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 11 

Abstract 12 

This study aimed at evaluating proximate composition, phosphorous content, amino acid (AA) and 13 

fatty acid (FA) profiles of cod (Gadus morhua) frame at five different sampling times (March 2017 14 

to March 2018). Furthermore, the valorization possibility of cod frame by application of enzymatic 15 

hydrolysis was investigated using the samples from September 2017. In terms of protein content, 16 

this sample showed a significantly (P<0.05) higher level (16.5%) compared to the other samples, 17 

whereas lipid and phosphorous contents varied in a narrow range of 0.9-1.1% and 2.9-4.4%, 18 

respectively, (P<0.05). Furthermore, the total amino acids (AAs) content varied from about 98 to 19 

155 mg/g in minced cod frame. Enzymatic hydrolysis of minced cod frame (MCF) and heated cod 20 

meat (HCM) was carried out by application of Alcalase and Neutrase, either individually or 21 

sequentially to obtain fish protein hydrolysate (FPH) and bone powder rich in phosphorus and 22 

calcium. The protein content of FPH varied from 76% to 84% and soluble-nitrogen in 23 
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trichloroacetic acid (SN-TCA) index varied from 30.6-40.3%, resulting in similar trends for yield 24 

and nitrogen recovery. Considerable amounts of phosphorus and calcium (330 and 583 g/kg, 25 

respectively) were recovered from the cod frame bones after enzymatic hydrolysis. This study 26 

showed that it is possible to produce bone powder rich in phosphorous and calcium as well as 27 

peptides from the cod frame. Thus, the cod frame side-stream can be converted from its current 28 

use as mink feed ingredient into higher value products for human consumption, without generating 29 

new waste products. 30 

Keywords: cod frame composition, amino acid profile, free fatty acid, fish protein hydrolysate, 31 

minerals 32 

 33 

Introduction 34 

Globally, the direct share of human consumption and non-food products (mainly fish meal and 35 

fish oil) from marine catches and aquaculture productions is reported to be 151 and 20 million 36 

tonnes, respectively, in 2016 (FAO, 2018). More than 60% of the aquatic biomass end up as by-37 

products, including the head, skin, trimmings, fins, frames, viscera and roe from seafood 38 

processing factories (Chalamaiah et al., 2012). Hence, there is a great potential for taking 39 

advantage of these apparent waste or low value materials, by turning them into actual authentic 40 

value added components such as lipids, chitin and chitosan, calcium, nucleic acids, pigments, and 41 

biologically active peptides. In cod fillet production, as much as 60% of the whole fish is by-42 

products, the backbone yielding about 15% of the fish weight (Gildberg, 1993). Fish backbone is 43 

rich in minerals such as calcium and phosphorous (Toppe et al., 2007) and contains residual fish 44 

meat that was not removed during the filleting process.  45 
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Despite general awareness of health benefits of elements such as calcium and phosphorus, most 46 

societies still suffer from deficiencies in their diets (Soetan et al., 2010). Calcium deficiency is 47 

associated with osteoporosis, which affects 26 million lives annually (Melton, 1995). Dairy 48 

products are considered the major source of calcium. However, due to some consumption 49 

inhibitory factors like lactose intolerance, saturated fat and cholesterol alternative sources of 50 

calcium such as marine by-products have attracted serious attention. Recently, apart from protein 51 

isolation and peptide recovery, the utilization of organic components or minerals from the fish 52 

bone have been reported (Kim and Jung, 2006; Nemati et al., 2017; Terzioğlu et al., 2018). The 53 

most commonly reported recovery method of calcium and phosphorus from the fish backbone is 54 

boiling of fish frame with subsequent grinding to obtain a bone powder (Toppe et al., 2007).  55 

However, in other studies, alkaline solubilization has been combined with boiling as an efficient 56 

approach for fish bone powder recovery (Nemati et al., 2017). 57 

In terms of protein/peptide recovery, application of enzymatic hydrolysis is considered as an 58 

environmental friendly treatment to produce a large and diversified range of products from fish 59 

side-streams compared to less efficient mechanical and chemical methods. Enzymes are highly 60 

versatile biocatalysts that have evolved to function under optimized conditions for the host 61 

organism. Consequently, different enzymes have different activity profiles spanning broad activity 62 

ranges, highly specific ranges, and even extreme ranges in terms of e.g. temperature and pH 63 

(Robinson, 2015). Therefore, application of enzymatic hydrolysis in the food industry is 64 

increasing, as it is possible to find enzymes with high proteolytic activity under the applied 65 

processing conditions (Oliveira et al., 2015). Protein rich fish by-products have been subject to 66 

different proteases for digestion of intact proteins and liberating potential bioactive peptides in the 67 

form of fish protein hydrolysate (FPH) (Guérard and Shahidi, 2007). While some proteases show 68 
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unselective specificity towards cleaving of peptide bond in a variety of substrates, others show 69 

high specificity for particular sequences, which influence the functional properties of generated 70 

peptides in different food systems. However, protease specificity is one side of the story; another 71 

side is the variation in substrate characteristics and its quality due to different variables such as 72 

species, sex, seasonal variation and catchment region. Apparently, physiochemical properties of 73 

fish muscle can be influenced by seasonal variation, which can subsequently affect its processing 74 

and functional properties (Ingolfsdottir et al., 1998). However, information on influence of 75 

different catchment periods on nutritional quality parameters such as amino acids, fatty acids 76 

profile and mineral content of cod frame is not available. Such information will give a better 77 

knowledge of the potential of using cod frame as an underutilized side-stream for various food 78 

applications. Furthermore, heat treatment to facilitate the separation of the meat remaining on the 79 

backbone could be an obstacle in recovery of functional proteins, due to protein denaturation.  80 

Therefore, enzymatic hydrolysis could be a practical approach for recovery of functional FPH after 81 

application of heat treatment on fish backbone. Thus, it would be necessary to evaluate the impact 82 

of heating of fish backbone on efficiency of enzymatic recovery and functionality of obtained FPH, 83 

as it has not been studied to any detail, previously.  84 

The current study was performed to increase the knowledge of possible variation in nutritional 85 

composition of cod (Gadus morhua) frame from different catchment periods. The second aim was 86 

to examine a practical short-term hydrolysis process on cod frame using two commercial proteases, 87 

Alcalase (Alc) and Neutrase (Neut), either individually or sequentially, and to evaluate their 88 

efficiency in producing FPH powder and bone powder, rich in phosphor and calcium. Moreover, 89 

since the rigid structure of the cod frame was a major obstacle in the grinding process, this study 90 

also aimed at investigating whether heating of fish frames, for facilitating the meat separation 91 
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process, could affect the extraction efficiency and functionality of recovered FPH powder and the 92 

resulting calcium and phosphorus content in the bone powder. 93 

 94 

Materials and Methods 95 

Cod frames were received from Espersen A/S, (Klaipeda city-Lithuania) in batches of 7 kg at five 96 

different sampling times (March 2017, June 2017, September 2017, December 2017 and March 97 

2018). The captured cods were processed (filleted) on-site and the frames (side-stream) were 98 

packed, transported to the National Food Institute (Kgs. Lyngby, Denmark) in frozen condition, 99 

and stored at -40°C upon arrival. Alcalase® 2.4 L FG (Alc; declared activity of 2.4 AU/g) and 100 

Neutrase® 0.8 L (Neut; declared activity 0.8 AU/g), both as endopeptidase with broad specificity 101 

and high activity in range of pH and temperature, were provided by Novozymes (Bagsværd, 102 

Denmark). All chemical reagents used for experiments were of analytical grade. 103 

  104 

Preparation of cod frames for characterization 105 

For each sampling point, the 7 kg block was thawed overnight in the fridge prior to the analysis. 106 

The frames were separated and one frame was selected and cut into smaller pieces. Three samples 107 

were made out of one frame. The small pieces were grinded into a homogenous mass using liquid 108 

nitrogen. The samples were stored at -40 °C until further analysis  109 

 110 

Dry matter 111 

Homogenized thawed cod frame sample (approx. 2 g) were dried for 20-24 h in an oven at 102-112 

105°C. All analyses were carried out in triplicate samples (n=3). The dry matter [%] was calculated 113 

based on weight of wet and dry sample.  114 
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 115 

Lipid extraction and determination of oil content 116 

The lipid content of cod frames was measured gravimetrically according to Bligh and Dyer method 117 

with reduced amount of solvent (Bligh and Dyer, 1959; Iverson et al., 2001). For the extraction, 118 

chloroform:methanol (1:1, v/v) was used by fixing the centrifuge tube containing 30 mL methanol  119 

to  its holder on the Ultra Turrax. Then 15 ml chloroform were added and mixed for 30 seconds 120 

with a speed of 15000 rpm. Subsequently, another 15 ml chloroform were added and the solution 121 

was mixed again for 30 seconds, followed by centrifugation at 1665 ×g and 18 °C for 10 minutes. 122 

After centrifugation, the methanol:water phase (upper phase) was removed and extract 123 

(chloroform phase) was filtered down into a 50 ml Pyrex bottle. Extracts (10 g) were left overnight 124 

at room temperature, dried (oven 1-2 h, 105 °C) and weighed. All analyses were carried out in 125 

triplicate samples (with two analytical replicates; n=3×2). 126 

 127 

Fatty acid composition 128 

The lipid extract was used to determine the fatty acid composition.  Lipid extract was evaporated 129 

to dryness under nitrogen and re-dissolved in internal standard (100 µL, C23:0 in heptane), 200 130 

µL heptane with BHT and 100 µL toluene. Boron trifluoride reagent (20%) was added for lipid 131 

transesterification in a one-step procedure using a microwave (Multiwave 3000 SOLV, Rotor: 132 

64MG5, Anton Paar, Graz, Austria). Samples were heated for 5 min at 500 W and cooled down 133 

for 10 min. Then samples were mixed with 1 mL saturated NaCl solution and 0.7 mL heptane. The 134 

top layer was used for fatty acid composition analysis by gas chromatography with flame 135 

ionization detection (GC-FID; Column: DB-wax column (10 m×ID 0.1 mm × 0.1 µm film 136 

thickness, J&W Scientific, Folsom, CA)) according to AOCS official Method Ce 1b-89. Results 137 
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were reported as percentages of total fatty acids. All analyses were carried out in triplicate samples 138 

(with two analytical replicate; n=3×2). 139 

   140 

Protein content 141 

The protein content was measured based on total nitrogen content analyzed by Dumas (Rapid 142 

MAX N exceed cube N/protein analyzer, Elementar Analysensysteme GmbH, Germany).  143 

Depending on the sample type, 250 mg-500 mg of sample was used for the determination.  Crude 144 

protein was estimated in all samples by multiplying the total nitrogen content (%) by a factor of 145 

6.25.  All analyses were carried out in triplicate samples (with two analytical replicates; n=3×2).  146 

 147 

Amino acid composition  148 

The amino acid composition was determined by HPLC-MS, following hydrolysis and 149 

derivatization using EZ:faast amino acid kit (Phenomenex, Torrance, CA, USA) (Ghelichi et al., 150 

2017).  The acid hydrolysis was applied in order to release the amino acid using 6 M HCl at 110 151 

°C for 18 h in oven. The subsequent neutralized samples were purified by a solid-phase extraction 152 

sorbent tip and derivatization was performed following the injection of sample aliquots into an 153 

Agilent HPLC 1100 instrument (Santa Clara, CA, USA) coupled to an Agilent ion trap mass 154 

spectrometer. The amino acids were identified by comparing retention time and mass spectra of 155 

an external standard mixture. Calibration curves were prepared and analyzed by HPLC-MS for 156 

quantification. All analyses were carried out in triplicate samples (with two analytical replicate; 157 

n=3×2). 158 

 159 

Phosphorous content measured by spectrophotometry 160 
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Before measuring the phosphorous content in the cod frames, the samples were burnt in an oven 161 

(30 min at 200 °C, 30 min at 300 °C, 1h at 400 °C and 12h at 600 °C)  and the ashes were used for 162 

determination of phosphorous. Ash samples were weighed and sulfuric acid (5.6 M) and 163 

ammonium molybdate (2.5%) were added for reaction. Under acidic conditions, phosphate is 164 

converted to phosphomolybdic acid. Under reduction (stannous chloride, 2.5%) a blue colored 165 

complex was formed. The intensity of the complex was measured spectrophotometrically at 690 166 

nm after 15-25 min and quantified using a standard curve prepared from a phosphate standard 167 

solution (Sodium dihydrogen phosphate dodecahydrate, 1.05 mM containing 0.1 mg PO4
3-/mL or 168 

0.033 mg P/mL). All analyses were carried out in triplicate samples (with two analytical replicates; 169 

n=3×2).  170 

 171 

Preparation of cod frame hydrolysates  172 

Following Liaset et al. (2000), proteolysis variables such as temperature, pH, E/S ratio and time 173 

related to application of Neut and Alc enzymes were chosen. Cod frames (Sep. 2017) were cut into 174 

smaller parts and divided in two batches; minced cod frame (MCF) which was chopped in a blender 175 

(Waring blender, model 32BL80, USA) by aid of liquid nitrogen, and heated cod meat (HCM). 176 

The HCM fraction was obtained by boiling of cod frame at 95°C in a water bath for 20 min with 177 

subsequent separation of heated meat from the bones fraction. The samples were mixed with 0.1 178 

M sodium phosphate buffer at pH 7.4 in ratio of 1:1 (w:v) and homogenized for 3 minutes. In 179 

individual process, enzymes were added into the sample solution at E/S ratio of 1.5% (based on 180 

sample protein content as determined by Dumas) with subsequent shaking (80 rpm) in water bath 181 

at 50°C for 3h. In the sequential process, sample solution was subjected to Neut for 3 h and then 182 

Alc was added and incubated for the next 3h. The hydrolysis was terminated by heating the 183 
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solution at 95°C for 20 min (Guerard et al., 2002). The hydrolysates were then centrifuged at 6700 184 

×g for 20 min (Merck, Beta 1-8, Martin Christ® GmbH, Germany). The supernatant was collected 185 

and freeze-dried and grinded into a fine powder, manually, and stored at 4°C in dark bottles for 186 

further experiments. The process is illustrated in Fig. 1. 187 

 188 

SN-TCA index (%) 189 

The soluble nitrogen content as an indicator of hydrolysis efficiency was calculated by application 190 

of trichloroacetic acid (TCA) method as described by Hoyle & Merritt (1994). Accordingly, 20% 191 

TCA (w/v) solution was prepared and 20 mL of collected supernatant was added to 20 mL of TCA 192 

(10% final concentration). The mixture was centrifuged at 7800 ×g for 15 min. The supernatant 193 

(soluble protein) was then analyzed for nitrogen content using Dumas instrument (n = 2).  194 

𝑆𝑆𝑆𝑆 − 𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
(%) 𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 10% 𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠

 (%) 𝑇𝑇𝑆𝑆 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑟𝑟 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚
× 100 195 

Where SN is soluble nitrogen, TN is total nitrogen in cod frame meat 196 

 197 

Nitrogen recovery  198 

Nitrogen recovery (NR) in the soluble fraction was calculated using the following formula:  199 

𝑆𝑆𝑁𝑁 (%) =
𝑆𝑆 (%)𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑖𝑖𝑠𝑠𝑠𝑠 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤ℎ𝑠𝑠 (𝑤𝑤)

𝑇𝑇𝑆𝑆 (%)𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑟𝑟 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚 × 𝑖𝑖𝑠𝑠𝑠𝑠 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤ℎ𝑠𝑠 (𝑤𝑤)
× 100 200 

Where N is nitrogen percentage, FDHP is freeze-dried hydrolysate powder and TN is total nitrogen 201 

in cod backbone meat. Nitrogen was determined by the Dumas method as described above.  202 

 203 

Yield  204 
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The yield was calculated as percentage ratio of weight of the initial substrate (cod frame) in gram 205 

to the weight of the hydrolysates obtained in gram.  206 

𝑌𝑌𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 (%) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤ℎ𝑠𝑠  (𝑤𝑤)

𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤ℎ𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑟𝑟 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚 (𝑤𝑤)
× 100 207 

Where FDHP is freeze-dried hydrolysate powder. 208 

 209 

FPH Solubility  210 

In order to measure the FPH powder relative solubility, 200 mg of powder were dispersed in 20 211 

mL of 0.1 M sodium phosphate buffer (pH 7.4) and mixed thoroughly (stirring for 10 sec.), then 212 

mixtures were left at room temperature while shaking (80 rpm) for 30 minutes and finally 213 

centrifuged at 7500 ×g for 15 minutes. The protein/peptide content of each supernatant was 214 

determined using the Dumas instrument (Brinton et al., 2005). Protein/peptide solubility was 215 

calculated as; 216 

 217 

𝑆𝑆𝑜𝑜𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠𝑆𝑆 (%) =
𝐹𝐹𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖/𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑜𝑜𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠
𝑇𝑇𝑜𝑜𝑠𝑠𝑠𝑠𝑚𝑚 𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖/𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑜𝑜𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹

 ×  100 218 

  219 

Water holding capacity (WHC)  220 

Following the method of Diniz and Martin (1997) with some modification, the WHC was 221 

determined by adding 100 mg FPH powder in 1000 μl of distilled water followed by mixing with 222 

a magnet stirrer. The protein suspension was then centrifuged at 1800 ×g for 20 min at 22 °C. The 223 

supernatant was decanted, and the tube drained at 45° angle for 10 min. WHC, as mL of water 224 

absorbed per g of FPH, was calculated based on the difference between initial volumes of distilled 225 

water added to the protein sample and the volume retrieved. 226 
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 227 

Oil absorption capacity (OAC)  228 

For measuring OAC parameter, an emulsion was prepared by dispersing 100 mg of FPH sample 229 

in 1000 μl of rapeseed oil for 30 sec following Foh et al., (2010) with slight modification by 230 

increasing the protein concentration to 10% instead of 5%. The resulting emulsion was incubated 231 

at room temperature for 30 minutes, and then centrifuged at 13600 ×g for 10 minutes at 25 °C, 232 

while Foh et al., (2010) used 2800 ×g for 25 min without mentioning the temperature. The 233 

supernatant decanted and drained at 45° angle for 15 minutes to determine the volume of absorbed 234 

oil. OAC was calculated in the same way as WHC.  235 

 236 

Bulk Density 237 

Bulk density of freeze-dried cod frame FPH was measured following Foh et al. (2010) with slight 238 

modification. Approximately 5 g of each sample were packed into 50 mL graduated cylinders by 239 

gently tapping on the lab bench 10 times. The volume was recorded and bulk density was reported 240 

as g/mL of the sample. 241 

 242 

Color parameters  243 

The color of the FPH powders was evaluated using the Hunter Lab Miniscan XE colorimeter 244 

(Reston, Virginia, USA). The CIE L*a*b* color parameters were used: L*; indicating lightness 245 

from black (0) to white (100); a*; indicating redness from green (- 120/ negative values) to red 246 

(+120 / positive values); and b*; indicating yellowness going from blue (-120 / negative values) 247 

to yellow (+120 / positive values) (Hashemi and Jafarpour, 2016). Whiteness was calculated as:  248 

𝑊𝑊ℎ𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 = 100 − �(100 − 𝐿𝐿∗)2 + 𝑠𝑠∗2 + 𝑆𝑆∗2
2

 249 
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 250 

Phosphorus and calcium content of peptides and bone fractions  251 

Analysis of calcium and phosphorus in the bone powder was done using ICP-MS (iCAPq, Thermo-252 

Fischer, Germany) in KED mode (helium as cell gas) following digestion of the samples with 253 

concentrated nitric acid (SPS Science, France) in a microwave oven (Multiwave 3000). 254 

Quantification was done using external calibration with standards made from certified stock 255 

solutions of calcium and phosphorus (SPS Science, France) and using rhodium as internal standard 256 

(SPS Science, France). A certified reference material DORM-4 (NRCC, Canada) was analyzed 257 

together with the samples and the obtained values were in good agreement with the reference 258 

values. 259 

 260 

Amino acid profile of protein hydrolysates by middle-down proteomics 261 

Freeze-dried protein hydrolysates were prepared using a sodium deoxycholate (SDC) in-solution 262 

digestions protocol according to Zhou et al. (2015), without applying the tryptic digestion step. 263 

Alkylated peptides were purified using C-18 StageTips (Rappsilber et al., 2007; Yanbao Yu et al., 264 

2014), dried down, and re-suspended in 0.1% (v/v) trifluoroacetic acid, 2% acetonitrile (v/v) for 265 

analysis. Peptide analysis was performed using an automated LC–ESI–MS/MS, consisting of an 266 

EASY-nLC system (Thermo Scientific) on-line coupled to a Q Exactive HF mass spectrometer 267 

(Thermo Scientific,) equipped with a Nanospray Flex ion source (Thermo Scientific). Peptides 268 

were loaded onto a reverse phase (RP) Acclaim Pepmap Nanotrap column (C18, 100 Å, 100 μm. 269 

× 2 cm, nanoViper fittings (Thermo Scientific)) followed by separation on a RP Acclaim Pepmap 270 

RSLC analytical column (C18, 100 Å, 75 μm. × 50 cm, nanoViper fittings (Thermo Scientific) as 271 

described in (García-Moreno et al., 2020). 272 
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Proteomics analysis was performed using MaxQuant 1.6.0.16 (Cox and Mann, 2008; Tyanova et 273 

al., 2016) using a reference proteome constructed by combining the two available GenBank 274 

(Benson et al., 2017; Sayers et al., 2019) assemblies (as of December 10th, 2018) for Gadus morhua 275 

(GCA_000231765.1 and GCA_900302565.1)  (Star et al., 2013) and removing redundant entries 276 

by applying a 90% identity cutoff. The analysis was performed as unspecific digestion with peptide 277 

length from 3 to 65 AAs and applying a false discovery rate of 1% on both peptide and protein 278 

level.  279 

The sample-level molar amino acid frequency 𝑜𝑜𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for each AA was approximated using the 280 

peptide-level data output using an MS1 intensity-weighted normalization of the peptide level for 281 

each amino acid and summed up over all identified peptides after filtration of reverse hits and 282 

potential contaminant peptides according to: 283 

 284 

𝑜𝑜𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑜𝑜𝐴𝐴𝐴𝐴

𝑠𝑠 ∗ 𝐼𝐼𝑟𝑟𝑠𝑠𝑠𝑠
𝑠𝑠

𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠=1

 285 

Where 𝑜𝑜𝐴𝐴𝐴𝐴
𝑠𝑠 is the integral frequency of a given AA in peptide p and 𝐼𝐼𝑟𝑟𝑠𝑠𝑠𝑠

𝑠𝑠 is the MS1 intensity of 286 

peptide p divided by the sum of intensities for all n peptides. To approximate the amount of each 287 

AA per 100g of samples (i.e. soluble peptides), the sample-level molar AA frequency was 288 

multiplied with the MW of the AA (subtracted for water cleaved during peptide bond formation), 289 

divided by the weighted average AA MW (110 g/mol) (Kim et al., 2018) and multiplied by 100.  290 

 291 

Statistical analysis 292 
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The current experiment performed in a completely randomized design test and obtained data were 293 

analyzed by one-way ANOVA in SPSS (v. 16.0). Multiple comparison among means was 294 

calculated in Tukey as a post hoc test, while setting the confidence level at 95%. 295 

 296 

Results and Discussion 297 

Characterization of cod frames at different sampling months 298 

Table 1 shows proximate composition of cod frame along with its phosphorus contents as a main 299 

mineral component from Mar. 2017 to Mar. 2018 with 3 months sampling intervals. Accordingly, 300 

the protein content of cod frame varied from 13% to 17%. No significant difference (P>0.05) was 301 

observed with the exception of the sample from Sep. 2017 (P<0.05), which had the highest protein 302 

content. On average, these values are in line with study conducted by Gildberg et al. (2002), who 303 

reported the protein content of cod frame as 16%.  Generally, it is expected that a higher protein 304 

content will be obtained for fish caught during the summer because the higher temperature will 305 

cause blooming in late summer of free-floating algae, specifically cyanobacteria (Groetsch et al., 306 

2016). Hence, more food sources are available for nourishing the fish during the summer season. 307 

However, in the current study, higher protein content in sample Sep. 2017 might be related to 308 

inefficiency of fillet trimming machine, which could result in a higher proportion of meat 309 

remaining on the bone in the batch received in this sampling month. The support for this claim is 310 

that the ash and phosphorous content do not correlate with the protein content in sample Sep. 2017; 311 

otherwise, these values should be higher than those recorded for sample Sep. 2017. The low protein 312 

content of cod frame from Mar. 2017 to Jun. 2017 is in line with the study reported by Ingolfsdottir 313 

et al. (1998), who attributed the lowest protein content in North Atlantic cod muscle to the period 314 

of spawning of cod during March to May.   315 
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In terms of phosphorus (P) content, the sample from Sep. 2017 contained the lowest amount of 316 

2.2%, while the highest amount was determined in Mar. 2018 followed by Dec. 2017 (4.4% and 317 

3.7%, respectively) (P<0.05). This trend coincides well with the lower content of other fractions 318 

such as protein and lipid. This can result in higher percentage of P in calculated proximate 319 

composition of cod frame. However, the P content of cod frame in our study is not in agreement 320 

with those reported by Toppe et al. (2007) and Malde et al. (2010) as 113 g/kg and 180 g/kg, 321 

respectively. The difference in reported P values is mainly due to the reason that in the current 322 

study, the P content (Table 1) was analyzed on the ash fraction and calculated based on the whole 323 

cod frame. In contrast, by measuring the P content based on the dried bone powder (Table 8) its 324 

value was 170 g/kg, which is in line with that reported by Malde et al. (2010). Cod is classified as 325 

a lean fish (with lipid content of lower that 2%) (Zeng et al., 2010), and the lipid content of samples 326 

in our study recorded a low value of around 1% during different sampling months. However, the 327 

slight changes in lipid content of cod frame in our study showed no correlation with the typical 328 

lipid content of fish muscle during spawning and feeding seasons. The lipid content of the cod 329 

frame (0.98 % to 1.13 %) was higher than those obtained by Gildberg et al. (2002) and Zeng et al. 330 

(2010), who reported the lipid content of cod backbone and cod flesh as 0.3% and 0.8%, 331 

respectively. Furthermore, Ingolfsdottir et al. (1998) reported that the values for the fat content of 332 

North Atlantic cod muscle varied from less than 0.15% in the autumn to higher than 0.35% in the 333 

late spring. On the other hand, according to Toppe et al. (2007), the lipid content of cod backbone 334 

was reported as 2.3%, which is significantly higher than those recorded in our study and the study 335 

conducted by Ingolfsdottir et al. (1998). Obviously, the lipid content of cod frame in our study is 336 

surprisingly high as it stems from residual cod meat on the frame. Most of the frame must be bone, 337 

so if the lipid content in the frame is higher than what was reported by others in pure cod muscle, 338 
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then it means that the meat left on the cod bone investigated in our study contains more lipid than 339 

the cod filet itself.  340 

In case of dry matter, the highest content was determined in the samples from Dec. 2017 and Mar. 341 

2018 (about 22%) and the lowest amount in the sample of Jun. 2017 (19.4%, P<0.05). As 342 

aforementioned, the different content of dry matters may be related to the exact ratio between meat 343 

and bone and not necessarily be directly related to seasonal variation. Therefore, the fluctuations 344 

in proximate composition of cod frame in our study cannot be attributed to the feasting (March-345 

June) and fasting (September-December) seasons. In other words, the highest protein and lipid 346 

content and lowest dry matter and phosphorus content were recorded for fish caught in Sep. 2017 347 

(fasting season), whereas, protein and lipid content showed a declining trend during feasting 348 

season. However, for proper interpretation of seasonal variation in proximate composition of cod 349 

frame, it would be necessary to consider real seasonality versus differences in filleting efficiency, 350 

which may in fact be influenced by seasonal changes in cod meat texture and functional properties 351 

(Malcolm Love, 1979). However, to unveil the true influence of seasonality on the proximate 352 

composition, the amino acids and fatty acid profile of samples during different seasons should be 353 

analyzed, which will be discussed in following sections. Consequently, based on the type of 354 

application, i.e. targeting mainly protein or phosphorus, cod frame can be selected from different 355 

seasons as a valuable source for valorization process which creates new high value ingredients 356 

preferably without generating new wastes.    357 

 358 

Amino acid profile of cod frame in different seasons 359 

Amino acids are considered as precursors for synthesis of a broad range of biologically important 360 

substances including nucleotides, peptide hormones, and neurotransmitters. Total amino acid 361 
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content of cod frame is presented in Table 2, and is divided into two sections: essential amino acids 362 

(EAA) and non-essential amino acids (NEAA). A significant seasonal variation is observed among 363 

the AAs with different patterns. For instance, there is a sinusoidal pattern in the content of Thr, 364 

Val, Ser, Gly, Ala, Asp and Glu with an increase in the first half of year (Mar. to Sep. 2017) 365 

followed by a decline up to the end of year (Dec. 2017) and again a rise in Mar. 2018. Whereas, 366 

for Met, Phe, His, Tyr and C-C a slight fluctuation was recorded during different sampling months. 367 

On the other hand, Ile and Arg presented a sharp increase during spring (Mar.-Jun. 2017) followed 368 

by a sharp decline during the rest of the sampling months and nearly the same pattern was observed 369 

for Leu. The highest content of total AAs (155.83 mg/g) was found in the sample from Sep. 2017, 370 

while the lowest content of 97.93 mg/g was recorded for sample Mar. 2017. This corresponds well 371 

with the protein content of cod frame determined by proximate composition analysis. With the 372 

exception of the cod frame sample from Mar. 2017, which showed nearly equal amount of EAAs 373 

and NEAAs, the content of EAAs was remarkably lower than the NEAA content. The  EAA 374 

occurring in the highest amount was Val with its highest values in samples Jun. and Sep. 2017 375 

(15.02 and 15.42 mg/g, respectively) while the  EAA which occurred in lowest amounts (2.16-376 

3.32 mg/g) was His. In case of NEAAs, Glu had the highest abundance (14-22.12 mg/g), while the 377 

C-C content was lower than 1.0 mg/g in all samples.  378 

Toppe et al. (2007) reported that AAs profile of cod bone is rich in Gly>Glu>Arg>Pro>Asn, and 379 

poor in Trp<His<Tyr<Ile<Phe, which was relatively in agreement with our results. Thus, cod 380 

frame in our study contained large amounts of Glu>Gly>Val followed by nearly same amounts of 381 

Ala, Asp, Pro, Leu and Lys, with their peak values in sample Sep. 2017. The possible explanation 382 

for the difference in the content of some AAs in these two studies might be due to the nature of 383 

analyzed sample. Toppe et al. (2007) used a farmed codfish, while in our study the frame of wild 384 
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codfish was examined. Furthermore, it is noteworthy that regarding the Glu and Asp content in 385 

our study, they are determined as sum components of Glu+Gln and Asp+Asn due to conversion 386 

during hydrolysis prior to analysis. Higher amounts of Gly, Ala and Pro compared to other NEAA 387 

content of cod frame, especially in sample Sep. 2017, could indicate high amounts of collagenous 388 

peptides in the raw material (de Paz-Lugo et al., 2018).   389 

 390 

Fatty acid (FA) profile   391 

It is generally accepted that highly unsaturated n‐3 fatty acids (n‐3 HUFA) or long‐chain n‐3 392 

polyunsaturated fatty acids (LC n‐3 PUFA), particularly 20:5 n‐3 (eicosapentaenoic acid [EPA]) 393 

and 22:6 n‐3 (docosahexaenoic acid [DHA]) positively affect human health such as early 394 

development, and the prevention of some diseases (Vonder Haar et al., 2016). According to the 395 

FA profile of cod frame (Table 3), the most abundant FAs was determined as DHA (23.0-24.9%), 396 

followed by palmitic acid (C16:0, 13.5–17.5%), EPA (11.5–15.6%) and oleic acid (C18:1n9, 11.1–397 

11.8%). FAs with lower frequency included eicosenoic acid, stearic acid isomer of oleic acid, 398 

lignoceric, palmitoleic acid, dihomo-gamma-linolenic acid and cetoleic acid, while the rest were 399 

≤1.0% at all sampling points.  400 

These results do not coincide with Toppe et al. (2007), where the most abundant FAs of farmed 401 

cod backbone was reported to be oleic acid followed by palmitic acid, DHA and EPA. In another 402 

study conducted on farmed Atlantic cod fillet by Zeng et al. (2010), the authors reported DHA as 403 

the most abundant FA (31.0%), and a total of 48,8% of n-3 PUFAs in the total lipid of cod muscle. 404 

The same trend but lower content was observed in our study, most possibly due to the differences 405 

in the raw material used, i.e, cod muscle in Zeng et al. (2010) study, versus cod frame with 406 

remaining meat in our study. Furthermore, all analyzed samples contained higher amounts of n-3 407 
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PUFAs (ranging from 37.66 to 40.64%) than n-6 PUFAs (ranging from 2.5 to 2.8%) (Table 3). 408 

Toppe et al. (2007) reported these values as 12.6% and 1.9% for n-3 PUFAs and n-6 PUFAs, 409 

respectively. In our study, apart from a slight increase in n-3 PUFAs, starting from Mar. 2017 and 410 

reaching to its highest value in Dec. 2017, no profound seasonal variation was observed on PUFAs 411 

profile.  412 

Referring to the proximate composition of cod frame with emphasis on protein and phosphorus 413 

content and also with respect to high levels of EAAs and NEAAs in different months, cod frame 414 

could be considered as a valuable source for further valorization experiments in order to recover 415 

bioactive compounds  such as peptides, calcium and phosphorous without producing more waste. 416 

In accordance with the aforementioned statement, this study evaluated the release of potentially 417 

bioactive peptides by enzymatic hydrolysis and recovery of calcium and phosphorous from the 418 

remaining bones as added-value components. 419 

 420 

Valorization of cod frames 421 

SN-TCA index 422 

For a given substrate and enzyme at a given pH, the comparison of different hydrolysates is based 423 

on the degree of hydrolysis (DH) as it was measured in terms of SN-TCA in our study. DH depends 424 

on the experimental variables such as the type of enzyme, substrate and applied conditions (e.g. 425 

time, temperature, pH, E/S ratio,) (Williams, 2004). As shown in Table 4, application of Alc and 426 

Neut, either separately or sequentially on two types of fish substrate, resulted in 30-40% SN-TCA 427 

index. Alc was more efficient compared to Neut on both MCF or HCM, whereas, Neut and Alc 428 

did not show any substrate preference, as the resulting SN-TCA index was not significantly 429 
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different between these two substrates (p>0.05). However, sequential application of Neut&Alc to 430 

the MCF caused significantly higher SN-TCA index compared to HCM (p<0.05).  431 

In our study, the main experimental variables were the enzyme and substrate types, which affected 432 

the dependent variables differently. In addition, applied enzymes were calculated based on the 433 

same concentration (1.5% w/w). Thus, they cannot be directly compared as Alc has a specified 434 

activity three times higher than Neut (2.4 AU/g vs. 0.8 AU/g), i.e, to make this comparison, three 435 

times more Neut should have been added. Therefore, we cannot claim that application of Alc on 436 

the cod backbone meat was more efficient compared to Neut treatment. Nevertheless, the higher 437 

efficiency of Alc compared to Neut was reported by Gildberg et al. (2002). These authors 438 

stipulated that the lower efficiency of Neut could be related to higher susceptibility to the inhibitory 439 

activity of protease inhibitors found in cod meat. Therefore, it is expected that application of 440 

preheating treatment on the substrate before enzymatic hydrolysis, could enhance the efficiency 441 

of Neu treatment. However, this is not in agreement with results of our study as Neut still showed 442 

low efficiency in case of HCM (including pretreatment at 95°C for 20 min) (further investigation 443 

needed). On the other hand, Liaset et al. (2000) reported higher DH in case of Neut (23%) 444 

compared to pepsin (15%) and Alc (20%) on salmon and cod frame, but these authors applied Neut 445 

enzyme with E/S ratio of 30 AU/kg protein versus 3.6 AU/kg protein in our study.   446 

When running the enzymatic hydrolysis process, it is also important to figure out the amount of 447 

recovered protein and nitrogen after enzymatic hydrolysis. It is noticeable that despite the higher 448 

yield obtained with the MCF treatment (Table 4), its protein content was significantly lower than 449 

HCM (p<0.05) most probably due to the difference in substrate composition as MCF contains fish 450 

bones while HCM is only comprised of fish meat. However, in terms of nitrogen recovery 451 

percentage (NR%), individual application of Alc and Neut resulted in significantly higher NR% 452 
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in MCF compared to HCM (P<0.05), whereas subjecting  MCF and HCM to sequential application 453 

of Netu&Alc caused no significant difference in NR% (P>0.05). In terms of yield percentage the 454 

same trend as for NR% was observed, i.e highest yield was obtained by application of Alc either 455 

individually or along with Neut on both MCF and HCM substrate (P<0.05), mainly due to its 456 

higher applied AU/g compared to Neut in our study.  457 

  458 

Color parameters of FPH powder 459 

Color parameters of recovered hydrolysate powder from cod frame is presented in Table 5. In 460 

terms of substrate type, peptide powder from enzymatic hydrolysis of HCM resulted in higher L* 461 

value, but lower a* and b* values compared to MCF substrate, which resulted in whiter recovered 462 

FPH powder from HCM (P<0.05). Among all examined treatments, Alc showed highest ability to 463 

result in lighter and consequently whiter powder from HCM substrate. By comparing the MCF 464 

data, even though, the Neut treatments caused higher L* values, the whiteness of the obtained 465 

powder was significantly lower compared to the rest of treatments (P<0.05). This is mainly due to 466 

its higher redness and yellowness values, which are negatively correlated to the whiteness index.   467 

In a study conducted by Šližyte et al. (2009) on cod backbone, color parameters of recovered FPH 468 

powder were recorded as L*= 87.8, a*= -0.7, and b*=17.5. In comparison, the trends in color 469 

values in our study is generally in line with values reported by Šližytė et al. (2009) as nearly the 470 

same yellowness, higher lightness and lower redness was recorded for recovered FPH from cod 471 

frame. This will positively affect its customer popularity and market acceptability. Apart from the 472 

broad specificity of Alc and Neut, the differences in color values can be attributed to the difference 473 

in cleavage site of enzymes in peptide chain, which could contribute differently to the color of the 474 

obtained peptide powder. Furthermore, apart from the enzyme type, several other parameters such 475 
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as differences in color measuring instruments, E/S ratio and types, enzyme concentration etc., 476 

could influence the color of obtained FPH powder.   477 

 478 

FPH Solubility and water holding capacity (WHC)  479 

The solubility of the FPH powders at a certain concentration (1% w/v) are shown in Table 6, and 480 

ranged from 93% to 100% which is in agreement with other studies (Klompong, Benjakul, 481 

Kantachote, & Shahidi, 2007; Nalinanon, Benjakul, Kishimura, & Shahidi, 2011; Pacheco-Aguilar 482 

et al., 2008; Taheri et al., 2013). In comparison, administration of Alc on both MCF and HCM and 483 

also Neut&Alc treatment on HCM resulted in significantly higher solubility (P<0.05) than the 484 

other treatments, while lowest solubility was determined for the hydrolysate from Neut treatment 485 

on MCF (P<0.05), followed by Neut&Alc on MCF and Neut on HCM. 486 

Protein solubility to a large extent depends on pH values, showing its lowest solubility close to the 487 

isoelectric point (pI) (Chobert et al., 1988; Linder et al., 1996). The pH influences the charge on 488 

the weakly acidic and basic side-chain groups with subsequent effects on the protein solubility 489 

(Gbogouri et al., 2004) which is proportional to the square of the net charge on the protein (Shaw 490 

et al., 2001). Improved solubility of the hydrolyzed protein compared to its original form can be 491 

attributed to the degradation of the proteins leading to increased repulsive interactions between 492 

peptides and a subsequent increase in hydrogen bonding with water molecules (Souissi et al., 493 

2007). The hydrolysis degrades proteins to peptides, which are generally more soluble. However, 494 

the increased solubility of the peptides is largely caused by the fact that peptides hydrophobic 495 

domains is lower compared to the intact protein molecule.  496 

Due to the high solubility of the hydrolysates, the WHC of obtained FPH powders was close to 497 

zero. In contrast to our results, Taheri et al. (2012) reported high WHC (5.1 mL/g) for fish 498 
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hydrolysate powder recovered from rainbow trout viscera using Alc, which possibly is related to 499 

the higher DH in their study compared to ours. According to Kristinsson and Rasco (2000), the 500 

increased concentration of polar groups such as COOH and NH2 that is caused by extensive 501 

enzymatic hydrolysis has a substantial positive effect on the amount of adsorbed water. Apart from 502 

different substrate types, the differences in reported studies can possibly be explained by the 503 

number and ratio of polar and nonpolar groups (hydrophilic and hydrophobic amino acids), and 504 

the amino acid composition of the FPH recovered with each enzyme. According to Trevino et al. 505 

(2007), Asp, Glu, and Ser contribute more favorably to protein solubility than the other hydrophilic 506 

amino acids especially at high net charge. In our study, the inability of obtained FPH to imbibe 507 

water molecules can be possibly attributed to the dominant portion of released hydrophilic amino 508 

acid residues with low net charge, which results in weak hydrogen bonds that could not retain it 509 

against the gravitational force in the protein matrix. In addition, the common practice in protease 510 

hydrolysis in aqueous solution is to collect the supernatant after enzymatic process by 511 

centrifugation, which cause a major loss of hydrophobic amino acids that goes to the precipitated 512 

sediment. Consequently, peptides are more prone to hydration compared to undenatured protein. 513 

However, depending on the type of FPH application, both solubility and WHC are considered as 514 

important FPH functionality parameters as these can influence other functionalities such as 515 

emulsification and foaming properties. 516 

 517 

Oil absorption capacity (OAC) and bulk density (BD) 518 

The highest OAC was obtained for hydrolysates produced by Alc treatment of both MCF and 519 

HCM substrates (P<0.05), while the lowest values were related to the individual application of 520 

Neut and sequential application of Neut&Alc on either MCF or HCM (P>0.05) (Table 6). It is 521 
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believed that OAC is mainly dependent on physical entrapment of oil, which is directly related to 522 

the hydrophobic surface of hydrolyzed proteins (Kristinson & Roscoe, 2000), protein mass density, 523 

and their amino acid composition.  524 

BD represents the physical property of a product, which influence the packaging requirements of 525 

a product. Therefore, to obtain higher BD, higher degree of hydrolysis is required, which in turn 526 

lower the molecular size of resulting peptides (may also drastically change the biological, physical 527 

and chemical properties of the hydrolysate) and consequently a finer powder with less porosity 528 

would be obtained.  529 

In terms of BD values, there was a significant difference (P<0.05) among the various samples 530 

studied (Table 6). HCM hydrolyzed sequentially with Neut&Alc showed significantly higher BD 531 

of 0.40 g/mL followed by MCF sample (0.35 g/mL) (P<0.05). However, HCM hydrolyzed with 532 

Neut and Alc separately, showed the lowest values of 0.19 g/mL and 0.25 g/mL, compared to MCF 533 

samples with BD values of 0.31 and 0.28 g/mL, respectively (P<0.05). Considering the fact that 534 

MCF samples contained bone, this can likely explain the difference as these treatments may get 535 

different collagen derived peptides along with a likely higher content of minerals, which contribute 536 

to a higher density of the sample as a whole. Foh et al. (2010) studied the functionality of FPH 537 

from hydrolyzed Tilapia (Oreochromis niloticus) and reported that BD of resulting peptide powder 538 

from Neut heat treated fish mince was significantly lower compared to Alc treatment which is in 539 

accordance with the current study.  540 

  541 

Amino acid profile of FPH by middle down proteomics 542 

The AA profile of cod frame protein hydrolysates (g/100 g of soluble peptide) is presented in Table 543 

7. It should be noted that the AA profile is an approximation by means of peptide-level MS1 544 
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intensity weighing, and that peptide MS1 intensities are not in all cases proportional to peptide 545 

abundance due to variability in peptide physiochemical properties. Furthermore, the AA profile 546 

presented here only takes into account AAs found in (potentially bioactive) peptides (3-65 AAs) 547 

released by enzymatic hydrolysis and does not take into account free AAs nor larger protein 548 

fragments. Consequently, it is challenging to compare directly to other studies, where it has been 549 

common to analyze either free AA or total AA profiles, where both free AAs and total AAs from 550 

non-hydrolyzed proteins are included. Although analysis of total AA content provides valuable 551 

insight into e.g. nutritional value of a substrate, our approach provides a novel and alternative way 552 

of characterizing protein hydrolysates in terms of peptide AA composition.  553 

As seen in Table 7, apart from the sequential application of Neut&Alc on HCM, all other 554 

treatments resulted in release of peptides with higher content of EAAs from both MCF and HCM 555 

substrates compared to the original Sep. 2017 sample. The most abundant AAs in the identified 556 

peptides were Glu, Leu, Asp, Pro and Phe, in all treatments. The highest content of the EAAs were 557 

Leu, Phe and Val and was found in peptides released from the cod frame by the sequential 558 

application of Neut&Alc on both MCF and HCM, while application of Neut was responsible for 559 

significantly higher content of Thr, Lys and Gln. In case of NEAAs, the highest content of Gly 560 

and Pro was found in peptides released by Alc, while hydrolysis by Neut resulted in release of 561 

peptides richest in Ala and Glu for both MCF and HCM. Interestingly, the content of Lys, Gln, 562 

Glu, and Cys was over two-fold higher in hydrolysates only treated with Neut compared to other 563 

treatments. This trend was also seen to a lower extent for Thr and Asn. This could indicate that 564 

treatment with Alc may be responsible for release of these AAs in free form to a much higher 565 

extent or those peptides rich in these AAs are to a larger extent hydrophobic and hence not found 566 

in the FPH. Furthermore, the peptides obtained using sequential hydrolysis with Neut&Alc had a 567 
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significantly lower content of His and Arg, indicating that this treatment may result in increased 568 

release of free positively charged AAs. The increased release of charged AAs in free form, could 569 

contribute to an increased antioxidant activity of the peptides obtained with sequential Neut&Alc 570 

treatment, as these AAs are reported to be positive contributors to peptide antioxidant activity 571 

compared to other AAs (Udenigwe and Aluko, 2011). The lower content of Cys in the sequential 572 

hydrolysate peptides may impair antioxidant activity; however, as free Cys is known to have 573 

significant antioxidant activity by itself due to the high redox potential of the thiol group, the total 574 

antioxidant potential of the sequential hydrolysate may be significant. This aspect is currently 575 

under investigation.  576 

As the obtained hydrolysate powder in the current study was prepared from the Sep. 2017 sample, 577 

it is reasonable to compare the AAs profile of these two samples (Table 7). Accordingly, the most 578 

abundant EAAs in the intact proteins from the cod frame were Val, Lys, Leu and Ile, whereas, the 579 

most abundant AA in released peptides by different enzymatic treatments were Leu, Phe and Val. 580 

The relatively low content of His in the hydrolysates corresponded well with the analysis of the 581 

cod frame from Sep. 2017 sample. Nevertheless, the hydrolysate peptides had, in general, a higher 582 

content of EAAs compared to the total AA analysis of Sep. 2017 sample (Table 7), indicating that 583 

the majority of EAAs are found in peptides and not free AA form. In terms of NEAAs, total AA 584 

analysis revealed, by far, the highest abundance of Glu and Gly (14.2 and 11.2 g/100g). The high 585 

content of Glu was also seen in the hydrolysate peptides (11.9 g/100g soluble peptide on average), 586 

while the Gly content in the peptides was somewhat more moderate (5.31 g/100g soluble peptide 587 

on average), indicating that Gly is released to a high extent as free AA in the hydrolysates or found 588 

in insoluble peptides. By direct comparison, total AA analysis of Sep. 2017 sample appear to have 589 

a general enrichment of Gly and Ala while the peptides from hydrolysis are slightly enriched in 590 
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Pro, Asp, and Tyr. Moreover, Cys (in the disulfide form (C-C)) was not detected in the cod frame 591 

total AA analysis and only found in very low amount in the hydrolysate (0.11 g/100g soluble 592 

peptide on average). Hyp was not included in the proteomics analysis of hydrolysates, while Asn 593 

was not included in the AA analysis of the cod frame.     594 

In this study, the most abundant EAA in hydrolysate peptides was Leu (11.7 g/100g soluble peptide 595 

on average), while the EAA with lowest abundance was His (1.14 g/100g soluble peptides on 596 

average). This corresponds well with the findings of Tan et al. (2018) who studied the nutritional 597 

properties of enzymatic hydrolysates of cod bone proteins. According to these authors, the most 598 

abundant AAs were as Glu, Gly, Lys, Arg, Ala, Thr and Leu, which is largely in agreement with 599 

the cod frame AA profile.  In our study, in case of NEAAs, highest abundance was observed for 600 

Glu with 11.9 g/100 g, followed by Asp and Pro. According to Cao et al. (2008), Lys and Arg are 601 

connected with the healthy function of FPH and in our study, these AAs were found in highest 602 

abundances  (4.27 to 7.85 g/100g soluble peptide) in Neut-driven FPH, which is good indication 603 

of health benefits of prepared FPH from cod frame using Neut hydrolysis. 604 

Sabeena Farvin et al. (2016) stated that the predominant amino acids in industrially prepared cod 605 

hydrolysate were Glu (14.5%), Gly (13.4%), Lys (8.4%) and Ala (7.7%) of the total amino acids 606 

content. However, as it was mentioned earlier, the AA profile in our study is not directly 607 

comparable with others as we here only determine the AA composition in FPH peptides.   608 

 609 

Calcium and phosphorus content 610 

Calcium and phosphorus contents in either bone powders from MCF and HCM treatments or its 611 

residual in FPH powder are presented in Table 8. On top of that, the amount of protein content in 612 

dried bone powder of cod frame was measured to be in the range of 30-43% (data not shown). In 613 
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case of phosphorus and calcium content, bone-Neut&Alc sample on MCF resulted in significantly 614 

higher concentrations (330 and 583 g/kg of phosphorus and calcium, respectively), compared to 615 

those from the other treatments (p<0.05). Statistically, no significant difference was observed 616 

between control sample (bone-boiling) with those obtained by individual application of Neut and 617 

Alc on MCF (P>0.05). This result is an indication of the efficiency of sequential application of 618 

Neut&Alc on recovery of minerals from leftover bone fractions after enzymatic hydrolysis, while 619 

containing substantial amount of protein too. Interestingly, there was no significant difference in 620 

phosphorus content of FPH powders (P>0.05). On the contrary, the calcium content of FPH 621 

powder from HCM was significantly higher than that from MCF treatments, indicating loss of a 622 

minor part of calcium (around 0.1%) in obtained bone powder after boiling of fish frame compared 623 

with bone powder obtained after enzymatic treatment. Thus, application of enzymatic hydrolysis 624 

on cod frame before separating meat and bone fraction can results in significantly higher value of 625 

calcium and phosphorus in obtained bone powder (P<0.05), while its protein content was lower 626 

compared to dried bone powder obtained by drying at 50 °C from the frame without enzymatic 627 

hydrolysis. However, further experiments are needed to clarify the effect of type of treatments on 628 

the bioavailability of obtained minerals and protein. 629 

Fish bone consists of both organic and inorganic (mineral) parts. Kim and Jung (2006) reported 630 

the inorganic mineral portion as 69.5% on dry basis, which was mainly composed of 59.7% of 631 

calcium (Ca) and 35.8% of phosphorus (P) with the Ca/P mole ratio of 1.67. In the current study, 632 

the Ca/P mole ratio was between 1.6 to 1.7, which is close to the desired ratio for human bones, 633 

and in agreement with the results reported by other researchers (Kim et al., 2018; Logesh et al., 634 

2012; Nemati et al., 2017). According to Toppe et al. (2007), P and Ca content of cod bone are 635 

113 and 190 g/kg of lipid free dry matter, respectively. In another study, conducted by Malde et 636 
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al. (2010), these minerals were reported as 180 and 248 g/kg of boiled cod bone, which is in nearly 637 

comparable with P and Ca values recorded in our study as 170 and 297 g/kg of boiled cod bone, 638 

respectively. However, the mineral content of bone-Neut&Alc sample was as twice and triple as 639 

those reported by Malde et al. (2010) and Toppe et al. (2007), respectively. The findings of the 640 

present study indicated that cod frame is rich in calcium, phosphorus and protein, which can be 641 

considered as a potential source in fortification of food products for human consumption. 642 

  643 

Conclusions 644 

In this study, the proximate composition, phosphorous content, amino acid and fatty acid profiles 645 

of cod frame from five different catchment periods were evaluated. Apart from some amino acids, 646 

no profound variation was observed in proximate composition of cod frame among different 647 

catchment periods. Therefore, it can be considered as a steady and valuable side-stream source 648 

based on its high content of calcium, phosphorus, protein, and low fat content (dominantlyn-3 fatty 649 

acids, namely, EPA and DHA), as well as potentially bioactive peptides by enzymatic hydrolysis. 650 

Further studies are needed to evaluate the functional properties of the obtained peptides and the 651 

bioavailability of calcium and phosphorous of the resultant bone powder.  652 
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