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Reading Guide

A Git repository for the project is made available on Bitbucket with the following link:

https://bitbucket.org/guimateus/thesis/src/release/

Furthermore, a demonstration of the system proposed in this thesis can be seen in the
following Youtube video:

https://www.youtube.com/watch?v=NwiqvIr0uEE

Alternatively use the QR codes below to access the links presented above:

(a) QR code leading to the git repository. (b) QR code leading to video demo.

Figure 1: QR codes with external links.
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Finally, a list of the acronyms used throughout this report is shown below, organized
alphabetically:

Acronym Definition
AAU Aalborg Universitet
AP Average Precision
AR Augmented Reality
AUC Area Under Curve
CORA Core Ontologies for Robotics and Automation
CNN Convolutional Neural Network
CPS Cyber-Phyiscal System
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DL Deep Learning
FOV Field of View
fwIoU Frequency Weighted Intersection over Union
GUI Graphical User Interface
GPU Graphics Processing Unit
HMI Human Machine Interface
HRC Human Robot Collaboration
HRI Human Robot Interaction
IoU Intersection over Union
ISO International Standard Organization
JSON JavaScript Object Notation
mAP Mean Average Precision
mIT Mean Inference Time
mPA Mean Pixel Accuracy
mIoU Mean Intersection over Union
OWL Web Ontology Language
PA Pixel Accuracy
PNG Portable Network Graphics
RAM Random Access Memory
RGB Red Green Blue
ROI Region Of Interest
ROS Robot Operating System
sHRC Symbiotic Human Robot Collaboration
SUMO Suggested Upper Merged Ontology
TCP Tool Center Point
VRAM Video Random Access Memory
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1 Introduction

The industry paradigm has evolved through the years, to the point in which cyber-physical
systems (CPS) are now encountered in real-world applications as part of Industry 4.0.[1; 2]

This industrial revolution brought about an unparalleled degree of collaboration between
humans and robots. Previously, people and machines coexisted with the robotic
manipulators kept in cages away from humans to ensure the safety of workers. The
introduction of cobots following standards and safety regulations allow robots to
collaborate with humans. Such regulations provide robotic arms with safety mechanisms
such as touch sensors, slower speeds and accelerations than classical manipulators, and
rounded shapes. [1; 2; 3]

However, the field of human-robot interaction (HRI) has evolved through the years. Some
robots began augmenting the previously mentioned safety strategies with safety measures
of higher complexity to provide more innovative safety solutions and add redundancy
to their operations. In some cases, torque force sensors are implemented to perform
compliance control strategies as safety mechanisms, such as impedance and admittance
control.[4] In other cases, external sensors are added, such as cameras and laser scanners;
the former has seen majors advancements in the last decade with the inception of Deep
Learning (DL) and the evolution of Convolutional Neural Networks (CNN).[5]

DL image processing methods allow cobots to predict human behaviour using, for example,
the pose of workers, their intents, or the objects they grasp. This way, the collaborative
manipulators can actively interact according to the demeanour of humans to actively avoid
hurting them and collaborate on the same task. The application of such methods is causing
paradigm shifts in the relationship between humans and robots. [5] Furthermore, the
DL developments have aided in advancements in object semantics, which contextualizes
the environment for robots. Semantics provide a higher level of understanding to the
robot of its environment and can be exploited to create detailed reconstructions of the
environment.[6]

Such advancements in HRI, safety, and semantics allow for a closer contextualized
collaboration, which is task-driven, between workers and robots. Namely, symbiotic
human-robot collaboration (sHRC) where humans and robots collaborate while solving
tasks by making the most use of their unique capabilities while interacting naturally.[3]

1
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1.1 Thesis Objectives and Scope

This thesis proposes a pipeline that could be applied in a sHRC scenario. Its objective is to
allow a cobot to interact and collaborate with human workers in different tasks. The text
shown alongside Figure 1.1 describes the actions presented in the figure from the robot’s
perspective.

Circles represent a task the robot must solve in order to be able to collaborate with a
human in a task. Meanwhile, the boxes are methods that can be used to solve said task.
The creator of the report previously explored the yellow box. Purple boxes represent ele-
ments included as part of the literature review but are not addressed in this thesis. Finally,
green boxes are explored throughout the report entirely, through a literature review and
methods presentation and implementation.

Figure 1.1: Tasks possibly con-
tained in sHRC pipeline which
the robot should perform in order
to interact with humans.

The robot can observe "Has any object been picked up by a
human?" by a multitude of inputs, such as Hand Gesture
Recognition, Natural Language Processing, or Skeleton
Tracking. All said methods should provide a natural
input to the robot. However, as a proof of concept, it
was chosen that inputs through a GUI would suffice, for
reasons discussed in Section 1.2 (Scope Limitations).
When an object is chosen, the robot can infer "What
relations does this object have to its surroundings?", which
can be achieved by associating objects to other objects
or tasks through object ontologies, which is the study of
objects as entities.
Then, when the properties above are known, the robot
must ask itself "Where can I find things which have
relations to this object?". The system can use cues based
on environmental semantics in order to solve this step.
Finally, the robot must interface with the human and
figure out the worker’s possible behaviour. The robot
also must adapt its behaviour to seem non-threatening
to the human and follow safety guidelines for HRC. The
robot can infer "Based on all my previous knowledge, will
the human approach me? Alternatively, will they walk
away?", or "Should I cue the human, so they know it is
safe to approach me?". For this step, a literature review
on human-robot interfacing is explored, alongside some of
the standardization necessary for HRC.

1.2 Scope Limitations

Due to the COVID-19 global pandemic, physical interaction with a collaborative robot
was not possible during the runtime of this project. Therefore, the last behaviour node
is pushed into hypothetical future works. Hence, the aspects of the pipeline presented

2
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in Figure 1.1 which are explored in this report are the GUI, object ontologies, and
environmental semantics. These three elements should create a representation rich in
the semantics of an environment when implemented into a physical robot. Moreover, the
methodology presented in this report is meant to be used in industrial settings. However,
the use case presented is presented with household items for the most part since those were
available at the time.

The scope is also limited because to run this pipeline in a cyber-physical system, robot
integration must be performed. Furthermore, utilizing a GUI, instead of more intuitive
input methods, heavily limits the collaboration’s symbiotic aspect.

1.3 Thesis Structure

This document is structured in the same shape as a scientific paper. The current Chapter
(Introduction) presents an introduction to the problem at hand, and the scope of the
thesis presented, followed by Chapter 2 (Related Works) where a literature review is
performed, exploring the works previously performed which relate to the 3D environment
reconstruction task explored in this report. Chapter 3 (System Architecture) proposes a
layered system architecture, partly based on principles found during the literature review.
Directly after, Chapter 4 (Methodology and Implementation) presents the methodology
used and how it is implemented to form the system architecture presented. Chapter
5 (Evaluations) presents an experimental setup used to test the proposed system, which
provides qualitative and quantitative data. Finally, Chapter 6 (Discussion and Conclusion)
provides a short discussion of the results and possible future works to be done in the system
and a conclusion to this report.

3



2 Related Works

This Chapter presents a literature review of different methods used to solve problems that
relate to the one explored in this report. The first topic explored in Section 2.1 (Symbiotic
Human Robot Collaboration) is the continuous approximation of humans and robots in
their collaborations, presenting how different authors have increased safety measures and
made collaboration between these two agents more intuitive. Then, the field of ontologies is
explored in Section 2.2 (Object Ontology), which presents concepts on how the information
gathered by the robot can be contextualized in relation to objects and other entities.
Finally, the topic of semantics is explored in Section 2.2 (Object Ontology), which presents
how robots are currently contextualizing their environment with semantic cues.

2.1 Symbiotic Human Robot Collaboration

HRC is motivated by optimizing tasks performed by humans and robots via their
advantages to minimize each other’s disadvantages.[3] This section explores literature
regarding this topic while also considering standardization which provides safety guidelines.

For a large amount of the history of automation in factories, robots and humans have
been kept separate by cages to ensure the safety of workers.[7] However, as the number of
automated tasks keeps growing, so does their complexity. Human helpers, however, can
help to circumvent this, though, in most cases of ordinary HRC, the human has to abide
by some strict principles to make their work compatible with the flow of the automated
tasks. sHRC aims to move away from this by creating interactions between humans and
robots that feel natural, intuitive, immersive, require less knowledge about the robot’s
inner workings, and improve the symbiosis over time. [2; 3]

In [1], Nikolakis et al. propose a CPS which allows robots and humans to interact
and collaborate safely in tasks. According to the authors, the proposed CPS gathers
information regarding the conditions of the robot’s workspace by acquiring data on the
agents (humans and robots) in the environment. They utilize a robust communication
system and components capable of changing and controlling the states of the CPS agents
based on a hierarchy of systems. On the lowest level, world data is gathered and
communicated to the higher hierarchy levels, processed and used for the cognition and
control of physical interactions with humans. A similar hierarchy composed of five levels
is also shown in [8] by Monostori et al. and in [9] by Kao et al. This hierarchy is shown in
Figure 2.1 and is used as a guiding principle for the system proposed in this report.

4
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Figure 2.1: System Hierarchy proposed by Nikolakis et al in [1].

The authors of [1] use point clouds as means of detecting and tracking humans by creating
convex hulls around the workers to segment them and compare the points computed to
the tool center point (TCP) of the robot. Their safety measures are based on principles
explored in [10], in which Khalid et al. suggested that to have safe HRC, one must use
a fusion of sensors to create redundancy and comply with EN ISO standards 13849-1[11],
13849-2[12], and 13855[13]. In addition, human interactions with robots require a risk
assessment to assess and reduce possible hazards for human workers, according to ISO
standard 31000[14].

A different methodology is proposed in Cesta et al. [15], where a system is used to create a
dynamic task planning framework. The system is composed of a hierarchy that supervises
the actions of a human worker and adapts a manipulator’s behaviour to aid the human
worker to perform low-level tasks. The low-level tasks are then themselves part of a larger
ecosystem of high-level tasks. The hierarchy used can be observed in Figure2.2.

(a) High level task planning. (b) Low level task planning.

Figure 2.2: Task planning for symbiotic human robot collaboration proposed in Cesta et al. [15].

In Liu et al. [16] the safety aspect of HRC is explored, where the environment surrounding
the robot is contextualized using a real-time human-robot interface. This system uses a
CNN for human pose estimation to avoid collisions with individuals. The sensing system
of the robot is related to the robot workspace by performing a hand-eye calibration using
augmented reality (AR) markers. The information gathered on the human-robot interface
is used on a real-time path planner, which changes the robot’s motions to assure the safety
of human workers. The architecture used in this system can be seen in Figure 2.3.
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Figure 2.3: System architecture used for safe HRC, proposed in Liu et al. [16].

Advancements in sHRC allow industries that, traditionally, have not adopted automated
manufacturing methods, such as the aerospace industry. In the case described by Pérez et
al. [17], robots are being implemented alongside humans to complement each other while
performing tasks. The robot is responsible for handling tasks that require high amounts
of accuracy, such as placing parts in place, while the human is responsible for tasks that
require a high amount of flexibility, such as screwing. Their system is composed of a
control system that interacts with the inner control loop of the robot. In its turn, the
control system is operated by human machine interface (HMI), in the shape of a tablet.
The system also contains a safety system using Lidar and two cameras and a metrology
system used to take precise measurements. The system architecture used can be seen in
Figure 2.4.

Figure 2.4: System architecture proposed by Pérez et al. [17], which is applied in a industry use
case that normally would not use robots.

6



2.2. Object Ontology Aalborg University

2.2 Object Ontology

Ontology, in general, is a philosophical field that, when applied to robotics, aims to create
a bridge between human concepts and robot concepts, such that both can interact in the
same scope of specific shared ideas.[18]

In [19], Jiang et al. make use of an ontology system for manipulation concepts. The
authors manage to associate manipulation actions such as "grasp" or "hold" to specific
objects such as a plastic bottle. They achieve this by creating a framework capable of
reading data from camera streams, associate it with semantics, and parse them into the
ontology agent using Protégé[20], which is an ontologies platform developed by Standford
University. Moreover, Owlready2, a Python implementation of the Web Ontology Language
(OWL), is utilized. The ontologies are used alongside a vision system in which the human
executes an action, and the robot mimics the task, as seen in Figure 2.5.

Figure 2.5: Robot mimicking human actions based on object and action ontologies, presented in
[19].

In [21], Beetz et al. propose RobotSherlock, which is a computer vision framework using
RGB and depth data to segment objects. The segmentation is done by utilizing the RGB
feed of a camera to classify objects based on their colour and a depth feed to create
hypotheses of the object positions, using RANSAC [22], Euclidean cluster extraction[23],
and feature descriptors, such as SIFT [24] and SHOT [25]. RobotSherlock uses object
ontologies (Figure 2.6) to deduct if the attributes extracted from the RGB feed match
the ones expected for the hypotheses proposed using depth. Another use case for that
system is to add extra attributes to an object, such as the parts which compose it, which
may help robots manipulating it.
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Figure 2.6: Object ontologies used by RobotSherlock in [21].

Olszewska et al. explore the application of ontology in autonomous robots in [26]. In the
paper, two types of Ontology are used, Suggested Upper Merged Ontology (SUMO)[27]
and Core Ontologies for Robotics and Automation (CORA)[28]. The former is used to
divide entities into physical or abstract domains. In the physical domain, objects and pro-
cesses are found. Objects are described as entities with spatial-temporal properties, while
processes are simply temporal units. As for abstract entities, they can be represented
by strings of information that are not necessarily the same but relate to the same entity.
CORA expands SUMO by adding ontologies that are physical and directly interact with
the tasks as tools. This is presented in Figure 2.7.

Figure 2.7: A proposal [26] of ontologies to be used in autonomous robots, where different types of
entities are proposed, each with different properties. Some are physical, and others only exist in
an abstract domain.
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In previous work [29], Olszewska and McCluskey explored an ontology system that was
responsible for creating relations between objects in dynamic environments. Using a
camera to detect contours of objects which evolved over a temporal domain, the authors
proposed the method Spatio-Temporal Visual Ontology (STVO), using a hierarchical
structure proposed by Corcho et al. in [30]. The hierarchical structure is used to create
concept trees, which expand in properties of "things" detected. E.g. a "thing" has the
property "scene", which in turn has the properties "number of objects", "object", "spacial
relations", and "temporal relations". The deeper the tree goes, the more specific the
properties become, such as "object part" having a specific "part colour". The authors
implemented their algorithm using Protégé v4[31] and OWL. In Li et al. [32], a framework
to aid robots in grasping tasks is proposed, in which both object semantics and task
semantics are explored. Both ontologies are implemented using OWL. However, this paper
expands previous mentions of this ontology language by adding a probabilistic aspect to
it using a Bayesian Network.

2.3 Environmental Reconstruction

For the most part, environmental semantics are applied in contexts of mobile robotics
in the form of semantic mapping.[33; 34; 6] The principle of these mappers is to apply
semantics attained by the classification of the environment itself (single cues), or by the
objects present in the environment (multiple cues), into a metric map which represents the
layout of spaces which a robot moves in. This report explores the possibility of applying
such methods to a robotic work-cell in a manufacturing context.

The specific use case for semantics targeted in this report could be seen in a similar light
as the work performed by Mantelli et al. [35], where a framework for semantic mapping is
proposed, in which it aims to reduce the time used to search for objects in an environment.
The authors achieve this by creating a metric map with semantic cues, which is divided
into cells. The robot uses semantic cues to navigate specific cells using a cost function,
where objects of interest may be located. The concrete example used as a use case in the
paper is that the robot uses the semantic cues of doors numbers to navigate to specific
rooms in the semantic map, as presented in Figure 2.8.

Figure 2.8: The robot in Mantelli et al. [35] gathers semantic cues based on door numbers. The
cues are included in the metric map which can then be used to navigate the robot to the objective.

In some cases, the previously discussed concept of ontologies can be used to relate objects
to specific places and generate semantics of environments based on those relations. Such
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a concept is presented in [36] by Fernandez-Chavez et al. where Mask-R CNN is used for
object detection, alongside odometry of the robot, OWL ontologies, and a probabilistic
Bayesian framework to compute class labels for places in the robot environment. The
pipeline can be seen in Figure 2.9.

Figure 2.9: Representation of the pipeline proposed in Fernandez-Chavez et al. [36], where object
relations to the environment are used to generate semantic labels for places.

In contrast, Sunderhauf et al. used a different strategy, also using deep learning in [6].
Instead of using object ontologies to generate environment semantics, the general context
of a scene is used. The semantic labels are computed by casting the classifications of the
neural network used into a point cloud of the environment, seen in Figure 2.10.

Figure 2.10: Semantics assigned to different environments in Sunderhauf et al. [6].
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In [37], Grønhøj et al. attempted to optimize the method shown in the previous Figure
by filtering the computed point cloud labels using Density-based spatial clustering of
applications with noise (DBSCAN)[38] to remove outliers and optimize detections, as seen
in Figure 2.11.

Figure 2.11: Outlier removal in Grønhøj et al. [37] using DBSCAN in the method proposed by
Sunderhauf. In B, there are regions with red noise removed in C after filtering the data.

In [39], Rogers et al. propose the usage of a conditional random field instead of a
cost function to have a robot navigating through semantics. The principle is that the
probabilistic model can create relationships between rooms and objects the robot has to
fetch.
Furthermore, the work [40] published by Veiga et al. also proposes the usage of a
probabilistic framework using Markov Decision Process to create relations between objects
and semantic categories (Figure 2.12a). In this paper, the authors used classical point cloud
processing methods, creating multi-view representations of keypoints from the objects of
interest to detect objects. As for the semantics, the authors created a knowledge base,
which contains information regarding object relations, and a cognition engine that handles
the information gathered by the object detection. The authors also make use of a structure
similar to ontologies (Figure 2.12b) where some objects have immovable properties, while
others can be moved.

(a) Relations of the semantic map generated and
objects detected.

(b) A structure similar to ontologies, where objects
have properties in the sense that they are either
movable or immovable. Furthermore, objects also
have a relation to specific places.

Figure 2.12: Cognition of semantic map and objects detected in Veiga et al. [40].
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A similar principle is applied in Werner et al. [41], where a volumetric map of the
environment around the robot cell is generated, being partially composed of immovable
entities and movable entities. The immovable entity map is generated during an offline
stage, where a point cloud of objects in the environment is created. The offline map is
then used alongside an online stage where an octree is generated, presenting the movable
entities which must be updated in real-time. The composite 3D representation of the two
stages allows industrial manipulators to plan their paths according to the environment
data to avoid collisions. The resulting environment can be seen in Figure 2.13.

(a) Robot workcell physical environment. (b) Reconstruction using point clouds and octrees.

Figure 2.13: Physical world and 3D reconstruction based on the algorithm proposed by Werner et
al. [41].

The literature review performed in this Chapter provided information about the trends
in sHRC, object ontologies, and semantics. The information gathered is partially used as
inspiration for the design of the architecture proposed in this thesis.
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3 System Architecture

This chapter presents an architecture based on the tasks presented in Figure 1.1, back
in Chapter 1 (Introduction). The design is based around the hierarchy proposed in the
papers [1; 8; 9], which is presented in Figure 3.1. The purple boxes present the names of the
different levels of the hierarchy. Notice that the boxes corresponding to CPS functionalities
are presented in red, which means that these aspects of the system are considered out of
this report’s scope and should be addressed in future works.

Figure 3.1: CPS system proposed, following the hierarchy design shown by Nikolakis et al.,
Monostori et al., and Kao et al. [1; 8; 9]. The left side shows levels of the hierarchy, and the
right the aspects of the CPS proposed in this report.

3.1 Data-to-information Conversion and Smart Connection
Levels

A stereo camera is used, alongside a monocular RGB camera for data gathering. The
pipeline proposed in this report takes some inspiration from the work shown by Werner et
al. [41], Sunderhauf et al. [6], and Mantelli et al. [35].

Robot Operating System (ROS) is used as middleware in the communication between the
hardware and software. This framework brings the input data to higher levels of the
hierarchy, where the detection and cognition algorithms are executed.
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3.2 Cyber Level

The data parsed in the two previously described levels is used to run algorithms that create
a 3D reconstruction of the environment. There are two separate tasks at this level that
must be addressed. The first is the detection and segmentation of objects which partake
in the design of the environment. The second is to create a volumetric representation of
the environment.

Taking inspiration from the volumetric design proposed by Werner et al. [41], a two-stage
3D environment reconstruction is proposed to reconstruct the world accurately. The first
stage is executed offline, where large static objects are assigned semantic labels on an RGB
image, which is then stored for later usage. During the online stage, the image containing
the static semantics is loaded, and a lite version of the algorithm applied during the
offline stage is used. The semantics assigned during the online stage correspond to smaller
dynamic objects which can be moved and manipulated in the environment while a human
interacts with them.

3.3 Cognition Level

With semantics assigned to the static and dynamic objects, the usage of object ontologies
is presented. This step aims to create a cognitive relationship between the environment,
where the dynamic objects are found, and which tasks the objects can execute. The
ontologies also allow the system to infer where precisely the task will take place in the
environment.

3.4 System Architecture

Based on the levels presented above, a system architecture is proposed in Figure 3.2,
composed of offline (top) and online (bottom) stages. The offline stage uses a two-stage
object segmentation pipeline to compute the semantics of static objects in the environment.
The masks computed by the detector are then saved in a PNG file. Meanwhile, the online
stage has a similar architecture to the offline stage. The dynamic objects are detected
and segmented much like the static objects. During the latter stage, the masks are cast
into a 3D reconstruction node, which creates a concise representation of the environment.
Furthermore, object ontologies create regions where a particular dynamic object may be
found during the online stage based on their relations to specific static objects.

In the figure, blue boxes represent elements of the 2D vision, while orange ones represent
3D vision. The yellow box is the ontology node, while the purple boxes represent the
communication nodes of the system.
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Figure 3.2: Proposed system architecture composed of offline and online stages for 3D environment
reconstruction. The offline stage is responsible for the segmentation of static objects, while the
online one is responsible for dynamic objects which a human can move and use to perform tasks.
The system is capable of creating relations between these two types of objects by using object
ontologies.

The hierarchy and architecture proposed are utilized as guidelines for the rest of
the development of this project. The methods utilized are expanded on Chapter 4
(Methodology and Implementation) and tested in Chapter 5 (Evaluations).
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4 Methodology and Implementation

This Chapter presents the conceptualization and implementation of the methods used in
the proposed solution. Section 4.1 (A Case For Semantics) presents the thought process
behind the need of contextualizing the environment through a reconstruction. The section
shows the implementation of object ontologies since they provide a connection between
different elements of the reconstruction, making it beneficial for a robot’s cognition.
Then, Section 4.2 (Volumetric Reconstruction Structures) presents different methods
possible to represent the volumetric aspect of an environment reconstruction and how it is
implemented in the proposed architecture. In contrast, Section 4.3 (Semantics Pipeline)
demonstrates the semantics pipeline used and how it is divided into a system that handles
offline and online reconstructions of the environment for static and dynamic objects.
Finally, all the previously described elements are merged through a GUI, which handles
their interactions and requests, which is shown in Section 4.4 (User Interfacing).

4.1 A Case For Semantics

The field of semantics in robotics has been studied in the past and in contemporary times.
Robots themselves out of the box tend to be pieces of machinery with sensory inputs
missing any cognition that allows them to perform intelligent decision-making in tasks.
In the past, the representation of the environment surrounding a robot would be limited
to volumetric data. To this day, some robots are implemented into environments with
only a basic understanding of their environment, enough to generate motions and paths
to complete simple tasks.

However, the relationship between humans and robots is changing and evolving, and in
order to create seamless interactions between these two entities, there is a need to increase
robotic systems’ awareness of their surroundings in a sense that they can better interact
with the world.[21] In addition, humans are incredibly reliant on semantic meanings of
things and entities. We process and make sense of the world around us by assigning names
to objects and concepts, facilitating interactions with other humans through linguistics.
To humans, this process comes naturally, and the field of semantics in robotics aims to aid
these entities to perceive the world in a grounded way, which is understandable and natural
to humans. This connection can also allow workers with less technological experience and
robotics knowledge to work alongside these machines.[35]

An example is presented in Figure4.1a, where a worker gets a robot to move to an object
via coordinates, which can be highly unintuitive. Controlling a robot by coordinates
requires a certain extent of knowledge to understand how the robot processes information
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of the environment to give it the correct goals. In contrast, in Figure4.1b, the worker only
needs to have an understanding of the semantics of an object to lead the robot to it using
information gathered by a camera mounted on it.

(a) Case where a work must request a robot
to move to an object using a three dimensional
Cartesian system.

(b) Case where the robot contains a camera and
understands basic object semantics to move to
an object based on a user’s request.

Figure 4.1: Two examples presenting an interaction using 3D data and another one using object
semantics.

However, simply assigning semantics to objects via object detection is quite limited in the
sense of seamless interaction. The manipulator must always be facing the direction where
objects requested by the user can be found because cameras are capable of only gathering
data within their field view. Alternatively, the entire workspace of the robot must be
searched for the correct object, as seen in Figure4.2.

Figure 4.2: Robot facing the wrong direction of the object of interest with the field of view of the
camera pointing to nothingness. To solve this the robot must either search the entire workspace,
or be hardcoded to search for objects only in specific regions.
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Therefore, it is proposed that by using workspace semantics, the robot should search for
objects in specific regions that correspond to where the object may be found. E.g. in the
hypothetical case that there are two tables in the environment, one red and one green,
while the robot has the a priori knowledge that a screwdriver can be found on top of the
red table, the robot should face said surface and look for the object of interest on that
place, ignoring all the rest, as seen on Figure4.3.

Figure 4.3: The robot is requested to move to a screwdriver, which it knows it can be found on top
of a red table.

The semantic reconstruction of an environment should be performed in an offline stage
and an online stage. First, the robot samples the environment for static objects (tables,
chairs) and assigns labels to them, while in the second, the robot uses the static objects
as landmarks to create ROIs where it searches for dynamic objects (screwdrivers, saws,
pumps). However, simply assigning semantics to objects is not enough to provide the robot
with an understanding of the relations between different semantic labels. Therefore, there
is a need to explore relations between static objects and dynamic objects to achieve the
concept presented above.

One way to explore these object relations is in the form of the previously mentioned object
ontologies. An ontology can represent a thing or a concept and describes the connection
between static and dynamic objects in the proposed architecture. In the case presented
in Figure4.3, the dynamic object screwdriver exists within the bounds of the static object
red table.

Such a relation can be visualized as it is presented in Figure4.4, where a static object has
four dynamic objects related to them, and in turn, each of the four objects has properties
attached to them. Properties assigned to the objects could be physical attributes or
processes, such as a task in which the object is involved.
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Figure 4.4: Concept of object ontologies visualized, where static objects have dynamic objects
tethered to them, while they themselves have properties attached to them.

This concept is used for the implementation of ontologies in this report, which is explored
below.

4.1.1 Implementing Ontologies in Reconstruction Task

In the scope covered in this report, the usage of ontologies is quite limited since it only
targets the relations between static and dynamic objects and tasks in which a dynamic
object can be used. Therefore, it was decided that a complex framework such as OWL
would be unnecessary for the implementation. Instead, a more straightforward approach
is used as proof of concept by implementing the ontologies utilizing JSON in Python.

An ontology handler was created to set ontological relations, based on user inputs, between
static and dynamic objects, and a task that can be achieved by utilizing said dynamic
objects. The ontology pipeline works by loading a JSON file into Python containing the
structure visualized in Figure 4.5.

Figure 4.5: Visualization of ontology structure. The orange box represents a JSON array. The
green boxes represent individual ontologies stored inside of the array. Each of the ontologies has a
dynamic object, a static object, and a task.
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A new relationship is created by inputting a dynamic object which had no previous
relations to a static object, in which the handler appends a new element to the JSON
array Ontologies. If the user decides to change an existing relation, the handler checks the
JSON array for a known relation, replacing the existing one with the new input from the
user.

The handling of new ontologies is shown in Figure4.6, in the form of a flow chart.

Figure 4.6: Flow chart of setting and replacing object ontologies in JSON file.

The saved file can then be loaded when there is a necessity to check relations between
objects, such as when semantics are assigned to the dynamic objects, as seen in Section
4.3.2 (Implementing Pipeline in Reconstruction Task).
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4.2 Volumetric Reconstruction Structures

The first step in creating a 3D semantic reconstruction of an environment is to explore the
volumetric aspect since it provides the necessary foundation to distribute semantics later.
RGB images are 2D representations of the Field of View (FOV) of a camera, presenting
only values in height and width. In order to create a full representation of the information
caught on the FOV of a camera, one must add a depth value to the width and height
values. There are several methods to do this, such as sensor fusion of a range finder and
an RGB camera, monocular camera depth estimation, but an RGBD stereo camera is used
in this thesis.[42]

This type of sensor is composed of two cameras that are displaced from each other, allowing
to calculate the disparity between the cameras’ frames. The disparity can compute
the distance of objects since the closer present a more considerable disparity between
themselves than those further away.[42] The resulting depth image of a stereo camera can
be projected into 3D data structures, such as point clouds, which can be seen in Figure
4.7.

Figure 4.7: Raw point cloud created from RGB and depth images.

Point clouds are an accurate way to represent 3D data; however, the data is not organized
and non-Euclidean, since the distance between each point is ambiguous, in contrast to
images in which the distance between pixels is always known. Furthermore, point clouds
can contain many data points that are redundant in the representation of a scene. These
redundant points must still be stored, causing an increase in the resources needed to run
operations on the clouds.[43]

Since the system presented in this report aims to be lightweight, for integration in a cobot
working alongside humans in a real-world setting, exploring alternatives that drain fewer
resources is essential.

One of the commonly used methods to simplify point clouds is by down-scaling them using
a voxel grid. This structure takes the original data and divides it into voxels, which, to
some extent, are similar to image pixels in 3D, as seen in Figure 4.8b. The points contained
inside of one of these cells are averaged in order to compute their centroids. Therefore,
the distance between neighbouring points is the same, and the number of existing points
is reduced to the number of existing voxels. A point loud down-scaled using a voxel grid
can be visualized in Figure 4.8b.[43]
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(a) Visual example on how the
point cloud data is split using a
voxel grid.[44]

(b) Voxel grid generated from
the point cloud created from
RGB and depth images.

Figure 4.8: Example of how data is split using a voxel grid and the end result on a point cloud.

Though voxel grids simplify the number of points in a point cloud, there is still much
redundancy in this structure. Voxels will still represent regions without any points. A
more efficient way to split the data is by using octrees.[44] This type of data structure is
analogous to quadtrees used in 2D images and are a method that specifically uses three-
dimensional points to split the data. The method works by splitting data alongside a
central 3D point into eight child octants, which can be visualized in Figure 4.9a. Octrees
provide optimized results in 3D since a single iteration of the data division into octants
splits it by the x, y, and z axes.[45]

Furthermore, since this data structure is dependant on a central point to split the data,
it does not split octants where no information is present, which is an advantage compared
to the voxel grid’s inherent problem of saving empty voxels. Another advantage of octrees
is that the user can define how deep the tree should go, which aids in controlling the
resources used to generate the structure. Deeper trees will show extra details; however,
they consume more resources. The result of a data split using an octree can be seen in
Figure 4.9b.[45]

(a) Visual example on how the
point cloud data is split using a
octree.[44]

(b) Octree generated from the
point cloud created from RGB
and depth images.

Figure 4.9: Example of how data is split using an octree and the end result on a point cloud.
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4.2.1 Volumetric Mapping Method Implementation

The volumetric mapper proposed in this report takes inspiration from the one proposed by
Werner et al. [41], which is composed of an offline and an online stage. During the offline
stage, information regarding static objects is gathered in the form of an RGB frame. This
information is merged in the online stage with a newly sampled RGB image containing
dynamic objects placed in static objects. The implementation is performed using Open3D,
which is a modern Python point cloud processing library.

The sampled data is used, alongside a depth image, to generate a point cloud, which
is down-scaled into an octree since it saves precious resources for other stages of the
reconstruction. In order to compute the initial point cloud, a checkerboard calibration is
performed using MATLAB’s Computer Vision Toolbox, which outputs the camera intrinsics
matrix, as seen in Figure 4.10. fx 0 cx 0

0 fy cy 0
0 0 0 1


Figure 4.10: Intrinsics matrix of a camera.[46]

In this matrix fx and fy stand for the focal length of the x and y axis, respectively, while
cx and cy represent the principle point of the sensor on x and y.[46]

The flow of the process to generate the volumetric representation of the environment can
be seen in Figure 4.11.

Figure 4.11: Process flow of offline volumetric reconstruction of an environment.

This implementation works as the basis to cast the semantics found in Section 4.3
(Semantics Pipeline) from 2D to 3D in order to achieve the complete reconstruction of
the environment.
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4.3 Semantics Pipeline

Inspired partially by the works performed by Sunderhauf et al. [6] and Fernandez-Chavez
et al. [36], the semantics reconstruction in this project is performed using CNNs in
order to classify the objects in the environment, both static and dynamic. For this,
one must perform segmentation on objects in the environment. In the previous semester
[47], the author of this report developed a two-stage detection pipeline that proposes
regions of interest using an object detector, crops said regions and parses them to a
semantic segmentation neural network. For an in-depth analysis of the methods
used, refer to Chapter 5 of [47]. The methodology used in this report remained
the same as the previous work, save for some improvements described below .
The principle behind this is that the detector’s inference is faster than the segmentation
network, optimising the time used to segment objects in the environment. In its original
use case, the pipeline was implemented into a setting where screws in a diverse set of
pumps had to be detected and segmented, as shown in Figure 4.12.

Figure 4.12: Two stage segmentation proposed on previous semester in Mateus et al. [47] for the
detection and segmentation of screws. This figure is adapted from Bochkovskiy et al. [48].

The object detector used is YOLOv4 using a CSP-Darknet53 backbone proposed by
Bochkovskiy et al. [48], which at the time the research and development of the two-
stage detection pipeline took place was a state-of-the-art method in the MS COCO
dataset challenge, providing a balance between speed and accuracy. It has, however, been
dethroned by a faster and more precise version of YOLOv4, Scaled-YOLOv4, which can be
seen in Figure 4.13. In the previous semester, there was a consideration that the accuracy
of EfficientDet could prove to be beneficial while sacrificing some inference speed, however
with the newest release of YOLO, it is clear that it is possible to have a more accurate
detector than YOLOv4 while retaining the inference frequency.
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Figure 4.13: Performance of YOLOv4 compared to state-of-the-art methods. It is possible to see
that Scaled-YOLOv4 scores the highest average precision in this dataset, according to the original
paper’s authors.[49]

The semantic segmentation is performed using DeepLabV3+[50] on a PyTorch[51]
implementation [52] utilizing a ResNet-101[53] backbone, which even though the former
reaches state-of-the-art results in the PASCAL VOC[54] dataset, the latter creates a
bottleneck in performance, since there are methods which currently perform better as
feature extractors, such as ResNeXt[55], ResNest[56], and Xception[57].

However, since this report aims to present a proof of concept for 3D environment
reconstruction, it was deemed that refactoring large sections of the previously proposed
pipeline was unnecessary. Instead of using resources for a marginal improvement on the
predictions of object bounding boxes and masks, some more focus can be given to exploring
how the semantics should interact with the object ontologies and volumetric mapping.

4.3.1 Improvements on Two-Stage Object Segmentation Pipeline

The design of the pipeline was maintained from previous work. However, some aspects of
it were either lacklustre or incompatible with the use case explored in this report.

One of the most significant changes that helped stabilise the system’s inference times
compared to the ones achieved in the previous work was to resize the cropped regions
proposed by YOLOv4 by resizing them to a standard resolution. As a consequence, all the
inputs to DeepLabV3+ are uniform, having the same inference time for all the proposed
regions, causing it to have a linear time complexity O(n). Said resizing prevents the system
from having an arbitrary time complexity which could have spanned from milliseconds in
best-case scenarios to several minutes in worst-case scenarios. Furthermore, each image
is normalised to [-1, 1], since the network is also trained in normalised images during the
training stage.

The information flow of the segmentation stage of the network can be seen in Figure 4.14,
while the one for object detection has remained untouched and can be seen in Figure B.1.
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Figure 4.14: Information flow on the segmentation stage of the network with the added improvement
of resizing image sizes.

The generated masks face a problem similar to one found in previous works [47], related
to the fact that the images are modified to a different scale and ratio when resized, which
results in the outputs having wrong proportions, as seen in Figure 4.15.

Figure 4.15: Mask output with the wrong scale and ratio.
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The scale relates to the property that the image size has been changed, and therefore,
the outputs from the segmentation neural network will be related to an image coordinate
frame that does not represent the entire cropped region but only the resized version. The
scale property can be recovered by transforming the resized coordinates into percentages
and the percentages into coordinates on the original cropped region. Moreover, in the case
that the aspect ratio between the cropped region and the resized image differ, scaling the
images to the correct coordinate frame using the percentages of the two images will cause
the outputs to be still skewed in a directly proportional way to the aspect ratio of the
original cropped region. The percentile conversion does not account for different ratios on
x and y. In order to circumvent this, the now scaled images must be multiplied by a ratio
factor, which relates the scaled coordinates to the original cropped region correctly. This
process is presented explicitly in equations 4.1 and 4.2, which were proposed in previous
works.

xCropped =
xresized

Widthresized
∗WidthCropped ∗Ratio (4.1)

yCropped =
yresized

Heightresized
∗HeightCropped ∗Ratio−1 (4.2)

The end result from these transformations can be seen in Figure 4.16.

(a) Resulting mask from equa-
tions aforementioned.

(b) Mask overlay on object in
cropped region.

Figure 4.16: Example of mask post-processed with equations 4.1 and 4.2.

However, there is an extra step compared to the equations proposed previously since the
masks must also be transformed into the coordinate frame of the original input image.
In order to do so, all the coordinates of the masks are summed with the anchor point,
which generates the cropped regions, effectively projecting them to the original coordinate
system.

This post-processing is performed by applying equations 4.3 and 4.4 to the masks generated
during the segmentation stage.

xOriginal = xCropped + xAnchorPoint (4.3)

yOriginal = yCropped + yAnchorPoint (4.4)

The result can be visualised in Figure 4.17, where a set of objects can be seen with their
corresponding mask overlay projected on the original image.
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Figure 4.17: Resulting output from the post-processed masks provided by the semantic segmentation
neural network.

At this stage, the pipeline is ready to be implemented into the broader system architecture.

4.3.2 Implementing Pipeline in Reconstruction Task

The two-stage segmentation pipeline is implemented as a part of the 3D environment
reconstruction proposed in this report, where its task is to assign semantics to objects. As
previously mentioned, the reconstruction is performed during offline and online stages. In
the former, the pipeline assigns semantics to static objects which remain in the same place
every time an online reconstruction is performed. The objects are classified by loading
weights for YOLOv4 and DeepLabV3+, which is unloaded after the offline reconstruction
is finished. The static object semantics are saved in files to be used by the online stage,
where the bounding boxes of each of these objects are stored in the form of its minimum
(Xmin, Ymin) and maximum (Xmax, Ymax) coordinates, alongside their class labels. In
addition, the centroids of the masks computed are also stored. Furthermore, an RGB
image with an overlay of each of the masks computed is also saved, as seen in Figure 4.18
and the information flow to generate the static masks is presented in Figure 4.19.

Figure 4.18: Computed mask during offline stage of a static object.
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Figure 4.19: Flowchart of a request for offline reconstruction of an environment.

When a request to create an online representation is received, the detection pipeline loads
the predictions describing static objects computed during the offline stage to detect and
segment dynamic objects. Using the static object bounding boxes as landmarks, the
system crops the input frames into regions of interest where dynamic objects may be
found according to object ontologies, similarly to the concept presented in Figure 4.3. The
result of the cropping based on the static objects can be seen in Figure 4.20, where a whole
frame is cropped into a sub-region that corresponds to the bounding box of a table. Based
on the ontologies, the system knows that pumps can be found on top of the table.
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(a) Original frame used for inference during an online recon-
struction.

(b) Cropped region of the frame, based on
static and dynamic object relations.

Figure 4.20: Example of cropping images during online stage using the bounding box of a static
object.

After this initial step, the bounding boxes are projected to the original image, and the
dynamic objects are segmented. The resulting masks are then merged with the previously
saved masks of the static objects in the environment, and the result can be seen in Figure
4.21.

Figure 4.21: Merged representations presenting the masks of static and dynamic objects.

The resulting merged representation is then projected to an octree, representing the
distribution of objects in the environment while accounting for their distance to the camera,
which can be seen in Figure 4.22. Meanwhile, the information flow during this stage of the
reconstruction can be seen in Figure 4.23.
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Figure 4.22: Merged representation projected into 3D space.

Figure 4.23: Flowchart of a request for online reconstruction of an environment, where a specific
object is requested by the user.

The resulting representation is then shown to the user using a Graphical User Interface
(GUI) presented in Section 4.4 (User Interfacing).
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4.4 User Interfacing

In order to achieve an interactive and intuitive experience when utilizing the proposed
pipeline in a physical robot, a Graphical User Interface (GUI) is proposed using
PySimpleGui. The objective of GUIs is to remove unnecessary and confusing interactions of
a user with the back-end of a system while providing a simple proof of concept. Especially
in the case presented in this report, where it achieves to create an sHRC pipeline, users
should interact with the system without having a large amount of knowledge in robotics
and machinery.

The creation of the GUI was an iterative process of conceptualization and feedback by
external parties. When building this node of the pipeline, the first step was to create visual
feedback to the user on what was happening behind the scenes without struggling when
looking for the information. In the initial design seen in Figure 4.24, three images were
presented to the user, one with the objects detected, another with the masks generated,
and a final one with the resulting point cloud from a masked image.

Figure 4.24: Initial iteration of the design of the GUI, presenting visual feedback to the user.

Upon some different conceptualization, it was decided that the interface should abide by
some requirements:

• The interface should be simple and avoid having the user interacting directly with
the back-end as much as possible;

• The interface should be capable of creating ontological relations;
• The interface should be able to request offline and online reconstructions of the

environment by simulating requests from a physical robot;

For the first requirement, the visual feedback was organized into separate tabs with a
description of each of the feedbacks and tool-tips on what they signify, which can be seen
in Figure 4.25.

Figure 4.25: Tabs used to separate the different feedbacks and functionalities of the GUI for a more
intuitive experience.

As for the second requirement, a separate tab, seen in Figure 4.26 was created in order to
contain a handler in which users can select different dynamic objects and relate them to
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static objects and tasks. This element of the GUI interacts indirectly with the ontologies
node of the system by setting the ontological relations through a ROS service request
containing the dynamic and static objects.

Figure 4.26: Tab used to handle user inputs regarding ontological relations of dynamic and static
objects.

Furthermore, to use the ontological relations between static and dynamic objects, a tab
containing buttons with images of different objects was added. When the user presses one
of these buttons, the system sets the corresponding object as the object of interest for the
next time an online reconstruction is performed, aiming to simulate the concept presented
in Figure 4.3. The design of this tab can be seen in Figure 4.27.

Figure 4.27: Buttons used to request specific dynamic objects.
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For the last requirement, two buttons to request online and offline reconstructions were
created on a region of the GUI which is always visible, no matter which tab the user selects
since this is the primary function of the system and should always be visible. The two
buttons simulate robot requests for future-proofing by requesting the reconstructions using
a ROS service with a flag to handle whether the system should look for static or dynamic
objects. The buttons can be seen in Figure 4.28.

Figure 4.28: Buttons for offline and online reconstructions of the environment, located on a region
of the GUI which is always visible.

The final design of the GUI can be seen in Figure 4.29 showing a 3D reconstruction of an
environment.

Figure 4.29: Final version of the GUI showing the 3D Reconstruction tab.

Finally, the different buttons described above cause the GUI to behave like a state machine,
where each one of them causes a state change. These changes set the GUI into states that
perform requests from other system nodes, such as the reconstruction pipeline, setting
ontological relations, and setting a dynamic object of choice. The state machine can be
observed in Figure 4.30.
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Figure 4.30: State machine modeling the behaviour of the GUI.

In short, this Chapter exposed the inner workings of the proposed system architecture.
In Section 4.1 (A Case For Semantics) an object ontology handler using the JSON format
was proposed, in which static and dynamic objects relations are stored. Section 4.2 (A
Case For Semantics) presented different ways of representing 3D data and that octrees
should provide the lightest data storage of the compared methods. Then, in Section
4.3 (Semantics Pipeline) a two-stage segmentation pipeline using DL is proposed, with
a heavy focus on aspects that have improved since previous works. Finally, Section 4.4
(User Interfacing) presents a GUI which integrates all the systems and a representation
of its behaviour as a state machine used to regulate the other aspects of the system. The
proposed systems in this Chapter and their implementation are tested and reflected upon
in Chapter 5 (Evaluations), where both qualitative and quantitative data is presented.
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5 Evaluations

The system proposed in Chapter 4 (Methodology and Implementation) is tested upon in
order to gather data on its performance and success of the concept proposed. Therefore,
qualitative and quantitative tests are performed in Sections 5.2 (Qualitative Results) and
5.3 (Quantitative Results), utilizing the setup shown in Section 5.1 (Experimental Setup).

5.1 Experimental Setup

As previously mentioned, COVID-19 restrictions were in place during the duration of this
project. Therefore, the test setup is limited compared to its full potential since all of it
is realized in a domestic environment. Its current state is composed of a Realsense D415
Stereo Camera on a tripod, connected to a desktop computer with a GTX 970 GPU with
4GB of VRAM. The computer also contains 8GB of DDR3 RAM and utilizes an AMD
FX-8320 CPU at 4.0GHz.

5.1.1 Generating Datasets

Since the system at hand performs offline and online reconstructions, two sets of data
were created. One set contains static objects and the other dynamic objects. Both these
sets were saved similarly, using the Realsense camera and a script that stored images each
time the keyboard was clicked. The outputs from this script became the data used to
fine-tune YOLOv4’s head, utilizing a total of 65 and 379 images for the offline and online
reconstructions, respectively. Some examples of images used in these two datasets can be
seen in Figure 5.1.

(a) Example of pictures used on offline dataset for
object detection.

(b) Example of pictures used on online dataset for
object detection.

Figure 5.1: Online and offline datasets for object detection.
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The classes included in the online dataset are composed of some objects possibly found in an
industrial environment to create a proof of concept to perform a real-world implementation.

Meanwhile, the classes which form the offline dataset are Table and Chair. These two
household objects can possibly be found in industrial environments. However, they work
as placeholders for furniture, which may be more common in workspaces containing robots
and in manufacturing environments.

The fine-tuning procedure in YOLOv4 was performed using hyperparameters provided by
the original author of the Darknet implementation [48], training the offline model for a
total of 6000 epochs in 2 classes and the online model for 22000 epochs in 11 classes,
with an input size of 1120x1120 pixels, which were labelled with YOLO_mark [58]. The
training procedure took close to 180 hours at CLAAUDIA1, using one Tesla V100 GPU.

The resulting models are used in another script to generate the datasets for DeepLabV3+,
utilizing the same pictures used to train YOLOv4. The weights for the reconstructions
and images from the dataset are loaded using the script and cropped into smaller images
containing the objects detected by YOLOv4. The resulting cropped images can be seen
in Figure 5.2. In the end, a total of 99 different cropped images were generated from the
initial 65 used for the offline reconstruction dataset, while 484 cropped images were created
from the 379 images in the online reconstruction dataset. The images were also resized to
a standardized size of 512x512 pixels.

(a) Example of pictures used on offline dataset for
object segmentation.

(b) Example of pictures used on online dataset for
object segmentation.

Figure 5.2: Online and offline datasets for object segmentation.

This data was labelled using Labelme [59] and then transformed into the Pascal VOC
data format, resulting in the ground truths used in the fine-tuning of DeepLabV3+. This
network was initially set to train for 500 epochs; however, it contains an early stop to
save the best set of weights to avoid overfitting. The fine-tuning procedure took around
two hours utilizing CLAAUDIA with one Tesla V100 GPU for each of the reconstructions
models.

5.2 Qualitative Results

A qualitative analysis of the proposed system is performed by observing its overall
behaviour when performing a reconstruction task.

1Cloud service at AAU for AI applications.
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The system successfully assigns semantics to static objects during an offline reconstruction
requested by the user utilizing the GUI. The process of loading the offline model and
reloading the online model is quite extensive time-wise, clocking at 24s to perform this
whole process. However, since this process happens during the offline reconstruction, this
would not be a problem if this system was applied in a manufacturing sHRC setting.
The flushing and loading procedures would not add any extra lead time to the process.
In ideal conditions, it should only happen when there are changes in static elements of
the environment. The result of the pipeline proposed in this report can be seen in table
5.1, under the tab reconstruction. Alongside the Input Image used to perform detections,
the results from a raw implementation of DeepLabV3+, and the results of the Two-stage
Segmentation Pipeline are also shown as means of comparison.

Input Image DeepLabV3+ Two-stage
Segmentation
Pipeline

Reconstruction

Table 5.1: Figures showing the resulting masks using different methods on the same input image.

It is possible to observe that DeepLabV3+ when implemented by itself, seems to detect
some of the objects in the environment. However, it does seem to pick up some rather
large amount of noise from the background, if there is scene clutter.

As for the two-stage segmentation pipeline, most objects seem to be correctly detected if
placed on top of a white surface (table). However, it seems the system has trouble picking
up detections on dark objects (chairs), which could be related to the dataset used. It
seems the problem worsens during the segmentation stage since the system can propose
bounding boxes in these regions. However, it fails to segment the objects. It became
apparent that the segmentation network is more prone to biases regarding illumination
and colour differences than object detection.

The reconstruction pipeline provides a semantics rich representation of the environment
between the static and dynamic objects. The connections through ontologies of the
dynamic and static objects allow targeted searches in the environment. Furthermore,
the system can infer the task a dynamic object can be used for and where it can be used
based on coordinates of static objects through the ontologies.
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5.3 Quantitative Results

Though the qualitative results provide a subjective approach to the results of the system,
showing that it is capable of reconstructing the environment, it is also essential to quantify
the system’s performance. Doing this makes it possible to know exactly how well the object
detection and segmentation behaved and how they compare to state-of-the-art methods.

5.3.1 Two-stage Segmentation Pipeline Performance in Custom
Dataset

Utilising the custom made dataset presented in Section 5.1.1 (Generating Datasets), some
metrics which describe the performance of the system were measured.

A test is conducted on the YOLOv4 model trained on the dynamic objects dataset.
A validation dataset was created containing 25 unique images in order to compute the
Precision (P), Recall (R),[60] and mean Average Precision (mAP)[61]. This specific dataset
comprises new images, which are not included in the training and test datasets.

mAP is a metric that measures Average Precision (AP) of models in all the classes in
which they were trained. The mAP score corresponds to the Area Under Curve (AUC) of
the precision-recall curve, which is calculated with Equation 5.1.[61]

mAP =
1

n

∑
n

(

∫ b

a
P (R)dR)n (5.1)

Precision describes the percentage of true positives in all of the recalled instances, and
recall is the percentage of true positives in all the existing instances. Figure 5.3 presents
the concept of the two metrics, showing how they are computed inside the blue boxes.

Figure 5.3: Visualization of the Precision and Recall metrics.
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The mAP varies depending on the detection acceptance threshold for Intersection over
Union (IoU). IoU represents the proportion in which a bounding box of a ground truth
intersects with the model’s detection. The concept of IoU can be seen in Figure 5.4.

Figure 5.4: Example of IoU, where the yellow region represents the intersection of the ground truth
(red) and the detection (green). Adapted from [37].

The mAP was measured at different thresholds of the IoU. The data can be visualised in
the form of a curve in Figure 5.5, and the specifics of the data are presented in Table A.3.

Figure 5.5: mAP at IoU=.50:.05:.95 of YOLOv4 in the proposed implementation.

The results presented above were attained using the inbuilt tool in Darknet. Utilising
an IoU threshold @0.65, in order to have the most considerable amount of overlap
between ground truths and predictions without sacrificing mAP, a precision-recall curve
was plotted. The values used to plot the curve were acquired by tweaking the minimum
confidence necessary to accept a detection as a true positive. The curve can be seen in
Figure 5.6.
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Figure 5.6: Precision-recall Curve of YOLOv4 in the proposed implementation using different
confidence values.

In addition to the object detection tests presented above, a validation of the segmentation
model was also done. In this case, the validation dataset was generated by cropping objects
detected by the object detection model to simulate the two-stage object segmentation
conditions closely.

The metrics used to measure the performance of this dataset were the same as used in
Long et al. [62], Pixel Accuracy (PA), Mean Pixel Accuracy (mPA), Mean IoU (mIoU),
and Frequency Weighted IoU (fwIoU), plus the Mean Inference Time (mIT). PA quantifies
the percentage of pixels that are true positives (nii) in the total amount of pixels of the
class in an image (ti). mPA quantifies the percentage of pixels that were correctly classified
in an image averaged for the number of classes (ncl). The mIoU quantifies the average IoU
of the model for a pixel class, where nij represents the number of false negatives pixels.
Meanwhile, the fwIoU considers the class frequency when computing the mIoU. The results
are presented in Table 5.2. The higher the value for each of the metrics, the better, except
for inference time, which smaller values report better performance. The metrics can be
computed using equations 5.2-5.5, which are shown also in Long et al. [62].

PA =
∑
i

nii
ti

(5.2)

mPA =
1

ncl

∑
i

nii
ti

(5.3)

mIoU =
1

ncl

∑
i

nii
ti +

∑
j nji − nii

(5.4)

fwIoU = (
∑
k

tk)
−1

∑
i

tinii
ti +

∑
j nji − nii

(5.5)
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Input Res-
olution
(pixels)

PA (%) mPA (%) mIoU (%) fwIoU (%) mIT (s)

64x64 50.95 11.10 5.88 27.00 2.40
128x128 50.28 10.95 8.26 37.92 1.61
256x256 50.00 11.00 9.92 45.40 6.70
512x512 49.65 11.04 10.27 46.84 27.59

Table 5.2: Metrics used in Long et al. [62] to measure performance of object segmentation at
different resolutions.

It seems there is a relationship between a resolution increase and a higher value in both of
the IoU metrics. This performance improvement comes at the cost of higher inference
times, except for the increase from 64x64 pixels to 128x128 pixels. Furthermore, it
seems that the pixel accuracy value has remained chiefly stagnant between the different
resolutions.

Though the values above allow quantifying the system’s performance in the custom dataset,
it is essential to compare the model’s performance to pre-existing CNN architectures.
Therefore, a set of extra quantitative tests was performed in the next section.

5.3.2 Two-stage Segmentation Pipeline Performance in COCO Dataset

In order to be able to evaluate the capabilities of the two-stage segmentation pipeline
honestly, models trained on the COCO dataset were used. Having such models allows
a direct comparison to state-of-the-art methods. The validation dataset provided on
the COCO challenge website can measure different metrics for object detection and
segmentation.

Method APbox (%)
GCNet[63] 51.80
ResNeSt-200[56] 52.50
SpineNet-190[64] 52.60
EfficientDet-D7[65] 54.40
Copy-paste[66] 55.9
Swin-L[67] 58.0
YOLOv4 in proposed implementation 42.30

Table 5.3: Bounding box mAP of different state-of-the-art network designs, compared to the
proposed implementation based on YOLOv4 at the resolution of 960 x 960 pixels.

The same dataset was used to evaluate the performance of the segmentation of object
masks. The metrics utilised for this comparison is the mIoU. The results can be visualised
in Table 5.4, compared to other state-of-the-art methods.
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Method mIoU (%)
DSSPN[68] 38.90
SVCNet[69] 39.60
EMANet[70] 39.90
SPYGR[71] 39.90
OCR[72] 39.50
DANet[73] 39.70
CAA[74] 41.20
DeepLabV3+[50][52] 0.90
DeepLabV3+ in proposed implementa-
tion

3.85

Table 5.4: Mask mIoU in COCO-stuff dataset for segmentation in different state-of-the-art
methods, compared to the proposed implementation based on DeepLabV3+.

5.3.3 Inference Time on Two-stage Segmentation Pipeline

The purpose of the two-stage segmentation pipeline is to reduce the inference time of the
segmentation of objects since only ROIs proposed by YOLOv4 on the original input image
are segmented.

The testing procedure used to measure this metric comprises four trials, each composed of
100 iterations. In each iteration, dynamic objects are detected and segmented since these
objects are time-critical compared to static objects. Three of the trials were done using
the method proposed by the author [47], while the other one uses a raw implementation
of DeepLabV3+ in which a single trial is conducted since adding or removing objects does
not affect inference time.

For the tests using the two-stage segmentation pipeline, the input resolution 960x960
pixels is used for YOLOv4, and 256x256 pixels is used for DeepLabV3+. Such an input
resolution for the segmentation network keeps it very close to the size of the cropped region
from the original image, which should create fair testing conditions. Therefore, the raw
implementation of DeepLabV3+ is set to use the native resolution of the camera as input
at 1280x720 pixels.

During the trials on the proposed pipeline, one extra object was added at each of them.
The data gathered over the 100 iterations of each of the trials can be seen in Figures 5.7a
to 5.7c in the form of histograms.

During the trial conducted on the raw implementation of DeepLabV3+, the same object
number was placed in the camera’s FOV, and inference was performed 100 times. However,
the difference in the results was negligent. Therefore, only one of the trials is presented.
The resulting data from this test can be seen in Figure 5.7d in the form of a histogram.
In the Figure, µ stands for the mean of the distribution, while σ stands for the variance.
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(a) Histogram of first trial. µ = 4.09s σ = 0.29s (b) Histogram of second trial. µ = 6.58s σ = 0.15s

(c) Histogram of third trial. µ = 8.80s σ = 0.96s
(d) Histogram of DeepLabV3+ implementation. µ =
30.73s σ = 1.96s

Figure 5.7: Histograms presenting the inference times of three trials of the newly proposed two-stage
segmentation pipeline (a, b, c) and raw DeepLabV3+ implementation (d).

The distributions and their means were plotted in a box-whiskers plot to visualise better
how the data is scattered. It is possible to observe that some of the data does not fall within
the boxes nor the whiskers limits. However, it is possible to see the linear relationship
mentioned in Section 4.3 (Semantics Pipeline), through the means of three distributions,
which grows with each object added to the test.

Figure 5.8: Box-whiskers plot presenting the relationship between the number of objects added to
the scene and the inference time.
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Furthermore, a set of trials was conducted using the ontological relations between static
and dynamic objects. The process was similar to the previous test. Each trial ran for
a total of 100 iterations, and the same amount of objects was used. The results are
presented in Figure 5.9 in the form of histograms. In the Figure, µ stands for the mean of
the distribution, while σ stands for the variance.

(a) Histogram of first trial. µ = 3.85s σ = 0.15s (b) Histogram of second trial. µ = 5.89s σ = 0.15s

(c) Histogram of third trial. µ = 7.83s σ = 0.16s

Figure 5.9: Histograms presenting the inference times of three trials of the newly proposed two-stage
segmentation pipeline (a, b, c) using object ontologies to infer on ROIs.

In general, the performance of the system is satisfactory as a proof of concept. The results
obtained in this Chapter are reflected upon in Chapter 6 (Discussion and Conclusion) where
the successes, shortcomings, and possible improvements of the system can be found.
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6 Discussion and Conclusion

This chapter reflects on the performance of the proposed two-stage segmentation pipeline
and the 3D reconstruction of the environment with object ontologies. Some of the
discussion topics relate to the successes and issues during development and how this
knowledge can guide future developments of the proposed system.

A novel pipeline to assign semantics to an environment was created throughout this project.
Such a system can aid workers with little knowledge of robotics to collaborate alongside
cobots. The development during this thesis managed to reach the proof of concept and
complete the scope proposed in Chapter 1 (Introduction). For the most part, the system
produced satisfying qualitative results, especially accounting for the domestic environment
where it was tested and the short inference times compared to a raw implementation of
DeepLabV3+. In its current stage, integrating the system into a cyber-physical system
depends on its integration into a physical cobot. The system can also achieve a small degree
of cognition by considering relations between objects and places where tasks are performed
through object semantics, ontologies, and the projection of data into a 3D reconstruction.

Currently, the system is restricted to only having the Realsense camera as its
hardware. Therefore, it is complicated to create transformations of the camera’s pose
in the environment, which led to the restriction where the camera only generates 3D
reconstructions of what it is currently seeing. In order to add this system to a cyber-
physical system, there is a need to place the camera on a robot and perform a hand-eye
calibration in order to be able to map the entire environment surrounding the robot’s
workspace. The necessity for integration is a minor issue, which could be considered part
of the natural progression of this project’s long-term development.

The system manages to run on an outdated computer, which is pretty remarkable since the
CNNs utilised are modern designs while achieving the previously mentioned short inference
times. However, to fully apply this system in a real-world setting, there is a need to
address a memory leak in the object segmentation neural network. Currently, the PyTorch
implementation used for DeepLabV3+ runs on the CPU side since the GTX 970 used does
not have enough VRAM to run both models in parallel. The memory leak is induced every
time the user calls for an offline reconstruction where the online weights should be flushed.
Furthermore, once the static objects are found, the offline weights should also be flushed
to make room for the online model yet again. However, PyTorch does not contain any
method to flush memory from the RAM, only from CUDA, in the GPU. Therefore, each
time the weights are loaded, they are never flushed, increasing the amount of memory used
at each iteration. Such a problem could be easily solved by utilising a newer GPU, where
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the VRAM constraint is not a problem, allowing both models to run in parallel.

Furthermore, the proposed implementation for object segmentation has increased
performance in the mIoU metric in the COCO-Stuff dataset, compared to the one achieved
by the raw implementation of DeepLabV3+. Therefore, it seems that utilising the
implementation by [52] leads to a bottleneck on the proposed method since the values
achieved during testing do not reflect the ones stated in the implementation [52] nor in the
original paper [50]. The performance is lacklustre and falls behind many state-of-the-art
methods. Therefore, an obvious step in future works would be to move away from this
implementation to another one with better support and results.

During the testing of the system, it was possible to observe that there is currently a
significant problem regarding the environment’s lighting conditions. Most datasets were
taken when the natural was abundant, which causes a decrease in the system’s accuracy
when the weather is overcast. In this specific case, it is impossible to control this variable
because the experiments were realised in a domestic environment where controlled light
conditions cannot be achieved. In the end, some of the data, which is part of the custom
dataset, ended up having low quality, as seen in Figure 6.1. However, the system still
managed to produce satisfying qualitative results, leading to the belief that even in
non-optimal lighting conditions, the system still has some merit. Furthermore, during
previous works [47], the system produced high-quality detections with a controlled light
source. Therefore, this problem is not so much an architecture flaw but an easily solvable
environmental issue since it is expected that manufacturing environments have controlled
environmental lighting.

Figure 6.1: Problematic frame part of the dynamic objects dataset.

In general, the qualitative data acquired shows that the proof of concept works, and it can
provide a reconstruction of the environment, compared to simply using a method such as
DeepLabV3+ or the two-stage segmentation pipeline proposed. Furthermore, there is a
need to develop a more intuitive way of users interacting with the system without using a
GUI, since, at its current stage, it requires a priori knowledge of the system. A workaround
for such an issue could be achieved by informing the robot that they will pick up an object
or perform a task through natural language processing or gesture recognition.

Regarding the quantitative data, the two-stage object segmentation pipeline performs
better on the COCO-stuff dataset than the raw implementation of DeepLabV3+, with
an increase of 2.95% in the mIoU metric, even though both perform worse than the
state-of-the-art methods. On the other hand, the performance of YOLOv4 was much

47



Aalborg University

closer to the expected value at 42.30% in the mAP metric, performing still slightly worse
than other state-of-the-art methods. However, since the objective of the thesis is not to
create a state-of-the-art segmentation architecture, the results are deemed acceptable for
proof of concept, especially since the inference using the pipeline is faster than using a
raw implementation of the segmentation network. Furthermore, by utilising the object
ontologies and the offline reconstruction of the environment, the inference time of the
proposed segmentation pipeline marginally goes down. It is also possible to observe in
the data that there seems to be a smaller number of outliers in the method using the
reconstruction to propose ROIs than utilising the proposed pipeline on entire images.

One interesting aspect to also possibly explore is to move towards having both of the
models running on the same framework. The interactions of Darknet and Pytorch with
each other create, at times, complex situations which can quickly become convoluted when
attempting to perform tests or refactor sections of the code. Furthermore, there is a chance
that the code would run faster by using methods that are native to a specific framework
instead of having cross-communication between different frameworks.

In conclusion, this thesis proposes a 3D environment reconstruction pipeline that can be
applied in sHRC scenarios between a cyber-physical system and a human worker. Even
though the project’s scope was quite limited in terms of environment, the system could
recreate an environment’s semantics and use them to alongside ontological relations. There
is much potential in the concept itself for collaboration cases, and it would be interesting
to explore interactions with humans in the long run with the system integrated into a
physical cobot.
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A Quantitative Experiments Data

A.1 Values of mAP at Different IoU Thresholds in Custom
Dataset

IoU Threshold mAP
@0.95 0.51
@0.90 0.32
@0.85 0.75
@0.80 0.85
@0.75 0.91
@0.70 0.93
@0.65 0.95
@0.60 0.95
@0.55 0.95
@0.50 0.95
@0.45 0.95
@0.40 0.95
@0.35 0.95
@0.30 0.95
@0.25 0.95
@0.20 0.95
@0.15 0.95
@0.10 0.95
@0.05 0.95

Table A.1: mAP values of the model in different IoU metrics.



A.2 Values of Precision-Recall at Different Confidence
Thresholds in Custom Dataset

Confidence Threshold Precision Recall
@0.95 0.99 0.87
@0.90 0.99 0.87
@0.85 0.98 0.88
@0.80 0.98 0.88
@0.75 0.98 0.89
@0.70 0.98 0.89
@0.65 0.98 0.89
@0.60 0.98 0.90
@0.55 0.98 0.90
@0.50 0.98 0.91
@0.45 0.98 0.91
@0.40 0.98 0.91
@0.35 0.98 0.91
@0.30 0.98 0.91
@0.25 0.98 0.91
@0.20 0.97 0.91
@0.15 0.96 0.92
@0.10 0.95 0.93
@0.05 0.93 0.93

Table A.2: Precision-recall data at different confidence thresholds.

A.3 Values of mAP at Different IoU Thresholds in COCO
Mini-val Dataset

IoU Threshold mAP
@0.95 0.01
@0.90 0.12
@0.85 0.26
@0.80 0.37
@0.75 0.45
@0.70 0.52
@0.65 0.57
@0.60 0.61
@0.55 0.65
@0.50 0.67

Table A.3: mAP values of the model at IoU=.5:.05:.95



B Figure From Previous Works

Figure B.1: Flowchart presenting the information flow when re-scaling the bounding boxes of
the detected objects to the original image scale and correcting the ratio, while also cropping the
objects.[47]
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