
Aalborg Universitet

Clock Difference Diagrams (extended version)

Larsen, Kim Guldstrand; Weise, C.; Yi, W.; Pearson, J.

Published in:
Nordic Journal of Computing

Publication date:
1999

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, K. G., Weise, C., Yi, W., & Pearson, J. (1999). Clock Difference Diagrams (extended version). Nordic
Journal of Computing, 6, 271-298.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 25, 2025

https://vbn.aau.dk/en/publications/55a8ada0-8092-11db-8b97-000ea68e967b

Nordic Journal of Computing
CLOCK DIFFERENCE DIAGRAMSKim G. Larsen1 Justin Pearson2 Carsten Weise1Wang Yi21BRICS�, Aalborg University, Denmark2Department of Computer Systems, Uppsala University, SwedenAbstract. In this paper, we present Clock Di�erence Diagrams (CDD), a newBDD-like data-structure for e�ective representation and manipulation of certainnon-convex subsets of the Euclidean space, notably those encountered in veri�cationof timed automata. It is shown that all set-theoretic operations including inclusionchecking may be carried out e�ciently on Clock Di�erence Diagrams. Other clockoperations needed for fully symbolic analysis of timed automata e.g. future- andreset-operations, can be obtained based on a tight normalform for CDD. A version ofthe real-time veri�cation tool Uppaal using Clock Di�erence Diagrams as the maindata-structure has been implemented. Experimental results demonstrate signi�cantspace-savings: for nine industrial examples the savings are in average 42% withmoderate increase in runtime.CR Classi�cation: D.2.1, D.2.2, D.2.4, I.2.2, I.6.4, F.3.1.Key words: automatic veri�cation, real-time systems, timed automata, symbolicmodel-checking, clock decision diagrams.1. IntroductionModel-checking has established itself as a powerful technique for checkingwhether a given formally described system satis�es a desired property. Forparallel systems, model-checking su�ers from the inherent problem of stateexplosion, i.e. the exponential growth in the size of the global state-spacein the number of component systems. The symbolic approach to model-checking attempts to conquer this problem by using implicit representationsof sets of states. In particular, in the case of �nite-state systems, BinaryDecision Diagrams [Burch et al. 1990], BDD's, has proven to be an extremelycompact and e�cient data-structure in many practical applications.In the last few years model-checking techniques and tools have been suc-cessfully extended to the setting of real-time systems (e.g. [Wang et al.1994],[Henzinger et al. 1995],[Daws and Yovine 1995],[Bengtsson et al. 1996]).�BRICS: Basic Research in Computer Science, Centre of the Danish National ResearchFoundationReceived December 1998, Revised June 1999

2 LARSEN ET AL.The veri�cation engines of most tools in this category are based on timedautomata following the pioneering work of [Alur and Dill 1990]. Whereasthe initial decidability results use a symbolic representation in terms of apartitioning of the in�nite state-space of a timed automaton into �nitelymany equivalence classes (so-called regions), current tools such as Kronosand Uppaal are based on more e�cient data structures and algorithms forsymbolic representation and manipulation of convex subsets of the Eucle-dian space using simple constraints, so-called Clock Constraints, over clockvariables.Clock Constraints only o�er a symbolic representation of the continuous partof the state-space of timed automata. A fully symbolic representation shouldideally integrate a similar symbolic representation of the discrete part. Un-fortunately, Clock Constraints are not closed under the union operation1,which has made this a notoriously di�cult task.In this paper we present Clock Di�erence Diagrams, CDD's, a new BDD-likedata-structure for representing and manipulating certain non-convex subsetsof the Eucledian space. In particular CDD's are a generalization of ClockConstraints which are closed under arbitrary �nite unions.In section 2 we give the preliminary de�nitions for timed automata andClock Constraints. Section 3 introduces our new data-structure, CDD's,and sections 4 and 5 show how set-theoretic operations as well as otheroperations required for the fully symbolic analysis of timed automata maybe carried out on this representation. Section 6 presents a relative normalform for CDD's, which is relative to a notion of granularity. Section 7 reporton encouraging experimental results obtained from a version of the real-timeveri�cation tool Uppaal based on CDD's. Section 8 concludes the paper.Related WorkThe work in [Balarin 1996] and [Wong-Toi and Dill 1995] represent earlyattempts of applying BDD-technology to the veri�cation of continuous real-time systems. In [Balarin 1996], Clock Constrains themselves are coded asBDD's. However, unions of Clock Constraints are avoided and replaced byconvex hulls leading to an approximation algorithm. In [Wong-Toi and Dill1995], BDD's are applied to a symbolic representation of the discrete controlpart, whereas the continuous part is dealt with using Clock Constraints.The Numerical Decision Diagrams (NDD's) of [Asarain et al. 1997],[Bozga etal. 1997] o�er a canonical representation of unions of zones, essentially via aBDD-encoding of the collection of regions covered by the union. The paper[Campos and Clarke 1995] o�ers a similar BDD-encoding in the simple caseof one-clock automata. In both cases, the encodings are extremely sensitive1 as the union of two convex sets is not necessarily convex.

CLOCK DIFFERENCE DIAGRAMS 3X � 4l0 l1Y := 0 ^Y � 3X � 5X � 1X := 0;Y := 0a bFig. 1: A Timed Automaton.to the size of the constants used in clock constraints. As we will indicate,NDD's may be seen as degenerate CDD's requiring very �ne granularity.CDD's are in the spirit of Interval Decision Diagrams (IDD's) of [Strehl andThiele 1998]. In [Strehl 1998], IDD's are used for analysis in a discretesetting. Whereas IDD's nodes are associated with independent real-valuedvariables the nodes of CDD's are associated with di�erences of clock values,which makes the nodes highly interdependent (and of course more expres-sive). Thus, the subset and emptiness checking algorithms for CDD's aresubstantially di�erent from IDD's. Also, the canonical form requires addi-tional attention, as bounds on di�erent arcs along a path may interact.Another approach in [R.L.Spelberg et al. 1998] applies partitioned re�ne-ment to obtain an e�cient real-time model-checking algorithm. The CDD-datastructure was �rst introduced in [Larsen et al. 1998]. A similar datas-tructure has recently been introduced in [M�ller et al. 1999],[M�ller et al.1999]. 2. PreliminariesThe theory of timed automata was �rst introduced in [Alur and Dill 1990]to provide a formal model for real{time systems based on �nite-state au-tomata. In recent years, several veri�cation tools for real{time systems inthe framework of timed automata have been developed. A key to the successof these tools is the application of the well-known data-structure Di�erenceBounded Matrices, DBM for representing clock constraints.2.1 Timed AutomataA timed automaton is a standard �nite-state automaton extended with a�nte collection of real-valued clocks. In a timed automaton, the nodes(also known as control nodes) are labelled with an invariant (a conditionon clocks), and transitions are labelled with a guard (a condition on clocks),a synchronisation action, and a clock reset (a subset of clocks to be reset).Intuitively, a timed automaton starts execution with all clocks set to zero.Clocks increase uniformly with time while the automaton is within a node.

4 LARSEN ET AL.The automaton can only stay within a node while the clocks ful�ll the node'sinvariant. A transition can be taken if the clocks ful�ll the guard. By tak-ing the transition, all clocks in the clock reset will be set to zero, while theremaining keep their values. Thus transitions occur instantaneously. Se-mantically, a state of an automaton is a pair of a control node and a clockvaluation, i.e. the current setting of the clocks. Transitions in the semanticinterpretation are either labelled with a synchronisation action (if it is aninstantaneous switch from the current node to another) or a positive realnumber i.e. a time delay (if the automaton stays within a node letting timepass).Consider the timed automaton of Fig. 1. It has two control nodes l0 and l1and two real{valued clocks X and Y . A state of the automaton is of theform (l; s; t), where l is a control node, and s and t are non{negative realsgiving the value of the two clocks X and Y . A control node is labelled with acondition (the invariant) on the clock values that must be satis�ed for statesinvolving this node. Assuming that the automaton starts to operate in thestate (l0; 0; 0), it may stay in node l0 as long as the invariant X � 4 of l0 issatis�ed. During this time the values of the clocks increase synchronously.Thus from the initial state, all states of the form (l0; t; t), where t � 4,are reachable. The edges of a timed automaton may be decorated with acondition (guard) on the clock values that must be satis�ed in order to beenabled. Thus, only at the states (l0; t; t), where 1 � t � 4, the edge from l0to l1 is enabled. Additionally, edges may be labelled with synchronizationactions and simple valuations reseting clocks. For instance, when followingthe edge from l0 to l1 the action a is performed to synchronize with theenvironment and the clock Y is reset to 0 leading to states of the form(l1; t; 0), where 1 � t � 4.For the formal de�nition, we assume a �nite set of actions, A (the alphabetof the automata) for synchronisation and a �nite set of real-valued variablesC for clocks. We use a; b; : : : to range over A andX1;X2; : : : to range over C.We use B(C) ranged over by g and later byD to denote the set of conjunctiveformulas of atomic constraints of the forms Xi�m or Xi � Xj�n, whereXi;Xj 2 C are clocks, � 2 f�; <;�; >g, and m;n are integer constants.The elements of B(C) are called clock constraints.Definition 1. A timed automaton over actions A and clocks C is a tuplehN; l0; E; Ii where� N is a �nite set of nodes,� l0 2 N is the initial node,� E � N � B(C)�A� 2C �N is the set of edges, and �nally,� I : N ! B(C) assigns invariants to nodes.When hl; g; a; r; l0i 2 E, we write l g;a;r�! l0.

CLOCK DIFFERENCE DIAGRAMS 5Formally, we represent the values of clocks as functions (called clock valu-ations) from C to the non{negative reals R�0 . We denote by V the set ofclock valuations for C. A semantical state of an automaton is now a pair(l; u), where l is a node of the automaton and u is a clock valuation andthe semantics of the automaton is given by a transition system with thefollowing two types of transitions (corresponding to delay-transitions andaction-transitions):� (l; u) d�!(l; u+ d) if u 2 I(l) and u+ d 2 I(l)� (l; u) a�!(l0; u0) if there exist g; r such that l g;a;r�! l0, u 2 I(l), u 2 g,u0 = [r 7! 0]u, and u0 2 I(l0)where for d 2 R�0 , u+ d denotes the clock valuation which maps each clockX in C to the value u(X)+d, and for r � C, [r 7! 0]u denotes the valuationfor C which maps each clock in r to the value 0 and agrees with u over Cnr.By u 2 g (or u 2 D) we denote that the clock valuation u satis�es all thesimple constraints in g (or D).2.2 Symbolic Reachability AnalysisIn general, the semantics of a timed automaton is an in�nite and uncount-able transition system, and is thus not an appropriate basis for decisionalgorithms. E�cient algorithms may be obtained using a symbolic seman-tics based on symbolic states of the form (l;D), where D 2 B(C) [Henzingeret al. 1994],[Wang et al. 1994]. The symbolic counterpart to the standardsemantics is given by the following two types of symbolic transitions:� (l;D); (l; (D ^ I(l))" ^ I(l))� (l;D); (l0; r(g ^D ^ I(l)) ^ I(l0)) if l g;a;r�! l0where time progress D" = fu + d ju 2 D ^ d 2 R�0g and clock resetr(D) = f[r 7! 0]u ju 2 Dg. It may be shown that the set of clock constraintsB(C) is closed under these two operations ensuring the well-de�nedness ofthe semantics [Larsen et al. 1995]. Moreover, the symbolic semantics fullycharacterizes the above concrete semantics in the following sense:� whenever (l0; fu0g);� (l;D) then (l0; u0) �!� (l; u) for all u 2 D� whenever (l0; u0) �!� (l; u), then (l0; fu0g);� (l;D) for some D withu 2 Dwhere u0 may be any clock valuation, fu0g 2 B(C) denotes the clock con-straint which is satis�ed only by u0 and �!� denotes the transitive closureof the relation �!.Based on the symbolic semantics, a number of veri�cation tools have beendeveloped for real-time systems (e.g. Kronos [Daws and Yovine 1995] and

6 LARSEN ET AL.Passed:= fgWait:= f(l0;D0)grepeatbeginget (l;D) from Waitif (l;D) j= � then return \YES"else if D 6� D0 for all (l;D0) 2 Passed thenbeginadd (l;D) to Passed (�)Next:=f(ls;Ds) : (l;D); (ls;Ds) ^Ds 6= ;gfor all (ls0 ;Ds0) in Next doput (ls0 ;Ds0) to Waitendenduntil Wait=fgreturn \NO"Fig. 2: An algorithm for symbolic reachability analysis.Uppaal [Bengtsson et al. 1996]). The abstract reachability algorithm im-plemented in these tools is shown in Fig. 2. The algorithm checks whethera timed automaton may reach a state satisfying a given state formula �. Itexplores the state space of the automaton in terms of symbolic states of theform (l;D), where l is a control{node and D is a clock constraint.2.3 Di�erence Bounded MatricesIn the abstract reachability algorithm, we observe that data structuresfor representing clock constraints are crucial for e�cient implementation.One such well{known data structure is that of di�erence bounded matri-ces (DBM, see [Bellman 1958] and [D.Dill 1989]), which o�ers a canonicalrepresentation for clock constraints.To introduce the notion of DBM, we assume that the set of clocks C isorganized as fX1 : : : Xng and further assume an additional zero{clock X0which always has the value 0. Now a clock constraint in the form Xi�mcan be rewritten as Xi �X0�m. In fact, all clock constraints in B(C) maybe transformed to the conjunctions of constraints in the form Xi �Xj � mor Xi � Xj < n where m;n are integers. For instance, Xi � Xj > 4 isequivalent to Xj � Xi < �4. In the following, we assume that all clockconstraints in B(C) include the implicit constraints on clocks: X0 �Xi � 0and Xi �X0 <1.Now, a clock constraint may be viewed as a set of upper bounds on thedi�erences between pairs of clock variables, which may be represented as a

CLOCK DIFFERENCE DIAGRAMS 7matrix. Such a matrix is called a DBM. A DBM representation of a clockconstraint D may be interpreted as a weighted, directed graph, where thevertices correspond to the clocks of C = fX0;X1 : : : Xng. The graph has anedge from Xi to Xj with weight m if Xj � Xi � m is a constraint of D.The case of strict ordering < can be represented with an extra label on theweight values representing the fact that the di�erence is strict (<).The advantage with the graph interpretation is that it provides the key to acanonical representation for clock constraints, which again enables e�cientalgorithms for performing constraint operations and inclusion checking. Ingeneral, the same set of clock valuations may correspond to several clockconstraints and thus graphs. The canonical representation for a clock con-straint is obtained by simply deriving the shortest{path closure for its graphand can thus be computed in time O(n3), where n is the number of clocksof D. We call such closures closed constraints. For closed constraints D, theoperations D" and r(D) may be performed in time O(n). In addition, if Dis closed, D � D0 (for any D0) if and only if whenever (Xi �Xj � m) 2 Dthen (Xi�Xj � m0) 2 D0 such that m � m0, which may be checked in timeO(n2).Finally we notice that the sets of clock valuations described by DBM's areconvex sets (polyhedra in the n-dimensional real space (R�0)n). Followingthe literature, we shall call such convex sets zones.DBM's obviously consume space of order O(n2). Alternatively, one mayrepresent a clock constraint system by choosing a minimal subset from theconstraints of the DBM in canonical form. This minimal form [Larsen et al.1997] is preferable when adding a symbolic state to the main global data-structure Passed as in practice the space-requirement is only linear in thenumber of clocks.2.4 Union of ZonesWe know that the set B(C) of clock constraints is closed under conjunction,but it is not closed under disjunction, as the union of two convex sets isnot necessarily a convex set. This leads to a problem in model checkingalgorithms for timed automata: termination of reachability analysis is de-tected by a testing for inclusion of a newly computed zone in the existingexplored zones, thus making a test of inclusion of a zone in a union of zonesdesirable. We shall introduce a new data structure which is able to deale�ciently with �nite unions of zones. We call such �nite unions federations.Ad-hoc approaches to the problem of inclusion in a federation will explodein the number of zones belonging to the federation. There are some otherapproaches which are related to our problem, but will not help in solvingit. In [Rokicki 1993] an O(jV j4) algorithm was presented which tested if theunion of two DBM's could be represented by another DBM. This algorithm

8 LARSEN ET AL.
YX � Y
[0; 1]
[2; 3][�1; 1][�1; 1]

X
TrueFig. 3: Example CDDhowever cannot be used for the inclusion test in general, as there exists con-vex sets S1; S2 and S3 such that S1 [S2 [S3 is a convex set, but the unionof no two of the sets is convex. The approach in [Dechter et al. 1991] usesconstraint systems where the individual constraints are of the formXi �Xj 2 I1 [I2 [� � � Ikwith I1; : : : ; Ik being intervals, thus allowing for disjunction in the individualconstraints. These systems however can not represent all �nite unions ofconvex sets. If each constraint has exactly two intervals, then a systemwith n constraints represents the union of the 2n convex regions obtainedby selecting one interval for each constraint.The solution in this paper is to represent the constraints as a directed acyclicgraph (DAG), a Clock Di�erence Diagram (CDD). The DAG given in Fig. 3represents the constraint system0 � X � 1 ^ �1 � Y � 1 ^ �(�1 � X � Y 1) _ (2 � X � Y � 3)�CDD's are inspired by Binary Decision Diagrams (BDD's, see [Bryant 1986])and Interval Di�erence Diagrams (IDD's, see [Strehl and Thiele 1998]). ABDD is an acyclic graph with two terminal nodes True and False, where eachnode represents a boolean variable. Inner nodes have two branches, one tobe followed if the variable is true and the other if the variable is false. Givena speci�ed ordering of the variables and insisting on maximal sharing ofisomorphic subgraphs, each boolean expression has a unique representation.IDD's extend this idea to independent real valued variables, where the edgesare now labelled with intervals of R instead of true and false. This approachis however not su�cient for the symbolic model checking of timed automata.CDD's further extend this idea where the nodes can represent di�erences of

CLOCK DIFFERENCE DIAGRAMS 9
����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

XY
XY Y Y
XYX � Y X � Y

Y
1 2 3 4 5 6 X123(b)

(a)

(c)

Y
1 2 3 4 6 X123 5

Y
1 2 3 4 5 6 X123 [2,3][0,0]

[1; 3] [4; 6][1; 3]True[1; 2] [3; 4]
[1; 3] [1; 4] [2; 4]True

[0; 2][0; 1] [�3; 0]True

(2; 3)

Fig. 4: Three example CDD's. Intervals not shown lead implicitly to False; e.g. in (a)there are arcs from the X-node to False for the three intervals]�1,1[,]3,4[, and]6,1[.
variables { hence dependencies between nodes { and it turns out that CDD'sexactly represent unions of DBM's, o�ering an improved data structure forthe symbolic model checking of timed automata.

10 LARSEN ET AL.3. Clock Di�erence DiagramsThis section de�nes Clock Di�erence Diagram (CDD). A CDD is a directedacyclic graph with two kinds of nodes: inner nodes and terminal nodes.Terminal nodes represent the constants true and false, while inner nodesare associated with a type (i.e. a clock pair) and arcs labeled with intervalsgiving bounds on the clock pair's di�erence. Fig. 4 shows examples of CDD's.A CDD is a compact representation of a decision tree for federations: takea valuation, and follow the unique path along which the constraints givenby type and interval are ful�lled by the valuation. If this process ends at atrue node, the valuation belongs to the federation represented by this CDD,otherwise not. A CDD itself is not a tree, but a DAG due to sharing ofisomorphic subtrees.A type is a pair (i; j) where 1 � 0 < j � n. The set of all types is written T ,with typical element t. We assume that T is equipped with a linear orderingv and a special bottom element ? 2 T , in the same way as BDD's assumea given ordering on the boolean variables. By I we denote the set of allnon-empty, convex, integer-bounded subsets of the real line. Note that theinteger bound may or may not be within the interval, so these are all open,closed and half-open intervals of the real line, which we will typically writeas (a; b); [a; b]; (a; b] and [a; b). A typical element of I is denoted I. We writeI; for the set I [f;g.In order to relate intervals and types to constraint, we introduce the follow-ing notation:� given a type (i; j) and an interval I of the reals, by I(i; j) we denote theclock constraint having type (i; j) which restricts the value of Xi�Xjto the interval I.� given a clock constraint D and a valuation v, by D(v) we denote theapplication of D to v, i.e. the boolean value derived from replacing theclocks in D by the values given in v.Note that typically we will use the notation jointly, i.e. I(i; j)(v) expressesthe fact that v ful�lls the constraint given by the interval I and the type(i; j).As an example, if the type is (2; 1) and I = [3; 5), then I(2; 1) would be theconstraint 3 � X2 �X1 < 5. For v where v(X2) = 9 and v(X1) = 5:2 wewould �nd that I(2; 1)(v) is true, while for v0 with v0(X2) = 3 and v0(X1) = 4we would have I(2; 1)(v0) is false.This allows us to give the de�nition of a CDD:Definition 2. (Clock Difference Diagram) A Clock Di�erence Dia-gram (CDD) is a directed acyclic graph consisting of a set of nodes V andtwo functions type : V ! T and succ : V ! 2I�V such that

CLOCK DIFFERENCE DIAGRAMS 11� V has exactly two terminal nodes called True and False, where type(True) =type(False) = ? and succ(True) = succ(False) = ;.� all other nodes n 2 V are inner nodes, which have attributed a typetype(n) 2 T and a �nite set of successors succ(n) = f(I1; n1); : : : ; (Ik; nk)g,where (Ii; ni) 2 I � V .We shall write n I! m to indicate that (I;m) 2 succ(n). For each innernode n, the following must hold:� the successors are disjoint: for (I;m); (I 0;m0) 2 succ(n) either (I;m) =(I 0;m0) or I \ I 0 = ;,� the successor set is an R-cover: SfI j 9m:n I! mg = R,� the CDD is ordered: for all m, whenever n I! m then type(m) vtype(n)Further, the CDD is assumed to be reduced, i.e.� it has maximal sharing: for all n;m 2 V , whenever succ(n) = succ(m)then n = m,� all intervals are maximal: whenever n I1! m;n I2! m then I1 = I2 orI1 [I2 62 INote that we do not require a special root node. Instead each node can bechosen as the root node, and the sub-DAG underneath this node is inter-preted as describing a (possibly non-convex) set of clock valuations. Thisallows for sharing not only within a representation of one set of valuations,but between all representations. Fig. 4 gives some examples of CDD's. Weomit all arcs going to False to improve readability2. These missing arcs caneasily be deduced from the �gures: assume a node has outgoing arcs labeledwith intervals I1; : : : ; Ik, then letS1 := [i2f1;::: ;kg Ii; S2 := R n S1and let J1; : : : ; J` be intervals of the real line such that they are disjoint,their union is S2 and they are maximal, i.e. the union of any pair of them isnot an interval. Then to complete the CDD, arcs labeled by the Jj all goingto False need to be added.The following de�nition makes precise how to interpret such a DAG:Definition 3. Given a CDD (V; type; succ), each node n 2 V is assigned asemantics [[n]] � V, recursively de�ned by2 We should point out that all the algorithms in this paper require that all arcs includingthose leading to False to be speci�ed.

12 LARSEN ET AL.
���
���
���
���
���
���

���
���
���
���
���
���

X XY YX � YX � Y1 2 3 4 51234 X
Y

[0,0][1,4][1,3]
[0,0][1,3][1,3]

TrueTrueFig. 5: Two CDD's for the same zone� for terminal nodes, [[False]] := ; and [[True]] := V� for inner nodes, [[n]] := fv 2 V j n I! m; I(type(n))(v) = true; v 2 [[m]]gAny path n0 I1! : : : Ik! nk, with nk = True, in a CDD leading from some noden0 to the true node can be seen as representing all the valuations which ful�llthe constraints induced by this path. Thus similar to the previous de�nitionwe can assign a semantics to such paths by:Definition 4. For paths in a CDD leading to true we can de�ne their se-mantics recursively by:� [[True]]P := V,� [[n0 I1! : : : Ik! nk = True]]P := fv 2 V j I1(type(n0))(v) = true;v 2 [[n1 I2! : : : Ik! nk]]P gNote that each path in the form n0 I1! : : : Ik! nk represents just the con-junction of all the constraints v(Xi) � v(Xj) 2 I` with type(n`) = (i; j).Hence, a DBM can be constructed from the lower and upper bounds in theconstraints, describing the same set of valuations as [[n0 I1! : : : Ik! nk]]P . TheDBM constructed from a path will be called the path's DBM.For BDD's and IDD's, testing for equality can be achieved easily due to theircanonicity: the test is reduced to a pure syntactical comparison. However,in the case of CDD's canonicity is not achieved in the same straightforwardmanner.To see this, we give an example of two CDD's in Fig. 5 describing the sameset. The two CDD's are however not isomorphic. The problem with CDD's{ in contrast to IDD's { is that the di�erent types of constraints in the

CLOCK DIFFERENCE DIAGRAMS 13Algorithm 1 op (n1; n2; baseOp)- Applies the operation baseOp to theCDD's n1 and n2if n1 and n2 are terminal nodes thenreturn node equal to n1 baseOpn2.end ifif type(n1) v type(n2) ^ type(n1) 6= type(n2) thenreturn the node (type(n1); f(I1; op (n01; n2; baseOp)) j n1 I1! n01gend ifif type(n1) v type(n2) ^ type(n1) 6= type(n2) thenreturn the node (type(n2); f(I2; op (n1; n02; baseOp)) j n2 I2! n02gend ifif type(n1) = type(n2) thenreturn the node(type(n1); f(I1 \ I2; op (n01; n02; baseOp)) j n1 I1! n01; n2 I2! n02; I1 \I2 6= ;gend ifnodes are not independent, but inuence each other. In the above exampleobviously 1 � X � 3 and X = Y already imply 1 � Y � 3. The constrainton Y in the CDD on the right hand side is simply too loose. Therefore astep towards an improved normal form is to require that on all paths, theconstraints should be the tightest possible. We turn back to this issue in alater section.As a set of valuations can be seen as a subset in Rn (where n is the numberof clocks), an important and natural question is: What subsets of Rn can berepresented by a CDD? Informally a valuation is satis�ed by a CDD if thereexists a path from the root to True. In fact it is easy to show the following:Proposition 1. Given a CDD T and a node n then[[n]] =[f[[n = n0 I! � � � Ik! nk = True]]P j n0 I! � � � Ik! nk is a path in TgCDD's exactly represent �nite unions of zones. The above proposition showsthat any CDD can be seen as the union of a �nite number of zones. Furtherdown we will show that CDD's are closed under (�nitary) union, thus any�nite union of zones can be represented as a CDD.4. Set-Theoretic OperationsThe set of valuations that satisfy a CDD can be seen as a subset in Rn(where n is the number of clocks). All the standard set-theoretic operationslike union, intersection and complement can be performed on CDD's. Asan example the set-theoretic complement of a CDD is achieved by simply

14 LARSEN ET AL.swapping the True and False nodes. Note that no such simple algorithmexists for DBM's which are not closed under complement.
�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

12 3 4
56

[2,4]True[1,3] [1,4] (2; 3) [3; 4] [0,2]XY Y Y
X

7 [0,0][0,1] [2,3][-3,0]TrueX � Y X � YY[1; 2] 8
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������3 Y6 Y 4 Y

7X � Y 8X � Y
X Y2,6
1,5[0; 1) [1; 2] (2; 3) [3; 4][0; 1] [2; 3]

True[0; 0] [�3; 0]
[0; 1][2; 3](1; 2) [1; 4] [2; 4]

Fig. 6: Two CDD's and their union. Each node is given the same number in the originalCDD's and their union.The label 1,5 is the union of node 1 and 5 likewise the label 2,6 isthe union of node 2 and 6.Binary set-theoretic operations can easily be de�ned recursively by �rstde�ning the base case for the terminal nodes suitably. Alg. 1 assumes thebase cases { i.e. both nodes are either True or False { given by an opera-tion baseOp . Remember for this base case operation, that the node Truecorresponds to the full set of valuations, while the node False represents theempty set. Under this assumption, the given algorithm de�nes the operationop for arbitrary nodes of the CDD. Fig. 6 show an example of the unionoperation applied to two nodes of the CDD.

CLOCK DIFFERENCE DIAGRAMS 15Algorithm 2 Test for emptiness of [[n]]let P be the set of paths starting in n leading to Truewhile P 6= ; doextract and remove a path p from Ptest p for satis�abilityif there is a valuation that satis�es p thenreturn falseend ifend whilereturn trueThe same principle as for the binary case can be applied to any n-aryset-theoretic function. Note that our algorithm do not care about keep-ing reducedness. However, this can easily be achieved using standard BDDtechniques like hashing on each node n and an operation-cache for memo-rizing the result of operations already performed on the same arguments.Extending the algorithm with these techniques leads to very e�cient imple-mentations 3.Test for inclusion of one CDD in another can be realized by exploiting thewell known set-theoretic equivalenceA � B () A \ :B = ;As we do not yet have a normal or canonical form for CDD's, there is nostraightforward syntactic way to test for emptiness of a CDD. However, arather simple procedure follows immediately from Prop. 1: all that needs tobe done is to test satis�ability of all paths leading to True. Satis�ability ofa single path may itself be decided straightforwardly using the existing pro-cedure for DBM's. Alg. 2 o�ers the details of this approach to set-inclusion.Alg. 2 may be specialised when testing if a zone Z de�ned by a DBM isincluded in a CDD. This specialized version for set{inclusion has provedparticular usefull in obtaining an e�cient CDD-based version of Uppaal'sreachability algorithm. We report on this in a later section and refer formore information to [Behrmann et al. 1999].Note that when testing for emptiness of a DBM as required in the �rstif-statement of Alg. 3, we need to compute its canonical form. Once thiscanonical form of D has been obtained, we may improve the e�ciency ofalgorithm by passing D ^ I(type(n)) 4 also in canonical form. As the con-junction of I(type(n)) adds no more than two constraints to that of D,computation of the canonical form for D ^ I(type(n)) can be done fasterthan in the general case (in time O(n2) rather than O(n3)). We illustrate3 More precisly, the operations become linear in the product of the sizes of the argumentCDD's.4 ^ refers to the operation of taking the DBM for D and conjoin the constraints ofI(type(n)).

16 LARSEN ET AL.Algorithm 3 Deciding set inclusion for a zone and a CDDsubset(D;n)if D = False or n = True thenreturn Trueelse if n = False thenreturn Falseelsereturn Vn I!m subset(D ^ I(type(n));m)end if
Y Y Ynx y z[1; 2]
[1; 3] [1; 4] [2; 4]TrueTrue[2; 3][1; 3] Y � (3; 4](2; 3]X X

Fig. 7: Example zone for inclusionthe action of Alg. 3 on the example Fig. 7, where the nodes are named n; x; yand z for reference. First we call subset(X 2 [1; 3] ^ Y 2 [2; 3],n) which isexpanded as follows (we have added the implicit branches to the False nodenot shown in the picture):subset(X 2 [1; 3] ^ Y 2 [2; 3]; n) =subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (�1; 1);False) ^subset (X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 [1; 2]; x) ^subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (2; 3]; y) ^subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (3; 4]; z) ^subset(X 2 [1; 3] ^ Y 2 [2; 3] ^X 2 (4;1);False)= (simpli�cation of �rst arguments)subset(False;False) ^subset (X 2 [1; 2] ^ Y 2 [2; 3]; x) ^subset(X 2 (2; ; 3] ^ Y 2 [2; 3]; y) ^subset(False; z) ^subset(False;False)

CLOCK DIFFERENCE DIAGRAMS 17Thus we only need to pursue the calculation of two conjuncts, as the oth-ers are readily satis�ed. In both cases one additional expansion of subsetfollowed by constraint simpli�cation yields the �nal result 'true'. In thisparticular application, the algorithm never reaches a stage, where a call ofthe form subset(D;False) is made with D a non-empty zone.The application also demonstrates another important point: when usingeither Alg. 2 combined with an intersection and complement operation orAlg. 3, several inclusion checks may be terminated early without having togo through the whole CDD. For example, if instead in the above examplethe zone D was given by the clock constraint X 2 [6; 7] ^ Y 2 [1; 3], thealgorithm would terminate at the very �rst step as there would be a callsubset(D;False), where D is a non-empty constraint system.5. Clock Operations for Fully Symbolic AnalysisTwo operations play an important role in the analysis of timed automata:future (letting time progress) and reset (set a clock to an integer value).The two operations can easily be de�ned semantically on sets of valuations.Given a valuation v, a clock X and a positive real d, let v+d be the valuationwhere each clock is increased by d. Further [X 7! 0]v denotes the valuationwhere clock X has values 0, while all other clocks retain their value from v.Now applying pointwise extension we obtain the following future and resetoperations on sets of valuations:future(S) := fv + d j v 2 S; d 2 R�0g[X 7! 0]S := f[X 7! 0]v j v 2 SgThese operations can be carried out for zones using DBM's which are incanonical form. For a canonical DBM D = fdijg, the future is computed by� removing the upper bound on all individual clocks, i.e. set di0 to +1for all iAssuming that j is the index of clock X, the reset of D is computed by� setting clock X to 0, i.e. dj0 = d0j = 0, and� remove all upper bounds on the di�erences between X and other clocksIn order to extend these operations to CDD's, we need to bring a CDD ina suitable canonical form. The basic idea is to generate an equivalent CDDwhere all paths to True are tightened, i.e. the corresponding DBM's are incanonical form:Definition 5. A CDD is called tightened i� for all paths leading to True,the path's DBM is in canonical form.

18 LARSEN ET AL.Algorithm 4 Turn a CDD starting at n into a tightened CDDnew := nrepeatold := newlet new := Falsefor all paths P leading from old to True docompute P 's DBM and it's canonical DBM Dif D does not represent the empty set thenlet d be the node corresponding to Dlet new := new union dend ifend foruntil old = newreturn newAlg 4 shows a way to bring any CDD into such a form. Observe that inthe tightening and unioning step, intervals from nodes can only becomesmaller. As there are smallest intervals { i.e. they cannot be further dividedby the algorithm { namely those of the form [c; c] and (c; c + 1) (where c isan integer), termination of the algorithm is guaranteed. The fact that allpaths in the resulting CDD are DBM's in canonical form follows from theconstruction: only in this case can the result be stable.
�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

XY Y YY �XY �XY �X
Y

1 2 3 4 5 6 X123 [3,4](2,3)[1,2][1,3] [1,4] [2,4][-2,1](-2,2)[-1,2] TrueFig. 8: A tightened CDDNote that in a tightened CDD, a path leading to True cannot have contradict-ing constraints, i.e. it cannot represent the empty set. This is because thepath's DBM would have a negative entry along, while this is ruled out by thede�nition of the path's DBM. Fig. 8 shows the tightened CDD-representationfor Example (b) from Fig. 4.Starting from a tightened CDD, future and reset can now be de�ned byextending the de�nition of the operations on DBM's. For a given interval

CLOCK DIFFERENCE DIAGRAMS 19I 6= ;, let I1 be this interval with its upper bound being extended to +1,i.e. I1 := fx 2 R j 9x0 2 I:x0 � xg. Then to compute the future of atightened CDD, it is su�cient to� replace each interval I on an edge leaving a node of type (i; 0) by I1.This is clearly the analogue of removing the upper bound on all constraintson the individual clocks in a DBM. The only problem is that the result is nota CDD in the sense of Def. 2, as the intervals within a node are not disjointany more. Further down we explain how to deal with this situation.To compute the reset of Xj to 0, assuming again a tightened CDD, we needto � replace each interval I on an edge leaving a node of type (j; 0) by [0; 0],and� replace each interval I on an edge leaving a node of type (j; i) respec-tively (j; i) where i > 0 by (�1;+1).This is again the extension of the reset operation to canonical DBM's. Notethat the correctness of both operations therefore follows from the canonicityof the CDD, the correctness of the operations on DBM's, and the fact thatboth operations distribute over union of DBM's together with Prop. 1.The reset as the future operation leave us however with DBM's violating thedisjointness condition. As the semantics of DBM's is de�ned as in Def. 3,this is in principle not a problem: a valuation belongs to the set representedby a CDD if there is some path representing it. The fact that there mightbe several paths including it yields no problem. It should however be notedthat all our algorithms require disjoint intervals out of nodes to be correct.Luckily it is rather easy to obtain an equivalent CDD with the disjointnessproperty. Alg. 5 shows how to do this for one node, and must thus beapplied to all nodes of the CDD from bottom to top. Note that the directionis important, as the algorithm uses the union operation which is only well-de�ned on nodes with disjoint intervals.Fig. 9 shows how to compute the future of example (b) from Fig. 4, leavingus with a CDD violating disjointness. Fig. 10 then shows the CDD aftermaking the �rst node disjoint again.The existence of all the operations ensures that it is possible to do a fullysymbolic model checking of timed automata by treating the discrete part(locations) by conventional (multi-terminal) BDD's and the continuous part(clocks) by CDD's. 6. A Relative Normal FormA normal form o�ers the advantage of reducing the test for semantic equalityto a syntactic test, if the normal form is unique. In the case of BDD's and

20 LARSEN ET AL.Algorithm 5 Forcing a node n to contain disjoint intervals onlylet new := nwhile there are overlapping intervals in new doold := newlet (I1; n1); (I2; n2) 2 succ(old) such that I1 \ I2 6= ;M := f(I; n0) j (I; n0) 2 succ(old); I 6= I1; I 6= I2gM :=M [f(I1 \ I2; n1 union n2)gif I1 n I2 6= ; thenM :=M [f(I1 n I2; n1)gend ifif I2 n I1 6= ; thenM :=M [f(I2 n I1; n2)gend ifnew := (type(old);M)end whilereturn new
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

XY Y YY �XY �XY �X
Y

1 2 3 4 5 6 X123 [3,1)(2,1)[1,1)[1,1) [1,1) [2,1)[-2,1](-2,2)[-1,2] TrueFig. 9: First step in computing the future of example Fig. 4 (b)IDD's, normal forms come along with reducedness of the data structure. ForDBM's, the canonical form is a normal form. Already in Sec. 3 we have seenthat reduced CDD's are not unique. But even a tightened CDD as de�nedin the previous section is not unique: Fig. 11 gives two CDD's which aretightened and semantically equivalent, but not graph-isomorphic.The main problem here is granularity { the left hand CDD chooses a di�erentgranularity for X than the right hand CDD. Note that by requiring that allintervals are as small as possible { i.e. either of the form [c; c] or (c; c+1) foran integer c { together with reducedness and canonicity one would arrive ata unique normal form. In fact under this assumption CDD's are equivalent

CLOCK DIFFERENCE DIAGRAMS 21XY Y YY �XY �XY �X
[3,1)(2,3)[1,2][1,1) [2,1)-2,2[-1,2] True

[1,1)
Fig. 10: The obtained CDD in computing the future of example Fig. 4 (b)

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

X
TrueX � YYX

True
Y [1; 2] [1; 2] [1; 3](2; 3] Y[1; 2]X � Y X � Y[�1; 1] (0; 2] [�1; 2][1; 2]
Fig. 11: Two equivalent tightened CDD'sto NDD's ([Asarain et al. 1997]), which has a unique normal form. Howeverfor reasons of time- and space-e�ciency, the granularity of a CDD shouldbe as coarse as possible. Of special interest are data structures which areinvariant to rescaling of the timed automata (see e.g. [Weise and Lenzkes1997]).In the rest of this section we will present a relative normal form. Given twoCDD's, the relative normal form gives us a coarse representation for both ofthem. Their relative normal forms will be isomorphic if the original CDD'sare equivalent. The basic idea is to de�ne the granularity of each of themin the term's of the other CDD's granularity. In order to formalize this, wede�ne the notion of one CDD being �ner than another:

22 LARSEN ET AL.Algorithm 6 n1 re�nedBy n2: Making a node n1 �ner than n2let new := n1if n2 = True or n2 = False or n1 = False thenreturn newend ifif type(n1) = type(n2) thennew := (type(n1); f(I1 \ I2; n01 re�nedBy n02) j (I1; n01) 2succ(n1); (I2; n02) 2 succ(n2); I1 \ I2 6= ;gelse if type(n1) v type(n2) thennew := (type(n2); f(I; n1 re�nedBy n02) j (I; n02) 2 succ(n2)g)else if type(n2) v type(n1) thennew := (type(n1); f(I; n01 re�nedBy n2) j (I; n01) 2 succ(n1)gend ifreturn newDefinition 6. Given two CDD's starting at nodes n1 and n2 resp., we saythat n1 is �ner than n2 i�� n1 = False, or� n2 = True, or n2 = False, or� both are inner nodes with type(n1) = type(n2), and for each (I; n01) 2succ(n1) there is (J; n02) 2 succ(n2) such that I � J and n01 is �nerthan n02.We say that n1 and n2 have the same granularity i� n1 is �ner than n2 andvice versa.Given n1 and n2, there is an algorithm to �nd a CDD n which is equivalent ton1 and �ner than n2, see Alg. 6. Thus for two given CDD's, it is easy to �ndequivalent CDD's which are of same granularity by applying Alg. 6 to themin both ways. For these CDD's, equality can be decided pure syntactically:Theorem 1. Let n1 and n2 be two CDD's which are tightened and of samegranularity. Then [[n1]] = [[n2]] i� n1 and n2 are graph-isomorphic.Proof. The if-part follows immediately from the de�nition of [[:]]. Soassume two tightened CDD's of same granularity which describe the samefederation. Let v be some valuation of the federation. Then there is aunique path in n1 which satis�es this valuation, due to disjointness. Thispath must lead to True. As n1 is �ner than n2, we can construct a similarpath in n2, which has the same number of nodes, but the intervals mightbe larger than those along the path in n1. By symmetry, this holds in theopposite direction, and thus the two paths are the same in both graphs. Asthe CDD's are tightened, paths to True cannot represent the empty set, so

CLOCK DIFFERENCE DIAGRAMS 23therefore all paths to True are the same in both graphs. The rest of thegraph must be the same, as it can be completed from the True-paths thesame way as we mentioned for our drawings in Sect. 3. Thus the two CDD'sare graph-isomorphic. 2Note that an implicit result of the above theorem is that there exists aunique normal form for CDD's with the minimal granularity. It would bemore interesting to �nd the unique normal form with maximal granularity,which gives the coarsest representation of CDD's. We conjecture that such anormal form exists; unfortunately we are not able to prove this conjecture.7. Implementation and Experimental ResultsWe have implemented a CDD-package and used it to obtain a modi�ed,CDD-based reachability algorithm for Uppaal. The full details of this im-plementation may be found in [Behrmann et al. 1999].In this section we present the results obtained from the experiment, whichapplied both the current version of Uppaal 5 and the CDD-based versionof Uppaal to the veri�cation of nine industrial examples (mostly) foundin the literature. The examples include a gearbox controller [Lindahl etal. 1998], various communication protocols used in Philips audio equipment[Bosscher et al. 1994], [D'Arginio et al. 1997],[Bengtsson et al. 1996], and inB&O audio/video equipment [Havelund et al. 1997],[Havelund et al. 1998],the start-up algorithm of the DACAPO protocol [L�onn et al. 1997], andan Advanced Field Bus Protocol (AF100). In addition the comparison ofperformance was made on Fischer's Protocol for mutual exclusion.In Table I we present the space requirements and runtime of the examples ona Sun UltraSPARC 2 equipped with 512 MB of primary memory and two170 MHz processors. Each example was veri�ed using the current purelyDBM-based algorithm of Uppaal (Current), and two di�erent CDD-basedalgorithms. The �rst (CDD) uses CDD's to represent the continuous part ofthe Passed-list, and the second (Reduced) is identical to CDD except thatall inconsistent paths are removed from the CDD's. As can be seen, ourCDD-based modi�cation of Uppaal leads to truly signi�cant space-savings(in average 42%) with only moderate increase in run-time (in average 6%).When inconsistent paths are eliminated the average space-saving increasesto 55% at the cost of an average increase in run-time of 35%. If we onlyconsider the industrial examples the average space-savings of CDD are 49%while the average increase in run-time is below 0.5%.5 More precisely Uppaal version 2.19.2, which is the most recent version of Uppaalcurrently used in-house.

24 LARSEN ET AL.Table I: Performance statistics for a number of systems. P is the number of processes,V the number of discrete variables, and C the number of clocks in the system. All timesare in seconds and space usage in kilobytes. Space usage only includes memory requiredto store the Passed-list. Current CDD ReducedSystem P V C Time Space Time Space Time SpacePhilips 4 4 2 0.2 25 0.2 23 0.2 23Philips Col 7 13 3 21.8 2,889 23.0 1,506 28.8 1,318B&O 9 22 3 56.0 5,793 55.9 2,248 63.4 2,240BRP 6 7 4 22.1 3,509 21.3 465 46.5 448PowerDown1 10 20 2 81.3 4,129 79.2 1,539 82.6 1,467PowerDown2 8 20 1 19.3 4,420 19.8 4,207 19.7 4,207Dacapo 6 12 5 55.1 4,474 57.1 2,950 64.5 2,053Gearbox 5 4 5 10.5 1,849 11.2 888 12.4 862AF100 16 32 4 283.7 23,063 269.2 8,993 289.7 8,993Fischer4 4 1 4 1.1 129 1.4 96 2.5 48Fischer5 5 1 5 40.6 1,976 61.5 3,095 154.4 3968. ConclusionIn this paper Clock Di�erence Di�erence Diagrams (CDD's) have been pre-sented. It has been shown that CDD's are able to represent �nite unions ofzones (that is regions representable by DBM's), and that all set-theoreticoperations and additionally all operations necessary for timed reachabilityanalysis of timed automata can be de�ned and computed on CDD's. Theseoperations do not need a normal form, in contrast to DBM's and IDD's. Inparticular an algorithm is presented which decides CDD inclusion withoutconverting any intermediate results to a unique normal form. In conclusion,CDD's can be used for fully symbolic model checking of timed systems. Animplementation of a CDD-package for the real-time veri�cation tool Up-paal has shown that CDD's are useful in practice, leading to considerablespace-savings.We have given a relative normal form for CDD's, which is relative to a notionof granularity. An implication of this result is that there exists a uniquenormal form for CDD's, which allows for semantic equality to be reducedto a test for syntactic identity. In fact, the unique normal form of a CDDis its equivalent CDD with �nest granularity, which is an NDD or BDD-likeencoding of the region graphs induced by the original CDD. It would be moreinteresting to �nd the unique normal form with maximal granularity, whichgives the coarsest representation of CDD's if such a normal form exists.However it is obviously too costly to compute such a normal form. Weshould emphasize that such a normal form with maximal granularity is notnecessary for application of CDD's to timed model-checking because all thenecessary operations can be carried out without a normal form.

CLOCK DIFFERENCE DIAGRAMS 25For future work, we want to investigate more e�cient implementation ofthe CDD-operations aiming at a fully symbolic model-checker for timed au-tomata combining BDD and CDD.AcknowledgementThe authors thank Gerd Behrmann for the implementation of the CDDpackage and collaboration on [Behrmann et al. 1999] related to this paper.ReferencesAlur, R. and Dill, D. 1990. Automata for Modelling Real-Time Systems. In Proceed-ings of ICALP'90, Volume 443 of Lecture Notes in Computer Science. Springer.Asarain, E., Bozga, M., Maler, O., Pneuli, A., and Rasse, A. 1997. Data-Structures for the Veri�cation of Timed Automata. In Proceedings of HART'97,Volume 1201 of Lecture Notes in Computer Science. Springer Verlag, 346{360.Balarin, Felice. 1996. Approximate Reachability Analysis of Timed Automata. InProc. Real-Time Systems Symposium, Washington, DC, 52{61.Behrmann, Gerd, Larsen, Kim G, Pearson, Justin, Weise, Carsten, andWang, Yi. 1999. E�cient Timed Reachability Analysis using Clock Di�erence Dia-grams.Bellman, Richard. 1958. On a routing problem. Quarterly of Applied Mathematics16(1), 87{90.Bengtsson, Griffioen, Kristoffersen, Larsen, Larsson, Pettersson, and Yi.1996. Veri�cation of an Audio Protocol with Bus collision Using UPPAAL. InProceedings of CAV'96, Volume 1102.Bengtsson, Johan, Larsen, Kim G. Larsson, Fredrik, Pettersson, Paul, andYi, Wang. 1996. Uppaal in 1995. In Proc. of the 2nd Workshop on Tools andAlgorithms for the Construction and Analysis of Systems, Number 1055 in LectureNotes in Computer Science. Springer{Verlag, 431{434.Bosscher, D., Polak, I., and Vaandrager, F. 1994. Veri�cation of an Audio-controlProtocol. In Proceedings of Formal Techniques in Real-Time Fault-Tolerant Systems,Volume 863 of Lecture Notes in Computer Science. Springer Verlag.Bozga, Marius, Maler, Oded, Pnueli, Amir, and Yovine, Sergio. 1997. Someprogress in the symbolic veri�cation of timed automata. In Proceedings of CAV'97,Volume 1254 of LNCS, 179{190.Bryant, Randel E. 1986. Graph-Based Algorithms for Boolean Function Manipulation.IEEE Transactions on Computers C-35, (August), 677{691.Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. 1990.Symbolic Model Checking: 1020 states and beyond. In Fifth Annual IEEE Sympo-sium on Logic in Computer Science, Volume Fifth Annual of Log. IEEE ComputerSociety Press, 428{439.Campos, S.V. and Clarke, E.M. 1995. Real-time symbolic model checking for discretetime models. In AMAST Series in Computing: Theories and Experiences for Real-Time System Development.D'Arginio, Katoen, Ruys, and Tretmans. 1997. Bounded retransmission protocolmust be on time ! In Proceedings of TACAS'97, Volume 1217 of Lecture Notes inComputer Science. Springer Verlag.Daws, C. and Yovine, S. 1995. Two examples of veri�cation of multirate timed automatawith Kronos. In Proc. of the 16th IEEE Real-Time Systems Symposium, 66{75.D.Dill. 1989. Timing assumptions and veri�cation of �nite-state systems. Lecture Notesin Computer Science 407, 197{212.

26 LARSEN ET AL.Dechter, Rina, Meiri, Itay, and Pearl, Judea. 1991. Temporal Constraint Networks.Arti�cial Intelligence 49, 61{95.Havelund, K., Skou, A., Larsen, K.G., and Lund, K. 1997. Formal Modelling andAnalysis of an Audio/Video Protocol: An Industrial Case Study using UPPAAL. InProceedings of 18th IEEE Real-Time Systems Symposium.Havelund, K., Skou, A., Larsen, K.G., and Lund, K. 1998. Formal Veri�cationof an Audio/Videoo Power Control using the Real-Time Model Checker UPPAAl.Tech. report, Bang& Olusfen.Henzinger, Thomas A. Ho, Pei-Hsin, and Wong-Toi, Howard. 1995. A Users Guideto HyTech. Tech. report, Department of Computer Science, Cornell University.Henzinger, Thomas. A, Nicollin, Xavier, Sifakis, Joseph, and Yovine, Sergio.1994. Symbolic Model Checking for Real-Time Systems. Information and Computa-tion 111, 2, 193{224.Larsen, Weise, Yi, and Pearson. 1998. Clock Di�erence Diagrams. Tech. report,DoCS, Uppsala University, Sweden.Larsen, Kim G., Larsson, Fredrick, Pettersson, Paul, and Wang, Yi. 1997. Ef-�cient Veri�cation of Real-Time Systems: Compact Data Structure and State-SpaceReductions. In Proceedings of the 18th IEEE Real-Time Systems Symposium. SanFrancisco, California..Larsen, Kim G., Petterson, Paul, and Wang, Yi. 1995. Compositional and Sym-bolic Model-Checking of Real-Time Systems. In Proceedings of the 16th Real-TimeSystems Symposium. IEEE Computer Society Press, 76{87.Lindahl, M., Pettersson, P., and Yi, W. 1998. Formal Design and Analysis of a GearController. Lecture Notes in Computer Science 1384, 281{297.L�onn, H., Pettersson, P., and Yi, W. 1997. Formal Veri�cation of a TDMA Pro-tocol Start-Up Mechanism. In Proceedings of 1997 IEEE Paci�c Rim InternationalSymposium on Fault-Tolerant Systems, 235{242.M�ller, Lichtenberg, Andersen, and Hulgaard. 1999. Di�erence Decision Dia-grams. Tech. Report IT-TR-1999-023, Technical University of Dentmark.M�ller, Lichtenberg, Andersen, and Hulgaard. 1999. On the symbolic veri�cationof timed systems. Tech. Report IT-TR-1999-024, Technical University of Denmark.R.L.Spelberg, H.Toetenel, and M.Ammerlaan. 1998. Partition re�nement in Real-Time Model Checking. Lecture Notes in Computer Science 1486, 143{157.Rokicki, Tomas Gerhard. 1993. Representing and Modelling Digital Circuits. PhDthesis, Department of Computer Science, Stanford University.Strehl, Karsten. 1998. Using Interval Diagram Techniques for the Symbolic Veri�cationof Timed Automata. Tech. Report TIK-53, Institut f�ur Technische Informatik undKommunikationsnetze (TIK), ETH Z�urich.Strehl, Karsten and Thiele, Lothar. 1998. Symbolic Model Checking of ProcessNetworks Using Interval Diagram Techniques. In Proceedings of the IEEE/ACMInternational Conference on Computer-Aided Design (ICCAD-98), 686{692.Strehl, Karsten and Thiele, Lothar. 1998. Symbolic Model Checking Using IntervalDiagram Techniques. Tech. Report 40, Computer Engineering and Networks Lab(TIK), Swiss Federal Institute of Technolog(ETH), Gloriastrasse 35, 8092 Zuriech,Switzerland.Wang, Yi, Pattersson, Paul, and Daniels, Mats. 1994. Automatic Veri�cation ofReal-Time Communicating Systems By Constraint-Solving. In Proceedings of the7th International Conference on Formal Description Techniques.Weise, Carsten and Lenzkes, Dirk. 1997. E�cient Scaling-Invariant Checking ofTimed Bisimulation. In Proceedings of the 14th Annual Symposium on TheoreticalAspects of Computer Science (STACS'97), Volume 1200 of LNCS, 177{199.Wong-Toi, Howard and Dill, David L. 1995. Veri�cation of real-time systems bysuccessive over and under approximation. In Proc. International Conference onComputer-Aided Veri�cation.

