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H I G H L I G H T S

• A generic method for characterising energy flexibility is developed.

• It is applied to characterise the energy flexibility of water towers and buildings.

• The resulting model is used to do price-based control of the two systems.

• It is shown to achieve between 62% and 98% of the potential energy flexibility.

A R T I C L E I N F O
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A B S T R A C T

If CO2-emissions are to be reduced, the shares of renewable energy sources will have to be significantly in-
creased. However, energy flexibility is required to cope with the increased share of renewable energy. Utilising it
necessitates mathematical models of the operational response of energy flexible consumers. In this paper we
present an accurate and general dynamic model of energy flexibility based on stochastic differential equations.
The intuitive interpretation of the parameters is explained, to show the generality of the proposed model. To
validate the approach, the parameters are estimated for three water towers and three buildings controlled by
economic model predictive controllers. The model is then used to offer the energy flexibility on the current
electricity market of Scandinavia, Nord Pool, using the so called “flexi orders”. Finally, the energy flexibility is
used by controlling the demand of the water towers indirectly, through price signals designed based on the
proposed model. Compared to having perfect foresight of electricity prices and future demand, between 63% and
98% of the potential savings were obtained in for these case studies. This shows that even without direct control
of energy flexible systems, most of the potential can be reached under the current market conditions.

1. Introduction

Accompanying the ever increasing share of Renewable Energy
Source(RESs) is the challenge of controlling energy generation and
matching it to energy demand [1]. Historically, demand has been the
main source of uncertainty for energy grid operators [2], but now the
challenge gets steeper with the uncertainty of RESs added to the
equation [3]. Furthermore, for electricity grids, the amount of syn-
chronous generators is decreasing, limiting the available sources of

control [4]. All in all, energy grids are faced with the challenge of in-
creasing uncertainty and decreasing controllability. To counteract this,
new ways of controlling either energy generation or demand have to be
designed. On the generation side, it is possible to control RESs to some
extent [5]. Unfortunately, while generation coming from energy
sources such as wind and solar can be turned down, it cannot be turned
up, as it is limited by the given wind and radiation conditions. Thus, on
the generation side, the only solution for providing electricity when sun
and wind are insufficient is to produce it using other energy sources.
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Therefore, the controllability ought to be found on the demand side [6].
Part of this controllability will come from storage solutions [7], but the
potential from regular demand should be utilised as well [8].

Here, reducing demand has the same effect as increasing supply. Of
course, the total amount of energy use is not expected to decrease, so
reducing demand at one point in time translates into an increased de-
mand during other periods. Furthermore, while it is easy to predict how
much power a generator can supply [9], it is less straightforward to
know how flexible energy demand can be. For instance, if the heating of
a smart home is done in a flexible way, then the amount of flexibility
varies depending on how it is being used [10]. If, for example, a home
owner is having a party, then the range of allowed temperatures is
probably smaller than if the owner was at work. This implies that the
trouble resides not only in estimating how much flexibility is available,
but also in agreeing on who is in charge of using it. The compensation
required to persuade a home owner to have his heating being per-
formed in a flexible way is highly dependent on the usage of the home
[11]. Likewise, a system such as a wastewater treatment plant can
provide a lot of energy flexibility most of the time, but during heavy
rain it will be able to provide almost none [12], since it is more im-
portant to avoid waste water in the streets. For this reason, the owners
of many energy flexible systems will not be willing to give up control to
energy grid operators such as Dis-tribution System Operators (DSOs)
and Transmission System Operators (TSOs), since they cannot trust the
grid operators to know how to control the systems adequately. For this
reason, most energy flexibility is expected to be made available through
indirect price-based control [13]. In this case, instead of controlling the
energy flexibility directly, grid operators or aggregators will send
varying prices, based on some contractual agreements [14], to the en-
ergy flexible systems that they then react to as they please [15]. It is still
expected that energy flexible systems will be automatically controlled
[16], but in the end the owner has full autonomy. This approach comes
with its own challenges, such as what to do when no one wants to be
flexible and the uncertainty of the response to changing prices. The
challenge is to understand energy flexibility. This have been in-
vestigated using a bottom-up approach for domestic households [17],
with focus on thermal loads in [18] and activity patterns in [2].
However, while this gives insights into the physical capabilities of
particular appliances, it does not address the fundamental challenge,
namely to estimate the expected response for a given sequence of
prices. This requires a top-down approach, where energy flexibility is
estimated from data. One such approach was presented in [19] where
reliability and potential was estimated from data. However, in order to
combine the different aspects, system identification is needed to esti-
mate the full dynamics of the energy flexibility. In [20] this topic was
explored, where the relation between prices and change in demand was
assumed to be linear and time-invariant. This allows for easy inter-
pretation of the energy flexibility through the step-response, termed the
Flexibility Function. It was also suggested that the only objective metric,
with which to judge energy flexibility is in economic terms. The present
paper sticks with this suggestion, and ultimately values the quality of
the developed model in terms of economic value.

However, the linearity assumption limits the possibility for appli-
cations significantly, and so, in this paper, a nonlinear, and more rea-
listic, model of energy flexibility is developed, preserving the intuitive
flexibility characteristics noted in [20]. The goal is the same; to char-
acterise energy flexibility, but the method and resulting model are both
completely different, taking an idea and turning it into a useful tool. A
first taste of this was given already in [21], where a nonlinear flexibility
function was made, based on physical characteristics of a district
heating system. In this paper it is shown how a nonlinear flexibility
function can be estimated from data, coming from two very different
kinds of systems, building heating systems and water towers. Given that
the resulting model describes both kinds of systems accurately, it is
expected to be useful for a wide range of systems.

The paper starts by presenting the developed model in Section 2,

where the justification and interpretation of all parts are included as
well. Next, a case study is presented in Section 3, consisting of three
economically controlled water towers located within the Scandinavian
power market. In Section 4 the parameters of the developed model are
estimated for both the water towers and the buildings and subsequently
the energy flexibility is bid into the day-ahead market of Nord Pool in
4.2. Finally, the findings are summarised in Section 5 and perspectives
for future work are discussed in Section 6. Secondary mathematical
details can be found in the Appendix.

2. Energy flexibility model

This section presents the complete model for characterising energy
flexibility. Given the extent of this section, first the whole model
structure is presented, and afterwards, each part is explained thor-
oughly. The model is based on a combination of physical and mathe-
matical considerations. This means that some parameters have direct
physical interpretations, while others have to be interpreted more
carefully.

The model is based on the variables presented in Table 1, where
they have all been normalised to be between 0 and 1, to ease notation.
The general formulation of the proposed model is given by (1)–(4):

⎜ ⎟ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

X
C

D B t X X σ Wd 1 d 1 d ,t t t t t X t
(1)

= +α βδ l f X g u k( ( ; ) ( ; ); ),t t t (2)

= + > − + <D B δ δ B δ BΔ( ( 0)(1 ) ( 0) ),t t t t t t t� � (3)

= + ∊Y D σ ,t t Y t (4)

where W is a Wiener process [22,23] and �∊ ∀ ∈i i d k~ (0, 1 ) . . .k
2 �. �

is the indicator function, which is equal to 1 when the input is true and
equal to 0 when the input is false e.g.:

⎜ ⎟
⎛
⎝

> ⎞
⎠

= >{x x0 1 0,
0 else.

�

α βC k σ, Δ, , , , X and σY are parameters, that, together with the func-
tions l f, and g characterise the energy flexibility of a price-controlled
system. As summarised by Table 1, the model consists of 1 state, X,
governed by the stochastic differential Eq. (1); B and u are inputs; Y
represents the observations governed by Eq. (4); finally, two algebraic
equations, (2) and (3), that link the value of the state and inputs to the
output for each time step. An overview of the parameters and their
interpretation can be seen in Table 2.

2.1. The state equation

The interpretation of the state at time t X, t , is the state of charge of
the energy flexible system, where =X 0t means that it has no stored
energy and thus cannot reduce its energy consumption. Likewise,

=X 1t means that it currently holds the maximum amount of energy
possible, and thus cannot increase its consumption. For a temperature-
controlled building this could be translated into the temperature having
reached the lowest or highest allowed comfort levels respectively. Even

Table 1
Variables used for flexibility function.

Name Quantity Use Unit

Xt State of Charge State Energy
Bt Baseline Demand Input Power
ut Energy Price Input Price
δt Change in Demand Internal –
Dt Expected Demand Internal Power
Yt Demand Observation Power
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more straight forward, as shown in this paper, Xt could be proportional
to the amount of water in a water tower, with =X 0t meaning that it is
empty and =X 1t that it is full. This assumption is motivated by phy-
sics, and holds true for single-fuel systems with efficiency independent
of its operation. In practice efficiency depends on operation, but for
many systems this can be ignored. The underlying assumption of the
model is that, at a certain point in time, the energy demand of a price-
responsive energy system is described by the price and state of charge at
that time. Thus, (1)–(4) are simply predicting future values of the state
of charge and the demand.

Assume that constant average prices would lead to a demand of Bt at
time t, then this can be considered the baseline demand. If energy ef-
ficiency is unaffected by the energy consumption, then the state of
charge increases whenever demand surpasses the baseline demand and
decreases whenever the demand is lower than the baseline. This is
described by the first term of (1), where the parameter C determines
how fast the change in state of charge happens. As already mentioned it
will be ensured that ⩽ ⩽ ∀X D B u t0 , , , 1t t t t , and since changing Xt

from 0 to 1, in T time units, requires that ∫ − =D B t CdT
t t0 , the total

amount of flexible energy is equal to C. Naturally, any energy con-
suming system will have an upper bound on how much power it can
consume at any given time, which is usually obtained by turning on
everything at maximum capacity. Similarly there is a natural minimum
consumption, which is usually when everything is turned off, or at least
when all flexible components are turned off. For convenience Yt can be
assumed to be normalised such that =Y 1t means that the maximum
demand is observed at time t and, similarly, the minimum when =Y 0t .
Now, the second term describes the process noise, which can stem from
unexpected behaviour of the system, model deficiencies and errors in
the assumed baseline demand; where, the latter is expected to be the
main contributor in the system noise. These inaccuracies of the esti-
mated baseline demand stem from the fact that it is not possible to
know exactly what the baseline is. Notice that the exact same problem
is experienced for today’s energy systems, where the task of predicting
demand is exactly the same as predicting baseline demand in this case.
The noise intensity is proportional to the parameter σX , which is esti-
mated, but also to the term −X X(1 )t t . The latter term is there to reflect
that it is not possible for the state of charge to leave the interval [0, 1],
and thus the noise has to go to zero when the system approaches the
edges of the interval, so that it cannot push the state of charge out of
bounds. This is a realistic assumption, since it is expected that pro-
longed high prices will push the state of charge close to the minimum
and similarly prolonged low prices will push it close to the maximum
with high certainty. On the other hand, with medium-sized prices, the
exact state of charge is expected to be somewhere close to the middle,
but it is very difficult to estimate the exact value in this case.

2.2. Linking demand to state of charge and price

Moving on to (2), δt can be interpreted as the change in demand
from the baseline, due to energy flexibility. This part of the model is
based on the following three assumptions:

1. High prices tend to reduce demand, and vice versa for low prices.

2. A lot of stored energy tends to reduce demand and vice versa for low
amounts of stored energy.

3. Only a finite amount of energy can be stored in the system.

While these three assumptions are very natural, it is difficult to
guess exactly how prices and stored energy affect demand. For that
reason the exact relation is estimated by nonlinear functions from data,
f and g, but requiring that they are monotonously decreasing, as a result
of the first two assumptions.

The effect of state of charge is modelled by f while the effect of
energy price is modelled by g. To satisfy the third assumption, Xt is
required to stay between 0 and 1 for all t. This is enforced by ensuring
that + ⩽ ∀ ∈f g u u(1) ( ) 0 [0, 1] and likewise f

+ ⩾ ∀ ∈g u u(0) ( ) 0 [0, 1]. Recall that g u( ) is largest for =u 0 and
smallest for =u 1; then, the boundary conditions are guaranteed by
letting = −f g(1) (0) and = −f g(0) (1). This means that the desire to
decrease demand due to having the largest possible state of charge is
exactly equal to the desire to increase it due to the lowest possible price,
and vice versa for lowest possible state of charge and largest possible
price.

The numerical magnitude of f and g is irrelevant, so without loss of
generality it can be assumed that = = −f g(1) (1) 1 and

= =f g(0) (0) 1. Now the modelling task has been reduced to finding
suitable functions that decrease monotonously from 1 to − 1 for inputs
between 0 and 1. This is a strictly mathematical consideration, and the
approach used in this paper is described in Appendix A.

Finally, to allow the model to estimate how aggressively the energy
flexibility is being used, +f g is passed through the function l, which is
a scaled logistic function:

⎜ ⎟
⎛
⎝

⎞
⎠

= − =
+ −

−l x k xk
kx

; 2logistic( ) 1 2
1 exp( )

1.

This way it is continuous and monotonously increasing while mapping
all inputs to the interval (0, 1). Then, = −δ 1t indicates that demand at
time t is being limited as much as possible while =δ 1t indicates that
the demand is increased as much as possible. Also, =l k(0; ) 0, so that

+ =f X g u( ) ( ) 0t t means that at time t demand is expected to equal the
baseline.

2.3. Demand and observation equation

Eq. (3) represents the expected demand after a modification of the
Baseline demand. Here Δ is a parameter between 0 and 1, describing
what proportion of the overall demand that is flexible. If =Δ 1 then all
of it is flexible and = −δ 1t results in an expected demand of 0 while

=δ 1t results in an expected demand of 1 at time t. If =Δ 0 then none of
the demand is flexible and the expected demand is always equal to the
baseline. If >δ 0t then the third term is zero, and the deviation from the
baseline is given by the second term. Notice how the change is pro-
portional to − B(1 )t , that is, the difference between the maximum de-
mand and the baseline demand. This reflects how much demand that
could potentially be switched on. If e.g. the baseline is close to 1, then
the demand can only be increased a little, since it is not possible to
increase demand more than having everything switched on at max-
imum capacity. The opposite is true when <δ 0. In this case the change
is proportional to Bt , reflecting that the potential maximum negative
adjustment of demand is by switching off all demand. If again the
baseline is close to 1, then it makes sense that there is potential to turn
down the demand a lot.

Finally, (4) is the observation equation, describing that the observed
demand will differ from the expected demand, due to both measure-
ment errors and unexpected behaviour from the energy flexible system.

Table 2
Parameters of flexibility function and their interpretation.

Name Interpretation Range Unit

C Amount of Flexible Energy >0 Energy
Δ Proportion of Flexible Demand [0, 1] Power
k Energy Flexibility Eagerness >0 –
f Demand-SoC Relationship −[ 1, 1] –
g Demand-Price Relationship −[ 1, 1] –

σX Process Noise Intensity >0 Power
σY Measurement Noise >0 Power
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3. Case studies

To test the approach, four case studies are used, the primary one
consists of three water towers delivering water to three smaller cites.
The remaining three case studies are based on the electrical heating
requirements of a household, an office building and a commercial
building. The essential commonality between the case studies is that
demand is controlled according to price, and so, the response to price
can be learned. In all cases, the response to the price is obtained via (E-
MPC), where a forecasted price is used to schedule predicted demand,
so that comfort (enough water and high enough temperature) is ob-
tained in the cheapest possible way.

3.1. Case Study 1: Control of water tower

A simulation model is developed using the pipe layout and reservoir
size information from the water utility in Bjerringbro, Denmark. A small
city with around 8000 inhabitants and one large industry (Grundfos).
The structure of the system is shown in Fig. 1.

The consumption profiles for the two pressure zones are measured
over a 2 month period in Bjerringbro and the obtained time series are
used as input to a simulation of the network. The pipe networks in the
pressure zones are obtained by simplifying the network layout of
Bjerringbro by only considering what are expected to be the main water
ways. The networks are simulated by solving the pipe pressures and
flows for steady state conditions, meaning that the only energy storing
element is the elevated reservoir.

The control of pumping station 1, which delivers water to the water
tower in Fig. 1, is the concern of this case study. The local control is
done using E-MPC minimising the operational cost still taking network
constraints in the form of reservoir constraints and water quality con-
straints into account as described in [24].

To simulate the case where several utilities are controlled by the
same energy price, two additional networks are included in the simu-
lation. These networks are derived by perturbation of main parameters
in the Bjerringbro network model, that is, reservoir size and pipe re-
sistances. Beside that, the consumer load profiles are differentiated
between the networks by shifting the time series from Bjerringbro one
and two weeks respectively for the two additional systems.

3.2. Case Study 2, 3 and 4: Electrical heating of buildings

These three case studies are based on the E-MPC developed in [25].
In this study, dynamic grey box models of three different kinds of
buildings, namely a household, an office building and a commercial
building are developed based on a combination of data-driven para-
meter estimation and design parameters from the literature. Each of the
buildings are equipped with a heat pump, and has to keep the tem-
perature within pre-specified temperature ranges.

3.3. Flexi orders on Nord Pool

In this study it was decided to utilise the energy flexibility on the
day-ahead market, since this allows the calculation of price signals 24 h
in advance. Thus the E-MPCs of the energy flexible systems can be
provided with the exact future prices. If the energy flexibility was used
to provide ancillary services, then future prices would never be known,
and thus they would have to be forecasted instead. This would make the
quality of the forecasts dominate the performance, and thus take away
from the focus of this paper, namely the modelling of the energy flex-
ibility.

On the Scandinavian power market Nord Pool, the so called “flexi
orders” are the most appropriate product for utilising energy flexibility
on the day-ahead market. Flexi orders are submitted by indicating three
things (1) a time interval, a b[ , ], (2) an amount of hours, n and (3) an
amount of energy P. The flexi order are then accepted by finding the
cheapest n hours within the time interval a b[ , ]. For each of these hours
P energy is bought at the corresponding spot prices. This means, that,
by using flexi orders one can buy electricity for the cheapest price
within some interval at the cost of not deciding exactly what hours it
will be [26].

Depending on how flexible the energy flexible system is, the length
of the time intervals and amount of hours within them where electricity
is needed can be adjusted. The most flexible case would be to have the
time interval equal all 24 h of the given day, and only purchase elec-
tricity in 1 h. If the energy flexible system can handle this, then all
demand can be bought during the cheapest hour of each day. Probably,
for most systems it is more appropriate to split each day into several
time intervals and request energy in some amount of the hours in these
intervals. The longer the time intervals and the fewer hours of re-
quested energy, the lower the price that the systems can expect to re-
ceive. Also, it is possible to buy some of the energy in a non-flexible way
using regular hour-bids, and some of it using flexi orders. This can be
used to cover non-flexible parts of the energy demand. The exact bid-
ding strategy used for these case studies in this paper is explained in
Appendix C.

Once the spot market has been settled, all participants know how
much energy they have bought for each hour, and the model can be
used to design a price signal, which gives an expected demand equal or
close to the amount of energy bought for each hour. This price signal is
then sent to the energy flexible system, and the local controller acts
upon it. However, the real demand is bound to deviate from the ex-
pected value, and thus there will be a difference between how much
energy was bought and how much was consumed. This difference is
paid for on the balance market, according to the regulation price [27].
The overall cost of running the energy flexible system is then the cost of
the energy bought on the spot market and the balance market:

∑ ∑= + ⎛

⎝
⎜ − ⎞

⎠
⎟

= =

λ p λ Y pCost .
k

k k
k

k k k
1

24
Spot

1

24
Regulation

(5)

Here, Cost is the cost of electricity consumption during one day, in
which the spot and regulation price in hour k was λk

Spot and λk
Regulation

respectively, and where pk energy was bought in hour k while the real
demand in hour k was Yk.

3.4. Designing price signals for control

Once energy has been bought, a price signal to make the con-
sumption of the water towers and buildings follow the amount bought,
has to be designed, as explained by Fig. 2. In this figure the aggregator
first bids into the market using flexi orders and then receives the
amount of energy bought for each hour. This is sent to the energy
flexibility model, which is then used to find prices that makes the ex-
pected demand follow the amount of bought energy. Next, this price
signal is sent to the energy flexible system, which then finds the optimal

Fig. 1. Sketch of the water supply network used as model of local energy
consumers. di is the flow of water into pressure zone 1, with pressure p1.
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consumption schedule based on its own optimisation framework (E-
MPC in these case studies).

However, this is an inverse problem where it is easy to compute the
expected demand given the price signal, but difficult to compute a price
signal given the demand. Consider the expected demand at time t D, t,
from (3). This is a function of the baseline, B, and the price signal, u.
The squared difference between the expected demand and a reference
demand, Dref can be minimised according to the price signal:

∑ −
=

D B u Dargmin ( ( , ) ) .
u k

M

t t
1

ref 2
k k

Doing so yields a price signal resulting in an expected demand as close
as possible to the reference demand.

4. Results

In this section the parameters of the model defined by (1)–(4) are
estimated and discussed in Section 4.1. Afterwards, in Section 4.2, the
results of bidding energy flexibility into the spot market and simulating
the operation of the water towers and buildings correspondingly are
presented.

4.1. Parameter estimates

Using a price signal designed for system identification according to
Appendix B.4, the parameters are estimated by minimising (B.5), ob-
taining the values shown in Table 3. The time unit used here is seconds,
and so the estimate of C being 12,720 for the water tower means that it
is estimated that all the water towers could be filled in = 3.512720

3600 hours
without any demand. Perhaps more relevant, it is estimated to take

= 8.63.5
0.41 hours to fill it if the demand equals the average normalised
demand of 0.41. For the buildings it is estimated to take between 32 and
56 min to fill their state of charge. Inspecting the simulations shows
that the temperature in the buildings never exceed the minimum tem-
perature by more than 1 kelvin. This means that the 32 and 56 min are
really the estimated times it takes to raise the temperature by 1 kelvin,
which seems reasonable. Δ is estimated to equal 1 in all cases, which is
not surprising considering that the systems are 100% flexible.

Fig. 3 shows the estimated price relationships. For the water tower,
it is seen that the relationship can approximately be considered as 3
overall regions. When the price is between 0.2 and 0.55 there is a close
to linear relation between price and demand. For prices below 0.2, the
effect is close to constant, slowly converging to 1. For prices above 0.55
the effect is very flat, with almost no effect of price. This indicates that
the controller considers all prices above 0.55 to be expensive, but does
not care about the exact value. Prices below 0.2 are considered cheap,
and it will pump close to its maximal potential for all prices in this
range. Between 0.2 and 0.55 it adjusts demand proportionally to the
price. For the buildings g u( ) is very close to −1 for >u 0.25, which
means that the heating will be shut off almost no matter what, when-
ever prices are above 0.25.

Similarly, the relationship between energy demand and state of
charge is shown on Fig. 4. For the water tower, it is seen that ≈f (0.5) 0,
which indicates that the natural state of charge is 0.5, meaning that the
water towers are usually filled around 50%, if there are no price in-
centives to do otherwise. For levels between 0.15 and 0.85 the effect is
modest. For levels lower than 0.15 it quickly approaches 1, to make
sure that there is always water available. Similarly for when the state of
charge is above 0.85 it quickly converges to −1. This indicates that the
controller does not care much about the exact level of the water, as long
as it is between 0.15 and 0.85. This is even more pronounced for the

Fig. 2. Information flow for using flexibility function to design price signals according to energy bought on the market.

Table 3
Parameter estimates for the energy flexibility model based on the electricity
consumption of the pumps controlling the water towers and each of the three
buildings. α and β are parameters of the state of charge and price responsive-
ness respectively.

Parameter Water Tower Building 1 Building 2 Building 3

C 12720 3339 2525 1927
Δ 1 1 1 1
k 2.1 1.5 1.32 1.51
α1 −0.07 −0.5 0.5 0.5
α2 0.88 0.00 0.28 0.00
α3 −0.88 0.47 −0.28 0.60
α4 1.00 0.53 1.00 1.00
β1 0.55 0.21 0.69 0.80

β2 0.08 0.71 0.19 0.06

β3 0.25 0.00 0.07 0.05

β4 0.12 0.00 0.05 0.08

β5 0.01 0.08 0.00 0.000
σX 0.00145 0.00231 0.00121 0.00189
σY 0.092 0.070 0.075 0.061

Fig. 3. Functional relationships between the energy price and energy demand.
Positive values lead to increased demand while negative values leads to de-
creased demand.
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buildings. Especially for building 1 and 3, f X( ) is almost equal to 0 for
< <X0.25 65. This indicates that the controller is almost indifferent

about the exact value of X, as long as it is not close to the boundaries.
For building 2, f intersects the x-axis at around 0.7, meaning that it has
a preference for being close to the upper boundary of the state of
charge.

Fig. 5 shows the predicted demand of the water tower over the
course of 3 days versus the measured demand. The estimated baseline
demand is also shown. The difference between the baseline and the
demand is due to the use of energy flexibility. The model is clearly very
accurate, with predictions that correspond well to the observations,
especially for the first 24 h. Considering that the model will not be used
for predictions of more than 24 h, this is satisfactory. The model ex-
plains most of the variation not explained by the baseline, reducing the
root-mean-squared error of the baseline of 9.23 kWh to 3.99 kWh for the
model.

4.2. Bidding energy flexibility into spot market

The energy flexibility is sequentially bid into the spot market for
9 days using flexi orders according to the bidding strategy explained in
Appendix C, and prices designed to make the expected demand equal
the bought energy are sent to the water towers and buildings. A sample
of the demand compared to the energy bought is shown in Fig. 6 for the
water towers. In this figure the prediction equals the bought energy,
and it is seen that the actual demand follows quite well. The main
deviations occur when the actual demand equals almost exactly zero or

one, which is typically not anticipated by the model. In other cases the
demand is similar to the prediction, and so the consumed energy fits
well with what was bought, so that the usage of the balance market is
very limited.

The economic results can be seen in Table 4, where simulated re-
sults are compared. The baseline scenario is described in Appendix B.2,
where the energy demand of the water towers and buildings are not
influenced. This is obtained by simply using a constant price, while
purchasing electricity in the spot market according to the estimated
baseline demand. The costs are computed according to (5), which is the
sum of costs on the spot market and on the balance market. For the
water towers, the energy flexibility yields expected savings of 4.1%,
amounting to yearly savings of 1830 EUR. Comparatively, the average
price that was paid per MWh was reduced by 4.8%, but the energy
consumption was increased by 0.75%, reducing the capital savings.

To evaluate how successful the energy flexibility is being used, it
should be compared to the largest possible savings. These are obtained
by assuming that the water towers were provided with perfect foresight
of their own demand and prices. In this way the costs are further re-
duced, arriving at total savings equal to 5.4%. Thus, the approach
presented here managed to obtain = 76%4.1 %

5.4 % of the potential savings.
The same experiment is done for each of the buildings separately,

and the economic results are shown in Table 5. It is seen how these are
even better than for the water towers, both in therms of the achieved
flexibilty, the potential and the share of the obtained potential. This can
be attributed to the aggressive response to prices revealed by Fig. 3,
where it was shown that the buildings are able to heat only when the
price is very low.

5. Conclusion

It was shown that energy consumption of price-responsive systems
can be accurately predicted by price. This was done by modelling the
relation through a combination of physical considerations and statis-
tical methods. The method was tested with success for water towers and

Fig. 4. Functional relationships between the state of charge and energy de-
mand. Positive values lead to increased demand while negative values leads to
decreased demand.

Fig. 5. Predictions of demand made a time zero compared to the measured
demand. Notice how the predictions are all made from the same time point, and
so accuracy is expected to decrease with time.

Fig. 6. Energy flexible demand of the water towers when exposed to designed
price signals compared to the amount of energy bought on day-ahead market.
The mismatch between Demand and Prediction is bought or sold on the balance
market.

Table 4
Costs of running three water tower, while being price-ignorant, using flexi or-
ders and the potential when controlling the water towers with perfect foresight
of spot prices.

Strategy
Costs ( )EUR

year
Price ( )EUR

MWh Energy ( )MWh
year

Baseline 44457 65.2 682
Flexible 42627 (−4.1%) 62.0 (−4.8%) 687 (+0.75 %)
Potential 42070 (−5.4%) 61.6 (−5.4%) 683 (+0.05%)
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buildings controlled by economic model predictive controllers. Because
of the physical considerations, the estimated relationship between price
and consumption proved causal, in the sense that consumption can be
controlled through price signals. Thus, this can be considered a useful
characterisation of energy flexibility. The model is general enough to be
used for many other energy flexible systems.

The developed models of the energy flexibility of the water towers
and buildings were used make price signals for indirect control of the
energy flexibility. For the water towers this amounted to operational
savings of 4.1%, corresponding to obtaining 76% of potential savings
achievable with perfect foresight. For the buildings savings of 8.4% to
10.8% correspond to 63% to 98% of the potential. This shows that, even
without compromising autonomousity most of the available energy
flexibility can be utilised through indirect price-based control.

The water demand profiles were real data, and the water towers
were simulated using very accurate models. Since the energy flexibility
was used on the day-ahead market, the model predictive controller can
be supplied with future prices. This, combined with the fact that the
assumed market products already exist means that the method could be
employed in practice today.

6. Perspectives

The optimal way of using flexi orders was not pursued in this paper.
This would have to be investigated to reach the full potential of the
method. There are far too many possible combinations of flexi orders to
test them all in a brute force manner, but it is expected that the physical

interpretation of the flexibility parameters could be used to make
heuristic procedures to find good combinations of flexi orders.

Because of the simplicity of operating in the day-ahead market this
was chosen as the market in this paper. For future studies the method
should be employed for the regulation market, since here the price
variations are larger, and thus the potential savings are also larger.
However, it is more difficult as well, since the prices are never known in
advance, and thus it is difficult to supply the model predictive con-
troller of the water towers with accurate price forecasts.
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Appendix A. Parameterising the effect of price and state of charge

Since the parameters have to be estimated the computational feasibility should also be taken into account. For g this is not a problem, since it is
only a function of the input, but f is a function of the state, which severely limits the computationally feasible solutions.

By utilising that g is only a function of u it is modelled by a linear combination of I-splines [28]:

∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ = − + = ∀ = … ⩾

= =

g u β β I u β k N β; 2 ( ) 1, 1, 1, 2, , : 0,
k

N

k k
k

N

k g k
1 1

g g

where I are I-splines. In general, the I-splines are defined in terms of integrated normalised B-splines:

∫ ∫
= ∣ =

−∞
∞I u k t M x k t dx M y k t

B y k t
B x k t dx

( ; , ) ( ; , ) , ( , )
( ; , )
( ; , )

,j
u

j j
j

j0

where B k t(·; , )j is the j’th B-spline of a collection of k’th order B-splines with knots at t. Notice, that, since the B-splines have compact support, the I-
splines equal exactly 0 for small inputs and exactly 1 for large inputs:

∃ ∈ ∀ < = ∧ ∀ > =a b x a I x k t y b I y k t, : : ( ; , ) 0 : ( ; , ) 1.j j
2�

The strength of this procedure comes from the fact that ut is an input; thus, given that the variable is known, I u( )k can be computed for all
∈ …k N1, 2, , g before estimating the parameters. This reduces the task of estimating g to restricted linear regression, which can be done efficiently

while estimating the rest of the parameters. Notice that the I-splines are chosen since they are monotonously increasing, and can be formulated such
that →I : (0, 1) [0, 1]k . This, combined with the restrictions of β, ensures that g is monotonously decreasing and maps values to −[ 1, 1], as required.
The accuracy of the spline-based estimates depends on the location of their knots. Close to the knots accuracy is high, meaning that the data will be
fitted closely. This is a virtue when there is enough data, but a disadvantage when there is too little, since the result will be overfitted. Thus, the knots
should be placed far apart in data-sparse areas and close in data-rich areas. This can be done by locating them according to the quantiles in the data
[28], and so, in this study they are placed at the (20%, 40%, 60%, 80%) quantiles of the price signal.

For f, the same method is not feasible, since the estimated values of the state, X, depend on the values of the parameter estimates, and thus the
value of the splines would have to be re-estimated for each iteration of the parameter estimation. This has been obtained by parameterising f as

Table 5
Costs of heating each of the buildings, while being price-ignorant, using flexi
orders and the potential when controlling the buildings with perfect foresight of
spot prices. All costs are in EUR

year
.

Strategy Building 1 Building 2 Building 3

Baseline 281.6 156.1 41.4
Flexible 258.1 (−8.4%) 139.4 (−10.7%) 36.9 (−10.8 %)
Potential 244.2 (−13.3%) 137.9 (−11.6%) 35.8 (−11.0%)
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= − + − − × + − + −f x α x α x α α x α x( , ) {1 2 [1 (2 1) ]} ( (2 1) (2 1) ),1
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2 3
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(A.1)

∑− ⩽ ⩽ ⩽ ⩽ − ⩽ ⩽ − ⩽ ⩽ =
=

α α α α α0.5 0.5, 0 1, 1 1, 1 1, 1.
k

k1 2 3 4
2

4

Notice that f is still monotonous. Additionally, if =x 0 or =x 1, then − = − =x x(2 1) (2 1) 12 6 , thus the restriction of having ∑ = αk k2
4 in (A.1)

ensures that =[·] 1 if =x 0 or =x 1. Similarly, ={·} 1 for = −x 1 and = −{·} 1 for =x 1; thus, =f α(0, ) 1 and = −f α(1, ) 1. Furthermore, for =α 01

and = =x 0.5, {·} 0; while >α 01 makes f intersect with 0 for >x 0.5. Similarly, for <α 01 , the intersection will take place for smaller values of x. In
general, α1 controls how skewed the relation towards the state of charge is. In addition, notice how, since ⩽ ⩽X0 1t , and >α 02 , then the main (·) is
always between 0 and 1; thus, f is monotonously decreasing.

All exponents in expression (A.1) have been chosen to be positive so the parameterisation is symmetric around =x 0.5. It is important to notice
how, an increase of α3 and/or α4 would make α2 decrease. Thus, (·) gets small when x is close to 0.5. This results in a sub-linear price relationship.
Likewise, having small values of α3 and α4 will result in having super-linear price relationships. The former would imply that the system cares little
about the state of charge unless it is close to being empty or full; on the other hand, the latter suggests that the system mainly cares about whether the
state of charge is above or below steady state, but not how much.

Appendix B. Estimating parameters

Here the parameters of the energy flexibility model described in Section 2 will be estimated for the electricity consumption of the water pumps of
the water tower and the heat pumps of the buildings. Before this can be done a number of issues have to be dealt with. First of all an objective
function to be minimised is formulated in Section B.1. Next, the baseline demand (i.e. Bt) is estimated in Section B.2. Then, Section B.3 deals with the
challenge that the local water tower controllers anticipates future prices. Afterwards, a price signal for identifying the model parameters is designed
in Section B.4. Lastly, an optimisation method is chosen and described in Section B.5.

B.1. Objective function

In this paper the model will be used to predict demand between 12 and 36 h into the future. For this reason it has to provide accurate predictions
on this time scale. While the classic maximum likelihood estimate is based on the one-step predictions, this often leads to parameter estimates which
are poor for predictions much longer than the one-step predictions. The reason for this is that the maximum likelihood estimate is based on
minimising the weighted squared residuals. The residuals are made up of bias and variance, in the sense that it can be assumed that each residual
follows some distribution with a mean value μ and variance σ2, that is �e μ σ~ ( , )2 . By definition of variance the expected value of the squared
residual is then

= + = +e e e σ μ( ) ( ) ( ) ,2 2 2 2� � � (B.1)

where � and � denote the expectation and variance operators respectively. Here it is observed how the residuals consist of a variance or diffusion
term, σ2, and a bias or drift term μ2. In general, drift scales linearly with time while diffusion scales with the square root of time. Thus if en is a
residual based on an n-step prediction, then

∝ +e nσ n μ( ) .n
2 2 2 2� (B.2)

From this expression it is clear that if (B.1) is used for parameter estimation, then the estimate will be equally focused on minimising σ and μ. But if
the model is used for n-step prediction, then the performance is actually given by (B.2), in which it is n times more important to minimise μ than σ .
Notice that usually it is assumed that =μ 0, in which case the only thing that matters is to reduce σ . However, in practice it is almost never the case.

For this reason the estimation procedure used in this paper is the one described in [29]. Here the usual likelihood function based on one-step
predictions is modified to instead consider predictions made from time 0, so that it consists of one n-step prediction for all ⩽ ⩽n N1 , where N is the
total amount of observations. The trade-off compared to using one-step predictions is that the residuals can no longer be assumed to be independent.

Thus, for the Stochastic Differential Equation (SDE)-based state space model formulation used in this paper

= +X f X U θ t σ X Wd ( , ; )d ( )d ,t t t X t t (B.3)

= + ∊Y X σ ,k t Y kk (B.4)

the objective function is minimised for the parameter estimation is
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(B.5)

where θ contains the parameters of the model, as described in Table 2, � = …Y Y Y{ , , , }N N1 2 is the collection of the first N observations (energy
demand), and likewise � = … …B B B u u u{ , , , , , , , }N N N1 2 1 2 is the collection of the first N inputs (Baseline demand and energy price). ̂ ∣yk 0 and ∣σk 0

2 are
the value and variance of the k-step prediction made at time 0, and are given by

̂ = = +∣ ∣y X σ X σ( ), ( ) ,k t k t Y0 0
2 2

k� �

where the differential Eqs. (B.6) and (B.7) describe how the mean and variance should be propagated:
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B.2. Estimating baseline demand

The business as usual operation of the water tower, is to have a constant price, so that its only objective is to minimise energy consumption. As
described by (3), the predicted demand when applying energy flexibility is given as a modification of the baseline demand. Thus, an estimate of the
baseline demand is required for the methodology to function. Since this is a simulation study it would be possible to know exactly what the baseline
demand is, by simply using the demand of the business as usual operation. However, as this is not possible in practice, it was chosen to test the
methodology in a more realistic case, in which the baseline demand is not known with exact accuracy. The baseline was still estimated by simulating
the system using a constant price, but instead of using the exact demand at all times as baseline demand, the average demand for each hour of the day
was computed, for work days and for weekends. This results in two profiles of 24 values each. These provide reasonably accurate estimates of the
baseline, since water consumption is well described by daily variation.

For retailers purchasing electricity on behalf of their consumers, their business as usual operation is to purchase electricity according to the
predicted demand without trying to modify it. Since the estimated baseline demand is the best guess of the demand when energy flexibility is not
applied, the retailer would simply purchase the estimated baseline demand.

B.3. Anticipating the effect of future prices

The next issue is to deal with the fact that the E-MPC used to control the water towers uses forecasts of the price, to make its decisions. A realistic
assumption for the use case presented in Section 3.3, is that the forecasts are 100% accurate between 12 and 36 h ahead. The controller uses 24 h
forecasts, so it was chosen to provide it with the exact future prices during the parameter estimation process, since it should not effect the control
actions significantly. Notice that if this were to be a poor decision it would only effect the results in a negative way, and thus this is not representing
the methodology in an over-optimistic way.

For the parameter estimation it should be taken into consideration that the E-MPC sees future prices. For a particular time step, this can be boiled
down to the E-MPC comparing the current price with the future prices. Prices in the near future are more important than further ahead in time, since
it is easier for the E-MPC to move demand short periods than long periods. To account for this, a modified price signal, comparing the price at each
time step to the future values was constructed as

′ =u u μ σΦ( , , ),t t t t
2

where Φ is the cumulative distribution function of the normal distribution. That is, Φ gives the probability of a normally distributed random variable
being smaller than the input:

�= <x μ σ X x X μ σΦ( , , ) ( ), where ~ ( , ).2 2�
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The weight is computed by exponential decay such that the first values receive the largest weight:

= −w γ ,n
n 1

where < ⩽γ0 1 decides how fast the exponential decay happens. This is a hyper parameter that should be tuned for the specific problem. In this case
the value was found as the one given the largest negative correlation between price and demand, which in this case was =γ 0.902.

B.4. Price signal for system identification

Of course, a price signal has to be sent to the water tower, and this price signal has to be constructed. This should be done such that it excites the
relevant frequencies for the system at hand. Since the water towers take several hours to fill or empty, it is expected that most dynamics are on a time
scale of more then several hours. Thus the price signal should consist mainly of low-frequencies. In this study a uniform white noise signal is filtered
through a low pass butterworth filter of degree 5 with a cut-off frequency of

h
1

10
, meaning that most content with frequencies higher than

h
1

10
is

removed from the white noise signal. Furthermore, if prices are designed based on the model it is expected that they often will include step-changes
to drive the demand up or down as much as possible, so random step periods where the price was put equal to either the maximum or minimum price
were randomly added to the signal.
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B.5. Optimisation method

Notice that all terms in (B.5) are differentiable when applied to the formulation (1)–(4), except for the indicator functions, >x( 0)� and <x( 0)� .
Thus, these are replaced with the differentiable approximation

⎜ ⎟ ⎜ ⎟
+ −

≈ ⎛
⎝

> ⎞
⎠ +

≈ ⎛
⎝

< ⎞
⎠λx

x
λx

x1
1 exp( )

0 , 1
1 exp( )

0 ,� �

for large >λ 0.
This results in a differentiable objective function, and thus the software TMB [30] can be used to provide efficient evaluation of both the objective

function and its gradient. These were used to minimise the function using the method of moving asymptotes [31]. By using the gradient the
optimisation time is significantly reduced compared to usual methods that do not rely on the gradient.

Appendix C. Bidding Strategy

In this paper, the flexi orders are used by assuming that the total demand should equal the estimated baseline demand. In this way a proportion,
κ1, of the expected baseline demand is bought in each hour using conventional and non-flexible hour-bids. The remaining energy is bought using two
flexi orders, each with an interval of 24 h. For one of them energy is requested in 16 h and for the second it is requested for 8 h. In this way κ2 and

− −κ κ1 1 2 of the whole energy demand is bought. This means that if μ is the average hourly demand, then for the 8 most expensive hours, κ Bt1 is
bought in hour t, this can be considered the inflexible part of the demand. For the 8 h closest to the median price, + ( )κ B κ μt1 2

24
16 is bought and for the

8 cheapest hours + + − −( )κ B κ κ κ μ(1 )t1 2
24
16 1 2

24
8 . This means that the pumps of the water towers are running to some extend at all times, but mostly

in the cheap hours. Notice that even when the flexi orders are accepted such that the water towers cannot deliver the sufficient amount of energy
flexibility, it is not very expensive to use the balance market to make up for it. Optimising κ1 and κ2 is out of this papers scope, since it would require
more data to avoid overfitting. Thus, simple values of =κ 0.61 and =κ 0.32 are used. This results in 40% of the electricity being bought using flexi
orders, with + =25% % 62.5%75

2 of this demand being bought in the 8 cheapest hours and the rest in the 8 intermediate hours.
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