.
	(40mg	second	_	t the study		Open-study
), D3	reported	tolerability	visits – an		with no
	(5μg),	slight	and	increase		comparator.
	E	stomach	measures	of		
	(12mg	burns in	of skin	8.1%±2.2		
),	the last	ageing	at day 84,		
	seleni	few	such as	<i>p</i> < 0.001.		
	um	weeks of	skin	Ferric		
	(41.5µ	treatmen	moisture,	reducing		
	g),	t	elasticity,	antioxidan		
	lycope		radiance	t power		
	ne		and colour	indicated		
	(8mg),		of skin	а		
	lutein		dark spot	significant		
	(8mg),			compared		
	. 3,,			to		

green		
tea		
(50mg		
),		
polypo		
dium		
(480m		
g) and		
grape		
extract		
S		
(10.1m		
g).		

84, <i>p</i> < 0.0
01), and
moisture
(13.8% at
day
84, <i>p</i> < 0.0
01) were
also
significantl
у
improved.

rieling	22,071	Beta	Yellowin	Placebo	12	Relative	There was	Large	No	1b
t al,	healthy	carote	g of the		years	risk (RR)	no effect	RCT with	information	
00011	male	ne, 50	skin			and 95%	of beta	long	on previous	
	physicia	mg, on	(1745			confidenc	carotene	follow-up	sun	
	ns aged	alterna	(15.9%)			e interval	on the	period.	exposure,	
	40-84	te	in the			(CI) for a	incidence		skin type, or	

days.	treatmen	first	of a first	history of
	t group	NMSC,	NMSC	sunburn all
	compare	basal cell	(RR, 0.98;	known risk
	d with	carcinoma	95% CI,	factors for
	1535	(BCC) and	0.92-	NMSCs.
	(14.0%)	squamous	1.05),	Diagnosis of
	in the	cell	BCC (RR,	BCC was
	placebo	carcinoma	0.99; 95%	mainly self-
	group)	(SCC).	CI, 0.92-	reported
	and		1.06), or	leading to
	minor		SCC (RR,	possible
	gastroint		0.97; 95%	under-
	estinal		CI, 0.84-	reporting
	tract		1.13).	
	sympto		There was	
	ms-		no	
	belching		significant	
	(275		evidence	
	(2.5%)		of	
	in the		beneficial	

beta
carotene
compare
d with
124
(1.1%)
in the
placebo
group

Table 2. Polypodium leucotomos extract, afamelanotide, nicotinamide and isoflavones in systemic photoprotection

or harmful

effects of

carotene

on NMSC

smoking

status.

beta

by

Study	Population	Intervention	Tolerab	Compar	Duratio	Outcome	Efficacy	Strengths	Weaknesse	Level			
			ility	ators	n	measures			S	of			
										Evide			
	1									nce			
Polypodium leucotomos extract													
Goh <i>et</i>	40 healthy	Fernblock®	Two	Placebo	12	The Modified	There were	Randomise	Limitations	1b			
al,	adults with	(IFC, Madrid,	patients		weeks	Melasma	statistically	d, blinded	in using a				

2018¹⁵

melasma Spain). from Area and significant study with skin the PL Severity differences colorimeter receiving placebo treatment Index between the comparator to measure group **mMASI** with and (mMASI); pigmentary hydroquino melanin and scores of changes, one ne 4% and erythema from both groups intraindividu indexes; al variability the as compared sunscreen VISIA® photo with the of treatment sun placebo protection graphy baseline response group factor 50+ (Canfield reporte scores and small d mild Scientific, $(p \le 0.01)$. sample mMASI itching Parsippany, size. New Jersey, scores of the and USA); and PL group at stinging the Melasma were also sensati Quality of Life on with significantly lower than hydroq (MelasQoL) uinone questionnaire those of the placebo cream. group

(*p*≤0.05). At

12 weeks, a

significant

improvement

was reached

in both

groups

(*p*≤0.01),

with no

significant

differences

between

them. The

scores of the

melanin and

erythema

indices

demonstrate

d a slight

improvement

in both
groups,
without
significant
differences
between
groups.
MelasQoL
score
showed an
improvement
in the PL
group
compared
with the
placebo
group

						•		
61 patients:	Participants	None	None	720	Clinical	Oral PL	MED –	2b
25 with	received the	reporte		mg of	evaluation of	treatment	non-	
familial and	same oral	d		oral PL	both basal	significantly	clinical	

or MM, 20 dose of a with commercial sporadic form of PL MM and 16 (total dose with 1080mg). atypical mole syndrome without a history of MM

in three and postincreased the MED doses, treatment (240mg MED was mean in all every 8 performed by group hours) patients and 36 experienced (0.123 to dermatologist 0.161 J/cm², 0 mg in *p*<0.05). The a single s. dose, increase in MED after were PL was given one day associated

with dark

7,

1.22-

a lower

eyes (χ^2 =4.6

p<0.05) (OR

4.47, CI 95%

16.34) and

lack of comparator.

meaningful

outcome

measure,

and 3

hours

vely,

а

before

second

MED

respecti

C	
	3
an olc	nela ı ati
<i>al</i> ,)14	17
+	
2	
2	
	Ç

rtic							(χ ² =6.90, p<0.05) (OR 4.59, CI 95% 1.23–7.47).			
Afamelan	otide									
Biolcati	115	Afamelanotid	Nausea	None	Up to	Quality of life	The quality	Long follow-	Lack of a	2b
et al,	ambulatory	е	(n=146		eight	scores,	of life scores	up period of	precise tool	
2014 ¹⁷	patients	(Scenesse®),	events)		years	measured by	were	eight years	to measure	
	with EPP	16 mg				an	31±24%		things such	
		implant, given	Headac			EPP-specific	prior to		as	
4		subcutaneous	he			questionnaire	treatment		wavelength	
		ly every	(n=81e				which		s of	
		second month	vents)				increased to		damaging	
			Fatigue				74%±17%		visible light	
			(n=33				(74%±17%)		and air	
			events)				after		dryness at	
			A new				treatment		affected	

assess

ment.

baseline

MED value

melano cytic naevus (n=2)patients appeari ng 2.5 and 5 years after the first afamel anotide dose, respecti vely. One was remove

and remained at this level during the entire observation period

body areas

79 subjects

d and
showed
no
signs of
maligna
ncy.

(Nle4 -D-	Nausea	Placebo	3	Melanin	Melanin	Using	Care is	1b
F	Phe7)- α-	(85% of		months	density,	density,	chromaticity	needed in	
N	MSH (Nle4 -	subject			measured by	increased	measures	the	
	D-Phe7- α -	s),			reflectance	significantly	allows for	extrapolatio	
N	MSH)	facial			spectroscopy	in all (Nle4 -	greater	n of the	
C	delivered by	flushing				D-Phe7)-α-	consistency	increased	
S	subcutaneous	(74%),				MSH-treated	in results	melanin	
İ	njection into	fatigue				subjects.	giving a	density	
t	he abdomen	(44%),				The highest	better	which might	
a	at 0.16 mg/kg	vomitin				increases	representati	not be	
f	or three 10-	g				were those	on of actual	directly	
C	day cycles	(26%),				with the	melanin	related to	
C	over 3	injectio				lowest	change.	photo-	

months.	n site	baseline skin
	reactio	melanin
	ns	levels. In
	(13%).	subjects with
	Nine	low MED
	withdre	skin type,
	w due	melanin
	to	increased by
	nausea	an average
	and two	of 41% (from
	withdre	2.55-3.59,
	w due	p<0.0001
	to	compared
	bruising	with
	at	placebo)
	injectio	over eight
	n site.	skin sites
		compared
		with only
		12% (from

protection.

4.18-4.70,
p<0.0001
compared
with
placebo) in
subjects with
a high-MED
skin type.

Five	Single dose of	None	None	60 days	Melanin	Mean	Use of	Only 5	4
patients	16mg				density	melanin	extensive	patients	
with solar	subcutaneous				assessed	density	phototesting	Included	
urticaria	afamelanotide				spectrophoto	increased by	with		
	implant in				metrically	day 7,	radiation,		
	winter time				from day 0 to	peaked by	through		
					day 60.	day 15 and	UVA, UVB		
					Monochromat	remained	and visible		
					ed light	raised at day	light		
					testing to	60 (<i>p</i> =0·03,	wavelength		
					geometric	0.01, 0.02	s		

dose series vs. baseline, (increment) respectively) of . Baseline

wavelengths phototesting

300-600 nm revealed

was carried action

out at day 0, spectra of

30 and 60, 320-400

with (n=1), 320-

evaluation of 500 (n=2),

weal and flare 300-600

area and (n=1) and

minimum 370-500 nm

urticarial (n=1), and

dose. upon

treatment

with

afamelanotid

e, mean

rises in

minimum urticarial dose

Nicotinamide

Yiasemid 61 Nicotinamide Placebo Immunosuppr Placebo Greater 1b None 5 Oral 500mg or clarity on volunteers weeks ession, nicotinamide comparator 1500mg for 7 had no effect used. (difference in how the use Mantouxon the of days. induced volunteers' immunosup erythema of sunburn pression as irradiated thresholds. an outcome sites Oral measure nicotinamide will relate to compared with , at doses of clinical unirradiated either 1500 practice. or 500 mg control sites) daily, significantly reduced UV

immunosupp ression (p<0.001).

386	Nicotinamide	No	Placebo	12	Primary end	The	Large	Multiple	1b
patients	500mg twice	signific		months	point was	treatment	sample size	statistical	
who had	daily	ant			the number of	group had a	with	tests were	
had at least		differen			new NMSCs	statistically	multiple	performed	
two NMSCs		ce			(BCC and	significant	clinically	meaning	
in the past		betwee			SCC,	23% relative	relevant	there is a	
5 years		n			at 6 months.	difference in	outcome	greater	
		groups			Secondary	the rate of	measures	chance that	
					end points	NMSCs	recorded.	some	

were new (p=0.302;BCCs, new 95% CI 4-SCCs, AK 38) and a counts 6 statistically months after significant 11% the intervention reduction in and safety. actinic keratosis (p=0.01).

significance values were due to chance.

Isoflavones

Accorsi-	30	100 mg/day of None	None	6	Skin	A 9.46%	Use of	No	2b
Neto et	postmenop	an		months	punch in	increase in the	clinically	comparator	
al,	ausal	isoflavones-			the gluteal	epidermal	significant	used to	
2009 ²⁵	women	rich,			area	thickness was	measureme	compare	
		concentrated			before	found in 23	nts of skin	treatment.	
		soy extract			and	patients. The	ageing.		
					immediate	papillary index			
					ly after the	was reduced in			

treatment. 21 women -

Morphom inversely

etric proportional to

determinat skin wrinkling.

ion of Amount of

epidermal dermal collagen

thickness, in the dermis

the was increased

papillary in 25 women

index, and $(7.6 \pm 1.5\%)$

amount of p < 0.01)

dermal In 22 women

elastic, $(18.8 \pm 4.8\%)$;

collagen (p<0.01)

fibers and elastic fiber

number of numbers

blood increased. The

vessels dermal blood

was vessel numbers

recorded. significantly

increased in 21

women (20.2 \pm

5.9%; *p* <0.01).

Table 3. Dietary botanicals in systemic photoprotection

Study	Populatio	Intervention	Tolerabilit	Comparat	Durati	Outcome	Efficacy	Strengths	Weaknesse	Level
	n		у	ors	on	measures			S	of
										eviden
										ce
Pomegra	anate extrac	:t								
Li et al,	74	Pomegranat	Two	Placebo	12	MED was	MED was	Investigated	MED used –	2b
2018 ²⁶	healthy	e extract	patients		weeks	assessed after	increased	the	greater	
	women	(PomX) or	from the			exposure of	significantly in	pathogenes	clarity	
		juice (PJ)	PL group			the inner arm	both PomX and	is of	needed on	
			and one			to UVB at	PomJ	possible	how this	

from the
placebo
group
reported
mild
itching
and
stinging
sensation
with
hydroquin
one
cream.

baseline and consuming after 12 weeks groups of compared to pomegranate placebo consumption At the genus level the amount of 6 and 4 genera was altered significantly by PomX and PJ respectively compared with placebo. Circulating cytokine and chemokine were not affected by the intervention.

photoprotec transfers to tion with clinically pomegranat significant es using a outcomes. wide range of outcomes.

Flavonoids

Heinrich	60 female	A drink with	None	Placebo	12	Skin	Skin structural	Use of	Poor	1b
et al,	volunteer	green tea		beverage	weeks	photoprotectio	characteristics	clinically	compliance	
201127	S	polyphenols				n, structure,	that were	significant	in the study	
		with 1402 mg				and function	positively	outcome	and a 40%	
		total				were	affected	measures	attrition rate	
4		catechins/da				measured at	included	related to	in the green	
,		У				baseline (week	elasticity (21%	photoagein	tea group –	
						0), week 6,	increase;	g.	no	
						and week 12	<i>p</i> <0.05),		explanation	
							roughness,		offered for	
							scaling		this high	
							(decrease -16		attrition rate.	
							and -25%			
							respectively;			
							<i>p</i> <0.05), density			
							(7.7% increase),			
							and water			

homeostasis.
Skin thickness
was not
affected. Intake
of the green tea
polyphenol
beverage for 12
week increased
blood flow and
oxygen delivery
to the skin (29%
increase by
week 12;
p<0.05)).

Calzava	10	Oral daily	None	High dose	One	Phototesting	Oral daily	Use of	Small	4
ra-	healthy	supplementa		vs low	week	with solar	supplementation	crossover	sample size.	
Pinton	subjects,	tion of 1g of		dose		simulated	of 1g of	period	Short follow-	
et al,	Fitzpatric	high-flavanol		cocoa		radiation was	high-flavanol	allowed for	up period.	
2019 ²⁸	k I-II					performed at		monitoring	Unclear how	

cocoa (n=6), followed by all 10 taking 4–6g of cocoa for one week baseline and cocoa was not of effect in after cocoa effective. A same supplementati one-week patients on. MED and reducing administration of spectrophotom confoundin 4-6g of cocoa etric g variables. produced a measurement statistically of the a significant parameter 24h increase in the after MED (0.051(IQR irradiation. 0.034 - 0.051) J cm⁻² compare d with 0.051 (IQR 0.043-0.051)J cm $^{-2}$; p< 0.05] and a significant

decrease in the

MED

into a

clinical

translates

significant

outcome.

a parameter $(6.98\pm1.59 \text{ com})$ pared with $5.63\pm1.47 \text{ at}$ baseline; p < 0.0 5).

1	24 female	High flavanol	None	Low	12	UV-induced	UV-induced	Clinically	Small	1b
	healthy	(HF)cocoa		flavanol	weeks	erythema and	erythema was	significant	sample size.	
	subjects,	powder (326		(LF) (27		indicators of	significantly	outcomes	Only	
	aged 18-	mg/day)		mg/day)		skin condition	decreased in the	were	Fitzpatrick II	
	65,	dissolved in		cocoa		were	HF group, by 15	measured	skin –	
	Fitzpatric	100 mL		powder -		measured	and 25%, after 6	through	unclear how	
	k II	water.		6.6 mg		before and	and 12 weeks of	examination	if this	
		Epicatechin		epicatechi		during the	treatment	of skin	treatment	
		(61 mg/day)		n and 1.6		intervention	respectively, no	condition	will have the	
		and catechin		mg			change was	after	same effect	
		(20 mg/day)		catechin			found in the low	treatment.	on those	
		were the		as the			flavanol group.		with	

major flavanol monomers daily dose.

In the HF cocoa

different

skin types

diminished from

 8.7 ± 3.7 to 6.3

group there was increases in blood flow tocutaneous and subcutaneous tissues, and to increases in skin density and skin hydration. Skin thickness was elevated from 1.11 ± 0.11 mm at week 0 to 1.24 ± 0.13 mm at week 12; transepidermal water loss was

± 2.2 g/(h.m²) by week 12. No change was found in the LF group. A significant decrease of skin roughness and scaling was found in the HF group compared with the LF

group.

Williams	30	HF 20 g	None	LF 20g	12	MED was	No significant	Double-	MED used -	1b
et al,	healthy				weeks	assessed at	change in MED	blind	greater	
200930	subjects					baseline and	was found in the	randomised	clarity	
						after 12 weeks	LF group. In the	controlled	needed on	
							HF chocolate	trial.	how this	
							group, the mean		transfers to	
							MED more than		clinically	
							doubled from		significant	
4							0.109J/cm ² ±0.0		outcomes.	
4							11 at baseline to			
							0.223J/cm ² ±0.0			
							19 after 12			
							weeks			
							(<i>p</i> <0.005).			
Nobile	90	A mixture of	None	Placebo	72	UVB-induced	The intervention	Clinically	Small	1b
et al,	females,	rosemary		(100%	hours	skin redness,	group showed a	significant	sample size	
2016 ³¹	Fitzpatric	and citrus		maltodext	or 2	erythemal	decrease in the	measures	and high	
	k I-III	extracts		rin)	month	response after	UVB- and UVA-	of	standard	
	showing	(Nutroxsun™			S	UVB exposure	induced skin	photodama	deviation	

mild to) from dried moderate rosemary (Rosmarinus chronoofficinalis) or leaves and photoagei grapefruits ng (Citrus paradisi), respectively 100 or 250 mg. 5-30 min before UVB exposure to 1 MED. Two supplementa ry doses were given 24 and 48h

(short (290-320 nm), alterations warrant the ge need for and basal and (decreased skin recorded. or UVAredness and Investigatio further long stimulated lipoperoxides) n of both studies term (320-400 nm) and an short and investigating study) skin LPO improvement of long-term rosemary in skin content effects. The photoprotect wrinkledness (redness and study was ion. lipoperoxides) and elasticity. conducted No differences on various were found ages and between the 100 skin types and 250 mg meaning it doses. Skin is easier to horny layer MDA extrapolate content four its findings hours after UVA to the decreased by general 9.7, 16.2 and population.

20.1% after 0.5,

after UV

exposure (short term study). In the long-term study, subjects received 100 mg Nutroxsun™, 250 mg

1, and 2 months treatment, respectively (p=0.0000) in the 100 mg dose group, 24 hours after UVA the MDA content decreased by 8.7, 13.4, and Nutroxsun™ 15.1% after 0.5, 1, and 2 months treatment, respectively (p=0.0000). In the 250 mg MDA, four hours after UVA, was

decreased by

10.2, 16.4, and

21.7% after 0.5,
1, and 2 months
treatment,
respectively
(p=0.0000); 24
hours after UVA
the MDA content
was decreased
by 9.1, 13.3, and
15.8% after 0.5,
1, and 2 months
treatment,
respectively
(p=0.0000)

n e	/avati et al, 21 ³²
	3
4	
2	

57	Oral	None	Placebo	12	mMASI score	mMASI of the	Use of	Participants	1b
participa	an synbiot	ics,		weeks		synbiotics group	standardise	were aged	
ts, aged	TS6, a					was 7.54±0.79,	d melasma	between 30-	
30-50	combin	ation				7.36±0.80,	scoring	50 only	
with	of 50 b	illion				7.16±0.73, and	system	meaning the	
Fitzpatri	c CFUs o	of 6				6.98±0.72 at	allowing for	results	
k skin	probiot	ics				baseline, weeks	comparabilit	might be	
type III–	VI strains:					4, 8, and 12,	y of findings	harder to	
	Lactoco	occus				respectively,	between	extrapolate	
	lactis,					and 7.5±0.86,	studies.	to the	
	Lactob	acillus				7.52±0.88,	Randomise	general	
	acidopl	hilus,				7.54±0.86, and	d controlled	population.	
	Lactob	acillus				7.54±0.89 at	study with a	Other	
	casei,					baseline, weeks	placebo	clinically	
	Bifidob	acteri				4, 8, and 12,	used.	significant	
	um lon	gum,				respectively, in		secondary	

Bifidobacteri	the placebo	outcomes of
um infantis,	group	photodamag
Bifidobacteri	The melasma	e such as
um bifidum	score in the	skin
	synbiotics group	elasticity are
	was significantly	missing.
	lower than that	
	in the placebo	
	group by week	
	12 (p= 0.008).	