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Abstract 
Railways play an important role in sustainable transportation and in the mitigation of climate 

change. However, in order to fulfil this role railways must be resilient to disturbances such as 

those related to weather and climate. The aim of this thesis is to identify the relationship between 

precipitation, temperature, and dwell and run delays in Skåne, Southern Sweden between 2008-

2019, and to determine how this relationship will change in the future in light of climate change. 

Currently, the punctuality of railways in Sweden is below desired targets, which can hinder current 

ridership numbers and future growth. Weather is one factor that has an impact on the punctuality 

of railways in Skåne, Southern Sweden.  
 

The main theoretical framework behind this research is based on resilience thinking. Resilience 

is defined and used in many different fields, however for this thesis it was narrowed down to the 

scope of resilience within the transportation system and is defined as the system’s ability to resist, 

absorb, and recover from a disruption related to precipitation or temperature. The main methods 

include a literature review, graphical evaluations, and both multiple linear and multiple logistic 

regression modelling to determine the relationship between the sum of precipitation, minimum 

temperature, maximum temperature, and run and dwell delays over 1, 7, 14, 21, and 28 days.  
 

This thesis identified that the most statistically significant variables for dwell delays are the sum 

of precipitation over 7 days, the minimum temperature over 1, 7, 14, and 28 days, and the 

maximum temperature over 1 and 28 days. The most statistically significant variables for run 

delays are the sum of precipitation over 1, 7, 14, and 28 days, the minimum temperature over 1,7, 

and 28 days, and the maximum temperature over 1, 14, and 28 days. In other words, most delays 

occur when temperatures are below freezing and extremely warm, and with intense precipitation. 

This relationship is expected to become more significant as temperatures and the amount of 

precipitation increases due to climate change. Therefore, railways need to be more resilient to 

the future effects of climate change in order to ensure that railways remain on time, and act as 

passengers first-choice mode of transportation.  

 
Kew words: temperature, precipitation, delays, railways, climate change, resilience, 
vulnerability  
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It is written in collaboration with the Traffic and Roads Department of the Faculty of Engineering 

at Lund University and is intended to act as the first part of a greater five-year project that explores 

the effects of weather on train delays in Sweden in the past, present, and future. By identifying 

how precipitation and temperature impact railways and by increasing railways resilience to future 

climate change, railways can become more punctual and reliable both today and in the future.  
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1.0 Introduction 
Historically, there has been an enormous social and technological change in the succession of 

the transportation sector (Armstrong & Preston, 2011). Railways originally dominated and quickly 

expanded in the 19th and early 20th centuries, but by the mid-20th century motorised road 

transport and commercial aviation quickly dominated the sector for short-haul trips and long-haul 

trips respectively (Armstrong & Preston, 2011). This progression has also led to the reduction of 

rail services across the whole world (Armstrong & Preston, 2011). Today, it is becoming more 

evident what implications motorised road and air transportation have on global greenhouse gas 

emissions. In 2017, the transportation sector was responsible for 28% of total CO2 emissions 

(Stéphan & Blayac, 2021). In Europe, the transportation sector accounted for a larger share of 

emissions, and specifically 40% in Sweden (Stéphan & Blayac, 2017). Therefore, reducing CO2 

emissions within the transportation sector should be a priority for global policymakers (Stéphan & 

Blayac, 2021). Often, a modal shift towards more public transportation or cleaner modes has been 

considered as one of the main ways to significantly reduce emissions (Stéphan & Blayac, 2021); 

especially as more people are moving to urban areas, it is important to ensure that these people 

choose sustainable modes of transportation (United Nations, 2018). Now faced with global climate 

change, we must rethink the entire transportation system (Armstrong & Preston, 2011).  
 

Our society is becoming more dependent on critical infrastructures. Infrastructure is defined as 

critical when its absence has a serious impact on our well-being, safety, and health; and 

transportation is considered to be such an infrastructure (Adjetey-Bahun, et al., 2016). Today, 

weather conditions play a role in the punctuality of railways (Zakeri & Olsson, 2018). As global 

climate change progresses the effects of weather on the punctuality of railways is expected to 

become more severe (Zakeri & Olsson, 2018). Therefore, it is important to ensure that railway 

systems and infrastructure is resilient. Ensuring that trains are able to bounce back from 

disruptions can assist with their ability to provide reliable and sustainable transportation for all and 

increase sustainable transportation ridership.  

1.1 Railways as a Sustainable Form of Transportation 

Railways are often considered to be a form of sustainable transportation (Brons & Rietveld, 2008). 

They offer an efficient transportation system built on low carbon emissions, low environmental 

impacts, social equity, and positive economic growth (Brons & Rietveld, 2008). Compared to 

motorised vehicles and aviation, railways are responsible for significantly less amount of 
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greenhouse gas emissions. In Europe, rail is responsible for less than 0.5% of greenhouse gas 

emissions in the transportation sector, making it one of the most sustainable modes of freight and 

passenger transportation (European Commission, n.d.). In Sweden in particular, The Swedish 

Transport Administration, Trafikverket, recorded in 2017 that the total Swedish railway network 

includes 12,000 km of electrified rail lines out of a total of 14,600 km (Trafikverket, 2017). This 

further supports the idea of railways as a sustainable mode of transportation.  
  
In 2020, the EU launched the “Sustainable and Smart Mobility Strategy” an initiative aimed at 

creating a sustainable transportation system within the European Union (European Union, 2020). 

The main goal of the initiative is to cut 90% of greenhouse gas emissions in the transportation 

sector by 2050 (European Union, 2020). Additional goals for the railway sector specifically include 

doubling high-speed rail traffic across Europe by 2030, creating healthy and sustainable 

interurban and urban mobility by 2050, and to create synergies between multiple modes of 

transportation (European Union, 2020). To put a spotlight on the “Sustainable and Smart Mobility 

Strategy,” The European Commission declared 2021 as the “European Year of the Rail” 

(European Commission, 2020). This initiative was created with the intention to highlight railways 

as a smart, safe, and sustainable mode of transportation (European Commission, 2020). Today 

only about 11% of goods and 7% of passengers travel via rail, therefore the initiative aims to 

increase this ridership by creating momentum, highlighting how an increase in rail ridership can 

continuously decrease greenhouse gas emissions (European Commission, 2020). 
  
Since the relative decline of railway use during the 20th century, in the past few decades, there 

has been a bit of a resurgence, particularly in high-speed passenger rail and long-distance freight 

services (Armstrong & Preston, 2011). Railways have also proven to play a valuable and 

significant role in medium-distance passenger transport, and commuter transportation within 

larger urban areas, to, and from (Armstrong & Preston, 2011). 

1.2 Punctuality and Train Delays 

Railway transportation in Sweden has been growing by 3% annually since the 1990s, with the 

primary growth found in passenger trains for regional and local trips (Palmqvist, 2019). This 

implies that if this growth rate continues, more people will be taking trains and therefore the 

demand for reliable services will increase. Therefore, it is important to ensure that trains arrive on 

time to their destination in order to highlight rail as the best choice of transportation for passengers 

and to keep the increasing trend in ridership numbers. In order for trains to be an attractive mode 
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of sustainable transportation, they must be reliable, predictable, and punctual (Brons & Rietveld, 

2008). 

  
Punctuality is a key indicator of the performance of railway services (Palmqvist, Olsson, & 

Hiselius, 2017a) and the national goal for punctuality in Sweden states that 95% of trains should 

be punctual (Palmqvist, 2019). Punctuality can be measured in different ways and in Sweden, a 

train is considered to be punctual if it arrives with no more than five minutes delay at the final stop 

(Palmqvist, 2019). Although the goal for punctuality is 95%, realistically it has been close to 90% 

which is deemed as too low by the industry (Palmqvist, 2019). Related to punctuality is the 

concept of delays, which are measured using a time unit, typically minutes (Palmqvist, Olsson, & 

Hiselius, 2017a). There are various types of delays but, this thesis looks at two: dwell delays and 

run delays, as they are the two main and prevalent types of delays. Dwell delays refer to when a 

train is stationary at a station for a longer than scheduled amount of time, while run delays occur 

when a train is moving between one station to another. Dwell delays and run delays are the delays 

looked at in this thesis because they are considered to be the main types of delays. For instance, 

multiple run delays along the same track can lead to knock-on delays, and therefore it is important 

to consider how to decrease run delays in order to prevent knock-on delays. Additionally, dwell 

delays are closely related to run delays as a run delay on a single line track can also lead to a 

longer dwell time at a station.  
  
In order to achieve a high level of punctuality, delays need to be reduced. Rail delays in Sweden 

can be a result of many different factors such as maintenance, infrastructure failures, timetable 

planning errors or weather (Palmqvist, Olsson, & Hiselius, 2017b). In this thesis, the focus is on 

the impact of weather on rail delays. 

1.3 Climate/Weather and Railways 

Railways are required to operate under high operational standards, ensuring that rail is safe and 

reliable with uninterrupted services (Misnevs, Melikyan, & Bazards, 2015). Extreme weather 

events and changing climate conditions are putting transportation infrastructure investments at 

risk due to the long-life span and expenses of this type of infrastructure (European Commission, 

2013).  Additionally, the resilience and preparedness to the impacts of climate today and in the 

future is essential to keeping operational standards of railways high (European Commission, 

2013; Misnevs, Melikyan, & Bazards, 2015). Railways are typically more vulnerable than road 

infrastructure because of the lack of excess capacity, limited rerouting options, and single-line 
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tracks (Mattsson & Jenelius, 2015). There is less research focus dedicated to both waterborne 

and rail transportation compared to road, air, or urban (Aparicio, et al., 2013), due to priority and 

investments. 
  
As previously mentioned, since rail is a mode of transportation with a relatively small 

environmental impact, it has the potential to help mitigate climate change (Armstrong, Preston, & 

Hood, 2017). However, this potential can only be achieved if railways are resilient and adaptable 

to the increasing extreme weather phenomenon that is associated with climate change predictions 

(Armstrong, Preston, & Hood, 2017). Currently, recent extreme weather events have 

demonstrated the railway industry’s vulnerability to the current climate and most likely this 

sensitivity will increase (Armstrong, Preston, & Hood, 2017). Therefore, in order to better 

understand how climate change will impact rail delays and help rails reach their potential of 

mitigating climate change, it is important to gain a solid understanding of past weather conditions. 

1.4 Problem Formulation and Research Questions 

Based on the above mentioned, weather is one factor that can affect punctuality and therefore 

cause disruptions to the system. Therefore, it is important to understand the effects weather has 

on rail delays in order to ensure train transportation is reliable both today and in the future. In this 

thesis, the effects of precipitation and temperature on passenger train delays in Skåne, Sweden 

between 2008-2019 is explored. This time period is chosen as climate has already been changing 

significantly since the early 2000s (SMHI, 2015). Therefore, this thesis looks over these 11 years 

in order to better understand the effects of weather during the 2000s on delays. This has led to 

the following problem formulation: 

 
What are the implications of the past effects of precipitation and temperature on past, 
present, and future passenger railway delays in Skåne, Sweden? 
  
In order to elaborate on the problem formulation, the following sub-questions are formulated as 

followed: 
  
Research Question 1: What is the relationship between precipitation and rail delays? 
  
Research Question 2: What is the relationship between minimum temperature and rail delays? 
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Research Question 3: What is the relationship between maximum temperature and rail delays?  
  
Research Question 4: What are the future implications of resilient railways in Skåne given the 

past precipitation and temperatures conditions and their effect on train delays? 
  
The purpose of research questions 1-3 is to examine each weather variable individually but also 

to see the connections of their impact on rail delays. This thesis provides a quantitative study 

which uses graphical evaluations and descriptive statistics in order to determine the relationship 

between weather and delays. Research question 4 serves as a reflection question to take the 

information learned about the weather conditions between 2008-2019 and apply the knowledge 

to the concept of resilience to highlight what Skåne railways can learn and do differently in the 

future. 

1.5 Thesis Structure 

The aim of this thesis is to demonstrate the Skåne railway industry’s current vulnerability to 

precipitation and temperature and to discuss how this vulnerability is expected to increase with 

climate change. This thesis contributes to the research already done on the effects of weather on 

railway delays by highlighting the importance of resilience in light of future climate change 

projections. The ability to carry out such an empirical analysis has greatly improved compared to 

previous studies due to the amount of data accessible. Additionally, it adds something new to this 

field of research by investigating the weather over a range of different time-periods, specifically 

1, 7, 14, 21, and 28 days, instead of only investigating the instantaneous daily effects which has 

been mainly studied so far.  Analysing the accumulative effects allows us to study the impact of 

events such as heatwaves, cold snaps, and periods of intensive rainfall. Furthermore, this thesis 

is focused on Southern Sweden, an area where fewer studies have been conducted.  

 

Figure 1 below highlights the overall structure of the project with the overall problem formulation 

and the four research questions and how they will be addressed using various methods and 

theory. The methods used are discussed in Chapter 2.0. The theoretical framework behind this 

thesis is resilience thinking with a focus within the transportation sector which is elaborated upon 

in Chapter 3.0 and encompasses all research questions. 
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Figure 1. Structure of Thesis Demonstrating the Methods and Theories Used to Answer the Problem 

Formulation and Subsequent Research Questions 

Research questions 1-3 are answered in Chapter 4.0. They are asked in order to determine the 

statistical relationship between precipitation, temperature, and dwell and run delays. First, 

graphical evaluations are used in order to visually interpret how these weather variables impact 

dwell and run delays. Next both multiple linear regression and multiple logistic regression models 

were used to determine which variables are the most statistically significant to dwell and run 

delays and the models were compared. These questions are asked in order to determine how the 

sum of precipitation, minimum temperature, and maximum temperature over 1, 7, 14, 21, and 28 

days shaped both dwell and run delays in Skåne between 2008-2019. Understanding the past 

effects of weather helps to better determine the future implications of climate change on railways. 
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Question 4 is answered in Chapter 5.0 and is used as a more reflective question to understand 

how future climate change projections will shape passenger train delays in Skåne.  
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2.0 Methodology  
The following chapter will expand on the quantitative methods used to answer the research 

questions of this thesis. It also describes the reasoning behind the choice of methods. It describes 

the datasets used in this thesis, the variables which were analysed, and the methods for the 

analysis. Method choices were influenced by past experiences and lessons learnt throughout the 

course of the master’s studies at AAU as well as by collaborating partners at Lund University.  

2.1 Research design: Case study 

The knowledge for this thesis is produced through a quantitative case study which is focused on 

one specific geographical location and examines the presumed causal relationship between 

weather and rail delays. Here the case is focused on the railway operations in Skåne, the southern 

region of Sweden. A case study was chosen as it pertains to detailed, in-depth, context-based 

knowledge about a specific place or setting used to answer the research questions in a report 

(Flyvbjerg, 2006). Here a case study method enables the researcher to examine the data within 

a specific context and explore relationships within the data (Yin, 2009). Yin (2009) describes case 

studies as being either exploratory, descriptive, or explanatory. It can be argued that this case 

study is descriptive as it sets out to describe the natural phenomena that occurs within the dataset. 

This study is interested in quantitatively describing the relationship between the studied weather 

variables and rail delays that occur in a specific geographical region, Skåne, Sweden. Chapter 

3.0 will go into more detail about other studies that have been conducted within this topic in 

different areas and describe how weather can affect rail delays.  

 
This descriptive case study can be further defined as a longitudinal study. With a longitudinal 

study, research is conducted over a longer period of time (Yin, 2009; Bryman, 2012). This study 

uses a dataset of precipitation, minimum temperature, maximum temperature, dwell delays, and 

run delays over 11 years from 2008-2019. This time period was chosen in order to understand 

the effects of weather on rail delays during the 2000s. Having data over a longer period of time 

allows for identifying trends in the data and the past results can be used in order to infer what 

may happen in the future (Bryman, 2012). In this case, understanding the past relationships 

between weather and delays can assist in understanding how climate change may future shape 

this relationship.  
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2.1.1 The Case of Skåne  

Today, more than half of the world’s population live in cities, and this number is expected to 

continuously grow (United Nations, n.d.). This means that more people will be moving to urban 

areas and the demand for railways is likely to increase. For instance, Skåne is Sweden’s most 

southern county, and the population accounts for about 13% of Sweden’s total population 

(European Union, n.d.). Malmö is the largest urban area in Skåne, and Sweden’s third-largest city 

(European Union, n.d., Figure 2). Southern Sweden is also often considered as part of Greater 

Copenhagen (Greater Copenhagen, n.d.). This area comprises of about 4.3 million people living 

in both Southern Sweden and Eastern Denmark (Greater Copenhagen, n.d.). Approximately 

15,000 people commute daily between Skåne and Eastern Denmark (Region Skåne och 

Helsingborg Stad, 2017), making it a dense transportation area. Denmark is not considered in 

this thesis; however, it is important to note how densely populated the region is and to highlight 

the number of commuters from Denmark to Sweden that are affected when rails are delayed.  

 
Figure 2. Map of Skåne zoomed in and in comparison, to all of Sweden (Regionfakta, 2018) 
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The largest commuter flows are between Lund and Malmö and vice versa, as well as between 

other suburbs of Malmö (Region Skåne och Helsingborg Stad, 2017). Commuter flows in Skåne 

are continuously increasing (Region Skåne och Helsingborg Stad, 2017). In Lund, Helsingborg, 

and the surrounding municipalities of Malmö between 63-77% of people commute outside of their 

municipality for work (Region Skåne och Helsingborg Stad, 2017). In 16 of 33 municipalities in 

Skåne, more than 50% of the population commute to another municipality for work (Region Skåne 

och Helsingborg Stad, 2017). For these reasons Skåne is chosen for the case study. It is one of 

Sweden’s most densely populated regions and its close proximity to Denmark leads to heavy 

commuter flows. As the lines are mostly electrified, rails provide a sustainable choice of 

transportation for the people living in this area. Therefore, it is important to research the effects 

weather can have on train delays to ensure people are arriving at their destinations on time and 

will continue to use railways in the future. It is important to keep trains punctual and reliable in 

order for ridership to continue to increase.  
 
Currently, there are about 71 active train stations in Skåne (Region Skåne och Helsingborg, 

2017). Pågatågen is the main railway system running around Skåne and is run by the public 

transport administration Skånetrafiken, while Öresundståg and Krösatågen connect Skåne to 

other regions of Sweden and Denmark. SJ is the main train operator within the rest of Sweden 

and a few high-speed lines connect Skåne to other major Swedish cities (Stockholm and 

Göteborg), and to Copenhagen, Denmark (Figures 3-4).  
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Figure 3. Map of the Railway System in Skåne, Highlighting Påga-, Öresunds, and Krösatågen Stations 

and Lines (Skånetrafiken, 2020) 
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Figure 4. SJ High-speed Rail Lines in Sweden and Denmark (EU Rail, n.d.) 

 
Skåne has a milder climate compared to the rest of Sweden due to its geographic location (Figure 

5). The figure below highlights the climate normals data between 1961-1990. Climate Normals 

are known as the average value of monthly climate variables, such as temperature or 

precipitation, that are calculated over a period of 30-years (SMHI, 2020). They are used to 

describe the current climate in order to help gain an understanding of how our climate is changing 

(SMHI, 2020). Additionally, they can also be used to describe the occurrence of extreme values 

in a month, for example, the minimum and maximum temperature (SMHI, 2020). 
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Figure 5. Climate Normals Data (1961-1990) for temperature and precipitation for Sweden. (SMHI, 2015) 

 
Based on the information above, the average annual temperature in Skåne is around 7.2˚C. The 

average annual precipitation measured is roughly between 500-700mm.  

Climate Change Projections in Skåne, Sweden 

Average temperatures in Europe are continuing to increase, with warming rates found to be most 

prevalent in the high latitudes of Northern Europe (IPCC, 2014a). Scandinavia has been 

experiencing some of the strongest warming since the 1980s, especially during the winter months 

(IPCC, 2014a). Precipitation rates have also been increasing in Northern Europe (IPCC, 2014a). 
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It is important to acknowledge that climate is changing and to understand how it will change in 

order for railways to be more resilient. 
  
The Swedish Meteorological and Hydrological Institute (SMHI) provides climate data and 

projections for Sweden. In 2015, they released a report describing the current and future climate 

scenarios in Skåne based on observations and modelling (SMHI, 2015). The climate projections 

are based on the Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios. An 

RCP scenario is a greenhouse gas concentration trajectory that was adopted by the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014b). RCP8.5 represents a high 

emissions scenario, while RCP4.5 represents an intermediate effort to curb greenhouse gas 

emissions. Historically, between 1961-1990, the annual average temperature in Skåne was 

around 7.2˚C. At the beginning of the 2000s, there was 1-2 degrees increase experienced 

throughout Skåne, and projections show an additional 2-4 degrees increase towards the end of 

the century under the RCP4.5 scenario or 4-6 degrees under the RCP8.5 scenario. Winters have 

become milder over the past 23 years and this trend is predicted to continue in the future. Summer 

temperatures are also expected to continue to increase in the future. The report also discusses 

heat waves, where the number of consecutive days above 20˚C is expected to increase, with 

areas in the north of Skåne being affected the most (SMHI, 2015). 
  
Under the RCP4.5 scenario, precipitation is expected to increase around 15% by the end of the 

century compared to the average annual rainfall of 748mm in Skåne during 1961-1990 (SMHI, 

2015). Currently, during the winter months, precipitation falls mostly as rain but also occasionally 

as snow. Precipitation amounts are expected to increase, and due to the expected temperature 

increase, it is predicted that less precipitation will fall as snow. In the summer, precipitation is also 

expected to increase slightly, but not as much as winter months. In comparison, the RCP8.5 

scenario predicts a 25% increase in precipitation (SMHI, 2015). With the expected increase in 

precipitation due to climate change across Skåne, it is expected that the number of days with 

more than 10mm of precipitation, which can lead to flooding, will also increase, with the greatest 

increase found in the north of Skåne (SMHI, 2015). 
  
Based on the 2015 SMHI report, it is evident that the climate is continuously changing, and 

therefore it is important to understand how this will shape the operating conditions for the railway 

industry. Although the report is focused on future climate change, it also mentions how climate 
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has already been significantly changing since the year 2000, further reiterating the reasoning for 

choosing 2008-2019 as the study period.  

2.2 Literature Review 
Bryman (2012) highlights the importance of searching through existing literature and writing a 

literature review once the research questions have been identified. The main tasks of a literature 

review include reviewing studies and theories in order to gain a foundation and understanding of 

the studies and literature that have already been conducted in the specific field of interest. The 

main intent of reading through the existing literature is to be able to recognise what has already 

been established in this area, what methods have been used, and what theories and concepts 

are relevant to the individual study. Additionally, a literature review allows for distinguishing any 

inconsistencies, controversies, and to identify any gaps in the research. 
  
Accordingly, the literature is used to understand what past research has been done and what is 

already known within this field of research. Additionally, the literature review gave inspiration for 

what quantitative methods could be used and how the research could be conducted in order to 

answer the research questions. Lastly, the literature review served as an important piece of 

understanding climate change projections in Skåne, in order to infer how the results will change 

in the future.  
 

Literature for this thesis was found mainly using the Aalborg University (AAU) and Lund University 

(LU) Library databases. Within these databases the Journal of Transport Geography, Natural 

Hazards, Transport Policy, and Transportation Research A, D, E, and Procedia were the most 

frequently used journals to look for articles. Furthermore, some papers were already found during 

the author’s internship at Lund University from September-November 2020, and some additional 

resources were provided by the collaborating partner. Keywords that were used when searching 

through articles in the database included: railways, delays, weather, climate, temperature, 

precipitation, flooding, climate change, and adaptation. Once the initial list of relevant literature 

was established, the reference list for each paper was also searched, and if a reference was 

recognised in multiple papers’ reference lists and literature reviews then that paper was flagged 

as one of importance to read.  
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2.3 Datasets 
The analysis used in this thesis was based on a database containing two main datasets. The first 

dataset included all train movements in Skåne between 2008 and 2019. It includes the date, train 

mission, station name, station signature, the type of delay, scheduled arrival time, actual arrival 

time, and the duration of the delay. The two types of delays studied in this thesis are dwell and 

run delay. This dataset was obtained by Trafikverket and covers over 40,637,498 passenger train 

passages (Figure 6).  
 
The second dataset includes historical meteorological observations of precipitation, minimum 

temperature, maximum temperature in Skåne which was downloaded from SMHI on February 5, 

2021 (SMHI, 2021). Stations decommissioned before 2008 were not included (Table 1). It is also 

important to note that there were some discrepancies in the weather data when during some 

hours or days data was not collected, which resulted in a NULL value. NULL values were filtered 

out from the main dataset worked with. In addition, for unknown reasons there are more 

precipitation stations commissioned compared to air temperature stations. Only passenger trains 

were included in this analysis due to the differences in timetable planning, and traffic control 

between passenger trains and service and freight trains (Palmqvist, Olsson, & Hiselius, 2017b).  

 
Table 1. Overview of the Weather Data Downloaded 

Weather Variable Unit Number of 
Observations 

Observation 
Frequency 

Number of 
Weather Stations 

Minimum Temperature ˚C 1,810,677 Hourly 20 

Maximum Temperature ˚C 1,810,677 Hourly 20 

Precipitation  mm 311,051 Daily 51 

 
Since trains are often travelling long distances, they travel through various weather conditions 

(Palmqvist, Olsson, & Hilelius, 2017b). In order to account for this and since the locations of 

meteorological observation stations typically differ from the train stations, an algorithm was 
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created which matches each train station to the nearest meteorological station (Palmqvist, 

Olsson, & Hileius, 2017b).  
 

To manage these datasets, the Azure Data Studio database tool was used. Azure Data Studio 

uses Structured Query Language (SQL) to manage the databases. SQL is a domain-specific 

language which is used in programming and to manage data in database management systems. 

In this thesis Azure Data Studio was used to combine the original 40+ million passenger train 

observations with weather data to create one dataset containing 13,576,723 rows of information 

(Figure 6), including date, train mission, station signature, the type of delay, the size of delay, a 

binomial system to indicate if there was a delay, and all weather variables over 1, 7, 14, 21, and 

28 days. 3,621,851 of the observations were dwell delays and 9,954,872 were run delays (Figure 

6). These time periods were chosen as they are multiples of 7 which also coincide with one day, 

week, two weeks, and one month. These time periods help understand the effects of events such 

as intensive precipitation, heatwaves, and cold snaps on delays by analysing what was the sum 

of precipitation, minimum temperature, and maximum temperature 1, 7, 14, 21, and 28 days 

before a delay. Longer time periods allow for more understanding of the effects of extreme 

precipitation, heat, and cold on rail delays.  
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Figure 6. Data Collection Process. From original weather and delay observations to one table entitled 

weather_delays_4 which was processed in SQL and used for regression modelling in R Studio 

 

2.4 Graphical Evaluations  
The probability of both a run delay and dwell delay under each recorded weather variable was 

calculated using Azure Data Studio. Using the weather_delays_4 table in Azure Data Studio the 

probability of a dwell and run delay was calculated for each sum of precipitation, minimum 

temperature, and maximum temperature value observed over 1, 7, 14, 21, 28 days. Next, these 

tables were exported into Microsoft Excel. The number of observations differed for each value, 

for example there were more observations of 10˚C than for -19˚C. Therefore, in Excel the 

probability was converted to cumulative probability. Lastly, cumulative probabilities were plotted 

against each weather variable for each time period in order to visually analyse the trends and 

therefore relationship between weather and delays.  
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2.5 Regression 

Both multiple linear and multiple logistic regressions were used in order to determine the statistical 

relationship between weather and delays. A regression in simple terms is a statistical model that 

analyses the relationship between a response variable and one or more predictor variables and 

their interactions (James, et al., 2013). The independent, or predictor variables are the weather 

variables, while the delays are the dependent or response variables. R Studio was used to run 

both the multiple linear regressions and multiple logistic regressions. R Studio is an open-source 

software which uses the R programming language to perform descriptive statistical analyses.  

2.5.1 Multiple Linear Regression 

A multiple linear regression model generally explains the relationship between multiple predictor 

or independent variables and one dependent or response variable (James, et al., 2013). A 

dependent variable is modeled as a function of multiple independent variables with corresponding 

coefficients (James, et al., 2013). With a linear regression modelling several important questions 

are being asked: what is the relationship between weather and passenger train delays? How 

strong is this relationship? And how accurately can the weather variables predict train delays? 

The standard equation for a multiple linear regression is:  
 
                                                Y = β0 + β1𝑥1 + β2𝑥2 + ... + βn𝑥n + ε                                                  (1) 

 

Where β0 and βn represent two unknown constants which indicate the intercept and slope terms 

in a linear model. Additionally, 𝑥n represents the predictor variables and Y is the response variable 

which is predicted on the basis of 𝑥 (James, et al., 2013).  

 

In a multiple linear regression, the null hypothesis indicates that there is no relationship between 

the independent and dependent variables (James, et al., 2013): 

                               H0 : β1 = 0                                                                   (2) 

Versus the alternative hypothesis, which indicates that there is a relationship between the 

independent and dependent variables (James, et al., 2013):  

                               H0 : β1 ≠ 0                                                                     (3) 

The variables used in this multiple linear regression model are summarised in Table 2 below. 
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Table 2. Summary of the Variables in the Multiple Linear Regression Model (4) 

Variables Values Description 
Dwell or Run Delay Y Size of the delay in minutes 

 
 

Sum of Precipitation_1 𝑥1 The sum of precipitation over 
1 day in mm 
 

Sum of Precipitation_7 𝑥2 The sum of precipitation over 
7 days in mm 
 

Sum of Precipitation_14 𝑥3 The sum of precipitation over 
14 days in mm 
 

Sum of Precipitation_21 𝑥4 The sum of precipitation over 
21 days in mm 
 

Sum of Precipitation_28 𝑥5 The sum of precipitation over 
28 days in mm 
 

Minimum Temperature_1  𝑥6 Minimum temperature over 1 
day in ˚C 
 

Minimum Temperature_7 𝑥7 Minimum temperature over 7 
days in ˚C 
 

Minimum Temperature_14 𝑥8 Minimum temperature over 
14 days in ˚C 
 

Minimum Temperature_21 𝑥9 Minimum temperature over 
21 days in ˚C 
 

Minimum Temperature_28 𝑥10 Minimum temperature over 
28 days in ˚C 
 

Maximum Temperature_1 𝑥11 Maximum temperature over 1 
day in ˚C 
 

Maximum Temperature_7 𝑥12 Maximum temperature over 7 
days in ˚C  
 

Maximum Temperature_14 𝑥13 Minimum Temperature over 
14 days in ˚C 
 

Maximum Temperature_21 𝑥14 Minimum Temperature over 
21 days in ˚C 
 

Maximum Temperature_28 𝑥15	 Minimum Temperature over 
28 days in ˚C 
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Two multiple linear regression models were run in this thesis. One for dwell delay and one for run 

delay with the predictor variables of the sum of precipitation, minimum temperature, and maximum 

temperature over 1, 7, 14, 21, and 28 days. The summary of this model is presented in the 

following equation 

 

Y = β0+β1𝑥1+β2𝑥2+β3𝑥3+β4𝑥4+β5𝑥5+β6𝑥6+β7𝑥7+β8𝑥8+β9𝑥9+β10𝑥10+β11𝑥11+β12𝑥12+β13𝑥13+β14𝑥14+ 

β15𝑥15+ε                                                                                                                                       (4) 
 
Where Y is the size of dwell or run delay in minutes, βi is the slope associated with each predictor 

variable (𝑥i), and β0 is an intercept in the evaluated model.  

2.5.2. Multiple Logistic Regression 

In addition to a multiple linear regression model, a multiple logistic regression model was also 

performed in order to compare against graphical evaluations and determine the best suited model 

for this thesis. Logistic regressions are used to model the probability that the response variable 

(Y) belongs to a particular category rather than modeling the response of the response variable 

(Y) directly (James, et al., 2013). The response variable is dichotomous, coded as 1 in the 

presence of an outcome of interest, or 0 in the absence of the outcome of interest. The general 

logistic regression model which predicts the log of outcome Y is described in the formula below  
 

                                              log(Y) = * ("(#)
%&"(#)

+ = β0 + β1𝑥1 + β2𝑥2 + ... + βn𝑥n                                  (5) 

 
Here the coefficients βi for the two category predictors is estimated by the maximum likelihood 

and are defined by the odds * ("(#)
%&"(#)

+ The odds describe the likelihood of the occurrence of an 

event and is expressed as the probability of an occurrence versus the event not occurring. The 

odds were used to calculate the odds ratio, which is the ratio of one odds against the other. 

Equation 1 from the linear regression model is very similar to equation 5 here with the added log. 

Compared to the linear regression model where βi indicates the average change in Y associated 

with a one-unit increase in X; a logistic regression infers that increasing X by one unit will change 

the log odds by βi (James, et al., 2013). In simpler terms it multiplies the odds by eβi.  
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Similarly, to the multiple linear regression the null hypothesis indicates there is no relationship 

between the predictor variables and response variables (James, et al., 2013). While the 

alternative hypothesis suggests there is a relationship between the two types of variables (James, 

et al., 2013). The variables used in this multiple logistic regression model are summarised in Table 

3 below. 
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Table 3. Summary of the Variables in the Multiple Logistic Regression Model (7) 

Variables Values Description 

Dwell or Run Delay  𝑌 -0	1  
    

No dwell or run delay 
Dwell or run delay present 

Sum of Precipitation_1 𝑥1 The sum of precipitation over 
1 day in mm 

Sum of Precipitation_7 𝑥2 The sum of precipitation over 
7 days in mm 

Sum of Precipitation_14 𝑥3 The sum of precipitation over 
14 days in mm 

Sum of Precipitation_21 𝑥4 The sum of precipitation over 
21 days in mm 

Sum of Precipitation_28 𝑥5	 The sum of precipitation over 
28 days in mm 

Minimum Temperature_1 𝑥6	 Minimum temperature over 1 
day in ˚C 

Minimum Temperature_7 𝑥7	 Minimum temperature over 7 
days in ˚C 

Minimum Temperature_14 𝑥8	 Minimum temperature over 
14 days in ˚C 

Minimum Temperature_21 𝑥9	 Minimum temperature over 
21 days in ˚C 

Minimum Temperature_28 𝑥10	 Minimum temperature over 
28 days in ˚C 

Maximum Temperature_1 𝑥11	 Maximum temperature over 1 
day in ˚C 

Maximum Temperature_7 𝑥12	 Maximum temperature over 7 
days in ˚C 

Maximum Temperature_14 𝑥13	 Maximum temperature over 
14 days in ˚C 

Maximum Temperature_21 𝑥14	 Maximum temperature over 
21 days in ˚C 

Maximum Temperature_28 𝑥15	 Maximum temperature over 
28 days in ˚C 
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Two multiple logistic regression models were run in this thesis. One for dwell delay and one for 

run delay with the predictor variables of the sum of precipitation, minimum temperature, and 

maximum temperature over 1, 7, 14, 21, and 28 days. The summary of this model is presented in 

the following equation 
 

log(Y)=* ("(#)
%&"(#)

+=β0+β1𝑥1+β2𝑥2+β3𝑥3+β4𝑥4+β5𝑥5+β6𝑥6+β7𝑥7+β8𝑥8+β9𝑥9+β10𝑥10+β11𝑥11+β12𝑥12+β13𝑥13

+β14𝑥14+ β15𝑥15                                                                                   

                                                                                                                                                    (7) 

 

Where Y is represented as the probability of a delay to occur, βi is the change in the log odds 

associated with each predictor variable 𝑥i, and β0 is an intercept in the evaluated model. In this 

model Y is coded as either 1, the presence of a dwell or run delay, or 0, the absence of a dwell 

or run delay.  
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3.0 Scope of the Thesis 
The climate in Skåne has be changing since the 2000s and is expected to continuously change 

in the future (SMHI, 2015). Although railways play a great role in supporting a modal shift towards 

more sustainable transportation, their infrastructure and systems are already vulnerable to 

changes in weather and are becoming more vulnerable due to climate change. This vulnerability 

in turn impacts the ability of trains in Skåne to arrive to stations on time and calls for railways to 

increase their resilience. In addition, there is less of a comprehensive research focus on the 

impacts of weather and climate on railways compared to other sectors, such as air or road 

(Aparicio, et al., 2013). Therefore, it is important to understand the relationship between weather 

and rail delays to highlight the current challenges Skåne railways face in maintaining punctual 

operations, and therefore understand how to ensure railways are more resilient to disruptions in 

the future.  

3.1 Resilience Thinking 

For the past 40 years, resilience has been a topic of research and discussion used in many 

different fields with many different definitions (Fleming & Ledogar, 2008). Even within a field, there 

is variation in how resilience is used and defined (Fleming & Ledogar, 2008). There are over 70 

different definitions of resilience found in the literature, and they mostly revolve around a cycle of, 

“disruption, response, absorption, recovery, and learning” (Chan, & Schofer, 2016, p. 05015004-

1). Table 4 below tries to highlight some of the variations amongst and within the different fields.  
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Table 4. Various Fields of Research and How They Define/Use Resilience 

Field of Research  Definition  

Psychology and 

Psychiatry  

• Having a positive adaptation to something despite enduring 
adversity (Fleming & Ledogar, 2008). 

Engineering 

 
 

• A resilient system is one that has an elastic response to 
external forces (Chan & Schofer, 2016).  
 

• A resilient engineered system is one that can bounce back 
from a disruption (Chan & Schofer, 2016). 

Governments 

responsible for 

infrastructure 

resilience  

• A resilient system is one that can bounce back stronger after a 
disruption with redundant and diverse designs in an effort to 
reduce the exposure to risk (Chan & Schofer, 2016). 

 
• Resilience includes mitigation of the impact of disruption 

through absorption, adaptation, and recovery (Chan & 
Schofer, 2016). 

National Security  • Resilience is the ability to be prepared and adapt to changes 
and the ability to withstand and recover from deliberate 
accidents, attacks, threats, or incidents quickly (Chan & 
Schofer, 2016). 

The IPCC  • “A resilient system is one that can cope with hazardous events 
through response, adaptation, and learning” (Chan & Schofer, 
p. 05015004-2). 

Transportation  • The ability of a system to bounce back from a disruption (Chan 
& Schofer, 2016). 
 

• Coping preservation and capacity of tactical options after a 
disruption (Chan & Schofer, 2016).   

 
• The UK Department of Transportation defines resilience as 

“the ability of the transport network to withstand the impacts of 
extreme weather, to operate in the face of such weather, and 
to recover promptly from its effects” (Diab & Shalaby, 2020, p. 
658).   

The United Nations • “The ability of a system, community or society exposed to 
hazards to resist, absorb, accommodate to, and recover from 
the effects of a hazard in a timely and efficient manner, 
including through the preservation and restoration of its 
essential basic structures and functions” (Bešinović, 2020, 
p.460). 
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Although there are many different definitions and applications of resilience, it is evident that a 

resilient system can return to its original state to some extent, after a disruption in a positive way. 

The focus of this thesis is on resilience thinking within the transportation sector.  

3.1.1 Resilience in the Transportation Sector 

Transportation is a type of critical infrastructure that is essential for the functioning of an economy 

and society (Bešinović, 2020). As transportation demands increase, the amount of congestion in 

railway networks is becoming more complicated to operate (Bešinović, 2020). As a result, urban 

mobility is becoming more fragile to unexpected changes in the network (Bešinović, 2020). Such 

changes may include disruptions due to weather, engineering works, infrastructure faults, 

disturbances due to daily variations in the operations, or disasters such as earthquakes or floods 

(Bešinović, 2020). Although it is recognised that transportation management and planning should 

improve their ability to bounce back from disruptions, disturbances, and disasters it is still 

challenging to determine how to address and identify the appropriate measures (Bešinović, 2020). 

This is mostly due to the lack of quantitative research to understand the effect these factors have 

on transportation (Bešinović, 2020). Weather is an important factor to look at because it is closely 

related to other factors such as infrastructure faults. For example, if it is extremely hot the track 

may buckle leading to a delay caused by weather which then impacts infrastructure. In countries 

such as the Netherlands, an increase in transportation demand has been leading to an increase 

in both the number of disruptions and the total duration of those disruptions (Bešinović, 2020), 

and it can be expected that other countries see a similar trend; therefore, highlighting the 

importance of considering resilience. The transportation system also consists of many 

subsystems; and sometimes one subsystem is able to cover for another subsystem and to some 

extent even reduce vulnerability (Mattsson & Jenelius, 2015). For instance, when the ashes of 

the 2010 volcanic eruption, Eyjafjallajökull, brought air traffic in Northern Europe to a halt, the 

road and rail transport systems provided an alternative option for many travellers (Mattsson & 

Jenelius, 2015).  

 

There are fewer studies with a focus on the resilience of railways compared to other modes of 

transportation (Bešinović, 2020), which is something this thesis attempts to address and aims to 

fill this gap. For the purpose of this thesis, resilience thinking is narrowed down to uses related to 

railways. Additionally, this thesis uses Bešinović (2020)’s definition of the resilience of a railway 

transportation system, which is defined as “the ability of a railway system to provide effective 

services in normal conditions, as well as to resist, absorb, accommodate, and recover quickly 
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from disruptions or disasters” (Bešinović, 2020, p. 461). The disruptions that are considered in 

this thesis are those related to weather, specifically temperature and precipitation. Figure 7 

highlights the resilience of a railway transportation system.  

 

 
Figure 7. The Resilience of a Railway Transportation System (Bešinović, 2020) 

 

The figure above indicates how a disruption event moves through a resilient railway transportation 

system as described by Bešinović (2020). Vulnerability is often referred to by how susceptible a 

system is to a disruption. Related to vulnerability is robustness, which has a more specific 

definition in railway infrastructure compared to other transportation modes. It can be defined as 

the “ability to mitigate from various everyday delays caused by disturbances'' (Bešinović, 2020, 

p. 461). Survivability is the ability of a system to move from a normal state to a disrupted one in 

a steady manner. The system can fail either completely all at once (for example a power outage 

resulting in all electrified trains to come to a halt), or the system can fail gradually, slowly reaching 

its disrupted state. The response is typically known as the set of actions that are taken 

immediately after a disruption in order to provide the best possible service during the disruption, 

it may be ensuring public safety, providing alternative travel routes, etc. Lastly, recovery refers 

to the ability and the amount of time it takes the system to return to its original state. Depending 

on the type of disruption some stages may be completely omitted, or some may be prolonged.  
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Bešinović (2020) also describes two different methods to measure resilience: topological and 

system-based. Topological metrics emerge in complex network theory. Commonly, this is done 

by looking into the topological structure of a network and assessing its structural characteristics 

and assuming a failure of one component in the disrupted network while ignoring all the dynamic 

features within the system. On the other hand, system-based metrics have been receiving more 

attention lately as they overcome the limitations of graph methods by representing the supply and 

demand of a system and the system’s response to a disruption and recovery from it. There are 

also four approaches to quantify resilience: data-driven, topological, simulation, and optimisation. 

Data-driven approaches use statistical methods to quantify the effects of a disruption that occurs 

on a transportation system. An example is quantifying the weather-related disruptions in a railway 

network. Topological approaches use complex network theory to assess different nodes 

individually in a system, for example when studying the vulnerability of metro networks in various 

cities. A simulation approach uses similar metrics as in topological approaches but also uses 

performance indicators in order to evaluate a network’s performance in a stochastic environment. 

Methods used for identifying link vulnerability from the perspective of passengers is an example. 

Lastly, optimisation approaches use mathematical optimisation models in order to assess the 

resilience of railway networks, for example when determining the most critical elements in a 

network.   

3.1.2. How Resilience is Used in This Thesis 

It is evident that there are many different definitions of resilience and that it is used differently 

depending on the field or even within a specific field. Chapter 3.1.1 highlighted the ways resilience 

can be quantified and measured within the transportation sector and outlined the definition of 

resilience that will be used for this thesis. The disruptions that are studied in this research are 

those related to temperature and precipitation. First, it is important to quantify the past effects of 

weather on the railway system to get a better understanding of the baseline. Then we can learn 

from the past to better prepare for the future back on the climate change projections in Skåne.  

 

This thesis uses the system-based metrics and quantifies resilience using the data-driven 

approach as described in Chapter 3.1.1 to frame the analysis in Chapter 4.0. Fewer studies focus 

on the resilience of railways compared to other modes of transportation (Bešinović, 2020). 

Therefore, the analysis of this thesis aims to evaluate resilience based on the past precipitation 

and temperature conditions using system-based metrics and a data-driven approach. In 

passenger railway networks the performance is typically evaluated based on the trains service 
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adaptations and/or passenger discomfort or changes (Bešinović, 2020). To accomplish this many 

studies in the past have focused on measuring transport capacity, or cancellations and delays 

that were imposed on both rail operators and passengers (Bešinović, 2020). In this thesis, the 

dwell delay and run delay times due to the disruptions caused by temperature and precipitation 

are measured. Bešinović (2020) highlighted the importance of using more system-based metrics 

to capture the effects on transportation in order to obtain a more accurate assessment of 

resilience. Moreover, in order to quantify the resilience, a data-driven approach is taken. This is 

achieved by using regression modelling to derive the statistical relationship between the weather 

variables studied and the delays. Here the aim is to quantify the effects of weather disruptions on 

the railway network in Skåne, Sweden.  

3.2 Previous Research on Punctuality and Climate  

As mentioned, this thesis studies the effects of weather on rail delays in Skåne as weather-related 

research should gain more attention especially as the effects of climate change are becoming 

more understood (Bešinović, 2020). The following sub-chapter will highlight what is already known 

about this study area and how it applies to this research. First this sub-chapter will discuss the 

overall issue of punctuality and delays and then move into how weather can affect delays.  

3.2.1 Punctuality and Train Delays  

As previously mentioned, multiple factors impact the punctuality of railways. The focus of this 

thesis is the weather, but it is important to take into consideration that other aspects may influence 

delays such as infrastructure faults, passenger behaviour, disturbances due to operational issues. 

Additionally, various aspects may influence delays together. For instance, extreme low 

temperatures may disturb the rail infrastructure by causing track separation and brittle tracks (Xia, 

et al., 2013). This in turn leads to a daily problem caused by both weather and maintenance 

issues.  

 

The two types of delays analysed in this thesis are dwell delays and run delays, which refer to the 

delays that occur when a train is waiting at a station and when it is moving from one station to 

another, respectively. However, it is important to note some other types of delays that may occur 

when there is a run or dwell delay. For example, a knock-on delay which occurs when trains are 

close to one another and so if one train is delayed it can easily spread to others (Palmqvist, 2019). 
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This can have serious implications on passengers commuting to work or trying to catch a 

connecting train.  

 

Palmqvist, Olsson, & Hiselius (2017b) studied various influencing factors that affect passenger 

train punctuality in Sweden. They looked at weather, timetable planning, operational, and 

infrastructure factors. Weather is dependent on the geography of the area being studied, and 

therefore the weather variables which have the greatest impact on delays can vary between study 

areas; additionally, findings regarding weather will be addressed later in this sub-chapter. 

Timetable errors resulted when planning was insufficient; for instance, scheduling run and dwell 

times that are too short. On an operational level, the boarding and alighting of passengers during 

dwell times in congested areas can play a role in delays. Infrastructure failures also play a role in 

the delays. A study by Økland and Olsson (2020) concluded that low temperature, snowfall, 

reduced train lengths, and an increased volume of train services were the most influential factors 

on punctuality on Norwegian railways between 2005-2014. These factors differed from the original 

study conducted by the authors between 2005-2009 which highlighted an increased error in rolling 

stock and infrastructure, extensive work close to tracks due to maintenance, and the inability to 

display consistent punctuality even under normal weather conditions. Additionally, the paper 

considered factors from other studies that affect punctuality such as passenger behaviour, speed 

restrictions, and development close to tracks (Økland & Olsson, 2020). Overall, based on the 

literature review to explore which factors influence rail delays it is evident that there are many 

different factors; and they can all play a role in delays together but really independently (Olsson 

& Haugland, 2004).  

 

In order for railways to be more punctual Palmqvist (2019) offers some suggestions, including 

removing switches so the chance of failure is lower, and the remaining switches can be 

maintained more easily, adding marking on platforms to indicate where passengers to wait in 

order to speed up the boarding progress, therefore decreasing dwell times, and to adapt railways 

to cope with today’s weather variations and future climate change. Therefore, based on these 

suggestions, this thesis chooses to tackle the impact of weather. The above displays how complex 

the field of punctuality is, and that many studies are revolving around the issues related to 

punctuality. Many factors influence punctuality, and many of these factors are related. As 

mentioned, this thesis focuses on weather alone, however it is important to note the complexity 

and interrelatedness between other factors that impact punctuality (Økland & Olsson, 2020; 

Olsson & Haugland, 2004). This thesis now moves forward with the focus on the effects of weather 
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on railways. Weather is chosen as railways are sensitive to disruptions and if they are unable to 

operate under the weather conditions of today it is likely that this will worsen as climate change 

progresses to more extreme weather events and conditions.  

3.2.2. The Effects of Weather on Railways 

There are many ways that weather can influence railways which ultimately lead to delays. It is 

important to note that geography has an impact on which weather phenomena are predominantly 

present in an area and how that influences the railway network in that area. The main quality 

dimensions for railway transportation include accuracy, reliability, and safety (Leviäkangas, et al., 

2011). Extreme weather phenomena may threaten the high level of service railway operators aim 

for because of the impacts and consequences that affect these three dimensions (Leviäkangas, 

et al., 2011). The figure below highlights the impacts, consequences to infrastructure/operations, 

and traffic implications that various weather phenomena have (Ochsner, 2021). The figure also 

includes how weather events are related to the safety and maintenance of railways; however, the 

focus of this thesis is the relationship between weather and delays which can ultimately influence 

customer satisfaction and ridership rates. In addition, the figure shows how connected some 

weather phenomena are to others, for instance, how a blizzard results in both snowfall and wind 

gusts.  
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Snowfall can lead to various cascading triggers. On its own, it can accumulate on the track and 

make it difficult for rails to pass through (Ochsner, 2021). A blizzard is defined as a combination 

of snowfall, low temperatures, and wind gusts which can lead to snowdrifts, icy conditions, and 

low visibility (Leviäkangas, et al., 2011). This combination can lead to severe winter storms which 

can shut down rail traffic for a significant amount of time (Leviäkangas, et al., 2011). Intensive 

rainfall can lead to flooding of rail tracks (Leviäkangas, et al., 2011). It can also lead to poor 

visibility resulting in trains having to move at slower speeds (Leviäkangas, et al. 2011). Wind gusts 

are mainly associated with storms, heavy rainfall, blizzards, etc. (Leviäkangas, et al., 2011). Wind 

can result in falling trees or other debris which can block rail tracks or can even result in electricity 

failures during major storms which can cut off telecommunication services (Leviäkangas, et al., 

2011; Lindgren, Jonsson, & Carlsson-Kanyama, 2009). Freezing temperatures can result in the 

formation of ice on rail tracks leading to slippery conditions and trains having to operate at slower 

speeds, or even track breakages (Oslakovic, et al., 2013). Ice formation can also occur on 

equipment such as overhead lines, contact wires, switch boxes, etc. resulting in malfunction 

Figure 8. “Different weather phenomena and their impacts, consequences, and traffic implications for railways. Figure 
adapted from: Kreuz, et al., 2012” and further adapted to fit this region (Ochsner, 2021). 
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(Oslakovic, et al., 2013). Regarding extreme high temperatures, the main consequences of 

railway infrastructure are overheating (Dobney, et al., 2009; Ochsner, 2021). When the track 

becomes too hot it runs the risk of buckling; a track buckle is defined as a misalignment in the 

track which is serious enough to cause a derailment (Dobney, et al., 2009). High temperatures 

may also lead to the overheating of equipment which can lead to malfunctions and consequently 

delays, or even fire (Lindgren, Jonsson, & Carlsson-Kanyama, 2009). Extreme high temperatures 

can also spark a fire in dense vegetation or fallen trees around the railway tracks (Lindgren, 

Jonsson, & Carlsson-Kanyama, 2009).  

 

In the past, there has been a greater focus on the effects of weather on the road sector, but more 

attention should be given to the railway sector (Zakeri & Olsson, 2018). As highlighted in Figure 

8 above, there are many ways in which weather can lead to a railway delay. With climate change 

leading to predictions of warmer temperatures and more precipitation the railway’s sensitivity to 

weather is expected to become worse (Armstrong, Preston, & Hood, 2017). Although various 

weather variables were discussed in this chapter this thesis is focusing on precipitation and 

temperature alone. Precipitation includes snowfall and rainfall but not the amount of precipitation 

accumulated on the ground. Wind and snow depth were originally considered but given the 

physical geography of Skåne, the focus shifted towards precipitation and temperature 

only. Average temperature was also first considered but the focus shifted to minimum and 

maximum temperatures in order to better understand the effects of extreme temperatures on 

railways.  

 

Zakeri & Olsson (2018) studied the effects of severe weather conditions on delays and punctuality 

in Norway between 2007 and 2016 and concluded that harsher winters resulted in more delays 

compared to more mild winters, and that snow depth is the main weather variable that best 

explains daily and weekly punctuality variations. Ling et al. (2018) found that rail delay times in 

China are strongly correlated with bad weather and that these delays are most likely to occur 

during rainfall or snowfall. Chen, Wang, & Zhou (2021) concluded that the increasing amount of 

severe weather in more recent years has resulted in more challenges for transportation systems 

when researching the impact of severe weather conditions on high-speed rail and aviation in 

China. Palmqvist, Olsson, & Hiselius (2017b) concluded that in Sweden when temperatures fall 

below 0˚C, punctuality decreases exponentially. Brazil et al. (2017) studied the effects of weather 

conditions in Dublin and concluded that rain is the main delay factor. Zakeri & Olsson (2017) 

investigated the role weather conditions play on the performance of railways in Norway and 
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highlighted the strong correlation between harsh winter conditions with extreme cold temperatures 

and punctuality. Diab & Shalaby (2020) studied the impact of outdoor track segments of the metro 

system in Toronto, Canada and concluded that the amount of snow on the ground and rainfall 

lead to more service interruptions. A study by Forzieri, et al. (2018) found that damage from heat 

waves, droughts, flooding, windstorms, and forest fires is expected to increase across Europe 

and with that requires higher costs of adaptation.  

 

Some studies focused on the impact of one specific weather variable. For instance, Bubeck, et 

al., 2019 focused on the impacts of climate change on flood risk around Europe and concluded 

that currently the annual damage of flooding on railways in Europe is currently €581 million per 

year. This is expected to increase by 310%. Lastly, Dobney et al. (2009) quantified the effects of 

high summer temperatures related to climate change on rail buckling and consequently delays in 

the UK. They concluded that the number of buckles and therefore rail delays per year will increase 

if tracks are maintained to their current standard.  

 

As seen in this literature review, numerous studies have occurred globally on the effects of 

weather on rail delays. They emphasise that weather today already plays a role in increasing the 

number of delays and that with climate change this is expected to worsen. Few have focused on 

Southern Sweden, and few investigate weather over a range of time-periods, as this thesis 

attempts to do. 
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4.0 Analysis Results 
The analysis results are presented in the following chapter. First, the probability of a run or dwell 

delay is plotted against each weather variable for each of the five time periods. This is done in 

order to visualise the relationships and trends first that will help interpret the regression results in 

the next step of the analysis. A total of four regression models with 15 different independent or 

predictor variables were run against two different dependent or response variables. The predictor 

variables correspond to the minimum and maximum temperature, and the sum of precipitation 

over 1, 7, 14, 21, and 28 days while the response variables are dwell delays or run delays. Two 

multiple linear regression models and two multiple logistic regressions models were run. The 

results from these graphical evaluations and the four regressions are presented in this chapter.  

4.1 Graphical Evaluation Results 

The probability of a run delay and of a dwell delay was plotted against the sum of precipitation, 

minimum temperature, and maximum temperature over 1, 7, 14, 21, and 28 days in order to 

visualise the trends and where problems may occur. The probabilities were calculated in Azure 

Data Studio and then exported into excel files where they were plotted.  
 

4.1.1 Sum of Precipitation  
The following figures indicate the relationship between the sum of precipitation over 1, 7, 14, 21, 

and 28 days and the probability of a dwell or run delay.  
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Dwell Delay Probabilities for Precipitation  

 
Figure 9. The Probability of a Dwell Delay for a Given Sum of Precipitation over 1 Day 

Based on Figure 9 above, the of precipitation over one day ranges from 0mm-60mm. First the 

probability at 0mm shows a higher probability and then immediately dips down. Then the trend 

shows an increase of the probability of a delay as precipitation increases and eventually levels 

off. However, as it can been in figure 9 above that the increase in probability of dwell delays is 

very minimal.  

 

 
Figure 10. The Probability of a Dwell Delay for a Given Sum of Precipitation over 7 Days 
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Figure 10 above shows the probability of dwell delays when precipitation is summed over 7 days. 

Figure 2 shows a similar trend compared to Figure 9 with similar probabilities. Again, the trend 

shows a decrease first and then a gradual increase in the probability with precipitation increase. 

The range of precipitation values extends up to 125mm as 7 more days are added to the dataset. 

Between 0-20mm the trend appears to be more disordered, but this is minimal as the variation in 

the probability is minimal. The overall trends indicates that the probability of a dwell delay 

increases with the amount of precipitation cumulatively recorded over a 7-day period.  

 

 
Figure 11. The Probability of a Dwell Delay for a Given Sum of Precipitation over 14 Days 

In Figure 11 above, the first major difference compared to Figures 9 and 10 is that the probability 

axis shows lower values. The overall trend, however, indicates that dwell delay probability 

increases with the amount of cumulative precipitation, then decreases, but after increases again 

before slowly levelling out. As 7 more days are added, the precipitation values extend up to 

approximately 175mm.  
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Figure 12. The Probability of a Dwell Delay for a Given Sum of Precipitation over 21 Days 

Figure 12 above indicates a very similar trend to Figures 9-11, in that the probability of a dwell 

delay sharply increases with precipitation until around 50mm when it levels out. Here the 

precipitation ranges from 0-195 mm and the probability values include a wider range as well 

compared to Figures 9-11.  

 

 
Figure 13. The Probability of a Dwell Delay for a Given Sum of Precipitation over 28 Days 
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Figure 13 highlights that the probability of a dwell delay over 28 days has arguably the least steep 

slope. Additionally, this figure includes the most precipitation values ranging from 0-230mm. The 

probability of a delay at 0mm is roughly 18% before the probability sharply increases to just under 

22% with the next unit increase. The overall trendline matches Figures 9-12 in that precipitation 

has a positive relationship with dwell delays. This means that the more cumulative precipitation 

there is the higher probability there is for a dwell delay.  

 

Run Delay Probabilities for Precipitation   

 
Figure 14. The Probability of a Run Delay for a Given Sum of Precipitation over 1 Day 

Figure 14 above indicates first a decrease in probability with an increase in precipitation until 

about 3mm when the trendline then shows that the probability of a run delay increases with 

precipitation. Compared to the figures from dwell delay it can also be noted that the probabilities 

are lower. This is because, there are more scheduled run times compared to dwell times. This 

means that trains in Skåne are spending more time traveling between stations compared to the 

time spent at a station. Therefore, the chance of a dwell delay is higher as there are less values 

in the dataset. Again, the range of probability remains fairly small which indicates that the 

probability of a run delay does not significantly increase as precipitation increases.  
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Figure 15 The Probability of a Run Delay for a Given Sum of Precipitation over 7 Days 

The trend in Figure 15 above highlights that the probability of a run delay increases with 

precipitation. Similarly, to the other figures there are some fluctuations in the beginning of the plot 

where the probability decreases and increases again, however it eventually levels out to highlight 

the positive relationship between precipitation and the probability of a run delay.  

 

 
Figure 16 The Probability of a Run Delay for a Given Sum of Precipitation over 14 Days 

Once again, Figure 16 above highlights that the probability of a run delay decreases sharply, then 

sharply increases again, and finally levels out to indicate a slight increase in the probability of a 

run delay with an increase in precipitation.  
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Figure 17 The Probability of a Run Delay for a Given Sum of Precipitation over 21 Days 

Figure 17 above highlights that the probability decreases first before increasing similarly to 

Figures 14-16. Moreover, it shows that the more precipitation there is over 21 days the higher the 

probability of a run delay. At some point the probability levels out, only very slightly increasing.  

 

 
Figure 18 The Probability of a Run Delay for a Given Sum of Precipitation over 28 Days 

Figure 18 above first indicates that the precipitation over 28 days has one of the greater ranges 

of probability. This infers that there is most likely a greater impact of 28 days compared to other 

time ranges due to the greater amounts of precipitation accumulated over 28 days. The trend 

again shows a decrease first in the probability of a run delay as precipitation increases before an 

increase, and eventually almost levelling out.  
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4.1.2 Minimum Temperature  
The minimum temperature over 1, 7, 14, 21, and 28 days plotted against the probability of a dwell 

or run delay is highlighted in the following figures below.  

 

Dwell Delay Probabilities for Minimum Temperature 
Temperature is more complex to quantify the relationship with the probability of delays due to the 

negative and positive integers in the dataset. The minimum temperature is used to determine 

when temperatures are at their coldest. It is expected that there will be more delays when the 

temperatures are at their lowest. Additionally, it is expected that the longer period of time it is cold 

the more delays will occur. 

 

 
Figure 19 The Probability of a Dwell Delay for a Given Minimum Temperature over 1 Day 

Figure 19 above highlights the expected results to hold true for minimum temperature over 1 day. 

The lower temperatures are associated with higher probabilities. As temperature increases the 

probability decreases with it. However, the probability increases again slightly when temperatures 

get quite high. It can be expected that if the minimum temperature of one day is high, for instance 

above 20˚C, then that day was particularly hot and therefore heat can also cause issues with 

delays as discussed in Chapter 3.2.2.  
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Figure 20 The Probability of a Dwell Delay for a Given Minimum Temperature over 7 Days 

Figure 20 above indicates a negative relationship between the minimum temperature over 7 days 

and the probability of a dwell delay. The probability appears to be highest when the temperature 

is around -17˚C or -16˚C as opposed to -19˚C or -18˚C. However, overall, the figure highlights 

that the biggest problems with delays occur when it is cold, and the probability decreases as 

temperature increases. 

 

 
Figure 21 The Probability of a Dwell Delay for a Given Minimum Temperature over 14 Days 
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Figure 22 The Probability of a Dwell Delay for a Given Minimum Temperature over 21 Days 

 

 
Figure 23 The Probability of a Dwell Delay for a Given Minimum Temperature over 28 Days 

 
Figures 21-23 above show an almost identical trend as Figure 20 but with slightly different dwell 

delay probabilities. The overall trend indicates that there are more delays when it is extremely 

cold and as the temperature increases the probability of a dwell delay decreases.  
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Run Delay Probabilities for Minimum Temperature  
 

 
Figure 24 The Probability of a Run Delay for a Given Minimum Temperature over 1 Day 

Figure 24 above indicates that the probability of a run delay decreases as the minimum 

temperature increases. On the right hand of the figure, it shows that the trend is starting to slightly 

increase again as temperatures get extremely warm. This means that the most delays occur when 

it is extremely cold and extremely hot. Overall, the figure shows that temperatures below freezing 

cause the most issues with run delays.  
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Figure 25 The Probability of a Run Delay for a Given Minimum Temperature over 7 Days 

 

 
Figure 26 The Probability of a Run Delay for a Given Minimum Temperature over 14 Days 
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Figure 27 The Probability of a Run Delay for a Given Minimum Temperature over 21 Days 

 

  
Figure 28 The Probability of a Run Delay for a Given Minimum Temperature over 28 Days 

 
The trends over 7, 14, 21, and 28 days are very similar with the lowest temperatures having the 

largest probability of a run delay (Figures 25-28). Then the next three lowest temperatures 

recorded show some slight variation in probability but then the trend flattens out, slightly 

decreasing before starting to increase when temperatures are extremely hot. Overall, the trend 

appears to be negative; indicating that as temperature increases the probability of a run delay 

decreases.  
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4.1.3 Maximum Temperature  
The maximum temperature over 1, 7, 14, 21, and 28 days plotted against the probability of a dwell 

or run delay is highlighted in the following figures below.  

 

Dwell Delay Probabilities for Maximum Temperature 
Temperature is more complex to quantify the relationship with probability of delays due to the 

negative and positive integers in the dataset. The maximum temperature is used to determine 

when temperatures are the warmest.  

 

 
Figure 29 The Probability of a Dwell Delay for a Given Maximum Temperature over 1 Day 

 
Figure 29 above highlights the probability of a dwell delay over one day. Here the greatest 

probabilities are below freezing. Since the time period of this figure is just over 1 day it is very 

likely that the maximum temperature experienced over one day is below freezing on extremely 

cold days. The trend shows a big decrease in the probability between the two lowest temperatures 

and then shows that as temperature decreases so does the probability of a dwell delay. 

Eventually, the trend shows that the probability starts to increase as temperatures get above 

around 20˚C.  
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Figure 30 The Probability of a Dwell Delay for a Given Maximum Temperature over 7 Days 

Figure 30 above highlights that the probability of a dwell delay is highest when temperatures are 

below freezing and when they are approaching extreme heat. This trend shows more variation 

compared to Figure 29. This most likely indicates that a period of extreme cold or extreme heat 

over one week are more impactful on dwell delays.  

 

 
Figure 31 The Probability of a Dwell Delay for a Given Maximum Temperature over 14 Days 
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indicates it was a particularly cold period of time and therefore it can be expected that there are 

more delays. Although, the trend decreases until temperatures hit around 0˚C, the trendline slowly 

increases again indicating that extreme hot temperatures are also related to higher probabilities 

of dwell delays. Overall, the figure indicates that temperature increases along with the probability 

of a dwell delay.  

 

 
Figure 32 The Probability of a Dwell Delay for a Given Maximum Temperature over 21 Days 

Figure 32 above shows a trend a bit more prominent compared to Figures 29-30. Over 21 days 

the lowest maximum temperature is -1˚C, which also corresponds to the highest probability of a 

dwell delay. At 0˚C the probability decreases by around 30% and then stays fairly constant. Once 

temperatures reach around 30˚C there starts to be a sharp increase in dwell delay probability. 

This indicates that the most problems with dwell delays occur when temperatures are below 

freezing and above 30˚C.  
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Figure 33 The Probability of a Dwell Delay for a Given Maximum Temperature over 28 Days 

The maximum temperature over 28 days does not include any values below freezing as seen in 

Figure 33. However, the highest probability of a dwell delay still corresponds with the lowest 

temperature in the dataset. After, the probability decreases as temperature increases, however, 

around 10˚C the trend slowly starts increasing again. Once again this indicates that the most dwell 

delays occur on either tail-end of the temperature scale.  

 
Run Delay Probabilities for Maximum Temperature 

 
Figure 34 The Probability of a Run Delay for a Given Maximum Temperature over 1 Day 

Figure 34 above highlights the probability of a run delay after a given maximum temperature over 

1 day. Similarly, to Figure 29 there are more values below freezing since only 1 day is considered 
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in this figure. Additionally, the lowest maximum temperature has the lowest probability before the 

probabilities sharply increase. From the figure it is evident that the higher chance of a run delay 

occurs when temperatures are below freezing. This indicates that as temperature decrease the 

probability of a run delay increases. However, this only occurs a certain point. Once temperatures 

begin to get more extremely high, the probabilities begin to increase again.  

 

 
Figure 35 The Probability of a Run Delay for a Given Maximum Temperature over 7 Days 

 
 

 
Figure 36 The Probability of a Run Delay for a Given Maximum Temperature over 14 Days 

Figures 35 and 36 above display similar trends to Figure 34. The lowest maximum temperatures 

correspond to the lowest probability of a run delay. However, the next values below freezing 
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correspond with the highest probabilities. When temperatures reach above freezing, they 

decrease slightly before starting to level out. These figures highlight that freezing temperatures 

over longer periods of time result in the highest chance of a run delay.  

 
Figure 37 The Probability of a Run Delay for a Given Maximum Temperature over 21 Days 

 
Figure 37 above indicates a similar trend to dwell delay probabilities shown in Figure 32. 21 days 

seems to highlight the effects of very high temperatures the most. The trend shows that the 

probability of a run delay increases with temperature. Here the highest probabilities corresponded 

with the warmest days.  

 

 
Figure 38 The Probability of a Run Delay for a Given Maximum Temperature over 28 Days 
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Figure 38 indicates that the maximum temperature over 28 days does not include temperatures 

below freezing. However, the highest probability of a run delay still occurs when the maximum 

temperature is the lowest. Then the trend sharply decreases before levelling out and eventually 

starting to increase as temperatures get very hot.  

 

4.1.4 Graphical Evaluation Sub-Conclusion  
Figures 9-38 show the probability of a dwell delay or run delay over 1, 7, 14, 21, and 28 days of 

a given sum of precipitation, minimum temperature, or maximum temperature. First, it can be 

seen that the probabilities of a dwell delay are higher than of run delay which is due to there being 

more and longer run times scheduled compared to dwell times. In regard to precipitation the 

figures highlight that the chance of both dwell and run delays increase with precipitation. When 

looking at both minimum and maximum temperature it is evident that highest chance of a delay 

occurs when temperatures are below freezing. Most figures indicate the trend slightly increasing 

when temperatures reach extremely high temperatures. With climate change projections it is 

expected that these temperatures will get higher. Therefore, the figures only showing a slight 

increase can be justified by the fact that Skåne over the past 11 years most likely has yet to 

experience the extreme high temperatures projected.  

 

The next part of the analysis presents the results from the regression models. These models are 

used to quantify the relationships between weather and delays further by determining which 

variables are the most statistically significant, and therefore have the greatest impact on dwell 

and run delays.  

4.2 Regression Analysis  

The regression analysis results are presented in the following chapter. A total of four regression 

models with 15 different independent or predictor variables were run against two different 

dependent or response variables. The predictor variables correspond to the sum of precipitation, 

minimum temperature, and maximum temperature over 1, 7, 14, 21, and 28 days while the 

response variables are dwell delay or run delay. Two linear regression models and two logistic 

regression models were run. The results from these four regressions are presented in this sub-

chapter.  

 



 62 

4.2.1 Dwell Delay Multiple Linear Regression Model 
The regression coefficients were estimated using the Linear Model (lm) in R. In this case the 

response variable is the size of the dwell delay. A linear regression model assumes there is a 

linear relationship between the predictor and response variables. The results for the linear 

regression model for a dwell delay are indicated in Table 5 below. The regression is based off 

equation 4 from Chapter 2.5.1.  

 
Table 5. Summary of the Multiple Linear Regression Model for Dwell Delay (4) 

Coefficients:  Estimate St. E. Pr(>|t|)  
 (Intercept) β0  0.265 0.003 < 2e-16 *** 
𝑥1   prec_sum_1 β1  0.007 0.002 0.001 *** 
𝑥2   prec_sum_7 β2  0.004 0.001 0.000 *** 
𝑥3   prec_sum_14 β3  0.002  0.001 0.012 * 
𝑥4   prec_sum_21 β4 -0.002  0.001 0.053 . 
𝑥5   prec_sum_28 β5  0.001  0.001 0.038 * 
𝑥6   temp_min_1 β6 -0.004  0.000 < 2e-16 *** 
𝑥7   temp_min_7 β7 -0.001 0.000 0.000 *** 
𝑥8   temp_min_14 β8 -0.002 0.000 0.001 *** 
𝑥9   temp_min_21 β9  0.000 0.001 0.842  
𝑥10   temp_min_28 β10 -0.002 0.000 0.000 *** 
𝑥11   temp_max_1 β11  0.005 0.000 < 2e-16 *** 
𝑥12   temp_max_7 β12  0.001 0.000 0.193  
𝑥13   temp_max_14 β13 -0.001 0.001 0.012 * 
𝑥14   temp_max_21 β14 -0.002 0.001 0.015 * 
𝑥15   temp_max_28 β15  0.007 0.001 < 2e-16 *** 
	
R2= 0.001 

Note: Variables statistically significant at the 0 level are marked by a triple asterisk (***), variables 
statistically significant at the 0.001 level are marked by a double asterisk (**), variables statistically 
significant at the 0.01 level are marked by a single asterisk (*), and variables statistically significant 
at the 0.05 level are marked by a dot (.) 
 

From the table above only the sum of precipitation over 1 and 7 days; the minimum temperature 

over 1, 7, 14, and 28 days; and the maximum temperature over 1 and 28 days are statistically 

significant. Therefore, in order to better understand the statistical significance, the regression 

model was run twice more until all variables were deemed statistically significant. In the first rerun 

variables 3, 4, 5, 9, 12, 13, and 14 were removed (Table 5). For the third run of the model the 

sum of precipitation over 1 day was also removed, and Table 6 below highlights the improved 

summary of the multiple linear regression model. The number of variables analysed dropped from 

15 to 7. 
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Table 6. Summary of the Improved Multiple Linear Regression Model for Dwell Delay (4) 

Coefficients:  Estimate St. E. Pr(>|t|)  
 (Intercept) β0        0.268 0.003 <2e-16 *** 
𝑥1 prec_sum_7 β1       0.006 0.001 <2e-16 *** 
𝑥2 temp_min_1 β2      -0.004   0.000 <2e-16 *** 
𝑥3 temp_min_7 β3      -0.001 0.000 <2e-16 *** 
𝑥4 temp_min_14 β4    -0.002 0.000 <2e-16 *** 
𝑥5 temp_min_28 β5   -0.001 0.000 <2e-16 *** 
𝑥6 temp_max_1 β6        0.005 0.000 <2e-16 *** 
𝑥7 
 

temp_max_28 β7  0.004 0.000 <2e-16 *** 

R2= 0.001 
Notes: Variables statistically significant at the 0 level are marked by a triple asterisk 
 

Based on Table 6 above all variables are deemed as statistically significant based on the p-value. 

Since the p-value is less than 0.05 (significance level) the null hypothesis can be rejected, and it 

can be said that these 7 variables have an impact on dwell delay size. β0 in this model is 0.268, 

which represents the expected dwell delay size when all predictor variables are 0.  

 

When looking more closely at the coefficients, the sum of precipitation over 7 days, and the 

maximum temperature over 1 and 28 days is positively related to dwell delay size. In contrast the, 

the minimum temperature over 1 and 28 days is negatively related to dwell delay size. The 

coefficients represent the rate of change. In order words, the amount that dwell delay size 

changes when a predictor variable increases by 1 unit amount. In regard to precipitation this 

means that as the precipitation increases as does the dwell delay size. This relationship is also 

similar to what was plotted in Figure 14. Additionally, only the precipitation over 7 days was 

indicated as statistically significant implying that the sum of precipitation over 1, 14, 21, and 28 

days have little impact on dwell delays.  

 

As mentioned, temperature is more complex to handle as they are both positive and negative 

integers. The minimum temperature is statistically significant over all time periods expect for 21 

days. This means that low temperatures have a big impact on dwell delays, which is similarly 

depicted in Figures 19-23. The relationship is negative indicating that dwell delay size decreases 

with temperature. The maximum temperature looks at the highest temperature experienced and 

therefore, it can be expected that it is rare for this number to be significantly below freezing, with 

the expectation of maximum temperature over 1 day. Table 6 indicates that maximum 

temperature is statistically significant over 1 and 28 days. This means that the biggest delays 

most likely occur when it is extremely cold or hot over 1 day or constantly over one month. The 
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positive relationship between maximum temperature and dwell delay size depicted in Table 6 

indicates that dwell delay size increases as the maximum temperature increases. This is different 

than what is depicted in Figures 29 and 33 but this can most likely be explained by the complexity 

of including temperature values that are both below 0˚C and above. Additionally, temperature is 

typically viewed as an exponential relationship as opposed to a linear one. 

 

The R2 explains the variance for the independent variable which is explained by one or more 

independent variables. In other terms how well, the data fits the model. However, it cannot 

determine any biases and it does not determine if a regression model is sufficient or not. Since 

the R2 of this model is almost 0 the model does not explain any variability of the response variable 

data around the mean. However, as mentioned R2 is not always a good indicator of how data fits 

the model. In Table 6 the data has small standard error values and small p-values that do suggest 

the model is statistically significant. The data dealt with in this model most likely is not truly linear 

especially since temperature is typically an exponential relationship, which may be able to explain 

the low value of R2 and low coefficient numbers. 

 

4.2.2 Run Delay Multiple Linear Regression Model 
The regression coefficients were estimated using the Linear Model (lm) in R. In this case the 

response variable is the size of the run delay. A linear regression model assumes there is a linear 

relationship between the predictor and response variables. The results for the linear regression 

model for a run delay are indicated in Table 7 below. The regression is based off equation 4 from 

Chapter 2.5.1.  
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Table 7. Summary of the Multiple Linear Regression Model for Run Delay (4) 

Coefficients      Estimate St. E. Pr(>|t|)  
 (Intercept) β0  0.236 0.003 < 2e-16 *** 
𝑥1 prec_sum_1 β1  0.017 0.002 < 2e-16 *** 
𝑥2 prec_sum_7 β2  0.004 0.001 3.65e-06 *** 
𝑥3 prec_sum_14 β3  0.003  0.001 3.16e-05 *** 
𝑥4 prec_sum_21 β4  0.003 0.001 0.65  
𝑥5 prec_sum_28 β5  0.002  0.001 0.000 *** 
𝑥6 temp_min_1 β6 -0.005  0.000 < 2e-16 *** 
𝑥7 temp_min_7 β7 -0.002 0.000 4.07e-07 *** 
𝑥8 temp_min_14 β8 -0.002 0.000 0.002 ** 
𝑥9 temp_min_21 β9  0.001 0.001 0.11  
𝑥10 temp_min_28 β10 -0.002 0.000 9.01e-05 *** 
𝑥11 temp_max_1 β11  0.005 0.000 < 2e-16 *** 
𝑥12 temp_max_7 β12  0.000 0.000 0.300  
𝑥13 temp_max_14 β13  0.002 0.001 8.04e-05 *** 
𝑥14 temp_max_21 β14 -0.002 0.001 0.009 ** 
𝑥15 temp_max_28 β15  0.002 0.001 9.23e-06 *** 
        
R2= 0.000      

Note: Variables statistically significant at the 0 level are marked by a triple asterisk (***), variables 
statistically significant at the 0.001 level are marked by a double asterisk (**), variables statistically 
significant at the 0.01 level are marked by a single asterisk (*), and variables statistically significant 
at the 0.05 level are marked by a dot (.) 
 

Based on Table 7 above 10 out of the original 15 were deemed as statistically significant. 

Therefore, in order to get a better indication of these variables’ effects on run delays, the 

regression model was run once again, removing all statistically insignificant variables. The new 

model results are highlighted in Table 8 below.  

 

 

 

 

 

 

 

 

 

 

 



 66 

Table 8. Summary of the Improved Multiple Linear Regression Model for Run Delay (4) 

Coefficients:  Estimate St. E. Pr(>|t|)  
 (Intercept) β0        0.236 0.003 < 2e-16 *** 
𝑥1 prec_sum_1 β1       0.017 0.002 < 2e-16 *** 
𝑥2 prec_sum_7 β2       0.004 0.001 2.61e-06 *** 
𝑥3 prec_sum_14 β3       0.003 0.001 8.88e-07 *** 
𝑥4 prec_sum_28 β4  0.002 0.000 3.63e-10 *** 
𝑥5 temp_min_1 β5 -0.005 0.000 < 2e-16 *** 
𝑥6 temp_min_7 β6 -0.002 0.000 1.20e-15 *** 
𝑥7 temp_min_28 β7 -0.002 0.000 1.34e-13 *** 
𝑥8 temp_max_1 β8  0.005 0.000 < 2e-16 *** 
𝑥9 temp_max_14 β9  0.002 0.000 8.54e-06 *** 
𝑥10 temp_max_28 β10  0.001 0.000 4.96e-05 *** 
       
R2= 0.000      

Variables statistically significant at the 0 level are marked by a triple asterisk 
 

Based on Table 8 above all variables are deemed as statistically significant based on the p-value. 

Since the p-value is less than 0.05 (significance level) the null hypothesis can be rejected, and it 

can be said that these 10 variables have an impact on run delay size. β0 here is 0.236, which 

represents the expected dwell delay size when all predictor variables are 0.  

 

Regarding the coefficients, the sum of precipitation over 1, 7, 14, and 28 days; and the maximum 

temperature over 1, 14, and 28 days are positively related to run delay size. The minimum 

temperature over 1, 7 and 28 days is negatively related to run delay size. Here the coefficients 

indicate that run delay size increases with the sum of precipitation. The sum of precipitation over 

1 day has the largest coefficient and smallest p-value indicating that 1 day of precipitation most 

likely has the most effect on run delays. The sum of precipitation over 21 days was not deemed 

as statistically significant indicating that precipitation over shorter and longer periods of time have 

more influence over run delay size compared to the middle time period of 21 days.  

 

Temperature again is more complicated as when the coefficient is positive and temperature is 

positive run delay size increases, however when the temperature is negative with a positive 

coefficient the delay size decreases. In contrast when a coefficient is negative, and temperature 

is positive the size of delay decreases but when temperate and coefficient is negative the delay 

size increases. This relationship is clear as Minimum temperature over 1, 7, and 28 days has a 

negative coefficient indicating that temperatures below zero cause more delays. Additionally, the 

time periods indicate that there are more problems with delays when temperatures are below 

freezing for a short period of time, 1 day and a week; and also, when it is below freezing over a 



 67 

month long. Maximum temperature over 1, 14, and 28 days have positive coefficients which 

indicate delays increase with temperature. Since it is the maximum temperature over a certain 

time period it can be expected that these values are rarely below zero.  

 

Once again, the R2 value is 0.000 when rounded to the nearest thousandth, however all the p-

values are under the significance level of 0.05 and the standard error values are low; this indicates 

that the model is still add value and the null hypothesis can be rejected. This means that 

precipitation and temperature have an impact on run delays. 

 

4.2.3. Comparison of the Two Multiple Linear Regression Models 
 

When comparing the multiple linear regression models between dwell and run delays the first 

major difference is the number of statistically significant predictor variables. Table 9 below 

visualises this difference.  

 
Table 9. Statistically Significant Predictor Variables for Dwell Delay vs. Run Delay of the Linear 
Regression Model (4) 

Dwell Delay Run Delay 

• Sum of precipitation over 7 days  
• Minimum temperature over 1 day 
• Minimum temperature over 7 days 
• Minimum temperature over 14 days 

• Minimum temperature over 28 days 
• Maximum temperature over 1 day 
• Maximum temperature over 28 days 

• Sum of precipitation over 1 day 

• Sum of precipitation over 7 days 
• Sum of precipitation over 14 days 

• Sum of precipitation over 28 days 

• Minimum temperature over 1 day  
• Minimum temperature over 7 days 
• Minimum temperature over 28 days 

• Maximum temperature over 1 day 
• Maximum temperature over 14 days 

• Maximum temperature over 28 days 
Note: Variables bolded are statistically significant in both dwell and run delays 

 

According to Table 9 above, 6 variables are statistically significant for both dwell and run delays. 

This highlights how interconnected run and dwell delays are. There are more run times scheduled 

compared to dwell times. However, if there is a run delay on a single line track the effect can be 

transferred to the dwell time, resulting in a dwell delay if a train has to wait longer at the station 
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before the run delay ahead is resolved. For dwell delays the sum of precipitation is only statistically 

significant over 7 days compared to run delays where it is statistically significant over 1, 7, 14, 

and 28 days. This may be due to that accumulative precipitation can be high over short and long 

periods of time. In the short term it can cause flash flooding, however in the long-term flooding 

can also occur. If a track is flooded trains may have to run at slower speeds which may not 

necessarily affect the dwell delays. In extreme cases where the train cannot drive anymore, or 

infrastructure is damaged due to a flood event this can also affect dwell delays. In the case of 

minimum and maximum temperatures they are statistically significant for up to 2 weeks and again 

over 1 month. The results indicate that minimum temperatures below freezing and high maximum 

temperatures result in the biggest dwell and run delay sizes.   

 

4.2.4. Dwell Delay Multiple Logistic Regression Model 
As the relationship between weather and delays is complex perhaps a linear regression model 

may not fully represent the true relationship. A multiple logistic regression was computed next in 

order understand the maximum likelihood of a delay. As explained in Chapter 2, the response 

variable is binomial, 1 representing the presence of a delay, and 0 representing the absence of a 

delay. The regression coefficients were estimated using the maximum likelihood method provided 

by the Generalised Linear Model (glm) command in R, and the Wald chi-square statistic test 

determined the statistical significance of each individual regression coefficient (βn) 
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Table 10. Summary of the Multiple Logistic Regression Model for Dwell Delay (7) 

Variable: Estimate St. E z value Pr(>|t|)  
  (Intercept) β0 -1.739 0.006 -291.007 < 2e-16 *** 
𝑥1    prec_sum_1 β1     0.030 0.003  8.833 < 2e-16 *** 
𝑥2    prec_sum_7 β2     0.014 0.001  9.528 < 2e-16 *** 
𝑥3    prec_sum_14 β3     0.005 0.001  3.479 0.001 *** 
𝑥4    prec_sum_21 β4    -0.006 0.001 -4.396 1.1e-05 *** 
𝑥5    prec_sum_28 β5     0.012 0.001  13.225 < 2e-16 *** 
𝑥6    temp_min_1 β6    -0.024 0.001 -47.134 < 2e-16 *** 
𝑥7    temp_min_7 β7    -0.007 0.001 -10.870 < 2e-16 *** 
𝑥8    temp_min_14 β8    -0.007 0.001 -8.664 < 2e-16 *** 
𝑥9    temp_min_21 β9    -0.005 0.001 -5.266 1.4e-07 *** 
𝑥10    temp_min_28 β10    -0.007 0.001 -8.920 < 2e-16 *** 
𝑥11    temp_max_1 β11     0.025 0.001  45.508 < 2e-16 *** 
𝑥12    temp_max_7 β12     0.001 0.001  0.981 0.327  
𝑥13    temp_max_14 β13    -0.001 0.001 -0.597 0.550  
𝑥14    temp_max_21 β14    -0.012 0.001 -9.498 < 2e-16 *** 
𝑥15    temp_max_28 β15     0.038 0.001  39.991 < 2e-16 *** 

Note: Variables statistically significant at the 0 level are marked by a triple asterisk (***), variables 
statistically significant at the 0.001 level are marked by a double asterisk (**), variables statistically 
significant at the 0.01 level are marked by a single asterisk (*), and variables statistically significant 
at the 0.05 level are marked by a dot (.) 
 
Based on Table 10 above it is evident that precipitation over 1, 14, 21, and 28 days are statistically 

significant and have an impact on dwell delays. In regard to temperature, the minimum 

temperature over 1, 7, 14, 21, and 28 days are statistically significant; and maximum temperature 

is statistically significant over 1, 21, and 28 days. In order to better understand the statistical 

significance, the regression model was run once more until all variables were deemed statistically 

significant. The number of variables analysed dropped from 15 to 13. The table also includes the 

calculated odds ratio which was also computed in R and the lower and upper limits of the 95% 

confidence intervals, which is shown in Table 11 below.  
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Table 11. Summary of the Improved Multiple Logistic Regression Model for Dwell Delay (7) 

     C.I. 95%    
Coefficients:                   Estimate OR Lower Upper St. E. z value  
 (Intercept) β0  -1.784 0.176 0.174 0.178 0.006 -292.656 *** 
𝑥1 prec_sum_1 β1     0.030 1.030 1.023 1.037 0.003  8.877 *** 
𝑥2 prec_sum_7 β2   0.014 1.014 1.010 1.017 0.001  9.519 *** 
𝑥3 prec_sum_14 β3  0.005 1.005 1.002 1.008 0.001  3.424 *** 
𝑥4 prec_sum_21 β4 -0.006 0.994 0.991 0.997 0.001 -4.343 *** 
𝑥5 prec_sum_28 β5  0.012  1.012 1.011 1.014 0.001  13.204 *** 
𝑥6 temp_min_1 β6 -0.024  0.976 0.975 0.977 0.001 -47.501 *** 
𝑥7 temp_min_7 β7 -0.007  0.993 0.992 0.994 0.001 -10.952 *** 
𝑥8 temp_min_14 β8 -0.007 0.993 0.991 0.994 0.001 -8.782 *** 
𝑥9 temp_min_21 β9 -0.005 0.995 0.993 0.997 0.001 -5.325 *** 
𝑥10 temp_min_28 β10 -0.007 0.993 0.991 0.974 0.001 -8.934 *** 
𝑥11 temp_max_1 β11  0.025 1.025 1.024 1.026 0.000  52.438 *** 
𝑥12 temp_max_21 β12 -0.017 0.988 0.987 0.990 0.001 -12.143 *** 
𝑥13 temp_max_28 β13  0.038 1.038 1.036 1.040 0.001  40.108 *** 

Note: Variables statistically significant at the 0 level are marked by a tripled asterisk (***). 
Pr(>|z|) <2e-16 
 

In a logistic model, increasing 𝑥n by one unit will increase the log odds of an event happening by 

βn. According to the improved model summary in Table 11 above some variables have a positive 

relationship and some a negative. Dwell delay increase is positively related to the sum of 

precipitation over 1, 7, 14 and 28 days, and to the maximum temperature over 1, and 28 days. In 

contrast, dwell delay increase is negatively related to the sum of precipitation over 21 days; the 

minimum temperature over 1, 7, 14, 21, and 28 days; and the maximum temperature of 21 days. 

The Wald chi-square test indicates that a large absolute z value and small p-value can reject the 

null hypothesis, demonstrating that these 13 variables play a role in dwell delays.  

 

In R-studio the log odds are computed into odds and then odds ratio in order to understand the 

changes in delays from a probability point of view. Odds is known as the probability of a train 

being delayed divided by the probability that it is not delayed. In simple the odds ratio is the ratio 

of one odds against the other. For instance, the odds ratio is the odds of a train being delayed 

beyond a certain predictor variable threshold divided by the odds of the train being delay if it is 

not beyond that threshold. An odds ratio greater than 1 indicates a positive relation of a predictor 

variable towards the likelihood of a dwell delay increase. If it is lower the odds of a dwell delay is 

lower. The sum of precipitation over 21 days; the minimum temperature over 1, 7, 14, 21, and 28 

days; and the maximum temperature over 21 days all have odds ratios below 1, which 

corresponds to the negative coefficients they display. However, they are quite close to 1.00 which 

may indicate that the odds of a delay are similar across all conditions. The odd ratios with values 
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above 1 are the sum of precipitation over 1, 7, 14, and 28 days, and the maximum temperature 

over 1 and 28 days. Here it is seen that delays are most impacted by precipitation and minimum 

temperature over all time periods analysed, and the maximum temperature over short periods, 

one day and over extremely long periods, 21 days and one month.  

 

4.2.5. Run Delay Multiple Logistic Regression Model 
The regression coefficients for run delay were estimated using the maximum likelihood method 

provided by the Generalised Linear Model (glm) command in R, and the Wald chi-square statistic 

test determined the statistical significance of each individual regression coefficient (βn). The 

results are highlighted in Table 12 below.  

 
Table 12. Summary of the Multiple Logistic Regression Model for Run Delay (7) 

Coefficients: Estimate St. E. Z-Value Pr(>|t|)  
 (Intercept) β0 -1.384 0.004 -366.537 < 2e-16 *** 
𝑥1	 prec_sum_1 β1  0.013 0.002  5.974 2.31e-09 *** 
𝑥2	 prec_sum_7 β2 -0.005 0.001 -0.585 0.558  
𝑥3	 prec_sum_14 β3  0.008  0.001  8.182 2.79e-09 *** 
𝑥4	 prec_sum_21 β4  0.000 0.001  0.272 0.786  
𝑥5	 prec_sum_28 β5  0.005  0.001  8.731 < 2e-16 *** 
𝑥6	 temp_min_1 β6  0.006 0.003  17.008 < 2e-16 *** 
𝑥7	 temp_min_7 β7 -0.001 0.000 -0.231 0.817  
𝑥8	 temp_min_14 β8 -0.002 0.001 -3.136 0.002 ** 
𝑥9	 temp_min_21 β9  0.003 0.001  4.091 4.30e-05 *** 
𝑥10	 temp_min_28 β10  0.007 0.001  12.354 < 2e-16 *** 
𝑥11	 temp_max_1 β11 -0.000 0.000 -0.172 0.864  
𝑥12	 temp_max_7 β12  0.002 0.001  3.819 0.000 *** 
𝑥13	 temp_max_14 β13 -0.001 0.001 -2.040 0.041 * 
𝑥14	 temp_max_21 β14 -0.007 0.001 -0.878 0.380  
𝑥15	 temp_max_28 β15 -0.010 0.001 -15.065 < 2e-16 *** 

Note: Variables statistically significant at the 0 level are marked by a triple asterisk (***), variables 
statistically significant at the 0.001 level are marked by a double asterisk (**), variables statistically 
significant at the 0.01 level are marked by a single asterisk (*), and variables statistically significant 
at the 0.05 level are marked by a dot (.) 
 

Based on Table 12 above it is evident that precipitation over 1 day, 14 days, and 28 days are 

statistically significant and have an impact on run delays. In regard to temperature, minimum 

temperature statistically significant over 1, 21, and 28 days; and maximum temperature is 

statistically significant over 7 and 28 days. In order to better understand the statistical significance, 

the regression model was run twice more until all variables were deemed statistically significant. 

In the first rerun variables 2, 4, 7, 8, 11, 13, and 14 were removed (Table 12). For the third run of 
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the model the minimum temperature over 21 days and maximum temperature over 7 days was 

removed, and the Table 13 below highlights the improved summary of the multiple regression 

model. The number of variables analysed dropped from 15 to 6. The table also includes the 

calculated odds ratio which was also computed in R and the lower and upper limits of the 95% 

confidence intervals.  

 
Table 13. Improved Multiple Logistic Regression Model for Run Delay (7) 

     C.I. 95%    
Coefficients:               Estimate OR Lower Upper St. E. z value  
 (Intercept) β0  -1.384 0.251 0.249 0.252 0.004 -376.997 *** 
𝑥1	 prec_sum_1 β1     0.012 1.013 1.008 1.017 0.002  6.086 *** 
𝑥2	 prec_sum_14 β2   0.007 1.007 1.006 1.008 0.001  11.940 *** 
𝑥3	 prec_sum_28 β3  0.005 1.005 1.005 1.006 0.000  13.911 *** 
𝑥4	 temp_min_1 β4  0.006 1.006 1.006 1.007 0.000  24.819 *** 
𝑥5	 temp_min_28 β5  0.008 1.008 1.007 1.008 0.000  33.429 *** 
𝑥6	 temp_max_28 β6 -0.010 0.990 0.989 0.990 0.000 -49.839 *** 

Note: Variables statistically significant at the 0 level are marked by a tripled asterisk (***). 
Pr(>|z|) <2e-16 
 

According to Table 13 above the sum of precipitation over 1, 14, and 28 days; and the minimum 

temperature over 1 and 28 days is positively related to dwell delay increase. This also 

corresponds with odds ratios that are over 1 which indicate the odds of a delay increasing. On 

the other hand, the maximum temperature over 28 days is negatively related to delay increase. 

This corresponds with odds ratios that are below one, and therefore the odds of delay increase 

are not as great as those with odds ratios above 1. This opposite to what is seen in the linear 

regression model, where maximum temperature is positively related to delays and minimum 

temperature is negatively related to delays. This discrepancy is most likely due to complications 

of temperature having both negative and positive values. Additionally, if all of the odds ratios are 

rounded to the nearest whole number, they are all 1; indicating the odds of a run delay are equal 

across all conditions.  

 

4.2.6. Comparison of the Two Multiple Logistic Regression Models  
When comparing the multiple logistic regression models between dwell and run delays the first 

major difference is the number of statistically significant predictor variables. Table 14 below 

visualises this difference.  
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Table 14. Statistically Significant Predictor Variables for Dwell Delay vs. Run Delay of the Logistic 
Regression Model (7) 

Dwell Delay Run Delay 

• Sum of precipitation over 1 day 
• Sum of precipitation over 7 days 

• Sum of precipitation over 14 days  
• Sum of precipitation over 21 days 

• Sum of precipitation over 28 days 
• Minimum temperature over 1 day 

• Minimum temperature over 7 days 

• Minimum temperature over 14 days 

• Minimum temperature over 21 days 

• Minimum temperature over 28 days 
• Maximum temperature over 1 day 

• Maximum temperature over 21 days 

• Maximum temperature over 28 days 

• Sum of precipitation over 1 day 
• Sum of precipitation over 14 days 
• Sum of precipitation over 28 days 
• Minimum temperature over 1 day 
• Minimum temperature over 28 days 
• Maximum temperature over 28 days 

Note: Variables bolded are statistically significant in both dwell and run delays 

 

The table above highlights that more predictor variables for dwell delay are statistically significant 

compared to run delays. There are 6 variables which are statistically significant for both dwell and 

run delays. They are precipitation over 1, 14, and 28 days; the minimum temperature over 1, and 

28 days; and maximum temperature over 28 days. The dwell delays are impacted across all time 

periods, while run days only over 1, 14, and 28 days. Precipitation may be more statistically 

significant over more time periods because the longer time periods accumulate more precipitation. 

Large amounts of precipitation can be problematic whether it is over 1 day or 28 days. The 

minimum temperature is statistically significant over all time periods analysed for dwell delays but 

only over 1 and 28 days for run delays. This may highlight that minimum temperatures have a big 

impact on both dwell delays or run delays, signifying that low temperatures have a large impact 

on delays and can cause many issues. In the case of maximum temperature, it is only statistically 

significant over 28 days for run delays and over 1, 21, and 28 days for dwell delays. This indicates 

that the maximum temperature has the greatest impact over short periods of time or very long.  
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4.2.7. Comparison of Multiple Linear Regression Model vs. Multiple Logistic 

Regression Modelling 
When comparing the linear and logistic models the first main difference is the number of variables 

which are deemed as statistically significant for dwell delays compared to run delays. In the linear 

model 7 variables are statistically significant compared to 10 variables for run delays. The logistic 

model is opposite in that 13 variables are significantly significant for dwell delays and 6 for run 

delays. Additionally, in the logistic model there are some discrepancies with the coefficients and 

therefore odds ratios. In the linear model all precipitation and maximum temperatures have 

positive coefficients while the minimum temperature coefficients are all negative. This can be 

justified with the fact that the high dwell and run delay sizes should occur when the sum of 

precipitation and/or maximum temperature is high, and when minimum temperatures are below 

freezing. However, in the logistic regression this does not hold to be true for all cases. This is 

most likely caused by a number of things. First, the dataset contains a lot of weather data that is 

deemed as “normal.” Meaning conditions that do not cause delays, therefore, the extreme 

conditions that effect delays the most are rare. Secondly, with logistic regressions it is typical to 

calculate the probability of a delay increase. Since temperature is both positive and negative this 

is harder to calculate because some sort of threshold needs to be established in order to calculate 

the probability. For instance, knowing the odds of a train being delayed if the temperature is 

beyond a certain threshold, divided by the odds it is not gives the odds ratio. Using the odds, the 

train is not delayed beyond a certain temperature threshold can help calculate the probability. 

Therefore, the odds ratios are a bit challenging to interpret since, the temperature and 

precipitation thresholds are not defined as this is outside the scope of this thesis.  

 

Temperature most likely has more of an exponential relationship with run and dwell delays and 

therefore, a logistic model may be more accurate. However, since the thresholds are missing it 

makes it more challenging to interpret the results. The results from the linear regression are more 

in line with the expected results, and the figures are plotted linearly in Chapter 4.1, so therefore 

the linear model is chosen as the model of choice for this thesis.   

4.3 Analysis Results Sub-conclusion  
The results show that the most statistically significant variables for dwell delays are the sum of 

precipitation over 7 days, the minimum temperature over 1, 7, 14, and 28 days, and the maximum 

temperature over 1 and 28 days. The sum of precipitation over 1, 7, 14, and 28 days, the minimum 
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temperature over 1, 7, and 28 days, and the maximum temperature over 1, 14, and 28 days are 

the most statistically significant variables for run delays. The regression models show that the 

relationship between weather and delays is that the size of a dwell or run delay increases with 

the sum of precipitation, and as maximum temperature increases; and that the size of a run dwell 

delay decreases as minimum temperature increases. These relationships indicate that with 

increased amounts of precipitation, extremely high temperatures, and temperatures below 

freezing the likelihood of a delay is higher. Additionally, it can be assumed that weather variables 

that are most statistically significant above have strong relationships and can more accurately 

predict delays. With these results in mind, it is possible to consider resilience and what these 

results mean for the further in regard to climate change, which will be discussed in the next 

chapter.  

 

 

 

 

 

 

 

 



DISCUSSION
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5.0 Discussion 
In this chapter, some reflections on the findings are presented along with future implications, the 

importance of resilience, the limitations of this thesis, and some suggestions for future research.  

5.1 Discussion of the Results  
The analysis highlighted that the linear regression model was best suited to the scope of this 

thesis because it best matches the expected results, the graphical evaluations, and the results 

from similar studies. The results indicate that over the past 11 years, the most significant variables 

for dwell delays are the sum of precipitation over 7 days, the minimum temperature over 1, 7, 14, 

and 28 days, and the maximum temperature over 1 and 28 days. While the most statistically 

significant variables for run delays are the sum of precipitation over 1, 7, 14, and 28 days, the 

minimum temperature over 1, 7, and 28 days, and the maximum temperature over 1, 14, and 28 

days. Moreover, the minimum temperature for both run and dwell delays are negatively related to 

delay size, meaning as temperature decreases delay size increases. The sum of precipitation and 

maximum temperature are positively related to delay size, meaning as precipitation and maximum 

temperature increase so does delay size.  

 

More variables are statistically significant to run delays than dwell delays. This may be because 

there are more scheduled run times than dwell times. Meaning, as a train is moving between 

stations it is more likely to encounter harsh weather conditions compared to a train stationary at 

the station. In addition, when a run delay occurs it does not always mean the effect moves to the 

dwelled train. Dwell and run delays can occur together or independently. 21 days was not 

considered to be a statistically significant time period for any of the variables. This indicates that 

both precipitation, minimum and maximum temperature have a greater impact on rail delays over 

1 day, 1 week, 2 weeks, and 1 month; highlighting that weather also has an impact on rail delays 

over longer periods of times, not only instantaneously.  

5.1.1 Precipitation 

The results suggest that dwell and run delay size increases with the sum of precipitation. 

Precipitation does not only include rain but also includes snow, sleet, hail, etc. One of the most 

severe implications of the sum of precipitation is flooding. Railway infrastructure and services are 

very vulnerable to flooding and can result in trains having to drive lower speeds, and/or cause 
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damage to infrastructure (Bubeck, et al., 2019). Snow can also play a vital role in delays by 

causing visibility issues, and slower speeds (Figure 8). Skåne today is quite subject to 

cloudbursts, which occur when there are vast amounts of rainfall recorded in very short periods 

of only a few hours (Belusic, et al., 2019). Table 7 in Chapter 4.2.2 indicates that the sum of 

precipitation over 1 day has the largest coefficient, therefore coinciding with the largest rate of 

change. This means that cloudbursts likely currently have an impact on delays. However, longer 

time periods are also statistically significant suggesting that longer time periods of precipitation 

also can cause issues, as flooding can also occur long term. Michaelides, et al. (2014) reviewed 

three major EU funded projects that look at weather extreme impacts on transportation systems. 

The Extreme Weather impacts on European Networks (EWENT) established that when rainfall is 

equal to or exceeds 30mm a day harmful impacts are possible, when rail exceeds 100mm per 

day harmful impacts are likely, and when rainfall exceeds 150mm a day harmful impacts are 

certain. The dataset used for this thesis has recorded cumulative temperatures between 00mm-

230mm, indicating that Skåne has periods of time with a lot of precipitation. Since the relationship 

suggests that both dwell and run delay size increase with sum of precipitation and is statistically 

significant the null hypothesis can be rejected, and it can be concluded that precipitation does 

affect rail delays. Several studies have come to similar conclusions (Xia et al.; 2013, Brazil et al., 

2017). In Sweden, Palmqvist, Olsson, & Hiselius (2017b) have similar results indicating that 

punctuality drops 1.8% points when a quarter of all trains analysed in the study accumulated at 

least 30mm of precipitation.        

5.1.2. Minimum Temperature  

The results suggest dwell and run delay size decreases as the minimum temperature increases, 

implying that colder temperatures are correlated to higher delay sizes. The minimum temperature 

was found to be significantly statistical to dwell delays over 1, 7, 14, and 28 days, and over 1, 7, 

and 28 days for run delays. This suggests that minimum temperature makes the biggest impact 

over short time periods and long, highlighting that cold temperatures have a large impact on rail 

delays. The biggest increase in delay size occurs with temperatures below freezing. Looking at 

7, 14, and 28 days gives a better indication that cold snaps have an impact on train delays. In 

simple terms a cold snap is defined as a period of consecutive days with a temperature below a 

certain threshold, based typically on minimum temperatures over at least 3 days (Belusic, et al., 

2019). Cold snaps can lead to track breakages, freezing of signals and other equipment, and icy 

conditions on the tracks. The longer the duration of these conditions the longer the impacts on 

delays will maintain. EWENT established that when temperatures are below 0˚C harmful impacts 
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are possible, when temperatures are below -7˚C harmful impacts are likely, and when 

temperatures are below <-20˚C harmful impacts are certain (Michaelides, et al. 2014). Although 

defining the thresholds was outside the scope of this thesis when looking at Figures 11-20 in 

Chapter 4.1.2 the trends seem to follow a similar trend and the regression indicates that the null 

hypothesis can be rejected, and that minimum temperature plays a role in rail delays. 

Furthermore, the lowest minimum temperature recorded in the dataset over the 11 years studied 

is -19˚C, indicating that temperatures in Skåne are well below freezing, leading to delays. These 

findings are similar to what is found in other studies highlighting that freezing temperatures are 

correlated to rail delays (Zakeri & Olsson, 2017; Zakeri & Olsson 2018). In Sweden, Palmqivst, 

Olsson, & Hiselius (2017) discovered that punctuality falls exponentially when temperatures fall 

below 0˚C, and the punctuality continues to fall as temperature does; they suggest that at -5˚C 

the punctuality in Skåne already drops by 7.5%.          

5.1.3. Maximum Temperature  

In regard to maximum temperature the results indicate that both dwell and run delays increase as 

maximum temperature increases, implying that higher temperatures are correlated with more rail 

delays. The maximum temperature was found to be statistically significant over 1 and 28 days for 

dwell delays and 1, 14, and 28 days for run delays. This suggests that the maximum temperature 

has the greatest impact on rail delays instantaneously over 1 day, and longer term over 14 and 

28 days. This means that heatwaves most likely negatively impact punctuality of trains in Southern 

Sweden. Similar to a cold snap, a heatwave can be defined as a period of consecutive days, 

typically at least 3 days where the temperature is above a certain threshold. Extremely high 

temperatures can lead to many infrastructure issues such as track buckling, and the overheating 

of equipment which can also lead to fire. Like cold spells, the longer a heatwave lasts the more 

negative implications on rail delays the event can have. The EWENT project concluded that 

harmful impacts are possible when temperatures exceed 25˚C, harmful impacts are likely when 

temperatures are above 32˚C, and harmful impacts are certain when temperatures exceed 43˚C 

(Michaelides, et al. 2014). The maximum temperature in the dataset recorded over 11 years is 

33˚C suggesting that Skåne today may have more issues with temperatures below freezing than 

extreme high temperatures due to its northern geographic location. The results here are similar 

to other studies which quantify the effects of heat on railways (Dobney, et al., 2009; Forzieri, et 

al., 2018). In Sweden in particular, Palmqvist, Olsson, & Hiselius, 2017b found that punctuality 

drops by 5% at 23˚C and by 26% at 27˚C.  
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5.2 Future Implications of the Findings and Resilience Thinking 
The results from the graphical evaluations and linear regression analysis demonstrate the railway 

industry’s current vulnerability to the current climate. The climate change projections for Skåne 

indicate that this sensitivity is expected to increase. Understanding the effects of weather over 

the past 11 years gives a good basis for infering how the effects will differ as climate change 

progresses. Climate change is expected to raise temperatures in Skåne in both the summer and 

winter months. This is expected to lead to more frequent heatwaves, which can lead to track 

buckling, overheated signals, and fires. The amount of precipitation is expected to increase more 

in the summer months compared to winter months (SMHI, 2015), and for more precipitation to 

shift from snow to rain, which increases the risk of flooding. As historic weather extremes become 

more common, it is important to increase the resilience of railways. Better understanding these 

historic patterns can thus help identify, prioritise, and motivate adaptation measures.  

5.2.1 The Future Implications of Precipitation  

In Northern Europe the IPCC has confidence that in the future there will be an increase in daily 

precipitation extremes in Northern Europe for all seasons, due to a robust poleward shift of 

circulation patterns (Belusic, et al., 2019). It is expected that in Sweden, and Skåne in particular, 

there will be a greater increase in precipitation in the winter months compared to summer (Belusic, 

et al., 2019; SMHI, 2015; Lindgren, Jonsson, & Carlsson-Kanyama, 2009). With the added 

expected increase in temperature the amount of precipitation that falls as snow is expected to 

decrease (SMHI, 2015).  

 
As mentioned, the greatest implication of increased precipitation is related to flooding. Currently 

in some parts of Sweden spring snowmelt contributes to the highest chance of flooding; however, 

snowmelt induced floods are expected to decrease, and floods occurring in the autumn and winter 

as a consequence of more rainfall are expected to increase (Belusic, et al., 2019). The probability 

of extreme 100 and 200-year floods is also expected to increase (Belusic, et al., 2019), indicating 

that not only are flood events expected to increase but their severity will as well. In urban areas 

flash and urban floods which are triggered by local intense precipitation events are also more 

likely to increase across Europe in general (Kellermann, et al., 2016). Increased precipitation is 

also associated with erosion and landslides which can put railways at risk (Belusic, et al., 2019). 

However, rain is not the only form of precipitation. The increasing temperatures and moisture 
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content of the atmosphere allows favorable conditions for the increase of hailstorms and 

thunderstorms and their intensity across Sweden (Belisuic, et al., 2019). 

 
Currently, the linear regression model shows that both dwell and run delays increase as 

precipitation increases. Due to the projected increase in precipitation, it can be expected that 

these delays will only get more frequent and severe. It is known that increases in heavy 

precipitation events have a negative impact on transportation and infrastructure (Michaelides, et 

al., 2014). Flooding and intense storms can cause damage to infrastructure and also result in 

visibility issues. Flooding can also affect telecommunications as power failure can reduce railway 

capacity (Belusic, et al., 2019). If these events are expected to increase it can be expected that 

the delays will also increase if nothing is done to increase the resilience of railways to climate 

change.  

5.2.2 The Future Implications of Increased Temperatures 

Overall, climate change projections predict an increase in temperatures in both summer and 

winter months (SMHI, 2015). In Skåne, projections show an increase in up to 6˚C by the end of 

this century under a business-as-usual scenario (SMHI, 2015). The frequency, duration, and 

severity of heatwaves is expected to increase across all of Europe (Belsuic, et al., 2019); and in 

Skåne the number of consecutive days above 20˚C is also expected to increase (SMHI, 2015). 

This implies that Skåne will experience more frequent and extreme heatwaves in the area, 

occurring for longer periods of time. In contrast, the extremes associated with cold temperatures 

are projected to decrease (Belusic, et al., 2019; SMHI, 2015). Although there is a general 

decreasing trend in winter extremes in Sweden, the winter extremes are still expected to impact 

railway transportation and would still need to be considered in investment in preparedness and 

maintenance strategies in the future (Michaelides, et al., 2014).  

 

The results from the linear regression and graphical evaluations show that freezing temperatures 

have a greater impact on rail delays compared to extreme high temperatures. However, it can be 

argued that in the future freezing temperatures will still play a role in Skåne. The lowest 

temperature recorded in the dataset is -19˚C, and if the projections of a 6˚C increase in 

temperature becomes prevalent, then this minimum temperature will still be below freezing. 

Studies have suggested that harmful impacts can still occur with temperatures around -5˚C or -

7˚C, which is not significantly below the freezing point (Michaelides, et al., 2014; Palmqvist, 
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Olsson, & Hiselius, 2017b). Especially, if these freezing temperatures occur in interaction with 

heavy precipitation such as snow or freezing rain, these events can have serious impacts on 

railway infrastructure and therefore delays.  

 
Although the graphical evaluations highlighted a greater probability of delays during freezing 

temperatures compared to high temperatures it can be argued that Skåne has yet to fully 

experience the effects of extreme high temperatures. The highest maximum temperature value in 

the dataset is 33˚C, and close to this point the graphical evaluations start to indicate an increase 

in the probability of a delay. Some studies suggest that the likelihood for failures associated with 

high temperatures do not occur until 32˚C and even up to over 40˚C (Michaelides, et al. 2014). 

Countries in Northern Europe are typically not yet set up with the coping range to deal with 

extreme heat (Lindgren, Jonsson, & Carlsson-Kanyama, 2009). The increased risk of fires, rail 

buckling, the installation of cooling systems, as well as passenger comfort are some concerns 

related to heat that will have to be dealt with more often in the future (Lindgren, Jonsson, Carlsson-

Kanyama, 2009). 

 
The future implications go in line with the results of the regression analysis under current 

conditions. The maximum temperature is positively related to both dwell and run delays, and 

statistically significant over 1, 14, and 28 days. This means that heatwaves are already impacting 

delays and it can be expected that the relationship between maximum temperature and rail delays 

will get stronger as heatwaves become more frequent, last longer, and are more extreme. 

Similarly, the minimum temperature is negatively related to dwell and run delays, and is 

statistically significant over 1, 7, 14, and 28 days. Although winter temperatures are expected to 

increase, they can still be below freezing in the future which is shown to still cause delays. 

Furthermore, when minimum temperatures are above freezing, they have a positive relationship 

with delays. This means that in the future, days where the minimum temperature is extremely hot, 

delays still can occur.  

5.2.3 Resilience of Skåne Railways in the Future  

Based on the future implications of climate change it is evident that Skåne will experience more 

precipitation and increasing temperatures, which is likely to reduce resilience if nothing is done. 

Therefore, despite the projected increase in interruptions, increasing the resilience of railways to 

weather phenomena is essential to ensure that railways remain punctual. Railways need to be 
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reliable in order for them to be the first-choice mode of transportation of customers (Lindgren, 

Jonsson, & Carlsson-Kanayama, 2009). From the findings of the analysis high and low 

temperatures, and increased amounts of precipitation have large impacts on the punctuality, 

which is similar to other studies which have also indicated that more attention should be given to 

ensuring that railways are resilient to the future impacts of climate change (Palmqivst, Olsson, & 

Hiselius, 2017; Diab & Shalaby, 2020; Michaelides, et al., 2014; Bešinović, 2020).  

 

In this thesis the resilience of a railway transportation system is defined as “the ability of a railway 

system to provide effective services in normal conditions, as well as to resist, absorb, 

accommodate, and recover quickly from disruptions or disasters” (Bešinović, 2020, p. 461). This 

thesis has focused on the disruptions from temperature and precipitation. The results indicate that 

most delays occur during temperatures below freezing, and with increased amounts of 

precipitation. Therefore, it can be argued that the system needs to increase its ability to withstand 

extreme weather impacts, to operate in the face of extreme weather, and promptly recover from 

the effects (Diab & Shalaby, 2020). This holds especially true as climate change predictions 

project an increase in precipitation and temperature in Skåne. This means the railway system 

needs to be prepared for even more frequent and severe delays to occur as the extreme 

conditions that cause delays today are expected to increase.  

 

Trafikverket owns and manages around 80% of all railways in Sweden (Lindgren, Jonsson, & 

Carlsson-Kanyama, 2009). In 2009, Lindgren, Jonsson, & Carlsson-Kanyama released an 

interview study about climate adaptation of railways in Sweden. It can be argued that when 

railways are adapted to climate change this in turn also increases the resilience as railways are 

able to operate efficiently under normal conditions as well as recover quickly from disruptions. 

The study critiqued Trafikverket’s climate adaptation strategies, stating it is unclear if the 

measures taken today are with intentions of adapting to future climate change or are a result of 

coping with current climate variations. For instance, the establishment of tree-free zones to protect 

tracks from falling trees is a direct result of a hurricane in January 2005. The study concluded that 

proactive, anticipatory, and planned adaptation strategies for climate change projections is 

lacking. They argue that climate change should already be considered in the early planning stages 

and that vulnerability assessments aimed at analysing future climate change impacts cannot be 

based on past events alone.  
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In 2018, Sweden released a new Climate Adaptation Strategy (Liljegren, 2019). Climate 

adaptation strategies up until 2018 in Sweden has been decentralised with responsibility lying 

predominately with individual actors and municipalities (Liljegren, 2019). However, with the 

implementation of this new strategy responsibility is given to government organisations and 

agencies such as Trafikverket. This led Trafikverket to release their own report on climate 

adaptation and resilience strategies. They highlight the urgency for their transportation to be 

adaptable to climate change as the extreme weather events are predicted to be more common in 

the future (Liljegren, 2019). The document highlights that climate adaptation is a cross-sectoral 

issue with many actors involved (Liljegren, 2019). The overall goal of transport policies within 

Trafikverket ensures socio-economic, efficient, long-term sustainable transportation for all 

businesses and citizens across Sweden, and to reduce vulnerabilities (Liljegren, 2019). 

Trafikverket has 21 objectives in three parts to achieve more robust systems and a strategy map 

to “plan, maintain, enable, and build” (Liljegren, 2019, pg. 19). Part 1 includes creating conditions 

for effective work with climate adaptation. Here, Trafikverket plans to collaborate nationally and 

internationally, establish how climate change will impact transportation, and establish methods 

for determining what measures are cost-effective for climate adaptation. Part 2 involves 

preventing the negative effects of climate change by creating resilient and robust facilities. Here, 

Trafikverket has planned to adapt maintenance methods to the impact of climate change and 

evaluate the risk points in existing railway facilities. Lastly, part 3 involves managing the effects 

of climate change. Here they plan to have a high level of preparedness and knowledge on how to 

handle the extreme effects of climate change (Liljegren, 2019). In their report it is highlighted that 

increasing existing facilities' resilience to climate change has no activity yet (Liljegren, 2019).  

 

Based on this it is evident that Trafikverket has started thinking more about climate change 

adaptation strategies. The future implications of climate change projections highlight that extreme 

weather events will become more common and therefore the resilience of railways in Skåne must 

be increased. Compared to the 2009 study, now that Trafikverket has more responsibility in 

climate change adaptation and resilience strategies more planned, proactive, and anticipatory 

strategies are in place. However, now it is time for Trafikverket to put their plans into action and 

start working on their goals. Both Lindgren, Jonsson, & Carlsson-Kanyama (2009) and 

Trafikverket state the importance of understanding the different vulnerabilities, climate threats and 

their consequences of the past in order to guide the implementation of strategies and measures 

in the future. The results of this thesis highlight the vulnerability of Skåne railways over the past 

11 years to high amount of precipitation, high temperatures, and temperatures below freezing; 
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indicating that more resilience strategies should focus on mitigating the effects of these weather 

conditions.  

 
The Austrian Railway operator ÖBB is an example of a railway system that is brought up in the 

literature that is striving towards resilience in the future. Their risk management strategy puts a 

great emphasis on precautionary, non-structural, and preparatory risk mitigation strategies 

(Kellermann, et al., 2016). In particular they have a weather monitoring and warning system which 

has been in effect since 2005 (Kellermann et al., 2016). The system is programmed with 

thresholds for very high and low temperatures as well as intensive precipitation to warn ÖBB of 

any extreme weather events (Kellermann, et al., 2016). This allows the ÖBB to predict extreme 

weather events before they happen and take action to ensure the safety of the passengers and 

staff and ensure that delays are kept to a minimum. If weather events can be forecasted 

beforehand it may be easier to reroute trains or give passengers other options in order to arrive 

to their destination on time; especially since railways are more challenging to reroute after a 

disruption compared to road networks due to single tracks. Although Austria has a different 

physical geography compared to Skåne, the country is subject to similar flooding events triggered 

by heavy precipitation, temperatures below freezing, and rising temperatures in the future. A 

warning system such as this one is an example of a non-structural and preparatory risk mitigation 

strategy Skåne railway systems could use. Currently, Trafikveket’s strategies are in the early 

stages of first understanding the effects of climate change on Sweden’s transportation systems. 

Additionally, it was highlighted in Trafikverket’s strategies the opportunity for international 

collaboration. Looking towards other countries with active resilience strategies already in place 

could be beneficial for Trafikverket in order to increase the resilience of their own railways in 

Skåne.  

 

Sweden is a part of the EU and therefore has signed several international agreements and 

frameworks that deal with climate adaptation of transportation infrastructure and resilience 

(Liljegren, 2019). For instance, the EU “Sustainable and Smart Mobility Strategy” is a strategy 

within the EU and therefore, Sweden is subject to reach these goals. Moreover, 2021 is the 

European Year of Rail which also aims at cutting carbon emissions in the transportation sector 

and to encourage more people to use railways. Although weather is not the only factor that 

impacts delays in Sweden or in other countries within the EU, the results of this thesis indicate it 

still has a significant impact and is expected to worsen in the future as climate changes towards 

warmer temperatures and increased amounts of precipitation. Railways are already highlighted 
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as a mode of transportation which reduces carbon emissions within the transportation system. 

Therefore, railway resilience to climate change is essential in ensuring trains remain punctual in 

order for the EU to achieve their sustainable transportation goals and to increase rail ridership. 

 

In 2015 Sweden also adopted the UN Agenda 2030 which consists of 17 Sustainable 

Development Goals (Liljegren, 2019; UN, n.d). In the agreement, the importance is highlighted 

that all countries work with climate adaptation and other goals towards a more sustainable future 

(Liliegren, 2019). SDG 7 Affordable and Clean Energy, SDG 11 Sustainable Cities and 

Communities, and SDG 13 Climate Action are three SDGs that pertain to this thesis and to the 

resilience of railways in Skåne. It can be argued that SDG 7 Affordable and Clean Energy is 

already well on its way due to the high number of electrified railways which lower carbon 

emissions within the transportation sector. However, there is still work to be done in some other 

goals such as SDG 11 Sustainable Cities and Communities and SDG 13 Climate Action. SDG 11 

promotes the shift towards sustainable transportation in urbanised areas, and SDG 13 promotes 

the need for climate change adaptation and resilience. SDG 13 also consists of two sub-goals 

that aim to increase resilience to climate related hazards and to integrate climate change 

measures into national strategies, polices, and planning (Liljegren, 2019; United Nations, n.d.). 

The results of this thesis indicate that the impacts of temperature and precipitation on railway 

delays is already prevalent, and this is expected to become more prevalent in the future. As 

mentioned, the electrification of railways in Sweden already promotes clean energy and works 

towards climate action. However, if railways are unable to adapt to climate change and become 

unreliable, then people will seek other modes of transportation which may not exhibit clean energy 

and counteract climate action. Initiatives such as the SDGs and EU sustainable transportation 

goals act as an important step towards Skåne railways becoming more resilient to the effects of 

climate change in the future as these hold Trafikverket accountable to increasing the resilience of 

railway infrastructure and systems in order to achieve the goals they have agreed to achieving.  

5.3 Assumptions and Limitations 
The ability to carry out an analysis such as this one has greatly improved compared to studies in 

the past due to the amount of data accessible. However, there are still some assumptions and 

limitations of the study that should be considered when dealing with large amounts of data.  
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When downloading weather data from SMHI, there were many decommissioned temperature 

stations, especially along major railways lines in the Eastern part of Skåne. This led to a significant 

gap between the number of temperature and precipitation stations. This means that there was 

data from more precipitation stations than temperature stations which may slightly skew results. 

Furthermore, sometimes there are issues with weather stations and therefore measurements are 

occasionally missed. Since there is 11 years of data, we can assume that the gaps affect the 

results very minimally, however it is still important to mention.  

 

Another limitation of the study is that the regression models were run with data that mostly 

coincides with “normal” conditions, which most likely do not cause delays. The more extreme 

cases which can lead to flooding, heatwaves, or cold snaps are less likely to occur but have the 

greater impact on delays. Therefore, the R2 values for the linear regression models were close to 

0 and the coefficients were also smaller than originally expected. The regression models also only 

model the relationship between delays and the chosen weather variables. In reality, there are 

many other factors which can influence delays such as other infrastructure faults, passenger 

behaviour, or issues with operations.  

 

Many studies have focused on only 1 year or relatively short time spans compared to this thesis 

which looks at 11 years. Therefore, the results may have differed if more years were added to the 

analysis, for instance 30 or 50 years. Furthermore, results may have different if only one year was 

chosen with particularly “abnormal” weather; for instance, a year with an extreme cold winter.  

5.4 Suggestions for Future Research 
This thesis aimed to act as a basis for understanding the current effects of weather on rail delays. 

Future studies may include modelling the future effects of climate change in order to quantify how 

climate change will impact future rail delays by forecasting future climate. For future research, the 

interactions between temperature and precipitation and other weather variables such as wind and 

snow depth may be considered. For instance, a blizzard is an extreme event which occurs when 

temperatures are below freezing, it is snowing and windy. Droughts are associated with low 

amounts of precipitation and high temperatures. Understanding these interactions can be 

beneficial in further understanding the effects of weather on railways. Conducting similar studies 

in all of Sweden can allow for a comparison to Skåne to indicate which weather variables affect 

other regions of Sweden and therefore which adaptation strategies should be implemented. It 
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may also be worth performing similar studies on freight trains. Finally, this study could be 

enhanced by identifying the extreme thresholds to understand what temperatures and amounts 

of precipitation exactly lead to the most severe delays. This thesis discusses about the 

implications of “cold” and “hot” therefore, being able to define these definitions with thresholds 

can improve the research in the future.   

 

 

 

 

 

 

 

 

 

 



CONCLUSION



 88 

6.0 Conclusion 
Railways have a large potential in the race to mitigate climate change due to their low emissions. 

However, this potential can only be reached if they are resilient and able to adapt to the 

increasingly extreme weather phenomena that are associated with climate change projections. 

This thesis’ aim was to examine the Skåne railway industry’s current vulnerability to temperature 

and precipitation and to discuss how this vulnerability is expected to increase with climate change, 

due to the sensitivity railways exhibit towards disruptions.  

 

The results from the multiple linear regression model revealed that the most statistically significant 

variables for dwell delays are the sum of precipitation over 7 days, the minimum temperature over 

1, 7, 14, and 28 days, and the maximum temperature over 1 and 28 days. Additionally, the most 

statistically significant variables for run delays are the sum of precipitation over 1, 7, 14, and 28 

days, the minimum temperature over 1,7, and 28 days, and the maximum temperature over 1, 

14, and 28 days. The models highlight that the size of a dwell or run delay increases with the sum 

of precipitation and maximum temperature. In contrast the size of a dwell or run delay decreases 

as minimum temperature increases. This indicates that delay size is biggest with increased 

amounts of precipitation, extreme high temperatures, and when temperatures are below freezing. 

Graphical evaluations revealed similar trends with the highest probability of dwell and run delays 

occurring when temperatures are below freezing and with increased precipitation.  

 
Understanding this vulnerability over the past 11 years gives a better indication of how this will 

change with future climate change projections. In Skåne, it is projected that temperatures and 

precipitation are expected to increase. The results indicate that railways already have issues with 

providing reliable services under current conditions. Therefore, it is expected that as climate 

changes and temperatures and precipitation are more extreme the delay likelihood will increase 

with it. Looking towards the future, it is important that railways become more resilient to climate 

change. The EU has goals to promote railways as a sustainable mode of transportation and to 

increase ridership. Therefore, punctuality is essential in order to achieve these goals. Increasing 

the resilience of railways in Skåne to the effects of extreme weather both today and in the future 

is vital in ensuring that trains arrive on time, operate efficiently, and act as the first-choice mode 

of transportation for passengers.  
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The ability to carry out an analysis such as this one has improved greatly compared to studies in 

the past due to the amount of data accessible. This thesis contributes to this field of research by 

investigating the sum of precipitation, minimum temperature, and maximum temperature from the 

past 11 years over a range of time-periods, specifically, 1, 7, 14, 21, and 28 days; not only 

investigating the daily effects which have mainly been studied so far. Analysing the accumulative 

effects, allows for studying the impacts of more extreme weather events such as heatwaves, cold 

snaps, and periods of intensive rainfall which may lead to flooding. Furthermore, this thesis 

focused on Skåne, an area where fewer studies have been conducted. It is an important area to 

study as it is one of the most populated areas in Sweden and many passengers are commuting 

for work and leisure, and therefore are reliant on punctual services.  

 

The theoretical framework used in the analysis was Resilience Thinking. This framework provided 

a basis for understanding how resilience is defined and used in other fields. Then it was narrowed 

down specifically to uses within the transportation sector to define resilience of railways as a 

system that is able to resist and bounce back quickly from interruptions. The main methods used 

throughout this thesis were graphical evaluations, regression modelling, and a literature review in 

order to determine the current relationship between precipitation, temperature, and delays; and 

to discuss the future implications of this relationship in light of climate change.  
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