Investigation of Switching Oscillations for Silicon Carbide MOSFETs in Three-Level Active Neutral-Point-Clamped Inverters

Chen, Mengxing; Pan, Donghua; Wang, Huai; Wang, Xiongfei; Blaabjerg, Frede

Published in:
IEEE Journal of Emerging and Selected Topics in Power Electronics

DOI (link to publication from Publisher):
10.1109/JESTPE.2020.3014742

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Investigation of Switching Oscillations for Silicon Carbide MOSFETs in Three-Level Active Neutral-Point-Clamped Inverters

Mengxing Chen, Student Member, IEEE, Donghua Pan, Member, IEEE, Huai Wang, Senior Member, IEEE, Xiongfei Wang, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—This paper investigates the multi-frequency switching oscillations of silicon carbide (SiC) MOSFETs in three-level active neutral-point-clamped (3L-ANPC) inverters under three typical commutation modes (i.e., the full mode, outer mode, and inner mode). Multiple switching-oscillation components with various frequencies are identified theoretically for both the full-mode and outer-mode commutations, due to their switching-loop diversities. Oppositely, the inner mode exhibits a single oscillation component as only one switching loop is involved. Three types of double-pulse tests (DPTs) are conducted on a 3L-ANPC inverter demonstrator with SiC MOSFETs, and the switching-oscillation components are extracted accordingly, which match well with the theoretical derivations. Moreover, other switching characteristics closely related, i.e., the oscillation peaks, current overshoots, capacitive charges, and switching energies, are studied and benchmarked according to the DPT results. It is concluded that the full-mode and outer-mode commutations share similarities in terms of switching oscillations, current overshoots, capacitive charges, and turn-on energies. The theoretical findings from this work provide a comprehensive knowledge of the multi-frequency oscillation mechanisms associated with fast-switched 3L-ANPC inverters. Accordingly, the critical parasitic-components are identified, and specific design considerations are proposed to achieve switching-performance improvements.

Index Terms—Active neutral-point-clamped (ANPC) inverter, double pulse test (DPT), multi-frequency switching oscillation, silicon carbide (SiC) MOSFET, switching loops.

I. INTRODUCTION

O

VER the past decade, the evolution of power electronic converter has been extensively driven by semiconductor devices manufactured by wide bandgap (WBG) materials [1]–[3], i.e., the gallium nitride (GaN) and silicon carbide (SiC) [4]. One of the most popular WBG devices is the SiC MOSFET, as it nicely fits into the need of 1.2–3.3 kV blocking voltage in numerous applications, e.g., grid-connected inverters [5], uninterruptible power supplies [6], [7], railway traction converters [8], and electric vehicles [9], [10].

As a WBG device, the SiC MOSFET features several superiorities in comparison with the silicon (Si) IGBT, e.g., high-temperature operation capability [4], enhanced electric field [11], and compact die area. More importantly, the faster switching speed, as well as the strengthened dv/dt and di/dt capabilities, are achievable by using the SiC MOSFET [3]. However, the increasing switching speed poses new challenges from the following perspectives: a) the robustness margin shall be ensured in terms of the overvoltage and gate-oxide failures [12]; b) the electro-magnetic interference (EMI) filters should be properly sized and optimized to cope with more switching noises [7], [13]; c) the circuit layout becomes more critical in order to fully utilize the switching capabilities of SiC MOSFETs. Hence, the switching characterization becomes essential for the performance evolution and design iteration of the SiC MOSFET based power electronic converters.

The switching behaviors of SiC MOSFETs in discrete-devices and half-bridge circuits have been intensively discussed in prior-art [14]–[22]. The experimental methodologies for switching characterization of SiC MOSFET were introduced in [14], [15]. The switching performance of a discrete SiC MOSFET was evaluated in [16], and these SiC switching characteristics in half-bridge circuits were assessed in [17]–[19]. Furthermore, theoretical models have been developed for the switching-behavior predictions [20]–[22]. A loss model of SiC MOSFET was proposed in [20] for high-frequency applications. The switching oscillation of SiC MOSFET was modeled and analyzed in [21], [22]. Nevertheless, the above-mentioned studies focus on discrete-devices or half-bridge circuits, and their conclusions may not be directly applicable to three-level (3L) converters. The line-frequency devices in 3L converters can introduce extra switching loops, which may affect switching behaviors such as commutation losses, device stresses, and switching oscillations.

In recent years, the three-level active neutral-point-clamped (3L-ANPC) inverter has become an active and important research topic, as it can actively re-shape the loss and thermal distributions among power semiconductors by manipulating ANPC commutation modes [23]–[27]. Three typical commutation modes (i.e., the full mode, outer mode, and inner mode) for the 3L-ANPC inverter were first introduced in [24]. The conventional switching loops and switching behaviors associated with the three commutation modes were studied in [26], [27], which were based on a Si-IGBT switched 3L-ANPC inverter. Recently, the applications of SiC MOSFETs in 3L-ANPC inverters have been reported in literatures with performance improvements [28]–[34].
regarding the switching behavior of SiC MOSFETs were explored in [35]–[39]. Specifically, the extra junction capacitance and the secondary switching loop introduced by line-frequency devices in 3L-ANPC inverters were identified in [36] under both the outer and inner commutations. Due to the multiple switching loops and high dv/dt and di/dt, the commutation of SiC MOSFET in 3L-ANPC inverter introduces multiple switching-oscillation components, which engender voltage overshoots during switching transitions. Additionally, these oscillation components with different frequencies can significantly deteriorate the EMI performance.

In literature [37], the multi-switching loop induced over-voltage issues on line-frequency switches (under both the outer and inner commutations) were introduced. Furthermore, an analytical model for these multi-switching loop induced voltage overshoots in 3L-ANPC inverters was established in [38], which focuses on the outer-mode commutation. To reduce these risky voltage overshoots, a layout-optimized busbar design and a control method were proposed in [39] and [40], respectively. However, the aforementioned studies did not provide knowledge regarding the multi-frequency switching oscillations associated with the 3L-ANPC inverter. References [36]–[40] concentrate on the over-voltage amplitudes of switches and their mitigation methods, while the investigation of switching oscillations from a frequency perspective is still missing. Moreover, as the distributions of these oscillation frequencies are intensively dependent on the commutation modes, a comprehensive understanding of the multi-frequency mechanisms is highly demanded for a reliable and low-EMI operation of the 3L-ANPC inverter with SiC MOSFETs.

The key contribution of this paper focuses on studying the multi-frequency switching oscillations of SiC MOSFETs under the three representative ANPC commutation modes. A SiC MOSFET module and a 3L-ANPC inverter phase-leg are introduced in Section II. A simplified parasitic model of the 3L-ANPC phase-leg is developed based on finite-element method (FEM) simulations. Then, the three 3L-ANPC commutation modes and their equivalent switching circuits are discussed in Section III, and multiple switching-oscillation components are identified accordingly. Specific double pulse test (DPT) configurations are discussed in Section IV, and the DPT waveforms under the three commutation modes are presented. Then, the switching-oscillation components extracted from DPT waveforms, i.e., the experimental frequency-spectrum, are discussed in Section V, and the theoretical derivations of switching oscillations are validated under each 3L-ANPC commutation mode. Other switching characteristics closely related, i.e., oscillation peaks, current overshoots, capacitive charges, and switching energies, are studied and benchmarked in Section VI. Additionally, specific design considerations are proposed to achieve performance improvements. Finally, conclusions are drawn in Section VII.

II. Parasitic Model of 3L-ANPC Phase-Leg with SiC MOSFET Modules

A. SiC MOSFET Module

Contemporarily, the SiC MOSFET modules are under intensive development; however, the commercial SiC-based 3L-ANPC module is rarely available in the market. The half-bridge SiC module APTMC120AM55CT1AG from Microsemi is adopted as the building block of the 3L-ANPC phase-leg. The device is rated at 1200 V and 42 A [41]. As demonstrated in Fig. 1(a), the half-bridge module contains two pairs of SiC MOSFET die with the reverse SiC Schottky barrier diode (SBD) die, which are symbolized as the upper and lower MOS/SBDs in Fig. 1(b), respectively.

In order to interconnect the dies with the power terminals, bond wires and copper planes are applied in the SiC MOSFET module, which inevitably introduces parasitic inductances and alters the switching characteristics to some extent. FEM simulations (ANSYS/Q3D) are performed to extract the parasitic inductances of the half-bridge module. As illustrated in Fig. 1(b), $L_{\sigma g,x}$ and $L_{\sigma ac}$ stand for the parasitic inductor located at the gate and ac terminals, respectively. The parasitic inductors introduced by drain and source connections are simplified as a single component $L_{\sigma d,x}$ ($x = u$ or d). The inductance values with their series resistances measured at 1 MHz are summarized in Table I. Various inductance values are identified, and they are dependent on geometries of the conductors.

<table>
<thead>
<tr>
<th>Category</th>
<th>Symbol</th>
<th>Inductance (nH)</th>
<th>Resistance (mΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC terminal</td>
<td>$L_{\sigma ac}$</td>
<td>6.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Upper device</td>
<td>$L_{\sigma u}$</td>
<td>9.4</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>$L_{\sigma d}$</td>
<td>10.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Lower device</td>
<td>$L_{\sigma d}$</td>
<td>12.0</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>$L_{\sigma d}$</td>
<td>12.9</td>
<td>3.8</td>
</tr>
<tr>
<td>PCB trace</td>
<td>$L_{\sigma clp}$</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Busbar</td>
<td>$L_{\sigma bus}$</td>
<td>3.6</td>
<td>—</td>
</tr>
</tbody>
</table>

B. 3L-ANPC Phase-Leg

As shown in Figs. 2(a) and 2(b), the ANPC phase-leg is assembled by three aforementioned half-bridge modules, which are denoted as the upper module, clamp module, and lower module, respectively. Doing so, the ANPC phase-leg is capable
of bearing a dc-bus voltage of 1500 V. A four-layer printed circuit board (PCB) is designed to interconnect the three half-bridge modules. It also introduces unavoidable routing inductances to the switching loop, although special efforts have been taken to minimize the loop areas.

The variables of L_{al} and L_{inv} represent the PCB routing inductances of the neutral-tap connection and ac output connection, respectively. These PCB induced parameters are also obtained by FEM simulations, which are illustrated in Table I. It is noted that the neutral-tap inductance L_{al} (5.2 nH) is comparable with the ones caused by the module packaging, while the inductance L_{inv} (34.1 nH) is relatively higher due to its unique geometry.

C. PCB Busbar and Hybrid Capacitor Bank

The dc rails of the 3L-ANPC phase-leg, i.e., BUS+, BUS0, and BUS−, are connected to the top layer, the dual-mid layers, and the bottom layer of the four-layer PCB busbar, respectively. Moreover, a 1500-V hybrid capacitor bank with both aluminum electrolytic capacitors (Al-Caps) and metalized polypropylene film capacitors (MPPF-Caps) is implemented [42].

It is noted that the capacitor’s equivalent-series-inductance (ESL) and busbar routing inductance should also be counted into the switching loop. In order to minimize the routing inductance, the PCB layer stack is designed to have the maximum overlap, and the technique of magnetic-field cancellation is utilized for the capacitor-bank layout [43]. Furthermore, external snubber capacitors with superior high-frequency performance are embedded. Overall, the capacitor-bank ESL joint with the routing inductance is estimated to be 3.6 nH, which is simplified as the single busbar inductance L_{bus}.

III. INVESTIGATIONS OF SWITCHING OSCILLATIONS OF THE 3L-ANPC PHASE-LEG

In this section, the switching oscillations of the 3L-ANPC phase-leg under the full-mode, outer-mode, and inner-mode commutations are investigated. The 3L-ANPC switching states will be introduced first, as listed in Table II [24].

During the “−” state, both switches T_3 and T_4 are turned on to conduct the load current to the negative bus rail. Meanwhile, the switch T_5 is turned on to equalize the voltage stress between switches T_1 and T_2. Analogously, during the “+” state T_1 and T_2 conduct the load current to the positive bus rail, and switch T_6 is utilized to equalize the voltage stress between T_3 and T_4. Besides, by turning on T_3 and T_6, the load current is conducted through the lower neutral path in both directions; meanwhile, T_1 can be in either OFF or ON state, resulting in two switching states “0L2” and “0L1”, respectively. Similarly, the load current is conducted through the upper path of the neutral path if both T_2 and T_5 are turned on, and T_4 can be in either OFF or ON state, which determines the two switching states “0U2” and “0U1”, respectively. In order to diminish the conduction loss, the load current can also conduct through both the upper and lower paths of the neutral tap by turning on T_2, T_3, T_5, and T_6 simultaneously. This pattern is noted as the full-clamping state “0F”.

Therefore, multiple possibilities of commutations could happen between one of the active states (“−” and “+”) and one of the clamping states (“0L2”, “0L1”, “0U1”, “0U2”, and “0F”), which leads to seven different 3L-ANPC commutation modes. Without losing its generality, the switching-oscillation mechanisms of three representative commutation modes, i.e., the full mode, outer mode, and inner mode, will be illustrated in the following sub-sections.

A. Full-Mode Commutation (“− ↔ 0F” and “+ ↔ 0F”)

The full-mode commutation was first indicated in [24], and further studied in [27], [28]. Transitions “− ↔ 0F” and

<table>
<thead>
<tr>
<th>States</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0L2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0L1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0F</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0U1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0U2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig. 3. Full-mode commutation of the 3L-ANPC phase-leg. (a) Gating signals. (b) Circuit diagrams during transitions “0F → –” and “– → 0F”.

“+ ↔ 0F” are achieved during the negative and positive cycles, respectively. Both the upper and lower paths of the neutral tap conduct during the clamping state “0F”, which is accomplished by turning on switches T2, T3, T5, and T6 simultaneously. The gaiting signals and circuit diagrams of the full-mode commutation are depicted in Figs. 3(a) and 3(b) respectively. For simplification, only the operating principle during the negative cycle is elaborated. As demonstrated in Fig. 3(a), the outer switch T4 is switched to be sinusoidal during the negative cycle. Meantime, T2 and T6 share identical switching signals, which operate complementarily with T4. The load current commutes between the active phase arm and both the upper and lower neutral paths. As a result, the full-mode commutation involves dual switching loops, as they are indicated as the main loop I and main loop II in Fig. 3(b).

The equivalent switching circuits for transitions “0F → –” and “– → 0F” are illustrated in Figs. 4(a) and 4(b), respectively. L_{lp1} and R_{lp1} denote the inductance and resistance of the switching loop x. Additionally, L_{cm} and R_{cm} are the common inductance and resistance shared by the main loops I and II, and R_{on} denotes the on-state resistance of the SiC MOSFET. These parameters are listed in Table III, which are obtained according to the parasitic model studied in Section II. It is noted that the loop inductance and resistance of loop II (i.e., L_{lp2} and R_{lp2}) are significantly larger than those of the loop I (i.e., L_{lp1} and R_{lp1}) owing to the difference in loop length.

During the turn-on transient of T4 (i.e., the transition “0F → –”), the output capacitors of T6 and T2 are charged through loops I and II, respectively, as it is illustrated in Fig. 4(a). Therefore, the capacitive current flowing through T4 contains both these through $C_{oss,T6}$ and $C_{oss,T2}$. Moreover, a dual-frequency oscillation shall be incurred due to the multiple switching loops. The impedance curve of the equivalent switching circuit during the transition “0F → –” is exhibited in Fig. 5(a). Two oscillation frequencies of 29.4 MHz and 49.4 MHz can be identified, which are dominated by loop II and loop I, respectively. Theoretically, the two oscillation frequencies of $f_{oscl,osc2}$ can be obtained by letting the imaginary part of the total impedance to be zero:

$$f_{oscl,osc2} = \frac{1}{2\pi} \cdot \sqrt{\frac{L_{lp1} + L_{lp2} + 2L_{cm} \pm \sqrt{(L_{lp1} - L_{lp2})^2 + (2L_{cm})^2}}{2C_{oss}\cdot (L_{lp1}L_{lp2} + L_{lp1}L_{cm} + L_{lp2}L_{cm})}}$$

(1)

where C_{oss} denotes the device output capacitance with drain-source voltage being 500 V, which equals to 270 pF in this work.

During the turn-off transient of T4 (i.e., the transition “– → 0F”), the output capacitors of T4 (i.e., $C_{oss,T4}$), the output capacitance of T4 (i.e., $C_{oss,T4}$) is charged by one part of the load current, while both $C_{oss,T2}$ and $C_{oss,T6}$ are discharged through the other part of load current, simultaneously. After the drain-source voltage of T4 reaches Vbus/2 and the phase current is fully transferred to T2 and T6, the switching oscillation is initiated through the parallel path formed by loops I and II, as it is illustrated in Fig. 4(b). The single oscillation frequency of 47.9 MHz can be identified from Fig. 5(b). The oscillation frequency of $f_{oscl,osc2}$ can also

Table III

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Inductance (nH)</th>
<th>Resistance (mΩ)</th>
<th>Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{lp1}, R_{lp1}</td>
<td>24.1</td>
<td>5.8</td>
<td>~</td>
</tr>
<tr>
<td>L_{lp2}, R_{lp2}</td>
<td>78.2</td>
<td>18.8</td>
<td>~</td>
</tr>
<tr>
<td>L_{lp3}, R_{lp3}</td>
<td>40.8</td>
<td>10.4</td>
<td>~</td>
</tr>
<tr>
<td>L_{cm}, R_{cm}</td>
<td>22.5</td>
<td>4.8</td>
<td>~</td>
</tr>
<tr>
<td>R_{on}</td>
<td>~</td>
<td>49</td>
<td>~</td>
</tr>
<tr>
<td>$C_{oss,Tx} (x = 1–6)$</td>
<td>~</td>
<td>~</td>
<td>270 @ 500 V</td>
</tr>
</tbody>
</table>

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2020.3014742, IEEE Journal of Emerging and Selected Topics in Power Electronics
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2020.3014742, IEEE Journal of Emerging and Selected Topics in Power Electronics

B. Outer-Mode Commutation (“− ↔ 0L2” and “+ ↔ 0U2”)

The outer-mode commutation consists of transitions “− ↔ 0L2” and “+ ↔ 0U2” during the negative ($V_{an} < 0$) and positive cycles ($V_{an} > 0$), respectively. The gating signals and circuit diagrams are illustrated in Figs. 6(a) and 6(b), respectively. During the negative cycle, the outer switch T_4 is modulated to be sinusoidal, while the clamping switch T_6 operates complementarily. Simultaneously, the clamping device T_5 switches identically with T_4 to equalize the voltage stresses between the non-active switches T_1 and T_2. Turning T_5 off during the “−” state also serves to ensure that the phase current will not commutate through the non-neighboring neutral path, i.e., the upper neutral-path enclosing T_5. Therefore, the load current only commutates between the active phase-arm and its neighboring neutral path, and the main loop I is identified as the major switching loop, which is depicted as the red dashed line in Fig. 6(b). Moreover, the outer mode exhibits two capacitive loops, i.e., the capacitive (capaci.) loop II (or II’) and capaci. loop III in Fig. 6(b). Although these capacitive loops do not carry load current, they can also create additional switching-oscillation components.

This can be explained from the equivalent switching circuit of “0L2 → −” (the turn-on transient of T_4) as it is demonstrated in Fig. 7(a). L_{ip3} and R_{ip3} are the parasitic inductance and resistance of the capacitive loop III. The equivalent switching circuit of “0L2 → −” resembles that of the full-mode commutation “0F → −”. The output capacitors of T_6 and T_2, i.e., $C_{oss,T6}$ and $C_{oss,T2}$, are charged through the main loop I and capaci. loop II simultaneously, although T_2 carries no load current during the outer-mode commutation. The output capacitor of T_1 (i.e., $C_{oss,T1}$) will be charged till $V_{ds,T1} = V_{bus}/2$ when T_3 is switched on, which creates the capacitive loop III. Nevertheless, the existence of loop III will not affect the switching characteristics of other devices, since loop III is self-closed, and the potential of node AU [see Fig. 7(a)] remains constant as $V_{bus}/2$ once T_3 is turned on. As it is given in Fig. 8(a), the impedance feature of the switching circuit during “0L2 → −” is identical to that during “0F → −”, and the two oscillation frequencies of $f_{osc1}^{0L2} = 29.4$ MHz and $f_{osc2}^{0L2} = 49.4$ MHz can be obtained by:

$$f_{osc1,osc2}^{0L2} = f_{osc1,osc2}^{0F} = \frac{1}{2\pi} \cdot \frac{\sqrt{L_{ip1} + L_{ip2} + 2L_{cm} + (L_{ip1} - L_{ip2})^2 + (2L_{cm})^2}}{2C_{oss} \cdot (L_{ip1}L_{ip2} + L_{ip1}L_{cm} + L_{ip2}L_{cm})}$$

(4)

The equivalent switching circuit of transition “− → 0L2” (the turn-off transient of T_4) is demonstrated in Fig. 7(b). As $C_{oss,T3}$ is charged by the load current and starts to block the dc voltage of $V_{bus}/2$, the potential of node AU becomes higher than $V_{bus}/2$ (equals to $V_{bus}/2 + V_{ds,T2}$ in respect to BUS−). This is followed by a capacitive discharge of $C_{oss,T2}$ and $C_{oss,T3}$ through capacitive loops II’ and III respectively, which will be terminated until the steady state “0L2” is reached with:

$$V_{ds,T2}^{0L2} = V_{ds,T5}^{0L2} = V_{bus}/2 - V_{ds,T1}^{0L2}.$$

(5)
It is noted that the output capacitance values of T1, T2, and T5 during the state “0L2” can be greater than $C_{oss} = 270 \, \text{pF}$, as their drain-source voltages (i.e., $V_{ds,T1}$, $V_{ds,T2}$, and $V_{ds,T5}$) are lower than $V_{bus}/2$.

A full derivation of the circuit impedance for “$– \rightarrow 0L2$” is given in (6), where the inductance of loop III is also considered. However, letting the analytical part of $Z_{detail}^{– \rightarrow 0L2}$ to be zero will engender a high-order equation (greater than second order), which makes the analytical solution unsolvable. Therefore, a simplification is made by omitting L_{lp3} and R_{lp3}, so that $C_{oss,T1}$ can be assumed to be in parallel with $C_{oss,T5}$. The circuit impedance after the simplification can be re-written as (7). Then, the dual oscillation frequencies can be derived as (8), where

$$k_c = \frac{C_{oss,T1} + C_{oss,T5}}{C_{oss,T1} + C_{oss,T2} + C_{oss,T5}}$$

$$L_{mix} = \sqrt{L_{lp1}L_{lp2} + L_{lp1}L_{cm} + L_{lp2}L_{cm}}$$

$C_{oss,T4} = C_{oss}$.

In (8)-(10), the output capacitances of T1, T2, and T5 are separately modeled, as they can be dependent on the C_{oss}-V_{ds} characteristics, charging currents, and timing during the “$– \rightarrow 0L2$” transient. This C_{oss} difference among T1, T2, and T5 can slightly shift the oscillation frequencies to lower levels. Nevertheless, deriving the accurate V_{ds} and C_{oss} distributions among T1, T2, and T5 requires further deep and sensitive studies. To simplify, an approximation can be made by assuming $C_{oss,T1} = C_{oss,T2} = C_{oss,T5} = C_{oss}$. Thereafter, the impedance comparison between $Z_{detail}^{– \rightarrow 0L2}$ (full derivation) and $Z_{simp}^{– \rightarrow 0L2}$ (simplified derivation) is exhibited in Fig. 8(b), where $Z_{detail}^{– \rightarrow 0L2}$ and $Z_{simp}^{– \rightarrow 0L2}$ are represented by the dotted and solid curves, respectively. It can be concluded that the simplified derivation is able to characterize the dual oscillation components at 33.6 and 50.9 MHz with satisfactory accuracy, which can also be calculated from (8)-(11). Although the oscillation component at 97.5 MHz is omitted by the simplification (see the impedance curves of $Z_{detail}^{– \rightarrow 0L2}$ and $Z_{simp}^{– \rightarrow 0L2}$), its resonance energy can be significantly attenuated by the loop resistance at this high-frequency range.

C. Inner-Mode Commutation (“$– \leftrightarrow 0U1$” and “$+ \leftrightarrow 0L1$”)

The inner mode involves transitions of “$– \leftrightarrow 0U1$” and “$+ \leftrightarrow 0L1$” during the negative and positive cycles, respectively. The gating signals and circuit diagrams of inner-mode operation are depicted in Figs. 9(a) and 9(b), respectively. The inner mode only operates the switches T_2 and T_5 to be sinusoidal, while other devices conduct per half line-cycle. Then the load current only commutates between the active phase-arm and its non-neighboring neutral path. It can be concluded that only a single switching loop, i.e., the main loop II, is involved during the inner-mode commutation, and no capacitive loop exists as potentials of non-active devices are naturally clamped to dc-bus rails (either P, O, or N).

The equivalent switching circuits for transitions “0U1 $– \rightarrow$” (the turn-on transient of T_3) and “$– \rightarrow 0U1$” (the turn-off transient of T_3) are depicted in Figs. 10(a) and 10(b), respectively, which are identical except for the junction output capacitor involved (either $C_{oss,T2}$ or $C_{oss,T3}$). An impedance analysis of the inner-mode switching circuit for both transitions “0U1 $– \rightarrow$” and “$– \rightarrow 0U1$” is depicted in Fig. 11. A single oscillation frequency of $f_{osc,0U1}$ is 30.5 MHz, which can be obtained by:

$$f_{osc,0U1} = \frac{1}{2\pi \sqrt{L_{tot}^{– \rightarrow 0U1} \cdot C_{oss}}}$$

$$L_{tot}^{– \rightarrow 0U1} = L_{lp2} + L_{cm}$$

where $L_{tot}^{– \rightarrow 0U1}$ is the total loop inductance of both inner-mode transitions “0U1 $– \rightarrow$” and “$– \rightarrow 0U1$”.

It is noted the inner mode features a single loop-inductance with a significant value, since its switching loop (i.e., the loop II) contains four switches and it is significantly longer than these of the full mode and outer mode. Moreover, the capacitive charge of inner mode can be notably relieved compared to other commutation modes, as only a single junction output capacitance is involved.

D. Summary

The switching loops and their associated oscillation frequencies under the three commutation modes are summarized in

$$Z_{detail}^{– \rightarrow 0L2} = \frac{1}{J\omega L_{cm} + R_{cm} + \frac{1}{j\omega C_{oss,T4}}}$$

$$Z_{simp}^{– \rightarrow 0L2} = \frac{1}{J\omega L_{cm} + R_{cm} + \frac{1}{j\omega C_{oss,T4}}}$$

$$f_{osc,0U1,osc2} = \frac{1}{2\pi} \sqrt{\frac{L_{lp1} + L_{cm}}{C_{oss,T4}} + \frac{k_c(L_{lp1} + L_{lp2})}{C_{oss,T4}} \pm \sqrt{\left(\frac{L_{lp1} + L_{cm}}{C_{oss,T4}} + \frac{k_c(L_{lp1} + L_{lp2})}{C_{oss,T4}}\right)^2 + \frac{2k_c(L_{lp1} + L_{lp2})}{C_{oss,T4}} L_{mix}^2}}$$
ANPC inverter, the standard DPTs are performed under the switching characteristics of the SiC MOSFETs in the 3L-ANPC inverter, the standard DPTs are performed under the switching characteristics of the SiC MOSFETs in the 3L-AnPC inverter, the standard DPTs are performed under the switching characteristics of the SiC MOSFETs in the 3L-AnPC inverter.

The full-mode commutation (i.e., the turn-off transient of T_3 and T_4) exhibits a single switching-oscillation at 47.9 MHz as loops I and II are regarded to be combined in parallel. Nevertheless, the transition “– \rightarrow 0L2” of the outer-mode commutation is more complicated as it involves main loop I and capacitive loops II’ and III. Three oscillation frequencies of 34.3 MHz, 51.8 MHz, and 97.5 MHz can be obtained based on the full derivation from (6). On the other hand, the inner mode features the most straightforward switching characteristic, as a single switching loop is concerned for both transients “0U1 \rightarrow -” and “- \rightarrow 0U1”. A single oscillation component at 30.5 MHz is calculated accordingly.

IV. EXPERIMENTAL ASSESSMENTS OF SWITCHING CHARACTERISTICS FOR SiC MOSFETs IN 3L-ANPC INVERTERS

In order to evaluate the switching oscillations and other switching characteristics of the SiC MOSFETs in the 3L-AnPC inverter, the standard DPTs are performed under the full-mode, outer-mode, and inner-mode commutations. In this section, the DPT setup is illustrated first, and the switching
TABLE IV

<table>
<thead>
<tr>
<th>Modes</th>
<th>Loops involved</th>
<th>Symbols</th>
<th>Oscillation frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Main I, II</td>
<td>$f_{osc1}=f_{osc2}$</td>
<td>29.4, 49.4 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{osc0}</td>
<td>47.9 MHz</td>
</tr>
<tr>
<td>Outer</td>
<td>Main I and</td>
<td>$f_{osc1}=f_{osc2}$</td>
<td>29.4, 49.4 MHz</td>
</tr>
<tr>
<td></td>
<td>capaci. II, III</td>
<td>$f_{osc1}=f_{osc2}$</td>
<td>34.3, 51.8, 97.5 MHz</td>
</tr>
<tr>
<td>Inner</td>
<td>Main II</td>
<td>f_{osc0}</td>
<td>30.5 MHz</td>
</tr>
</tbody>
</table>

Fig. 12. Top view of a 1500-V SiC-based 3L-ANPC inverter demonstrator.

TABLE V

<table>
<thead>
<tr>
<th>Category</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC source</td>
<td>Elektro-Automatik</td>
<td>PSI-800-3U-HS-PV</td>
</tr>
<tr>
<td>Load inductor</td>
<td>—</td>
<td>190 µH</td>
</tr>
<tr>
<td>Controller</td>
<td>Texas Instrument</td>
<td>TMS320F28379D</td>
</tr>
<tr>
<td>Gate driver</td>
<td>CREE/Wolfspeed</td>
<td>CGD15HB62P1</td>
</tr>
<tr>
<td>SiC module</td>
<td>Microsemi</td>
<td>APTMC120AM55CT1AG</td>
</tr>
<tr>
<td>Passive probe</td>
<td>Lecroy</td>
<td>PP019 and PPE-2KV</td>
</tr>
<tr>
<td>Differential probe</td>
<td>Tektronix</td>
<td>P5200A</td>
</tr>
<tr>
<td>Current transducer</td>
<td>PEM</td>
<td>CWTUM/60/R</td>
</tr>
</tbody>
</table>

waveforms of the three commutation modes are then exhibited.

A. DPT Setup

A 3L-ANPC inverter demonstrator is implemented as shown in Fig. 12 by adopting the structural design illustrated in Section II, which is tested as the DPT setup. A hybrid capacitor bank utilizing both Al-Caps and MPPF-Caps is also implemented. A four-layer laminated PCB integrates both the dc bus and the aforementioned ANPC phase-leg. The equipment used for DPT are listed in Table V. A 1500-V dc-source PSI-800-3U-HS-PV is applied to energize the dc bus (from BUS+ to BUS–). CREE’s SiC MOSFET driver CGD15HB62P1 is used, and the fixed gate voltages of +20 V and –5 V are utilized. A 190 µH load inductor is implemented using 1.6 mm Litz wire and dual sendust powder cores.

The fundamental principles of the DPT can be seen in details in [44]. The BUS– rail and the oscilloscope are grounded, and only negative-cycle commutations “– ↔ 0F”, “– ↔ 0L2”, and “– ↔ 0U1” are tested as the representatives of the full-mode, outer-mode, and inner-mode commutations, respectively. Three different DPT configurations are implemented to simulate the switching behaviors of the three commutation modes under sinusoidal load currents, which are demonstrated in Figs. 13(a), 13(b), and 13(c), respectively. The gate-source and drain-source voltages of T4 (i.e., $V_{g,T4}$ and $V_{ds,T4}$) are measured using Lecroy’s passive probes PP019 and PPE-2KV, respectively. Other voltage waveforms of $V_{g,T3}$, $V_{ds,T2}$, $V_{ds,T3}$ and $V_{ds,T6}$ are captured by differential probes P5200A as they have floating potentials to the earth. The drain currents of switches T3 and T4 (i.e., $I_{d,T3}$ and $I_{d,T4}$) are measured using PEM’s current transducers CWTUM/60/R.

B. Transient Switching Waveforms

Multiple DPTs are performed under the rated condition of $V_{bus} = 1000$ V and $I_L = -40$ A. An external capacitance $C_{g,ext} = 3.3$ nF is applied to the gate-source terminal of each SiC MOSFET to mitigate the cross-talking issue [45], [46]. Multiple external gate resistances (i.e., $R_{g,ext} = 5.5$ Ω, 11 Ω, 16 Ω, and 25 Ω) are tested to evaluate the switching performances under switching-speed variations.

The transient switching waveforms of the gate-source voltage V_{gs}, the drain current I_d, and the drain-source voltage V_{ds} of the active switch under the three commutation modes (i.e., T_4 for the full mode and outer mode, and T_3 for the inner mode) are captured and presented in Figs. 14, 15, and 16. The voltage and current waveforms captured under $R_{g,ext} = 5.5$ Ω, 11 Ω, 16 Ω, and 25 Ω are depicted as curves in black, blue, red, and green, respectively. The slew rates of drain-source voltages (i.e., the dv/dt) are in the range from 37.0 V/ns to 10.9 V/ns, as the $R_{g,ext}$ varies from 5.5 Ω to 25 Ω. Concurrently, the slew rates of drain currents (i.e., the di/dt) are in the range from 4.3 A/ns to 1.0 A/ns.

In general, the voltage and current slew rates decrease with the increase of the external gate resistance, while the switching delay increases. Due to the high switching-speed of the SiC MOSFET, drain-current overshoots and oscillations are observed during the turn-on transients. Similarly, voltage overshoots with significant switching oscillations are exhibited during the turn-off transients. The detailed analysis and com-
compared with their theoretical expectations are summarized in Table VI. It can be seen that the measured oscillation frequencies and their errors versus the FFT interval are relatively consistent, and the experimental results are consistent with the theoretical expectations. The FFT results of full-mode commutation in the time- and frequency-domain are depicted in Figs. 17(a) and 17(b) respectively (as black solid lines). A comparison of switching oscillations and other characteristics will be discussed in the following sections.

V. ANALYSIS OF EXPERIMENTAL RESULTS I: SWITCHING OSCILLATIONS

In this section, fast Fourier transform (FFT) analyses are conducted on the switching waveforms of the drain-source voltages (i.e., $V_{ds,Tx}$, $x = 2, 3, 4,$ and 6) under the DPT condition of $V_{bus} = 1000 \text{ V}$, $I_L = -40 \text{ A}$, $R_g, \text{ext} = 5.5 \text{ } \Omega$, 11 Ω, 16 Ω, and 25 Ω, and $C_g, \text{ext} = 3.3 \text{ nF}$. Subsequently, the equivalent switching circuits and switching oscillations studied in Section III are validated. The FFT results of $V_{ds,Tx}$ for the three commutation modes will be discussed in the following sub-sections.

It should be pointed out that the drain-current measurements are not utilized to characterize the switching oscillations in this section, as the current transducer features a limited bandwidth of 30 MHz. Although the differential voltage probe PS200A features a bandwidth of 50 MHz, its frequency identifications near 50 MHz are still valid, as the probe will not introduce a frequency shift to the measurements.

A. FFT Results of Full-Mode Commutation

For the “0F $\rightarrow -$” transient of full-mode commutation, the switching waveforms of $V_{ds,T2}$ and $V_{ds,T6}$ are utilized for the FFT analysis. The frequency spectrums of $V_{ds,T2}$ and $V_{ds,T6}$ as well as time-domain waveforms are depicted in Figs. 17(a) and 17(b) respectively (as black solid lines). A 300-ns time interval is sampled for the FFT analysis, which starts from the instant that $V_{ds,T2}$ (or $V_{ds,T6}$) first crosses $V_{bus}/2$. A Hamming window function is used to prevent spectral leakages. To validate these voltage measurements by the differential probe PS200A, LTSpice simulation results of $V_{ds,T2}$ and $V_{ds,T6}$ in both time- and frequency-domain are also exhibited in Fig. 17 (as red dashed lines). Simulation waveforms of both $V_{ds,T2}$ and $V_{ds,T6}$ can match with their experimental results, and identical oscillation components can be found from their frequency spectrums.

The measured oscillation frequencies and the errors versus their theoretical expectations are summarized in Table VI. It
is observed that a single switch may have multiple oscillation components, although it is enclosed in a single loop. This phenomenon can be explained by the mutual-interference effect between loops. Specifically, dual oscillation frequencies of 30.1 and 50.5 MHz can be obtained from both $V_{ds,T2}$ and $V_{ds,T6}$. The theoretical expectations discussed in Section III (i.e., 29.4 and 49.4 MHz) deviate with these obtained by experiment by 0.7 and 1.1 MHz, respectively, which are induced by estimation errors on loop inductance and device output capacitance. Regarding oscillation magnitudes on $V_{ds,T2}$, the low-frequency oscillation (i.e., 30.1 MHz) is more significant than its high-frequency counterpart (i.e., 50.5 MHz). Since switch T_2 is enclosed by loop II, which features higher inductive energy ($L_{lp2} = 78.2$ nH) and dominates the low-frequency oscillation at 30.1 MHz. On the other hand, the magnitudes of high-frequency oscillations on $V_{ds,T6}$ are significantly reduced, as loop I (which encloses T_6) has less inductive energy ($L_{lp1} = 24.1$ nH). The low-frequency component exhibits comparable oscillation amplitude on $V_{ds,T6}$.

The frequency spectrum of $V_{ds,T4}$ and its time-domain waveform during the “→ 0F” transient are exhibited in Fig. 18. It can be observed that the oscillation amplitudes of $V_{ds,T4}$ (i.e., the voltage overshoot) may be neglected compared to these of $V_{ds,T2}$ and $V_{ds,T6}$ (during T_4’s turn-on transient). As it is discussed in Section III-A, the inductance components of L_{lp1} and L_{lp2} can be regarded to be in parallel connection during T_4’s turn-off transient. Due to this paralleling effect, the equivalent loop inductance during T_4’s turn-off transient is significantly reduced, and lower oscillation amplitude shall be expected. On the other aspect, the drain-current di/dt during T_4’s turn-on transient is greater than that during its turn-off transient, as one identical gate resistance $R_{g,ext} = 5.5$ Ω is adopted for both the turn-on and turn-off intervals.

Three oscillation components are identified in Fig. 18 with oscillation frequencies of 34.9, 44.3, and 60.1 MHz. The theoretical derivation successfully predicts the middle oscillation frequency of 44.3 MHz with an error of 3.6 MHz (as noted in Table VI), while the oscillation components at 34.9 MHz and 60.1 MHz are omitted as they are engendered by the asymmetrical turn-on of SBDs of T_2 and T_6, which cannot be characterized by the theoretical derivation. To elaborate this issue, Fig. 19 exhibits the simulated diode-forward-current I_f and drain-source-voltage V_{ds} waveforms of T_2 and T_6 during the full-mode transition “→ 0F”. Due to the more significant inductance of loop II (i.e., $L_{lp2} > L_{lp1}$), the turn-on operation of T_2’s SBD is delayed compared with that of T_6’s SBD during the interval of 20–60 ns. Furthermore, $I_{f,T6}$ exhibits a higher di/dt than $I_{f,T2}$ during the simulation interval of 20–40 ns, and it starts to oscillate before the complete conduction of T_6’s SBD. In such circumstance, other unexpected oscillation components can be activated.

B. FFT Results of Outer-Mode Commutation

The spectrum of $V_{ds,T6}$ during the transient “0L2 →” is depicted in Fig. 20(a). As the equivalent switching circuit of outer-commutation “0L2 →” resembles that of the full-commutation “0F →”, the frequency spectrum of $V_{ds,T6}$ during “0L2 →” exhibits analogous oscillation frequencies (i.e., 29.9 and 49.9 MHz) and magnitudes as these of $V_{ds,T6}$ during “0F →”. A frequency error of 0.5 MHz is observed between the experimental analyses and theoretical expectations.

Regarding the “→ 0L2” transient, the frequency spectrum of $V_{ds,T4}$ is different from that during the “→ 0F” transient, as it is depicted in Fig. 20(b). Dual oscillation frequencies of 32.8 and 52.4 MHz can be identified accordingly. Besides, the voltage oscillation magnitudes become more significant than these during “→ 0F”, especially the low-frequency one at 32.8 MHz. The oscillation component at 97.5 MHz is missing from the frequency spectrum of $V_{ds,T4}$ as its resonance energy is limited and can be significantly attenuated by the loop resistance at this high-frequency range.
that of studied in the following section.

C. FFT Results of Inner-Mode Commutation

Additionally, the oscillation amplitudes of both 2.6 and 2.2 MHz compared to theoretical expectations). The frequency spectrums and time-domain waveforms of inner-mode commutations “0U1 → -” and “- → 0U2” during the DPT condition of \(V_{bus} = 1000 \, \text{V} \), \(I_L = -40 \, \text{A} \), \(R_g,ext = 5.5 \, \Omega \), and \(C_{g,ext} = 3.3 \, \text{nF} \). (a) \(V_{ds,T6} \) during “0U2 → -”. (b) \(V_{ds,T4} \) during “- → 0L2”.

Fig. 21. Time-domain waveforms and frequency spectrums for the inner-mode commutations “0U1 → -” and “- → 0U1” under the DPT condition of \(V_{bus} = 1000 \, \text{V} \), \(I_L = -40 \, \text{A} \), \(R_g,ext = 5.5 \, \Omega \), and \(C_{g,ext} = 3.3 \, \text{nF} \). (a) \(V_{ds,T2} \) during “0U1 → -”. (b) \(V_{ds,T3} \) during “- → 0U1”.

C. FFT Results of Inner-Mode Commutation

The frequency spectrums and time-domain waveforms of \(V_{ds,T2} \) during “0U1 → -” and \(V_{ds,T3} \) during “- → 0U1” are exhibited in Figs. 21(a) and 21(b) respectively. As it is illustrated in Section III, a single oscillation frequency can be found from each commutation transient. Specifically, the oscillation components at 29.7 and 28.3 MHz can be identified from Figs. 21(a) and 21(b) respectively (with frequency errors of 2.6 and 2.2 MHz compared to theoretical expectations). Additionally, the oscillation amplitudes of both \(V_{ds,T2} \) and \(V_{ds,T3} \) during the inner commutations are comparable with that of \(V_{ds,T2} \) during the full commutation. A comparison of the oscillation peaks (i.e., voltage overshoots) of \(V_{ds,Tx} \) (\(x = 2, 3, 4, \) and 6) under the three commutation types will be studied in the following section.

VI. ANALYSIS OF EXPERIMENTAL RESULTS II: OTHER SWITCHING CHARACTERISTICS AND DESIGN CONSIDERATIONS

With the differences in terms of switching loops, the three commutation modes also feature differences on other switching characteristics such as voltage overshoot, current overshoot, capacitive charge, and switching energy. These switching characteristics are exhibited and benchmarked in this section. Then, design guidelines specified for different commutation modes are proposed.

A. Drain-Source Voltage Overshoots (Oscillation Peaks)

A comparison of voltage overshoots \(V_{os} \) (i.e., oscillation peaks) exposed on switching devices \(T_2 \), \(T_3 \), \(T_4 \), and \(T_6 \) under the DPT condition of \(V_{bus} = 1000 \, \text{V} \), \(I_L = -40 \, \text{A} \), \(R_g,ext = 5.5 \, \Omega \), and \(C_{g,ext} = 3.3 \, \text{nF} \) is indicated in Fig. 22. It is noted that inner switches \(T_2 \) and \(T_3 \) (\(T_3 \) is only applicable for the inner-mode commutation) suffer the greatest voltage overshoots of \(V_{os} = 240–294 \, \text{V} \), since they are enclosed by the loop II with high loop-inductance (\(L_{lp2} + L_{cm} = 100.7 \, \text{nH} \)), which leads to elevated voltage overshoots according to:

\[
V_{os} = L_{loop} \cdot \frac{\text{di}}{\text{dt}_{off}} \tag{14}
\]

where \(L_{loop} \) and \(\frac{\text{di}}{\text{dt}_{off}} \) denote the overall loop inductance and turn-off slew rate of device current, respectively. It has also been obtained that these high-voltage overshoots on inner devices are dominated by oscillation components with the low-frequency range from 28.3 to 30.1 MHz.

In contrast, the clamping device \(T_6 \) exhibits lower voltage stresses for both full and outer modes (\(V_{os} = 126–178 \, \text{V} \)), as it is involved in the loop I with \(L_{lp1} + L_{cm} = 46.6 \, \text{nH} \). Moreover, the active switch \(T_2 \) features the lowest voltage-overshoot of \(V_{os} = 64–90 \, \text{V} \) for the full and outer commutations.

B. Drain-Current Overshoots and Total Capacitive Charges

During turn-on transients, the SiC MOSFET is characterized by a significant drain current overshoot, which is caused by the capacitive charges contributed by \(C_{oss} \) of the complementary devices. As it is exhibited in Fig. 23(a), the drain current overshoots \(I_{os} \) exhibit dependencies on both the commutation type and external gate resistance. The inner mode features the minimum \(I_{os} \), while the outer mode and full mode reveal \(I_{os} \) amplitudes higher than 40 A under the condition of \(R_g,ext = 5.5 \, \Omega \). This variation is caused by differences in the total capacitive charge during the turn-on transient. For the full-mode and outer-mode commutations, \(C_{oss,T2} \) and \(C_{oss,T6} \) shall be charged to \(\frac{1}{2} V_{bus} \) during the turn-on transient of switch \(T_4 \) (i.e., “0F → -” and “0L2 → -”, respectively).
Considering the non-linearity of \(C_{\text{oss}} \), the total capacitive charge \(Q_{\text{oss,tot}} \) of the full-mode and outer-mode commutations are calculated as 599.8 nC according to:

\[
Q_{\text{oss,tot}}^\text{F} = \frac{1}{2} C_{\text{bus}} V_{\text{bus}} (C_{\text{oss,T2}} + C_{\text{oss,T6}}) \, dv \tag{15}
\]

Furthermore, as only \(C_{\text{oss,T2}} \) is charged during the inner-mode commutation “OU1 → −”, the capacitive charge of inner mode is derived as 299.9 nC by:

\[
Q_{\text{oss,tot}}^\text{OU1→−} = \int_0^{V_{\text{bus}}} C_{\text{oss,T2}} \, dv \tag{16}
\]

The total capacitive charge \(Q_{\text{oss,tot}} \) can also be measured by integrating the transient drain-current overshoots during the turn-on interval of the active switch. Fig. 23(b) exhibits those measured \(Q_{\text{oss,tot}} \) with respect to the external gate resistance \(R_{g,\text{ext}} \) under the DPT condition of \(V_{\text{bus}} = 1000 \text{ V} \) and \(I_L = -40 \text{ A} \). It can be obtained that the measured \(Q_{\text{oss,tot}} \) can be regarded as being independent of \(R_{g,\text{ext}} \). Additionally, the full mode and outer mode exhibit twice the \(Q_{\text{oss,tot}} \) featured by the inner-mode commutation, both of which match with the theoretical derivations from (12) and (13).

C. Switching Energies

The turn-on and turn-off switching energies \(E_{\text{on}} \) and \(E_{\text{off}} \) of the active switch under the DPT condition of \(V_{\text{bus}} = 1000 \text{ V} \) and \(R_{g,\text{ext}} = 11 \Omega \) are exhibited in Figs. 24(a) and 24(b), respectively, which are calculated by integrating the term \(I_d \times V_{ds,Tx} \) during switching transients. It is noted that the current probe CWTUM/6/R features a peak \(di/dt \) of 70 A/\(\mu \text{s} \), which is capable of capturing the rising/falling slope of the drain current. Moreover, a deskew process is performed to align the drain-current and drain-source-voltage waveforms. It can be observed that the full mode and outer mode exhibit excessive turn-on energies (e.g., \(E_{\text{on,full}} = 550 \mu \text{J} \) and \(E_{\text{on,outer}} = 560 \mu \text{J} \) under \(I_d = 40 \text{ A} \)) compared to that of the inner mode (\(E_{\text{on,inner}} = 390 \mu \text{J} \)), as parts of energies stored in \(C_{\text{oss,T2}} \) and \(C_{\text{oss,T6}} \) shall be counted in both \(E_{\text{on,full}} \) and \(E_{\text{on,outer}} \). On the other hand, their turn-off energies \(E_{\text{off,full}} \) and \(E_{\text{off,outer}} \) are relieved compared to \(E_{\text{off,inner}} \), since the energies stored in \(C_{\text{oss,T2}} \) and \(C_{\text{oss,T6}} \) are released during the turn-off transient of \(T_4 \) and cause a reduction on \(E_{\text{off,full}} \) and \(E_{\text{off,outer}} \).

Additionally, the total switching energies per cycle \((E_{\text{tot}} = E_{\text{on}} + E_{\text{off}}) \) under \(R_{g,\text{ext}} = 5.5 \Omega, 11 \Omega, 16 \Omega, \) and \(25 \Omega \) are shown in Figs. 25(a), 25(b), 25(c), and 25(d), respectively. Overall, the total switching energies \(E_{\text{tot}} \) of the three commutation modes are comparable under \(R_{g,\text{ext}} = 11 \Omega, 16 \Omega, \) and \(25 \Omega \). Nevertheless, under the condition of \(R_{g,\text{ext}} = 5.5 \Omega \), the \(E_{\text{tot}} \) of inner mode exceeds those of the full mode and outer mode by 40–100 \(\mu \text{J} \) throughout the drain-current range of 10–40 A. This can be explained since the switching speed of inner mode can be limited by its more significant loop inductance (contributed by main loop II), especially under a low gate resistance condition (e.g., \(R_{g,\text{ext}} = 5.5 \Omega \)).

D. Summaries and Design Considerations

As a summary, switching characteristics of the three commutation modes obtained from DPTs are listed in Table VII, which reveals details in terms of switching oscillations, current overshoots, switching energies, and capacitive charges. It can be concluded that the full mode and outer mode have several similarities, as both of them feature multiple switching loops and oscillation components, as well as excessive current overshoots, switching energies, and capacitive charges. Nevertheless, all of the three types of commutation will induce critical lower-frequency (28.3–30.1 MHz) oscillation peaks on.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2020.3014742, IEEE Journal of Emerging and Selected Topics in Power Electronics

Multiple switching-oscillation components are verified through DPT results obtained under the three commutation modes. For the full-mode and outer-mode commutations, various oscillation components with a frequency range from 29.9 MHz to 54.4 MHz are reported from experimental measurements. On the other hand, only one oscillation component can be identified from the DPT results of the inner-mode commutation. The oscillation frequencies derived by theory match well with these measured by experiments with reasonable errors from 0.5 MHz to 3.6 MHz.

Furthermore, other switching characteristics closely related, i.e., the oscillation peaks, current overshoots, capacitive charges, and switching energies, are studied and benchmarked based on DPT results. It is obtained that the inner devices suffer the most significant oscillation peaks for all commutation modes, as they are enclosed by loop II with a high inductance (\(L_{lp2} = 78.2 \, \text{nH}\)). Additionally, the full mode and outer mode exhibit several similarities, both of them have excessive current overshoots, switching energies, and capacitive charges.

Last yet not least, several design considerations are proposed for each commutation mode. It is pointed out that special effort should be paid on minimizing the inductance of loop II, especially the PCB inductance \(L_{pinv}\). Accordingly, balancing the inductance components contributed by loops I and II (i.e., \(L_{lp1}\) and \(L_{lp2}\)) helps to release the design burden of the EMI filter. Special attention should also be paid on the value of device output capacitance \(C_{oss}\) when the 3L-ANPC inverter operates under both the full mode and outer mode.

VII. Conclusion

This paper focuses on investigations of the multi-frequency switching-oscillation characteristics of SiC MOSFETs in 3L-ANPC inverters under three typical commutation modes (i.e., the full mode, outer mode, and inner mode). It is found that both the full mode and outer mode involve multiple loops during commutation transients, and different switching-oscillation components with various frequencies can be induced due to this switching-loop diversity. On the contrary, the inner-mode commutation features single switching oscillation at a lower frequency, since it is associated with only one switching loop. Based on the analyses of the equivalent switching circuits using FEM extracted parasitic parameters, these oscillation frequencies for the three commutation modes are identified.

<table>
<thead>
<tr>
<th>Commutation types</th>
<th>Oscillation frequencies (\text{In Table IV})</th>
<th>Critical Oscillations (\text{In Fig. 22})</th>
<th>Current overshoots (\text{In Fig. 23(a)})</th>
<th>Switching energies (\text{In Fig. 24})</th>
<th>Capacitive charges (\text{In Fig. 23(b)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>“0F → ~” 30.1 & 50.5 MHz, 44.3 MHz</td>
<td>(T_2 @ 284\text{V}, 30.1\text{MHz})</td>
<td>39 A</td>
<td>550 (\mu\text{J})</td>
<td>599.8 (\text{nC})</td>
</tr>
<tr>
<td>~ → 0F</td>
<td></td>
<td></td>
<td></td>
<td>200 (\mu\text{J})</td>
<td>((Q_{oss,T2} + Q_{oss,T6}))</td>
</tr>
<tr>
<td>Outer</td>
<td>“0L2 → ~” 29.9 & 49.9 MHz, 32.8 & 52.4 MHz</td>
<td>(T_2 @ 261\text{V}, 29.9\text{MHz})</td>
<td>44 A</td>
<td>560 (\mu\text{J})</td>
<td>599.8 (\text{nC})</td>
</tr>
<tr>
<td>~ → 0L2</td>
<td></td>
<td></td>
<td></td>
<td>190 (\mu\text{J})</td>
<td>((Q_{oss,T2} + Q_{oss,T6}))</td>
</tr>
<tr>
<td>Inner</td>
<td>“0U1 → ~” 29.7 MHz, 28.3 MHz</td>
<td>(T_2 @ 294\text{V}, 27.9\text{MHz}), (T_1 @ 240\text{V}, 28.3\text{MHz})</td>
<td>16 A</td>
<td>390 (\mu\text{J})</td>
<td>299.9 (\text{nC})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE VII</th>
<th>SUMMARY OF SWITCHING CHARACTERISTICS OF SiC MOSFETs IN 3L-ANPC DEMONSTRATOR.</th>
</tr>
</thead>
</table>

References

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2020.3014742, IEEE Journal of Emerging and Selected Topics in Power Electronics

Mengxing Chen (S’16) received his B.E. and M.E. degrees in electrical engineering from Shandong University, Jinan, China, in 2014 and 2017, respectively. He is currently working toward the Ph.D. degree with the Department of Energy Technology, Aalborg University, Aalborg, Denmark. His research interests include the reliability of power electronics, Silicon Carbide (SiC) based power converters, and multilevel converters. Mengxing Chen was the recipient of the IEEE Southern Power Electronics Conference (SPEC) 2018 Best Paper Award.

Donghua Pan (S’12-M’15) received the B.S. and Ph.D. degrees in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 2010 and 2015, respectively. Since September 2017, he has been with Aalborg University, Aalborg, Denmark, where he is currently a Postdoctoral Fellow with the Department of Energy Technology. His research interests include magnetic integration techniques, modeling and control of grid-connected converters, and wide bandgap power conversion systems.

He was the recipient of the Outstanding Reviewer Award of IEEE TRANSACTIONS ON POWER ELECTRONICS in 2017 and the Best Paper Award at IEEE SPEC 2018.

Huai Wang (M’12, SM’17) received the B.E. degree in electrical engineering, from Huazhong University of Science and Technology, Wuhan, China, in 2007 and the Ph.D. degree in power electronics, from the City University of Hong Kong, Hong Kong, in 2012. He is currently Professor with the Center of Reliable Power Electronics (CORPE), Department of Energy Technology at Aalborg University, Denmark. He was a Visiting Scientist with the Fraunhofer Institute for Reliability and Microintegration IZM, Berlin, Germany, from Jan. to Mar. 2020.

His research interests include the reliability of power electronics, Silicon Carbide (SiC) based power converters, and multilevel converters. Huai Wang received the Richard M. Bass Outstanding Young Power Electronics Engineer Award from the IEEE Power Electronics Society in 2016, and the Green Talents Award from the German Federal Ministry of Education and Research in 2014. He is currently the Chair of IEEE PELS/IAS/IES Chapter in Denmark. He serves as an Associate Editor of IET Electronics Letters, IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, and IEEE TRANSACTIONS ON POWER ELECTRONICS.

Xiongfei Wang (S’10-M’13-SM’17) received the B.S. degree from Yanshan University, Qinhuangdao, China, in 2006, the M.S. degree from Harbin Institute of Technology, Harbin, China, in 2008, both in electrical engineering, and the Ph.D. degree in energy technology from Aalborg University, Aalborg, Denmark, in 2013.

Since 2009, he has been with the Department of Energy Technology, Aalborg University, where he became an Assistant Professor in 2014, an Associate Professor in 2016, a Professor and Research Program Leader for Electronic Power Grid (eGrid) in 2018, and the Director of the Aalborg University-Huawei Energy Innovation Center in 2020. He is also a Visiting Professor of power electronics systems with KTH Royal Institute of Technology, Stockholm, Sweden. His current research interests include modeling and control of grid-interactive power converters, stability, and power quality of power-electronic-based power systems, active and passive filters.

Dr. Wang was selected into Aalborg University Strategic Talent Management Program in 2016. He has received six IEEE Prize Paper Awards, the 2016 Outstanding Reviewer Award of IEEE TRANSACTIONS ON POWER ELECTRONICS, the 2018 IEEE PELS Richard M. Bass Outstanding Young Power Electronics Engineer Award, the 2019 IEEE PELS Sustainable Energy Systems Technical Achievement Award, and the 2019 Highly Cited Researcher by Clarivate Analytics (former Thomson Reuters). He serves as a Member at Large for Administrative Committee of IEEE Power Electronics Society in 2020-2022, and as an Associate Editor for the IEEE TRANSACTIONS ON POWER ELECTRONICS, the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, and the IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS.

Frede Blaabjerg (S’86-M’88-SM’97-F’03) was with ABB-Scandia, Randers, Denmark, from 1987 until 1998. From 1988 to 1992, he got the PhD degree in Electrical Engineering at Aalborg University in 1995. He became an Assistant Professor in 1992, an Associate Professor in 1996, and a Full Professor of power electronics and drives in 1998. From 2017 he became a Villum Investigator. He is honoris causa at University Politehnica Timisoara (UPT), Romania and Tallinn Technical University (TTU) in Estonia.

His current research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics and adjustable speed drives. He has published more than 600 journal papers in the fields of power electronics and its applications. He is the co-author of four monographs and editor of ten books in power electronics and its applications.

He has received 32 IEEE Prize Paper Awards, the IEEE PELS Distinguished Service Award in 2009, the EPE-PEMC Council Award in 2010, the IEEE William E. Newell Power Electronics Award 2014, the Villum Kann Rasmussen Research Award 2014, the Global Energy Prize in 2019 and the 2020 IEEE Edison Medal. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON POWER ELECTRONICS from 2006 to 2012. He has been Distinguished Lecturer for the IEEE Power Electronics Society from 2005 to 2007 and for the IEEE Industry Applications Society from 2010 to 2011 as well as 2017 to 2018. In 2019-2020 he serves a President of IEEE Power Electronics Society. He is Vice-President of the Danish Academy of Technical Sciences too. He is nominated in 2014-2019 by Thomson Reuters to be between the most 250 cited researchers in the world.