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Abstract

In this paper, we present a novel method for utilising wearable devices with Convolutional Neural Networks (CNN) trained on acoustic and
accelerometer signals in smart manufacturing environments in order to provide real-time quality inspection during manual operations. We show
through our framework how recorded or streamed sound and accelerometer data gathered from a wrist-attached device can classify certain user
actions as successful or unsuccessful. The classification is designed with a Deep CNN model trained on Mel-frequency Cepstral Coefficients
(MFCC) from the acoustic input signals. The wearable device provides feedback on three different modalities: audio, visual and haptic; thus
ensuring the worker’s awareness at all time. We validate our findings through deployments of the complete Al-enabled device in production
facilities of Mercedes-Benz AG. From the conducted experiments it is concluded that the use of acoustic and accelerometer data is valuable to
train a classifier with the purpose of action examination during industrial assembly operations, and provides an intuitive interface for ensuring

continued and improved quality inspection.

© 2020 The Authors. Published by Elsevier Ltd.
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1. Introduction

Quality inspection is a very important process that deems a
product ready to be dispatched to the customer or not. This is
usually a post-production process that involves certain methods
to test the functionality and the performance of the manufac-
tured item ensuring it is functioning inside operating parame-
ters. There are however situations, when a certain item is com-
posed of multiple components assembled by manual assembly
processes. With the currently available methods, the item can
only be quality inspected at the end of the manufacturing pro-
cess. If, by any reason, the assembly turns out not to meet the
set quality standard, it needs to be disassembled, fixed and then
reassembled, generating therefore extra effort for the company.

* Corresponding author. Tel.: +45 50 1521 47;
E-mail address: s.i.matei96 @gmail.com (I.-M. Sarivan).
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Current markets demand higher grades of variety and qual-
ity across products, thus pushing manufacturing companies to
implement highly flexible production lines. The human worker
however is still an essential part of a highly flexible manufactur-
ing system and therefore, of product quality. To ensure the set
quality level when it comes to manual assembling operations,
two workers are normally required: one who performs the op-
eration and one that checks for the mechanical integrity of the
assembly. However, this is a time-consuming method especially
when the worker performs assembly operations while located in
difficult to access locations (like inside the car’s body).

The hereby paper investigates a novel method of performing
quality inspection on-spot, by making use of a wearable device
(Huawei Watch 2, Wear OS 2). Having the smart watch on the
wrist, the device is meant to assist the worker when performing
assembly tasks by gathering acceleration and audio data that
are processed using deep neural networks for classifying the ac-
tions as successful or unsuccessful. The classification result is
then provided to the worker through the display, the speaker and
the haptic feedback capabilities of the smartwatch. Depending
on the classification result, the worker can take immediate ad-
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justment actions or send the product further on the production
line. It is desired to obtain a system that generates zero false
positives and that prompts the worker to check the assembled
components if the action is classified as unsuccessful.

By adhering to Industry 4.0, the smartwatch system can be
integrated within a Manufacturing Execution System (MES),
if desired. The available input-output interfaces of the smart-
watch make it possible for the worker to easily receive and send
task-related data to a MES, without the need of abandoning the
task at hand in order to operate an external interface. Providing
this functionality to the worker is an effort of digitalizing man-
ual manufacturing processes with the purpose of monitoring the
status of the items on the production lines and assist the worker
when or where necessary. The presented system is also meant to
favour flexible manufacturing by involving human workers, but
achieve a constant quality level similar to robotised processes.

The hereby presented project is based on a patent filed in
October 2019 [7] and owned by Mercedes-Benz AG. The de-
velopment of the project took place at ARENA2036, Stuttgart.
Access to production lines was provided by Mercedes-Benz AG
for investigating the current manufacturing processes and nec-
essary data gathering for development and test of the solution.

2. Related work

By having in focus the ISO 9000 standard for quality man-
agement, two of the standard’s seven principles are made rel-
evant in the hereby paper: engagement of people and continu-
ous improvement. It is desired to digitalize manual processes
in the effort of improving flexibility by engaging human work-
ers on the production line and achieving a high and constant
level of quality across products. As A. De Carolis et al. [4] state
in the conclusion of their paper about a digitalization maturity
model, the investment in digital technologies starts at the level
of strategic processes. One solution for digitalizing the manual
processes can be by tracking the motion of the worker’s arms.
As B. Sugandi et al. [16] present in their paper a stereo camera
for tracking arms and hand gestures, the technology is mature
enough even to control an industrial robot just through hand
movements.

In inaccessible locations, processing sound signals is an al-
ternative to using a camera, when the part which is being
worked on is occluded. As shown by G. Fedorko et al. [5],
sounds can be tracked and mapped on a video feed in order
to detect irregularities on heavy industrial assemblies. This sys-
tem is designed to detect and accurately establish the source
of sounds or vibrations using a microphone array. The array is
backed up by a camera that provides visual output to the user.
The sound sources are displayed on the fed images in order for
the user to locate the sound or vibration sources.

In the extend of using acoustic signals for determining the
completion of an action, other signal sources can be investi-
gated. I. Suarez et al. [15] present a method for activity recog-
nition using only the accelerometer of a smartphone, starting
from the incentive that the best results for recognising an ac-
tivity is through sensor fusion, but it affects the battery life of

the device. Wearable devices are increasing in popularity, as B.
Cvetkovi¢ et al. [3] state in their paper about real-time moni-
toring with a wrist band and a smartphone. Smartwatches are
equipped with the necessary sensors to capture both accelera-
tion and acoustic signals. Using both signal sources and per-
forming sensor fusion with them, E. Garcia-Geja et al. [6] are
able to perform classification on seven daily activities like floor
sweeping, eating etc.

Once the data is gathered, in a quality related application
it is important to have a reliable method for classification. To
perform real time quality inspection on riveting, R. Mueller et
al. [10] are implementing artificial intelligence (AI) enabled by
neural networks to classify the scanned part as good or bad.
They further state that the Al classifier based on images reaches
an accuracy of 97%. Al proves to be reliable in healthcare appli-
cations too. J. Rubin et al. [13] use Deep Convolutional Neural
Networks (DCNNSs) to classify phonocardiograms as normal,
abnormal or uncertain. The acoustic signals gathered from the
heart are transformed into images using Mel Frequency Cep-
stral Coeflicients (MFCC) in order to make use of the latest
breakthroughs in Al for image analysis. MFCC is considered
the most successful method for sound processing when it comes
to speech recognition when confronted with variations such as
noise since their introduction in 1980 by Davis and Mermel-
stein [9]. The MFC coefficients extraction method is used by H.
Seddik et al. for speaker recognition using neural network clas-
sifiers [14]. K. J. Piczak [11] is providing details about DCNN
implementation and architecture in their paper about environ-
mental sound classification. They conclude the method to be
successful even with a low amount of data available for train-
ing.

Based on the presented related work, a system was designed
for classifying manual assembly actions, therefore digitalizing a
manual process. This was done with the purpose of raising the
worker’s confidence in their actions and providing them with
a reliable on-spot quality inspection tool. The paper presents
implementation details of this solution and is structured as fol-
lows: section 3 provides an insight into the wearable-enabled
quality inspection framework. Implementation details are given
regarding the WearOS app developed to gather acoustic and ac-
celeration data from a smartwatch while the worker performs
the task. Data preprocessing is made using MFCC and action
classification using DCNNSs. Section 5 focuses on the testing of
the system and other reliability related matters. Further on, sec-
tion 6 brings a discussion based on the presented results leading
to section 7 containing information about planned future work.

3. QCApp framework

To obtain a system that can be used by the worker without
any movement or workspace restrictions and provide on-spot
quality inspection, a Huawei Watch 2 was chosen for gathering
sound and acceleration data while the worker is performing cer-
tain actions. The smartwatch is connected to a Wi-Fi network
and communicates with a computer that runs Al classification
algorithms. The smartwatch sends the recorded data to the com-
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puter. After the computer finishes processing the data, it returns
the result to the smartwatch which provides either negative or
positive feedback to the worker, depending on the result. A vi-
sual representation of the system’s framework can be observed
in Figure 1.

Fig. 1. Framework structure: 1. The worker is performing the assembly action;
2. The smartwatch is gathering data while the action is performed; 3. Data is
sent to the computer for processing; 4. The connection between the smartwatch
and the computer is made through the local wireless network; 5. The received
data is classified using Al on the computer; 6. The classification result is sent
to the smartwatch and the feedback for the performed action is given to the
worker.

3.1. The assembly action

The action being subject to on-spot quality inspection per-
formed by the worker is marked with ’1” in Figure 1. The ac-
tions must be short in nature and generate specific audio and
vibration signals. For the project presented hereby, the action
for connecting wire plugs into sockets (Figure 2) was selected
for developing the system and test it on. The moment the worker
is connecting a plug, the generated sound (click!) is picked up
by the microphone. The movement of the hand and the reac-
tive force at the moment of connection is picked up by the ac-
celerometer of the smartwatch.

3.2. QCApp

A specially developed WearOS application runs on the
smartwatch (marked with ”2” in Figure 1), named QCApp.
QCApp is developed in Android Studio and provides a simple
graphical user interface for starting and stopping the quality in-
spection process. Its back-end handles the data recording, data
sending to the computer for processing, classification result and
feedback delivery to worker. The WearOS application can be
observed in Figure 3. Figure 4 contains a flow representation of

Fig. 2. Example of plugs that are connected to sockets by workers on the pro-
duction line. On the left side: image of the plug being disconnected. On the
right side: image of the plug being connected.

the quality inspection process that is performed by the worker
when using QCApp.

Fig. 3. Main view of QCApp running on a WearOS device. It contains a but-
ton for starting and stopping the on-spot quality inspection process: “Record”;
information about the connection with the computer: ”Client Disconnected”;
information about how many audio and acceleration are stored in the memory
of the watch: "Recordings stored: 0”.

The audio and acceleration data recorded while the worker is
performing the action are stored in a waveform audio file (.wav)
and in a comma separated values file (.csv), respectively. The
files are archived together after the worker finishes the task and
stops the recording (after step 3 in Figure 4). The archive is then
sent to the computer via Wi-Fi using the TCP/IP protocol. In the
same manner, the feedback is received by the worker through
the smartwatch as observed in steps 4a and 4b in Figure 4. The
visual feedback that can be received by the worker can also be
observed in Figure 4: green screen for positive feedback, red
screen for negative feedback. Depending on the feedback, the
worker either proceeds with the same action on the next item, or
repeats the action on the same item until the action is successful
and the received feedback is positive.

To ensure the functionality of QCApp, five threads are run-
ning in the back-end to ensure the TCP/IP communication with
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Fig. 4. Steps followed by the worker to perform on-spot quality inspection us-
ing QCApp running on the smartwatch. Step 1: The worker touches the screen
to start the audio and acceleration recording of their action. Step 2: The worker
performs the action to be quality checked. Step 3: The worker stops the record-
ing. Step 4a: Positive feedback is received by the worker via the smartwatch
display, speaker and haptically. Step 4b: If the action was not successful, nega-
tive feedback is received and the worker needs to repeat the action. Step 5: The
action is successfully completed, the item can be passed further on the produc-
tion line and the worker can proceed with the next item.

the computer, the audio signal recording, the archiving of the
audio and acceleration files, and the feedback delivered to the
worker. A thread based approach was chosen for developing the
back end of the app due to the blocking nature of the TCP/IP
sockets, audio recording and other processes that need to be
executed concurrently rather then sequentially. The threads are
sharing Boolean and string variables that allow inter-thread
communication. To avoid any resource sharing related prob-
lems, the threads are synchronised using locks.

The main thread running in QCApp is the thread that han-
dles the main activity of the app. The main activity manages
what the worker sees on the smartwatch screen together with
the input from the user or from the acceleration sensor. The
user input is the push action of the ZRECORD” button. While a
recording is active, the text of the button becomes ”STOP” (step
3 in Figure 4). When a recording is active, the main thread starts
to record data from the accelerometer while the audio thread
starts to record data from the microphone. Once the recording
is stopped, the data is saved in their respective files.

The main operations performed by the other three threads are
mainly related to files archiving, TCP/IP communication and
feedback for the worker. The creation of audio and acceleration
files (.wav and .csv) triggers the archiving process of these files.

Once the archive containing the audio and acceleration files is
sent to the computer, the archive is deleted. These operations
are executed in a loop that ends when QCApp is stopped.

The TCP/IP thread handles the connection with the com-
puter via Wi-Fi (marked with 4" in Figure 1). Once the thread
is started with the QCApp, it awaits incoming connection from
a computer. On the smartwatch side, a TCP/IP server is im-
plemented, while on the computer side there is a client. This
approach was chosen as it is more accessible to modify the IP
address of the smartwatch on the computer side if needed. If a
client computer is connected to the smartwatch and the archive
file is ready, the archive is transmitted to the computer. Before
sending the archive to the computer, the size of this archive is
sent. This is part of a file integrity process executed on the com-
puter side that ensures the audio and acceleration file have not
been altered during transmission. After the archive is received
by the computer, the TCP/IP thread awaits the feedback for the
action performed by the worker.

The feedback thread handles the delivery of the feedback to
the worker via the smartwatch display, speaker and haptic func-
tionality (marked with 76" in Figure 1). The main reason this
process is handled in a different thread is because of the block-
ing nature of the haptic feedback delivery, as a delay method is
necessary which otherwise would halt the rest of the app exe-
cution. If the feedback is positive, the display gains the colour
green as seen in step 4a in Figure 4, if negative, the display gains
the colour red as seen in step 4b in Figure 4. The neutral state
of the app is displayed to the worker as shown in Figure 3. The
positive visual feedback is strengthened by an approval sound
and a short haptic feedback, while the negative one has a disap-
proval sound and a long haptic feedback.

3.3. Audio and acceleration signals

The recorded audio and acceleration signals are the input
for the AI action classification system which runs on the com-
puter side of the framework, that can be observed in Figure 1.
Plots of the typical acceleration and audio signals recorded by
the QCApp and then sent to the computer, can be observed
in Figure 5. The accelerometer which the Huawei Watch 2 is
equipped with records data on three channels, each represent-
ing a movement axis of the smartwatch: x, y and z.

As it can be observed in the plot containing the acceleration
signals (marked with 3" in Figure 1), the “click” of the plug
is detected after about 100 milliseconds after the recording has
started. The time spot of the click detected by the acceleration
sensor matches the one in the plot for the audio recording. The
click” sound is obvious in the plot of the audio signal.

The second plot with acceleration signals in Figure 5, show-
cases a failed attempt to connect a plug into a socket. Just before
100 milliseconds have passed after the start of the recording, a
vibration is picked up as it can be seen in the plots. However,
the audio signal remains flat, indicating that the connection was
not successful.

Providing two signal sources rather than just one for classi-
fying a connection action, it increases the reliability of the sys-
tem significantly. It is important to mention that both the accel-
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Fig. 5. Plots of the acceleration and audio data gathered while attempting plug
connection actions. The top part represents plots of the acceleration and audio
signals while a successful plug connection is detected. The bottom part contains
plots made while recording an unsuccessful attempt to connect the plug into the
socket.

eration sensor and the microphone are subject to various noise
sources that can resemble the desired signal generated when a
successful connection is performed. Therefore, by the rule of
logical AND, the eventuality of a false positive generated by
various noises is eliminated. It is desired to have no false posi-
tives generated by the system, as the worker needs to have full
confidence on the positive result of the system once they pass
the item further on the production line. While false negatives
will only result in a double check of the system, a false positive
may endanger the quality and performance of the product being
output on the production line.

4. Deep learning model for classification
4.1. Data preprocessing - MFCC

Before performing the classification of the action, the com-
puter receives the archive containing the recordings of the ac-
celeration and audio data from the smartwatch. This is made
possible using a TCP/IP client implemented using the Java pro-
gramming language. The client connects to the server running

on the smartwatch and then it waits for the archive to be re-
ceived. After that, the recordings are dearchived and fed into the
classification program that runs the classification CNNs. Once
the action is classified as successful or unsuccessful, the result
is sent to the smartwatch and the feedback process begins as
displayed in steps 4a and 4b in Figure 4.

As stated in section 2, it is possible to repurpose CNNs so
they can fit the action classification for plug connections. It is
however necessary to transform the time domain signals gath-
ered by the microphone and accelerometer into a form that the
first convolutional layer of the CNN can interpret. This is done
by generating an image using the MFCC [9]. The MFCC gen-
erated images are used to train, validate and test models for the
data. As the approaches are similar in both the acceleration and
audio case, only the audio case will be presented in what fol-
lows.

A number of 200 audio and acceleration recordings were
gathered on the production lines at Mercedes-Benz AG while
the worker performs a successful connection and the same num-
ber while they perform an unsuccessful connection. These 200
recordings were used to train, validate and test the AI model for
classification.
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Fig. 6. Plots in time domain of audio signals recorded at 44.1 kHz sample rate
for training the AI model. On the left hand side, plot of the audio signal recorded
while performing a successful plug connection. On the right hand side, plot of
noisy audio signal. To be observed the difference in amplitude range between
the two samples.

The MFCC enhances the focus of high energy components
in the signal like the “click!” sound of a successful connection
which can be observed in the plot on the left hand side in Fig-
ure 6 after the 40.000 samples (approx one second) point. This
approach is necessary to generate features that can be fed into
the DCNN by discarding the low-energy components like noise.
By visually inspecting Figure 7 and Figure 8, it is enough to no-
tice the difference between recordings containing “click!” and
recordings not containing click!”. As observed in the figures, it
is intended to obtain a certain consistency in the features avail-
able in the images (in this case, it can be clearly noticeable on
the top of the image, where the contrast between high and low
energy components is visible across horizontal stripes).

4.2. Action classification - CNN

Having the time domain audio and acceleration signals un-
der a form from which features can be extracted by the convolu-
tional layer of the implemented CNN, it is possible to repurpose



378 L-M. Sarivan et al. / Procedia Manufacturing 51 (2020) 373—-380

=

Fig. 7. Images generated using the MFC coefficients of audio signal record-
ings while performing successful connections. It can be noticed the dark stripes
caused by the high amplitude signal generated by the click” sound during plug
connection in the top part of the image, which are consistent across successful
connection recordings.
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Fig. 8. Images generated using the MFC coefficients of audio signal recordings
while performing unsuccessful connections.

implementations already available for image classification us-
ing Keras [8]. The implementation hereby presented is based on
typical neural network architectures for binary classifications. It
is important that the MFCC generated images all have the same
size; 89x520. 200 samples were used for training the audio and
acceleration models each. 180 samples were used for training,
18 for validating and two for testing.

It is determined that after only ten training epochs the trained
CNN model is accurate enough to provide a reliable classifica-
tion of the MFCC data. As it can be observed in Figure 10, the
accuracy of the model over the training data is very good, with
the validation accuracy reaching over 90%.

There is a level of concern regarding the overfitting of the
model on the training data set. However, after the testing of
the model, it is deemed to be accurate enough to make reliable
classifications. The testing results can be observed in Figure 11.
For testing the model, the test samples are used together with
two random training samples (for successful and unsuccessful
actions). The classification in Figure 11 is correct.

As mentioned before, the Keras library is used to design the
CNN model used for performing classification on tasks. The
CNN is built as linear stack of layers, each layer feeding data
into the next one as it can be observed in Figure 9. The first layer
of the network is a convolutional layer. The input for this layer
is the 89x520x3 tensor representing the value for each pixel in
the MFCC image. The value 3 indicates the number of chan-
nels that gives the colour and brightness of the pixel (RGB).
The convolutional layers have filters that contain weights used
in element-wise multiplications with the pixel values of the in-
put image. The output of the element wise multiplications are
feature maps [2]. Every convolutional layer used in this appli-
cation has a filter of size of 3x3. As for the first convolutional

layer it is desired to keep the dimensions of the image, therefore
the padding is automatically adapted to ensure that the output
has the same dimensionality as the input.

The weights of the filter are randomly initialised and then
updated during the training session in order to detect specific
features in the image. As explained in subsection 4.1, by us-
ing the MFCC, it is intended to obtain images with accentuated
features that makes the determination of the weights as fast and
precise as possible. A remarkable feature in the MFCC images,
as observed in Figure 7 and in Figure 8 are the stripes in the
top-middle region of the images which appear to have an accen-
tuated contrast in comparison to the rest of the image. It is safe
to assume that as a result of convolution operations between the
filter and the receptive area of the image, the values obtained
while scanning the “’successful signal” are higher for the top
part of the image than the values obtained while scanning the
“unsuccessful signal” in the same region. The brightness across
the horizontal stripes in the images generated from “successful
signals”, have a consistent location and accentuated contrast on
the frequency band of the “click”, while the brightness is more
evenly distributed in the case of an “unsuccessful signal” with
no “click” or a failed “click”. This is likely the classification
criteria that the CNN learns during training.

The activation function used for convolution ensures the de-
sirable output by performing non-linear element-wise opera-
tions, turning any negative value into 0. The used activation
function is the rectified linear unit (ReLU). The reason for
ReLU being used as an activation function is speeding up train-
ing through the simple nature of the operation: 0 if the value is
negative, value is kept as it is if the value is positive. Thus easier
training process and better performance are obtained.

A max pooling layer is implemented for reducing the dimen-
sionality of the feature maps. This layer uses a window of de-
fined size (2x2 in this implementation) slided over the rectified
feature map taking the max value in each region. The reason
for using pooling is that once a feature is found in the feature
map, its location is not important so what is around it can be
discarded. As observed in figure Figure 9, the fourth layer from
left to right is a max pooling layer reducing the height and width
of the tensors by a factor of two. The stride factor for the layer
is set to 2, having as consequence the disregarding of the 89th
column in the input feature maps and removing the influence of
padding from the convolutional layers.

The convolutional part of the neural network contains four
groups, each containing two convolutional layers and one max
pooling layer for dimensionality reduction. The resulted tensor
from the convolution is passed to a flattenning layer that re-
shapes it into a tensor of 4069 single elements. This is the first
layer of the fully connected part of the neural network that con-
tains two more dense layers of size 256. The dropout technique
is applied to these two layers with a deactivation factor set to
0.5. This means that the weights of 50% of the neurons ran-
domly chosen in the layer are set to 0 each step, while training.
Dropout is implemented to prevent overfitting the model on the
training data by adding randomness to it. In other terms, this
technique is used to increase the robustness of the model. No
dropout is implemented in the convolutional part of the NN as
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epochs

97.16% click

s =

99.71% noise 99.54% noise

Fig. 11. Correct classification of the MFCC generated images using the Keras
trained CNN model

96.48% click

there is no need to penalise time in favour of accuracy when
performing training. As it will be presented in what follows,
the obtained accuracy is satisfactory. The overall architecture
and further design details can be observed in Figure 9.

During training, the objective of the model is to minimise the
value of the binary crossentropy loss function, as observed in

Figure 10, on the left side. This measures how far away the pre-
dicted result of the neural network is from the expected result.
The weights for the convolutional filters are iteratively updated
through backpropagation. After determining the weights of the
filters these are saved in a .json file and in a .hS file to be used
for classifying the incoming data from the smartwatch.

5. Experiments and results
5.1. User testing

Experiments and tests were conducted to verify the qual-
ity and performance of the proposed framework. The system
was tested in production environments where the environment
is susceptible to acoustic and vibration noise. The experiments
implied the following:

e The smartwatch running QCApp is tested by five differ-
ent workers

o Each worker attempts 50 successful connections attempts

e Each worker attempts 50 unsuccessful connection at-
tempts (however they expect fit)

e The data recording does not last for more than five sec-
onds for an operation

Given that a mandatory requirement is to have zero false pos-
itives (in case of a failed connection, the smartwatch should
not provide positive feedback to the worker under any circum-
stances), the success of the framework was measured to be 96%.

6. Discussion and conclusion

The presented framework demonstrates a novel approach for
on-spot real time quality inspection when performing certain
manual operations on production lines. It was shown that by
utilising the input methods available on a smartwatch, it is pos-
sible to gather relevant data that can be processed and fed into
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a CNN classification model, thus generating feedback to the
worker that can take action accordingly.

Though a result of 96% success regarding the classification
of operations is satisfactory for an initial proof-of-concept, fu-
ture work will improve and refine the technique in order to en-
sure full reliability on the system. A few proposed ways for
further development in this regard are:

e Improve the training data pre-processing by enveloping
and thresholding the signals in the success data set so
only the actual “click!” will remain in the training data
set

o Increase the number of training samples

e Increase the number of validation samples

e Add more relevant signal sources.

However, given a result of over 95% accuracy while test-
ing the model with test data as described in subsection 4.2, the
cause of having a 96% overall success may also be due to the
fact that the connection between the smartwatch and the com-
puter on which the Convolutional Neural Networks are running
is made through WLAN. Combined with the fact that the en-
vironment where the framework was tested contains a large
number of Wi-Fi networks [12], the problem can just as well
be generated by the corruption of audio and acceleration files
while transferred. The Wi-Fi performance can also affect the
real-time capability of the system adding a latency of 1-5 sec-
onds for receiving the feedback on the smartwatch. A solution
for this would be to have a full implementation on the smart-
watch for classifying the actions, while having only the training
process on a computer.

The framework presented in this paper makes use of a Keras
implementation for classifying the worker’s action as success-
ful or not, through Convolutional Neural Networks. Two other
implementations were conducted at the same time, one using
the PyTorch machine learning library and one using Wolfram
Mathematica. The discussion is raised therefore upon which
implementation is best in terms of classification reliability. An-
other aspect is, which implementation is better to be transferred
on the smartwatch in order to remove the need of performing
data transfers via Wi-Fi.

7. Future work

Given the big potential of the wearable quality inspection
system, future work and research is in place to extend the frame-
work’s capabilities in terms of reliability and user experience.
Plans are currently in place for investigating a new signal source
for increasing the reliability of the system. By using the BIOX
Armband, arm and hand motions can be tracked and therefore
predict what action the user is going to perform [1]. This is
highly relevant also because the smartwatch currently needs
user input for starting the recording of signals when the action
is going to be performed. By integrating the BIOX armband in
the system presented so far, the quality of the user experience
is also expected to increase.
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