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Private Aggregation with Application to
Distributed Optimization*

Katrine Tjell1, Student Member, IEEE , Rafael Wisniewski1, Member, IEEE

Abstract— The paper presents a fully distributed private
aggregation protocol that can be employed in dynamical
networks where communication is only assumed on a
neighbor-to-neighbor basis. The novelty of the scheme is
its low overhead in communication and computation due to
a pre-processing phase that can be executed even before
the participants know their input to aggregation. Moreover,
the scheme is resilient to node drop-outs, and it is defined
without introducing any trusted or untrusted third parties.
We prove the privacy of the scheme itself and subsequently,
we discuss the privacy leakage caused by the output of
the scheme. Finally, we discuss implementation of the pro-
posed protocol to solve distributed optimization problems
using two versions of the alternating direction method of
multipliers (ADMM).

Index Terms— Distributed control, Information theory
and control, Optimization

I. INTRODUCTION

D ISTRIBUTED computing is emerging everywhere in
fields such as signal processing, control, and machine

learning. Concerns about privacy in such distributed systems
are arising since typically lots of data are collected and
sensitive information is held at the network’s nodes. Several
works have shown how collected data can be used to identify
individuals, and how private information can be inferred from
it. For instance, [1] discusses how private information can be
derived even though data is randomized.

In this work, we seek to circumvent these privacy issues
by proposing a computation framework where data is only
used indirectly and will not be exposed. Typically, the price
to pay for privacy is an increase in computational complexity
and a communication overhead. However, we introduce a pre-
processing phase that only involves none-private data and can
be executed before or in-between the actual processing phases,
resulting in only a minimal increase in computations and no
communication overhead.

Considering already existing distributed algorithms, com-
monly, the nodes exchange certain values and in preceding
computations, the sum of these values is used. That is, the
algorithms rely on the sum of communicated values and not
the individual values, see for instance [2]–[4].

Our proposed method solves the problem of privately com-
puting the sum of values belonging to individual users while

*This work is supported by SECURE project funded by Aalborg
University
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not revealing the values. We prove that the protocol itself does
not leak information and moreover; we study the information
leakage caused by the output of the protocol (the sum). We
note that differential privacy techniques could be added on top
of our method, to avoid the leakage caused by the output, at
the cost of loosing precision of the solution.

We explore the use of our proposed method to achieve
privacy in distributed optimization. That is, for nodes
i ∈ N = {0, 1, . . . , N} we assume that node i has a private
convex cost function fi(xi), and we consider the following
minimization problem:

minimize
x1,...,xN

∑
i∈N

fi(xi)

subject to
∑
i∈N

Bixi − ci = 0,

xi ∈ Xi, i ∈ N

(1)

where xi ∈ Rq , Bi ∈ RM×q , and ci ∈ RM×1 are assumed
to be known to node i, and Xi ⊂ Rq is a convex and
compact set. This problem is often seen in resource allocation
or load balancing problems. In section VI, we use our proposed
protocol to achieve privacy in two already existing ADMM-
like algorithms which solve (1) in two different scenarios: 1)
each node i can communicate only with its neighboring nodes,
and 2) each node i can communicate with a (untrusted) central
unit.

A. Related Work
In the literature, there are three main approaches for privacy

preservation in distributed computation tasks; secret sharing
based secure multiparty computation (SMPC) [5], homomor-
phic encryption techniques [6], and differential privacy [7].
For the problem in this paper, namely secure aggregation
of private data, both SMPC and homomorphic encryption
based approaches are evident methods as both can compute
a cipher text version of a sum based on cipher text versions
of the terms in the sum, [8]–[11]. The drawback in SMPC is
that the schemes typically require all participating parties to
be connected by private channels. Regarding homomorphic
encryption, the disadvantage is that usually a trusted third
party needs to generate and distribute encryption keys. [12]
is closely related to our work as they also consider private
aggregation in a peer-to-peer network. In their solution, each
node needs to communicate with the neighbors of its neigh-
bors, which is in contrast to the assumption in this paper where
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each node can communicate with its immediate neighbors
only. Also, the solution in [12] requires the presence of a
trusted third party, which our solution does not.

B. Contribution

The paper puts forth a novel private aggregation scheme
which bypasses the strict communication requirements in
SMPC and the engagement of a trusted third party in homo-
morphic encryption approaches. The main contribution of the
paper can be summarized as:
• The proposed scheme comes with an efficient pre-

processing phase requiring only 2 communication rounds.
This phase can be executed prior to the actual com-
putations, even before the nodes have access to their
individual inputs. This partitioning makes the scheme
extremely light weight at computation time, compared
with state-of-the-art SMPC methods.

• In contrast to SMPC and homomorphic encryption based
approaches the proposed scheme can be employed in dis-
tributed settings where a fully connected communication
network cannot be assumed and where an (un)trusted
third party does not exist.

• Unlike most of the existing private aggregation schemes,
the proposed method in this paper is resilient to node-
dropouts.

C. Outline

In section II, we formally state the problem of the paper.
A few cryptographic primitives are presented in section III,
while the main contribution is in section IV. Section V gives
the privacy analysis of the proposed method and section VI
applies the method to distributed optimization.

D. Notation

We model the network of nodes as an undirected graph with
the nodes N = {1, . . . , N} and the set of edges E ⊂ N ×N
where (i, j) ∈ E iff node i can communicate with node j. The
notation Ni is used to denote the neighborhood of i, that is
j ∈ Ni iff (i, j) ∈ E . Note that we do not consider node i to
be a neighbor to itself, i.e. i /∈ Ni. Moreover, we use Fp to
denote the finite field of p elements, where p is a prime.

II. PROBLEM STATEMENT

At the outset, we state the problem formally.
Problem 1: Let i ∈ N denote the index of nodes in a

network and assume that each node has a private value
si ∈ Fp which it would like to keep secret. Moreover, each
node has a set of neighbors, Ni, and each node are interested
in learning the sum of its neighbors secret value:

yi =
∑
j∈Ni

sj . (2)

The problem is to compute (2) without exposing any secret
value to any node in the network with the assumption that
node i can only communicate with its neighbors Ni.

Defining the attacker model, we consider the case where up
to t− 1 < n nodes may collude in attempting to learn private
information of the remaining nodes. However, we assume that
all nodes follow the protocol, which is often referred to as the
honest-but-curious adversary 1.

III. CRYPTOGRAPHIC TOOLS

To put forth a privacy preserving solution to Problem 1, we
use a few cryptographic primitives which are introduced in
this section.

A. Secret Sharing Scheme
In this section, we give a very brief introduction to secret

sharing and we refer to [5] for more elaborate explanation.
Suppose a node i has a secret si which it would like to share
with n other nodes (hereafter called participants) such that at
least t ≤ n of the nodes need to cooperate in order to learn
the value of si. The scheme is defined over a finite field Fp,
where p is a large prime and it uses a set P of distinct elements
in Fp to identify the participants, e.g. P = {1, 2, . . . , n} and
|P| = n. The scheme is comprised of two algorithms, and
the first is share(si, t,P) = {si(j)}j∈P which outputs a
share si(j) for each participant j ∈ P upon receiving a secret
si, the threshold t ≤ |P|, and P . Note that we use si(j) to
denote the j’th share of the secret si. The second algorithm is
denoted by reconstruct({si(j)}j∈P′ , t) = si, and produces
the secret si based on the threshold t and the shares from a
set P ′ ⊆ P of participants, where |P ′| ≥ t. Note that P ′ can
be any combination of at least t elements from P .

We have the following requirements for the secret
sharing scheme. Let {si(j)}j∈P = share(si, t,P),
{s̄i(j)}j∈P = share(s̄i, t,P) for arbitrary si, s̄i ∈ Fp, t ≤
|P|, and P ⊆ Fp.

1) For all P ′ ⊆ P , with |P ′| ≥ t,

reconstruct({si(j)}j∈P′ , t) = si.

2) For all P ′ ⊆ P with |P ′| < t:

{si(j)}j∈P′ ∼ {s̄i(j)}j∈P′ , (3)

where ∼ means identically distributed.
3) Finally, we require that

reconstruct({si(j)}j∈P′ + {s̄i(j)}j∈P′ , t)

= si + s̄i,
(4)

for all P ′ ⊆ P with |P ′| ≥ t.

B. Encryption
For the privacy preserving computations, it will be necessary

to encrypt certain values (messages), such that these values
cannot be learned by unauthorized nodes. The encryption
scheme encompasses three algorithms, where the first is de-
noted keys = (ski, pki). It generates a secret- and public key
pair, (ski, pki) for a participant i ∈ P . The third algorithm is

1An honest-but-curious adversary is also sometimes referred to as a passive
adversary, see [5]
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Key
generation

(1.)

Key
distribution (2.)

Choose
ri (3.)
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shares of
ri (4.)

Encrypt
shares using
keys, send
to C (5.)

Share
distribution (6.)

Decrypt
received

shares (7.)

Compute
R(i) as sum
of received
shares (8.)

Communication

Fig. 1. Block diagram illustrating the pre-processing phase of the proposed method from the view of node i ∈ NC . The numbers in parenthesis
refer to the corresponding step in Protocol 1.

the encryption algorithm enc(x, pki) = [x]. It takes a message
x and a public key and outputs a cipher-text version [x] of the
message. The decryption algorithm takes a cipher-text message
[x] and a secret key and outputs the plain text version of the
message. This algorithm is denoted by dec([x], ski) = x. For
all x, x̄ ∈ Fp, we have the following requirements for the
scheme, where (ski, pki) are any secret- and public key pair:

1)
dec(enc(x, pki), ski) = x (5)

2)
enc(x, pki) ∼ enc(x̄, pki), (6)

see details in [10].

IV. PROPOSED METHOD

Note that both the secret sharing scheme and the encryption
scheme is defined over a finite field Fp. Consequently, modular
arithmetic is used in the proposed method. Choosing p > yi
and assuming that each secret si is an element of Fp, the
modular arithmetic will not affect the precision. In case si ∈
R, si can be scaled before rounding to the nearest element in
Fp , under which circumstance the precision of the method
will depend on the scaling factor.

To introduce the proposed method, consider a central node
C and k nodes i ∈ NC that are all neighbors to C but not
necessarily neighbors to each other.

We present our method by focusing only on node C and
the nodes i ∈ NC . Solving Problem 1 can be achieved by
executing the method in parallel for all nodes j ∈ N .

The idea is to solve (2) in Problem 1 by computing(∑
i∈NC

si + ri

)
mod p =

(∑
i∈NC

si +R

)
mod p, (7)

where R =
(∑

i∈NC
ri
)

mod p and {ri ∈ Fp}i∈NC
are

uniformly chosen by node i. In this way, si is masked by the
random ri. We propose a pre-processing phase where each
node i ∈ NC computes a share, R(i), of R. At the execution
time, node i sends (si + ri) mod p and R(i) to node C, that
can use R = reconstruct({R(i)}i∈NC ,t) to compute R and
(7) to compute yC =

∑
i∈NC

si.
In Fig. 1, we give an overview of the pre-processing phase,

where each communication block covers the steps where each
node i ∈ NC sends a vector of values to C who forwards the
vectors to all nodes j ∈ NC . As seen, each node i ∈ NC starts
by generating the keys (ski, pki) = keys, and distributes the

public key pki. Then each node i ∈ NC chooses ri uniformly
from Fp and creates shares, {ri(j)}j∈NC

, of ri. The shares are
encrypted using the public key of the corresponding node j ∈
NC and the encrypted shares are distributed. Upon receiving
encrypted shares from the other nodes, each node i ∈ NC

decrypts the shares using its own secret key, ski. Node i then
computes its share of R by R(i) =

∑
j∈NC

rj(i), which holds
under the third requirement for the secret sharing scheme. The
outcome of the pre-processing phase is that node i ∈ NC

learns R(i).
We state the proposed method formally in Protocol 1 from

the view of node i ∈ NC .

Protocol 1 Private Sum in Graphs
Input: Fp with p >

∑
j∈NC

sj , and the threshold t <
|NC | are publicly available.
Output: node C learns yC =

∑
j∈NC

sj , where sj is the
secret known only to node j.
Pre-processing:

1: (ski, pki) = keys

2: Send public key pki to C who forwards to j ∈ NC\{i}.
3: Draw ri ∈ Fp uniformly.
4: {ri(j)}j∈NC

= share(ri, t,Nc) .
5: [ri(j)] = enc(ri(j), pkj) for j ∈ NC\{i}.
6: Send [ri(j)] to node C who forwards to node j ∈ NC\{i}.
7: {rj(i)}j∈NC\{i} = {dec([rj(i)], ski)}j∈NC\{i}.
8: R(i) =

∑
j∈NC

rj(i).
Execution:

9: mi = (si + ri) mod p. (8)
10: Send {mi, R(i)} to node C.

Node C does:
1) R = reconstruct({R(i)}i∈NC

, t).
2) yC =

((∑
i∈P mi

)
−R

)
mod p. (9)

A. Handling dropped nodes
The proposed protocol is inherently able to handle nodes

dropping out as long as there is at least t remaining nodes. To
elaborate, we use P to denote the nodes participating from the
beginning and P ′ to denote the nodes remaining after some
nodes have dropped out. Specifically, P ′ ⊂ P and |P ′| ≥ t.
If nodes drop out in the pre-processing phase, the remaining
nodes can carry on without any modification. If nodes drop out
in the execution phase and fail to perform step 10, each node
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i ∈ P ′ computes Rnew(i) =
∑

j∈P′ rj(i) and sends Rnew to
node C. Node C can then compute

∑
i∈P′ si. The advantage

is that the pre-processing does not have to be run again.

V. PRIVACY ANALYSIS

We use the standard simulation-based proof to prove that in
executing Protocol 1, any set of fewer than t colluding nodes
will not be able to infer the private values of the honest nodes.
To this end, we introduce the term view of a node, which is
the information known to it during protocol execution.

Definition 1 (View): The view of a node i ∈ NC is a vector,
VIEWi, consisting of the values i knows and receives. For a
subsetA ⊂ NC of nodes, VIEWA denotes the vector containing
the view of each node i ∈ A.
Note that, VIEWi is a random variable since it is based on
random choices made by the nodes. What will be shown, is
the existence of a simulator which essentially is an algorithm
with the ability to simulate a view that is indistinguishable
from the view of a set of nodes.

We use SA = {si}i∈A to denote the set of private values
of the nodes i ∈ A.

Theorem 1 (Honest-but-curious privacy): Consider a set
NC ⊆ Fp. For all integers t ≤ |NC | and any set A ⊂ NC

with |A| < t and the central node C ∈ A, there exist
a probabilistic polynomial-time (PPT) simulator SIM which
upon the inputs; SA, Fp , the threshold t, and the output of
Protocol 1, yC , outputs a vector perfectly indistinguishable
from VIEWA, namely

VIEWA ∼ SIMA(SA,Fp, t, yC). (10)
Proof: The simulator must simulate each element in the

view. We list the elements and discuss how the simulated
equivalent to each element is chosen. Each simulated equiv-
alent is marked by a {·}s. VIEWA consists of the following
values:

si, ri, ski, {rj(i)}j∈NC
, i ∈ A

{mi, R(i)}, pki, {[rj(i)]}j∈NC
, i ∈ NC

R, yC =
∑
i∈NC

si
(11)

The simulator starts by choosing Rs uniformly from Fp

since R (from (7)) is distributed in this way. Then it uses
{Rs(i)}i∈NC

= share(Rs, t,NC). {mi}i∈NC
(from (8))

are uniformly distributed on Fp with the condition that∑
i∈NC

mi = yC+R, thus {ms
i}i∈NC

are simulated according
to this. {rsi }i∈NC

are simulated by drawing uniformly random
values from Fp , with the condition that

∑
i∈NC

rsi = R, see
(7). Based on {rsi }i∈NC

, the simulator can use the steps in the
pre-processing phase of Protocol 1 to simulate the remaining
elements of SIMA(SA,Fp, t, yC).

A. Leakage of Information from Output
As noted earlier, information can be gained from the output

of the protocol.To study this in detail, we consider the sum,

zN =
N∑
i=1

si, (12)

2 4 6 8 10 12

1.4

1.6

1.8

2

n

en
tr

op
y

[b
its

]

H(S1|ZN ) H(S1)

Fig. 2. Comparison between the entropy of S1 (red dashed line) with
the entropy of S1 conditioned on ZN (green line).

where si ∈ [0,K] for K ∈ Fp corresponds to the secret value
of node i, and N > 1 is the number of terms in the sum.
Particularly, we will investigate the amount of information
zN leaks about a particular si, say s1. To do this, zN and
{si}i∈N are viewed as outcomes of the random variable ZN

and uniformly distributed variables {Si}i∈N , respectively. We
use the uniform distribution for each Si since this will be true
from the view of the adversary given that he has no prior
knowledge.

We start the discussion by considering the mutual informa-
tion between S1 and ZN , given as

I(S1, ZN ) =
∑
s1,zN

p(s1, zN ) log2

(
p(s1, zN )

p(s1)p(zN )

)
, (13)

where p(x) is the probability mass function of the random
variable X , and p(x, y) is the joint probability mass function
of the random variables X and Y . Intuitively, I(S1, ZN ) is
the reduction in uncertainty about S1 gained from ZN . By the
data processing inequality (see for instance [13]),

I(S1, ZN−1) ≥ I (S1, ZN ) . (14)

Hence, the mutual information is non-increasing as N is in-
creased. To explore this result further, consider the conditional
entropy of S1 conditioned on ZN , which is given as

H(S1|ZN ) = H(S1)− I(S1, ZN ). (15)

This is a measure of the uncertainty about S1 after ZN is
given. The uncertainty is measured in bits and the more bits,
the more uncertainty there is about the variable.

Finding a closed form expression for H(S1|ZN ) is still an
open question. Hence, to illustrate it, we calculate H(S1|ZN )
numerically for small values of N and K since the combina-
torics starts to be intractable for larger values. Fig. 2 depicts
H(S1) and H(S1|ZN ) for N = 2, . . . , 13 and K = 4. The
figure compares the uncertainty of S1 to the uncertainty of
S1 conditioned on ZN . As seen, increasing N decreases the
leakage about S1. This means that the more neighbors a node
has, the less information it will gain on the private values of
its neighbors.

We conclude this section, by studying the probability of the
adversary guessing S1 = s1 after learning ZN = zN or in
other words; the probability of leaking the secret. To establish
a closed form expression for this probability, we assume that
each Si is uniformly distributed on [0, zN ].
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Proposition 1: Let S1, . . . , Sn be independent uniformly
distributed on [0,K] and let ZN =

∑N
i=1 Si. Then the

conditional probability of S1 conditioned on ZN is given by

P (S1|ZN ) =
(zN − s1 +N − 2)!zN !(N − 1)!

((zN − s1)!(N − 2)!(zN + (N − 1))!
(16)

for zN ∈ {0, 1, . . . ,K}.
Proof: The conditional probability can be written as

P (S1|ZN ) =
P (S1, ZN )

P (ZN )
. (17)

By counting the number of combinations of s1, . . . , sN that
satisfies (12) with given zN , where each sj can take values
in the interval [0, zN ], the probability mass function of ZN

yields

P (ZN ) =
(zN +N − 1)!

zN !(N − 1)!

1

T
, (18)

where T is the total number of outcomes of ZN .
Similarly, by counting the number of combinations of

s2, . . . , sN that satisfies (12) with given zN and s1, where each
sj can take values in the interval [0, zN ], the joint probability
mass function between S1 and ZN , yields

P (S1, ZN ) =
(zN − s1 +N − 2)!

(zN − s1)!(N − 2)!

1

T
, (19)

which concludes the proof.

VI. APPLICATION TO DIST. OPTIMIZATION

In the following, we consider the minimization problem
in equation (1) assuming: 1) a centralized setting, and 2) a
decentralized setting. We study two already existing distributed
optimization algorithms and use Protocol 1 to achieve privacy
in each of them.

A. Centralized Optimization
Solving (1) in the scenario where each node communicates

with an untrusted central unit, can be achieved by using a
modified version of the ADMM algorithm. Such an algorithm
is presented in [14] by the following steps in each iteration
k ≥ 0:

dk+1 =
1

N

N∑
j=1

Bjx
k
j − cj (20a)

xk+1
i ∈ argmin

xi∈Xi

{
fi(xi) + λk>Bi xi

+
ρ

2
||Bixi −Bix

k
i + dk+1||2

}
(20b)

λk+1 = λk + ρdk+1, (20c)

using the initial values x0
i ∈ Xi, and λ0 ∈ Rm. Since

the nodes cannot communicate with each other, (20a) will
be computed by the central unit. The algorithm in (20) is
related to the traditional ADMM algorithm presented in [15],
where the steps (20b) and (20c) can be identified as the
primal and dual updates, respectively. However, there is an
important distinction which accounts for the differences; in
the traditional ADMM, the primal update is separated into

two parts that are updated sequentially, while the primal update
here is separated into N parts that are updated simultaneously.
[16] proves convergence of (20) given that the solution set
to the problem in (1) is nonempty. To preserve privacy, we
propose to compute

∑N
i=1Bix

k
i − ci using Protocol 1. We

refer to the following two steps as privacy preserving (PP)
parallel ADMM:

1) The nodes uses Protocol 1 to compute
dk+1 =

∑N
i=1Bix

k
i −ci, where the nodes j ∈ N takes

the roles of nodes i ∈ NC and the central unit takes the
role of node C. The central unit returns dk+1 to the
nodes i ∈ N .

2) Each node i ∈ N computes (20b) and (20c) in parallel.

B. Decentralized Optimization
For solving (1) under the assumption that each node i can

only communicate with its neighboring nodes j ∈ Ni, [17]
presents a fully decentralized variant of the ADMM algorithm
referred to as tracking-ADMM. It uses a consensus matrix,
w ∈ Rn×n, which is a semidefinite doubly stochastic and
symmetric matrix, see [17] for details. Given, x0

i ∈ Xi,λ
0
i ∈

RM and d0i = Bix
0
i − ci, the following steps computed by

each node i ∈ N in parallel solves (1);

δki = wi,id
k
i +

∑
j∈Ni

wi,jd
k
j (21a)

lki = wi,iλ
k
i +

∑
j∈Ni

wi,jλ
k
j (21b)

xk+1
i ∈ argmin

xi∈Xi

{fi(xi) + lk
>

i Bixi

+
ρ

2
||Bixi −Bix

k
i + δki ||2} (21c)

dk+1
i = δki +Bix

k+1
i −Bix

k
i (21d)

λk+1
i = lki + ρdk+1

i , (21e)

where ρ > 0 is a penalty parameter. The algorithm in (21)
is quite different from the standard ADMM due to the fully
decentralized setting. The information

∑N
i=1Bix

k+1
i − ci

is not available to the nodes, since each node can only
communicate with its neighbors. Thus, as explained in [17],
steps (21a), (21b) and (21d) roughly acts as a dynamic average
consensus mechanism for estimating this term. [17] proves
that this algorithm converges given that each fi(xi) is convex
and that (1) and the dual problem of (1) admits optimal
solutions. To preserve privacy, we propose to use Protocol 1
to compute δki and lki for each node i. That is, (21a) and (21b)
is substituted with the following steps;

1) Protocol 1 is utilized to compute δki , where node i takes
the role of the central node C and the nodes j ∈ Ni

takes the role of the nodes j ∈ NC . The nodes j ∈ Ni

inputs wi,jd
k
j to the protocol and node i learns δ̄ki =∑

j∈Ni
wi,jd

k
j and computes δki = wi,id

k
i + δ̄

k
i .

2) Protocol 1 is utilized to compute lki . The nodes
j ∈ Ni inputs wi,jλ

k
j to the protocol and node i learns

l̄
k
i =

∑
j∈Ni

wi,jλ
k
j and computes lki = wi,iλ

k
i + l̄

k
i .

3) Each node i ∈ N compute in parallel the remaining
steps; (21c), (21d), (21e).
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Fig. 3. Convergence of PP tracking ADMM and PP parallel ADMM with
N = 30 nodes. After k = 200 iterations, 10 randomly selected nodes
drop out.
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Fig. 4. Comparison of the convergence of PP tracking ADMM where
each node has respectively 29, 20, 15, 10, and 5 neighbors.

We refer to these three steps as PP tracking ADMM.

C. Numerical Experiments

We simulate privacy preserving (PP) parallel ADMM and
PP tracking ADMM solving the same optimization problem
of the form of (1) with q = 1, M = 2, fi(xi) = (xi − i)2,
and randomly generated B and c matrices. This problem is
solved with N = 30 nodes and in the case of PP tracking
ADMM, each node has on average 20 neighbors. After 200
iterations, we simulate the dropout of 10 randomly selected
nodes. To compare the performance of PP parallel ADMM
and PP tracking ADMM, Fig. 3 shows the mean squared error
(MSE) of the estimate from both methods at each iteration
k. As seen in Fig. 3, PP tracking ADMM has a slower
convergence rate compared to PP parallel ADMM which is
due to information being distributed in the network much
slower. In fact, the convergence rate of PP tracking ADMM is
dependent on the number of neighbors of each node. This can
be observed in Fig. 4 that shows the convergence rate of PP
tracking ADMM when the numerical problem is solved and
each node has n = 5, 10, 15, 20, 29 neighbors, respectively.
Note that in the case n = 29, the network is fully connected
and the convergence rate matches with the rate of the PP
parallel ADMM. That PP tracking ADMM converges faster the
more neighbors each node has matches nicely with the result
from section V-A stating that the more neighbors a node has,
the less information is revealed by the output of the method.

VII. CONCLUSION

The paper presents a privacy preserving fully distributed
and parallel aggregation scheme for computing the sum of
private values held by individual nodes. Two straight forward
applications of the proposed protocol are given in the paper,
namely privacy preserving distributed optimization. We note
that the protocol can be applied in many other distributed
control algorithms to preserve privacy, see for instance [18].
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