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Study of Nonlinear Parameter Identification Using UKF and Maximum

Likelihood Method

Zhen Sun and Zhenyu Yang

Abstract— The nonlinear parameter identification is studied
using UKF and Maximun Likelihood (ML) method. The pro-
posed scheme consists of two sequential stages. The first stage
conducts the state estimation using UKF, where the estimated
state is a function of unknown parameters. A likelihood function
is constructed in the second stage based on the estimated state.
Thereby, the parameter identification problem becomes an
optimization of the parameterized likelihood function. The pro-
posed method is further compared with EKF based approach.
Several case studies show a clear benefit using UKF instead of
EKF based approach for a class of nonlinear identification in
terms of precision and fast convergence.

I. INTRODUCTION

Modern systems and equipments are often subjected to

significant uncertain factors. Stochastic Differential Equation

(SDE) is a natural way to describe the time evolution of

dynamic phenomena [6]. The SDE is now widely used in sys-

tem modeling, analysis and design, for example, in biology,

medicine and finance areas. Normally, a SDE model consists

of a deterministic part, usually referred to as drift term, and

a nondeterministic part, usually referred to as diffusion term.

In general system situation, besides a set of SDE describing

the dynamics of the system in continuous time, a set of

discrete time measurement equations, is also used to describe

a considered system. This kind of hybrid framework provides

a general platform for modeling dynamic systems [14].

It is no doubt that the parameter identification for SDE

described systems plays a crucial rule in modeling and anal-

ysis. The parameter identification of SDE was first studied

by Arato, Kolmogorov and Sinai in [8]. Extensive research

and results can be found in recent decades, such as method

of moments, filter based techniques, statistic methods, and

so on [4], [11]. In the last two decades, the Kalman Filter

(KF) technique has been more and more used for parameter

identification [7]. Generally the approaches using KF can

be classified into two different categories. One category is

referred to as direct approaches. This kind of approach takes

both the state variable and the unknown parameter(s) into

an augmented system state. Then, KF or Extended Kalman

Filter (EKF) is used to estimate the new state and thereby

the estimation of unknown parameter(s) [7]. However, if the

diffusion term of the SDE contains unknown parameters, this

kind of approach could not be directly used.

The other category is to combine KF technique with some

statistic methods. The scheme consists of two sequential

stages. The first stage conducts the state estimation using
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KF, where the estimated state is a function of unknown

parameters. Then, a statistic criterion, such as Maximum

Likelihood (ML) and Mean Least Square (MLS), is set up in

the second stage based on the estimated state. Thereby, the

parameter identification problem becomes an optimization

of a parameterized statistic problem. This approach can be

directly applied to linear systems and an explicit solution

may be found [1], [10], [12]. Nevertheless, this kind of

approach needs to be extended in order to handle nonlin-

ear cases. Recently, a ML/Prediction Error Decomposition

(PED) method for direct estimation of embedded parameters

in SDE is proposed in [3] based on the EKF. [9] set up the

scheme of parameter identification based on the EKF and

ML as well as Maximum A Posteriori (MAP) estimation

with software implementation. Both of the two methods can

handle parameter identification for cases that the diffusion

item consists of the unknown parameter(s).

In 1997, Julier and Uhlman [5] proposed a new type of

nonlinear filter, named Unscented Kalman Filter (UKF). It

is based on the nonlinear Unscented Transformation (UT).

Thereby, UKF does not use the linearization like EKF. The

UKF produces a set of selecting points (called sigma-points)

in such a way that they together capture the full mean

and covariance of the state and make the estimation based

on these points. The accuracy of using UKF for nonlinear

estimation is investigated in [15], [16]. Normally, the UKF

can provide a better estimation than EKF for a wide class of

nonlinear systems [13].

In this paper we focus on using UKF and ML method for

nonlinear parameter identification. In order to evaluate the

proposed method, the approach using EKF and ML method

is also carried out for comparison purpose. Several case

studies show a clear benefit using UKF instead of EKF based

approach for a class of nonlinear identification in terms of

precision and fast convergence. The remainder of the paper is

organized as follows: The considered problem is formulated

in Section II; The method to solve this problem is given

in Section III; Section IV illustrates the proposed algorithm

via several case studies; Finally, we conclude the paper in

Section V.

II. PROBLEM FORMULATION

A. The System Model

The considered system is described by the following SDE:

dX(t) = g1(X(t),u(t), t,θ)dt +g2(t,θ)dBt , (1)

where t ∈ R is the time variable, X(t) ∈ X ⊂ R
n is a

vector of state variables, u(t) ∈U ⊂ R
m is a vector of input
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variables, g1(·) ∈ R
n, g2(·) ∈ R

n×n are nonlinear or linear

functions and {Bt} is an n-dimensional standard Wiener

process. θ ∈ Θ is the unknown parameter. For simplicity

purpose, X(t),u(t) are denoted as X ,u respectively.

The measurement of the considered system is described

by

Yk = h(Xk, tk)+ εk, (2)

where Yk ∈ Y ⊂ R
l is a vector of output variables, h(·) ∈

R
l , tk, k = 0,1, . . . ,N are sampling instants, {εk} is an l-

dimensional white noise process with εk ∼ N (0,R) (R is

an l × l matrix) and Xk is the state value at time tk.

SDE may be interpreted both in the sense of Stratonovich

and in the sense of Itô, but since the Stratonovich interpreta-

tion is less suitable for parameter identification [6], [10], the

Itô interpretation is adapted here. Furthermore, the diffusion

term is assumed to be independent of the state variables at

this stage.

B. Problem Description

The considered parameter identification problem could be

described as:

(P): Estimate the unknown parameter θ in the system

(1) based on a set of data which consists of some

measured output points Yk generated by (2) and input

signal u(tk).

III. PROBLEM SOLUTION

The scheme and techniques used to solve the problem (P)

is given in the following.

A. Discretization of Continuous Time System

The stochastic continuous time model is discretized using

the Euler method [10]:

X j = X j−1 +g1(X j−1,u j−1, t j−1,θ)(t j − t j−1)

+g2(t j−1,θ)(Bt j
−Bt j−1

),
(3)

where t j, j = 1,2, · · · are a discretization of the given time

interval, the subscript j stands for the value of the corre-

sponding variable at t j.

B. Kalman Filter Theory

To solve the problem (P), the KF technique is applied to

make the state estimation. Here the KF technique used in the

paper is summarized in the following.

Extended Kalman Filter (EKF):

Initialization with: X0 and P0.

Time-updated (Prediction):

X̂k|k−1 = X̂k−1|k−1 +g1(X̂k−1|k−1,uk−1, tk−1,θ)(tk − tk−1),
Pk|k−1 = Φk−1Pk−1|k−1ΦT

k−1 +2g2gT
2 (tk,θ),

Sk = HkPk|k−1HT
k +R,

Kk = Pk|k−1HT
k S−1

k ,

Measurement-updated (Update):

rk = Yk −h(X̂k|k−1, tk),

X̂k|k = X̂k|k−1 +Kkrk,
Pk|k = (I −KkHk)Pk|k−1,

where k ≥ 1, gT
2 (·) stands for the transpose of g2(·) and

Φk =
∂ (Xk+g1(Xk,uk,tk,θ)(tk−tk−1))

∂Xk
|Xk=X̂k|k

,

Hk = ∂ (h(Xk,tk))
∂Xk

|Xk=X̂k|k−1

Unscented Kalman Filter (UKF):

Initialization with: X0 and P0.

The first step consists of creating 2n + 1 sigma-points in

such a way that they together captures the full mean and

covariance of the augmented state. The χ matrix is chosen

to contain these points, and its columns are calculated as

follows:

χi,k−1 = Xk−1, i = 0

χi,k−1 = Xk−1 +(
√

(n+λ )Pk−1)i, i = 1, . . . ,n

χi,k−1 = Xk−1 − (
√

(n+λ )Pk−1)i−n, i = n+1, . . . ,2n

where subscript i means the i-th column of the square root

of the covariance matrix, k ≥ 1, λ = α2(n + κ)− n is a

scaling parameter, α determines the spread of the sigma

points around Xk−1 and is usually set to a small positive

value to avoid non-local effects (in the examples, α is set to

0.001), κ is a secondary scaling parameter which is usually

set to 0.

Each sigma-point is assigned a weight. These weight

are derived by comparing the moments of the sigma-points

with a Taylor series expansion of the models. The resulting

weights for mean and covariance estimates are given:

W
(m)
0 = λ

(n+λ ) ,

W
(c)
0 = λ

(n+λ ) +(1−α2 +β ),

W
(m)
i = W

(c)
i = 1

2(n+λ ) , i = 1, . . . ,2n

where β is used to incorporate prior knowledge of the dis-

tribution of X , generally for Gaussian distributions β = 2 is

optimal. The superscript m and c mean that the corresponding

weights are used to calculate the mean and covariance of the

state.

The filter then predicts next state by propagating the

sigma-points through the state and measurement models, and

then calculating weighted averages and covariance matrices

of the states:

χi,k|k−1 = χi,k−1 +g1(χi,k−1,uk−1, tk−1,θ)(tk − tk−1)

X̂k|k−1 =
2n

∑
i=0

W
(m)
i χi,k|k−1

Pk|k−1 =
2n

∑
i=0

W
(c)
i [χi,k|k−1 − X̂k|k−1][χi,k|k−1 − X̂k|k−1]

T

Yk|k−1 = h(χk|k−1, tk−1)

Ŷk|k−1 =
2n

∑
i=0

W
(m)
i Yi,k|k−1
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The predictions are then updated by: first, calculating the

measurement covariance and state-measurement cross corre-

lation matrices, and then, determining the Kalman gain:

PYY =
2n

∑
i=0

W
(c)
i [Yi,k|k−1 − Ŷk|k−1][Yi,k|k−1 − Ŷk|k−1]

T +R

PXY =
2n

∑
i=0

W
(c)
i [χi,k|k−1 − X̂k|k−1][Yi,k|k−1 − Ŷk|k−1]

T

Kk = PXY P−1
YY

rk = (Yk − Ŷk|k−1)

X̂k|k = X̂k|k−1 +Kkrk

Pk|k = Pk|k−1 −KkPYY KT
k

The first stage to solve the problem (P) is to use the above

KF techniques to estimate the state. In the scheme, the UKF

is adopted. As a result, the estimated mean and covariance

of the state are obtained.

C. Maximum Likelihood Estimation

The second stage is to make the ML estimation of

the parameter. Given the model structure in (1) and (2),

the ML estimation of the unknown parameter can be de-

termined by finding the parameter θ that maximize the

likelihood function of a given sequence of measurements

Y0,Y1, . . . ,Yk, . . . ,YN . Introducing the notation

Yk = [Yk,Yk−1, . . . ,Y1,Y0],

then, the likelihood function becomes the joint probability

density, i.e.,

L(θ ;YN) = p(YN | θ), (4)

or equivalently

L(θ ;YN) =

(

N

∏
k=1

p(Yk | Yk−1,θ)

)

p(Y0 | θ). (5)

In order to carry out the optimization of the likelihood

function, the state estimation needs to be solved beforehand.

For the SDE in (1) is driven by a Brown Motion that

is a special Wiener process, and since increments of a

Wiener process are Gaussian, it is reasonable to assume the

conditional densities can be well approximated by Gaussian

densities, which need the means and covariances. Based

on the state estimation results, the parameterized likelihood

function can be rewritten as

L(θ ;YN) =

(

N

∏
k=1

exp(− 1
2
rT

k P−1
YY rk)

√

det(PYY )(
√

2π)n
p(Y0 | θ)

)

, (6)

where PYY is the covariance matrix of Y , while the same

matrix is represented as Sk in EKF, and superscript −1 stands

for the inversion of the corresponding matrix.

Then, the considered problem (P) converts to an

optimization problem which could be described as:

Given a set of measured output Yk and input u(tk)∈U ,

find θ by solving the optimization problem defined in the

following

θ̂ = argmin
θ∈Θ

{− ln(L(θ ;YN | Y0))}. (7)

D. Optimization Computing

To solve the nonlinear optimization problem (7), the quasi-

Newton method [15] is used in the paper.

E. Scheme

The scheme to solve the problem (P) is given:

• Initialization with X0 and P0,

• Using UKF to estimate the state,

• Form the Maximum Likelihood function of the param-

eter based on the result of the state estimation,

• Solve the optimization problem of the Maximum Like-

lihood function, then get the result of the parameter

identification.

IV. ILLUSTRATIVE CASE STUDIES

In the following, the illustration of the proposed method

and comparison with EKF based method are conducted

through a number of numerical examples.

A. Example 1

The first example we use is like the example 1 in the [9].

The system is described as

d





X1

X2

X3



 =







V X1 − UX1

X3

−V X1

Y
+ U(10−X2)

X3

U






dt

+





σ1 0 0

0 σ2 0

0 0 σ3



dBt ,

where (X1,X2,X3)T is the state of the system, and

V = θ
X1

0.5X2X2 +X2 +0.03
,

θ is the system parameter in the drift term of the SDE, U is

the input variable. σ1,σ2,σ3 are unknown parameters in the

diffusion term.

The measurement equation is given as




Y 1

Y 2

Y 3





k

=





X1

X2

X3





k

+ εk,

where (Y 1,Y 2,Y 3)T is the measurement of the state, and εk ∼
N (0,S) with

S =





S11 0 0

0 S22 0

0 0 S33





and S11 = 0.01,S22 = 0.001,S33 = 0.01. Note that superscript

i, i = 1,2,3 stands for the i-th state variable. And the square

of X is noted as XX to avoid potential confusion.

The true parameters are assumed as θ = 1, σ1 = σ2 =
σ3 = σ = 0.1, and the initial state is (1,0.24495,1)T . The U

is a kind of sweeping signal which is plotted in the Fig.1. A

set of outputs (100 samples) is generated by simulating the

predefined system and the data is plotted in Fig. 2.

Both the EKF and UKF plus ML methods are examined

and compared in the following two scenarios.
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Fig. 1. The input U .
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Fig. 2. The real value of the measurement (Y 1,Y 2,Y 3)T .

1) Nominal test, i.e., the data used for identification is

generated from the true system.

• Precision:

The estimation results are shown in Table I. It

can be observed that the parameter estimated using

UKF based method is closer to the real value than

the situation using EKF based method. Since the

model is a nonlinear one, using UKF could provide

a more accurate state estimation [16].

• Convergence issue.

The convergence properties of the two methods

can be judged according to the number of itera-

tions required to reach same tolerant criteria. The

tolerant level is selected as 1.0000e− 004 in our

concern, and Table II shows iteration numbers of

these two approaches. It can be noticed that the

UKF plus ML method converges faster than EKF

TABLE I

THE ESTIMATION RESULTS FOR EXAMPLE 1

Approach EKF MLE UKF MLE

θ 1.0422 0.9983

σ 0.0935 0.0984

TABLE II

THE NUMBER OF REQUIRED ITERATIONS FOR EXAMPLE 1

Approach EKF MLE UKF MLE

The number of the iteration 73 53

TABLE III

THE ESTIMATED PARAMETER FOR ROBUSTNESS TEST: EXAMPLE 1

Approach EKF+ML UKF+ML

θ 1.1325 1.2578

σ 0.1082 0.1115

based method does for this example.

• Computation load.

The two approaches are implemented under the

same computational condition (cpu: Intel Core2

Duo CPU T5900. Memory: 3GB.). The EKF based

method needs 4.272164 seconds while UKF based

needs 8.672853 seconds. From the computational

time point of view, it is clear that UKF based

method needs more calculation power than EKF

based method does. Since UKF uses 2n+1 sigma-

points and the Cholesky decomposition of the

covariance matrix needs to be carried out as well.

2) Robustness test, i.e., the data are generated from the

system in which has the modeling error.

Here the modeling error concerned only happens in

variable V . The data is generated according to the new

V .

V = θ
X1

0.55X2X2 +X2 +0.03
.

However, the following estimation still uses the origi-

nal system model. The convergent values are listed in

Table III. It can be observed both results have some

deviations compared with ”true” identification. Here

the criterion to evaluate the robustness is made as:

la =
| â− âe |

â
,

where â is the nominal result of the identification

while âe is the result based on the modeling error data

(assume a is an unknown parameter of the system).

According to this criterion, lθ = 0.0866, lσ = 0.1572

for the EKF based method while lθ = 0.2599, lσ =
0.0853 for the UKF based method. The results show

UKF based method has larger deviations than EKF

based method. This means that the UKF based method

is more sensitive than EKF based method in the

parameter identification regarding the modeling error.

B. Example 2

In example 2, two senarios are investigated: nonlinear

systems described as a polynomial format and a division

format. For simplicity, all the systems are simulated in one

time unit and the parameter identification is based on 50

sampling points with uniform time intervals of 0.01.
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TABLE IV

THE ESTIMATION RESULT FOR EXAMPLE 2-1

Approach EKF+ML UKF+ML

θ 0.7729 0.8012

σ 0.1056 0.1045

TABLE V

THE NUMBER OF REQUIRED ITERATIONS EXAMPLE 2-1

Approach EKF MLE UKF MLE

The number of the iteration 53 71

The system is generally described as:

dX = f (X ,U,θ)dt +





σ1 0 0

0 σ2 0

0 0 σ3



dBt

Yk = h(Xk)+ εk

where X is the system state, and it is rewritten as

(X1,X2,X3)T , U is the input variable. θ is the system

unknown parameter, and there is σ1 = σ2 = σ3 = σ . Yk =
(Y 1,Y 2,Y 3)T

k is the measurement, f (·) ∈ R
3, h(·) ∈ R

l , l ≤ 3

are some specific nonlinear or linear functions.

1: The function f (·) is a nonlinear polynomial:

f (X ,U,θ) =





X2X2X1 +UX1

X3 +UX2

θX1(X2 +X3)+U





and the measurement equation is

Yk = X1
k + εk

with εk ∼ N (0,0.1). Here the real values are that θ = 0.8,

σ = 0.1, and the initial state is (1,0,1)T . It should be

remarked that the system states become partially measurable,

i.e., only X1 is measured, while in the example 1 all system

states are directly measured. Similarly as what we do for

example 1, the estimated and computing results are listed in

Table IV and Table V.

• Parameters estimation (Table IV)

• Number of iteration (Table V)

• Computation load.

Here the condition of the computation is as the same to

the example 1. The EKF method need 2.376364 seconds

while UKF need 6.419088 seconds.

2: The function f (·) has simple divisions. The only change

to the example 2-1 is that the function f (·) converts to the

following function which has simple divisions.

f (X ,U,θ) =





X2X2/X3 +UX1/X3

θX3/X2

X1 +U





Here the real value of θ is 0.5, initial state is (1,1,1)T

and other variables are just the same to 1. Repeat the same

process and the results are shown in the below tables (Table

VI and VII).

• Parameters estimation (Table VI)

• Number of iteration (Table VII)

TABLE VI

THE ESTIMATION RESULT FOR EXAMPLE 2-2

method EKF UKF

θ 0.7881 0.4883

σ 0.0950 0.0973

TABLE VII

THE NUMBER OF REQUIRED ITERATIONS FOR EXAMPLE 2-2

Approach EKF MLE UKF MLE

The number of the iteration 82 49

• Computation load.

The EKF based method needs 3.666436 seconds while

UKF based method needs 7.084774 seconds under the

same computing condition.

In the example 2, the robustness test is not listed because

the results have the same conclusion with example 1.

The two case studies of example 2 show almost same

results as situations with example 1. In the polynomial

case, the two estimation results illustrate UKF based method

has better performance than EKF based method, if the

computation load won’t be a concern. Regarding to the

converging property, the EKF based method is a slightly

better than UKF based method. However, regarding to the

division case, the UKF based method is obviously better

than EKF based method without concerning of computational

loads. But EKF based method converges much faster than

UKF based method.

C. Discussion

Through the above studies, the characteristics of both EKF

and UKF based methods are illustrated. In general, the UKF

based method can provide more accurate result than EKF

based method. Meanwhile, the UKF based method also pro-

vides faster converging rate than EKF based method although

there are a few special cases. Since the EKF just picks the

first order term through linearization of the nonlinear system

and drops all items higher than the first order. If the influence

of the higher order items can not be ignored in the system,

the EKF may provide a poor performance. In contrast, the

UKF uses sigma-points that are dedicately chosen. [13]

indicated that UKF yields results comparable to a third order

approximation of Taylor expansion. As a result, it provide a

better estimation to the state of the system. That could be

the reason why UKF based method is generally better in

parameter estimation. The payoff for better performance of

the UKF based method is the computational load. The UKF

needs to handle Cholesky decomposition and calculation

based on double-sized sigma-points. Moreover, it has been

found that the UKF based method is more sensitive than EKF

based method regarding to potential modeling errors.

V. CONCLUSIONS AND FUTURE WORKS

A nonlinear parameter identification approach is proposed

by combining the UKF and ML method. The comparison

of the proposed method and EKF plus ML method is also

conducted through a number of case studies. In general,
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the proposed method shows a better performance than EKF

based approach in terms of precision and converging rate.

However, the proposed method requires more computational

power and it is more sensitive to potential modeling errors.

To extend this method to handle more general cases, e.g.,

the diffusion term of SDE is state dependent, will be part of

our future work.
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