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ABSTRACT
Automatic adjustment of the hearing aid according to the in-
telligibility for the user in the environment could be benefi-
cial. While most intelligibility metrics require a clean speech
reference, i.e. intrusive methods, this is rarely available in
real-life. This paper proposes a non-intrusive intelligibility
metric based on the established intrusive short-time objective
intelligibility (STOI) metric, where a reconstruction of the
clean speech is based on pitch-features of the desired source
using a spatio-temporal harmonic model. This model takes
advantage of both the spatial and spectral separation of the
desired source and interferers to reconstruct the clean sig-
nal. The simulations show a high correlation between the
proposed pitch-based STOI (PB-STOI) and the original in-
trusive STOI and hence promising for online processing of
intelligibility.

Index Terms— Pitch estimation, non-intrusive objective
intelligibility prediction, hearing aids

1. INTRODUCTION

One of the main issues encountered by hearing aid (HA) users
is severely degraded speech intelligibility in noisy multi-
talker environments such as the ”cocktail party problem”
[1, 2]. Generally, the speech intelligibility for users of assis-
tive listening devices depends highly on the specific listening
environment. As such, additional speech enhancement pro-
cessing may be beneficial in some listening environments
whereas the exact same algorithms can have a negative im-
pact on the quality and intelligibility in other listening envi-
ronments [3, 4]. In HA technology, automatic intelligibility
assessment of the listening environment would be beneficial
for the user such that speech enhancement is only applied
when necessary [5, 6]. This could be facilitated by an online
intelligibility evaluation of the listening environment and thus
it could be beneficial if objective intelligibility metrics could
be used in the online processing of HAs.

There are various intrusive methods to predict the speech
intelligibility with acceptable reliability such as the short-time

This work was supported by the Innovation Fund Denmark, Grant No.
99-2014-1.

objective intelligibility (STOI) metric [7] and and the normal-
ized covariance metric (NCM) [8]. However, these methods
are intrusive, i.e., they all require access to the clean-speech
reference which is rarely available in practice. A number
of non-intrusive methods have been introduced that do not
require access to the clean speech signal, e.g. the modula-
tion spectrum area (ModA) [9] or the speech-to-reverberation
modulation energy ratio (SRMR) [10]. However, both of
these non-intrusive measures are limited to the assessment
of reverberated speech signals and are still inferior to the
intrusive measures according to a recent review [6].

This paper proposes a method that non-intrusively esti-
mates the speech intelligibility in the listening environment
for HAs. A prediction of the speech intelligibility is obtained
by comparing a reconstruction of the clean speech with the
noisy speech using an intrusive framework, e.g. STOI, sim-
ilar to [11, 12]. The clean speech is obtained by estimating
relevant signal features assuming the desired source consists
of a number of narrowband signals with harmonically related
carrier frequencies using a spatio-temporal model. Combin-
ing spatial (i.e. direction of arrival) and temporal (i.e. pitch)
cues improves the accuracy of the reconstruction as it resolves
ambiguities, e.g. due to reverberation or competing speakers.
The proposed method can then be used as an alternative to
environment classification by determining, whether the intel-
ligibility is below a certain threshold [13].

2. METHOD

In this section the approach behind the PB-STOI metric is
presented. A block diagram incorporating the framework is
shown in Fig. 1. In the first step, the sound field is recorded
with a microphone array. Then, the pitch of the desired speech
signal is estimated and the speech is reconstructed using the
pitch and direction of arrival of the desired speech signal.
Finally, a non-intrusive prediction, d(n), is given on a 0-1
scale by comparing the correlation of the reconstructed clean
speech with the noisy version using the intrusive STOI frame-
work.
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Fig. 1. Block diagram of the proposed pitch-based non-intrusive objective intelligibility measure in which reconstruction of the
clean speech is obtained using the estimated pitch and compared with the output of an omnidirectional microphone using the
original intrusive STOI.

2.1. Signal model

A multi-channel spatio-temporal harmonic model is applied
based on the model from [14] in order to reconstruct the clean
speech signal as input to the intrusive intelligibility metric.
In the proposed method it is assumed that K microphones
are used to obtain the desired signal added to a mixture of
interfering sources and background noise for a frame length
of N such for the k’th microphone, the data vector xk =
[xk(0) xk(1) . . . xk(N − 1)]T for k = 0, . . . ,K − 1. The
desired source is assumed to be periodic, which is an appro-
priate assumption for short segments of voiced speech [15].
As such, the data vector xk can be modeled as:

xk = βkZD(k)α + ek, (1)

with Z = [z(ω0) . . . z(Lω0)], z(lω0) = [1 ejlω0(N−1)] for
n = 0, . . . , N − 1, D(k) = diag([e−jω0fsτk . . . e−jLω0fsτk ])
for l = 1, . . . , L with all other entries equal to zero and ek is
the sum of the recorded noise and interference. Furthermore,
ω0 is the fundamental frequency, fs is the sampling frequency
and τk is the delay of the desired target source between mi-
crophone 0 and the k’th microphone giving the direction of
arrival (DOA). Moreover, βk is the attenuation of the desired
source at the k’th microphone, α = [α1 . . . αL]T is the com-
plex amplitudes given by αl = Ale

jφl , L is the number of
harmonics, Al > 0 and φl are the real amplitude and phase of
the l’th harmonic, respectively.

2.2. Pitch-based intelligibility prediction

The pitch of the desired target source is found by exploiting
the spatio-temporal harmonic model structure of the multi-
channel signal using the joint pitch and DOA estimation
method presented in [14]. In the following, the basic princi-
ples and deviations from the original method are explained.

Assuming the noise is white Gaussian with uncorrelated
variance σ2

k in each channel, the log-likelihood function of

the complex data vector xk can be written as [14]:

ln p(xk;ψ) =

−NK lnπ −N
K−1∑
k=0

lnσ2
k −

K−1∑
k=0

‖ek‖2

σ2
k

(2)

Even though this assumption may seem unreasonable the
white Gaussian noise distribution maximizes the entropy of
the noise and is a good choice for the noise probability density
function [14]. Then, the pitch can be estimated by maximiz-
ing the log-likelihood function by differentiating with respect
to the amplitudes, α̂, the attenuation factor, βk, and the noise
variance, σ2

k, respectively. As mentioned in [14] these param-
eters are dependent on each other and are therefore estimated
by initially setting the βk’s and σ2

k’s to 1 and iterating over
the expressions in Equation (3), (4) and (5). The estimated
complex amplitudes are given by:

α̂ =

[
K−1∑
k=0

β2
k

σ2
k

DH(k)ZHZD(k)

]−1 K−1∑
k=0

βk
σ2
k

DH(k)ZHxk

(3)
The estimated attenuation of the desired source at the k’th
microphone can be obtained as:

β̂k =
Re{αHDH(k)ZHxk}
αHDH(k)ZHZD(k)α

(4)

Moreover, the noise variance can be found as:

σ̂2
k = N−1‖êk‖2, (5)

where êk = xk − βkZD(k)α. The maximum likelihood esti-
mator of the pitch can then be written as:

ω̂0 = arg min
ω0∈Ω0

K−1∑
k=0

ln ‖xk − β̂kZD(k)α̂‖2 (6)



where Ω0 is a set of possible pitch candidates. Contrary to
the original method in [14], the DOA of the desired target
source is assumed known and fixed such that the estimation is
only performed over a one-dimensional search. This assump-
tion both limits computational complexity as well as makes
the model more robust against stronger interfering harmonic
sources from other directions such that it reduces to a spatial
filtering approach rather than DOA estimation. Finally, a re-
construction of the clean speech for the k’th microphone can
be obtained given the estimated pitch, ω0 and the delay, τ :

ŝk = ΠZD(k)xk (7)

with the projection matrix ΠA = A(AHA)−1AH . The recon-
structed clean speech signal to be used as input to the non-
intrusive objective intelligibility metric is then obtained by
summing the estimated signal over all microphone channels:

ŝ =
1

K

K−1∑
k=0

ŝk (8)

Alternatively, the variance estimates in (5) can be used to
form a weighted estimate.

2.3. Experimental methodology

The proposed metric PB-STOI is evaluated using two dif-
ferent multi-channel microphone array setups: A free-field
broadside uniform linear array (ULA) consisting of K = 10
microphones and a free-field behind the ear (BTE) HA setup
consisting of two bilateral wireless linked HAs with K = 4
microphones. The ULA has a microphone spacing of d =
c/fs and the delay of the desired source between microphone
0 and the k’th microphone is given by τk = kdc−1 sin θ,
where the wave propagation speed was c = 343 m/s. The
DOA of the desired source was θ = 0◦ and the sampling fre-
quency was fs = 8 kHz. For the BTE HA setup the spacing
between the microphone on each HA was 1 cm and the spac-
ing between the two HAs was 25 cm.

In the experimental evaluation the set of fundamental fre-
quencies was set to the range Ω0 = 100− 400 Hz, the model
order was estimated using the maximum a posteriori (MAP)
criterion [17], the short-time segmentation window block size
was 30 ms and reconstructed by overlap-and-add using a Han-
ning window with 50% overlap. The simulations were per-
formed using a complex multi-talker scenario with 8 interfer-
ing speakers (Fig. 2), reverberation (RT60 = 0.3 s) and ambi-
ent white noise in a room with dimensions of 10x6x4 m sim-
ulated using the toolbox McRoomSim [16]. The simulations
were carried out in a white noise only scenario, with inter-
ferers and white noise both without and with reverberation at
SNRs ranging from -20 to 20 dB. Simulation length was 2.5
s. The desired speech was the utterance ”Why were you away
a year, Roy” from the voiced corpus in [18] and the interfer-
ers were speech samples from the EUROM 1 database of the
English sentence corpus [19].
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Fig. 2. The experimental setup simulated with the software
toolbox McRoomSim [16]. The blue, green and red balls il-
lustrate the location of the listener, the desired target source
and the interferers, respectively.
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Fig. 3. Spectrograms of (a) the clean voiced utterance ”Why
were you away a year, Roy”, (b) the reconstructed speech sig-
nal using the estimated pitch from the harmonic model, and
(c) the noisy signal at 0 dB SNR, and plot of (d) the estimated
fundamental frequency from the noisy signal.
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(a) Results from PB-STOI using a ULA setup.
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(b) Results from PB-STOI using a BTE HA setup.

Fig. 4. Scatter plots of the non-intrusive PB-STOI metric ver-
sus the intrusive STOI metric. The pitch of the PB-STOI met-
ric is estimated using a multi-channel signal from (a) a ULA
with K = 10 microphones and (b) two bilateral BTE HAs
setup. The circles, asterisks and diamonds show the simu-
lated results for white noise only, multiple interferers with
white noise without and with reverberation, respectively.

3. RESULTS AND DISCUSSION

The spectrograms of (a) the original clean speech, (b) the
equivalent reconstructed signal and (c) the degraded noisy
signal at 0 dB as well as (d) the estimated pitch from the
noisy signal are depicted in Fig. 3. As it can be seen the re-
constructed clean speech version of the noisy signal using the
estimated pitch has relatively well captured the features of the
original clean signal.

The performance of the proposed intelligibility measure
is evaluated by comparing the correlation between the non-
intrusive PB-STOI scores against the original intrusive STOI
scores in Fig. 4 for (a) the ULA setup and (b) the bilateral
BTE HA setup. It can be observed that the PB-STOI scores

Table 1. Performance of the proposed metric in terms of Pear-
son’s correlation (ρ), the Spearman rank (ρspear) and Kendall’s
tau (τ ) between PB-STOI and STOI as well as their linear re-
gression lines for a ULA and bilateral BTE HA setup.

Setup ρ ρspear τ Regression line
ULA 0.9886 0.9887 0.9287 0.74x+ 0.11
BTE HA 0.9812 0.9004 0.9922 0.67x+ 0.16

correlate well with the original intrusive scores with a strong
linear trend between the two metrics for both microphone ar-
ray setups. Thus, it is promising that a small microphone ar-
ray such as the HA setup can give acceptable results.

In order to assess the performance of the proposed PB-
STOI metric three performance criteria are presented in Ta-
ble 1. Pearson’s correlation (ρ) quantifies the linear relation-
ship, while Spearman’s rank (ρspear) and Kendall’s tau (τ )
characterize the ranking capability. The values are close to
one for all performance criteria indicating high correlation
between the intrusive and non-intrusive metric. Hence, the
proposed non-intrusive PB-STOI metric can offer a compara-
ble performance to the original intrusive intelligibility metric.

Compared with the study in [11] which uses a similar
approach for non-intrusive intelligibility prediction, the pro-
posed PB-STOI metric only requires a calibration of the con-
version between PB-STOI and STOI scores depending on the
array configuration without any training to the data. However,
the experimental evaluation only contained voiced speech and
should also be tested on utterances containing unvoiced parts.
This could be done by only assessing the intelligibility in the
voiced parts of the speech using a voiced speech detector. It
is expected to obtain similar results for sentences also con-
taining unvoiced parts, since the most energetic regions occur
during the voiced parts. According to the glimpsing model
of speech in noise the most energetic regions of the desired
speech are most important for intelligibility and thus a good
predictor for intelligibility [20]. As such, it is a reasonable as-
sumption that using only the energetic voiced regions of the
speech can yield a promising predictor for speech intelligibil-
ity.

4. CONCLUSION

This paper proposes a new non-intrusive intelligibility met-
ric for online processing in HAs. The method is based on
an established and reliable intrusive metric, where the clean
speech signal is reconstructed by its spatio-temporal charac-
teristics (i.e. direction of arrival and pitch). The proposed
non-intrusive metric has a high correlation with the original
intrusive counterpart and thus is a promising method for on-
line assessment of speech intelligibility in HAs.
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