
Aalborg Universitet

New Tools For Research and Development Acceleration of GNSS Receivers

Plausinaitis, Darius; Borre, Kai

Published in:
Proceedings of 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS
Signals and Signal Processing (NAVITEC)

DOI (link to publication from Publisher):
10.1109/NAVITEC.2010.5707992

Publication date:
2010

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Plausinaitis, D., & Borre, K. (2010). New Tools For Research and Development Acceleration of GNSS
Receivers. In Proceedings of 5th ESA Workshop on Satellite Navigation Technologies and European Workshop
on GNSS Signals and Signal Processing (NAVITEC) IEEE Press.
https://doi.org/10.1109/NAVITEC.2010.5707992

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/NAVITEC.2010.5707992
https://vbn.aau.dk/en/publications/1ce93bab-d971-4ae7-869c-c59e893d57f9
https://doi.org/10.1109/NAVITEC.2010.5707992

New Tools For Research and Development
Acceleration of GNSS Receivers

Darius Plausinaitis
Danish GPS Center

Aalborg University, Denmark
Email: dpl@gps.aau.dk

Kai Borre
Danish GPS Center

Aalborg University, Denmark
Email: borre@gps.aau.dk

Abstract—This paper analyzes strengths and shortcomings of
the existing aids for GNSS receiver development. A new set of
tools is presented that provides to the developer debugging and
optimization capabilities not supplied so far by existing tools.
The proposed tools are simple and therefore very affordable, but
never the less they are very functional.

The first results are presented from the application of the
proposed tools in a GNSS receiver debugging.

I. INTRODUCTION

Real-time GNSS receiver development in an embedded-type
platform has its own development challenges. Most general
purpose software debugging tools are oriented into traditional
software application debugging, but often are not convenient
to debug signal processing aspects of the receiver. Furthermore
due to receiver requirements, usually the CPUs are slow and
memory for data or code is very limited. This limits the choice
of debugging aids that can be implemented as receiver code
or possibilities for in-receiver debugging data storage, event
logging. All this limits how long or what data or signals can
be observed in the receiver under development or testing.

One more problem for receiver development is the avail-
ability of required GNSS test signals. Dedicated hardware
based GNSS signal simulators and test beds are most often
used to perform complete receiver tests. Both of these are
expensive solutions. Not all companies or institutions can
afford to acquire these necessary tools or access to the tools
is time limited and creates other inconveniences. The next
alternative—the signals in space might not be available all the
time. For example today GIOVE signals are only visible to
the user once, twice a day. Out of these signal visibility cases
some signals will be obstructed due to low elevation angles.

We start with an outline of the available GNSS receiver
debugging options and their drawbacks. Then we present the
basic debugging technique proposed by DGC. In the later
sections we add more features to this initial, basic setup. In
the last part of the paper we outline other applications of the
proposed GNSS debugging tools.

II. CURRENT RECEIVER DEBUGGING FACILITIES

There a number of existing software and hardware based
tools when it comes to debugging and optimization of GNSS
receivers or embedded systems in general.

During development the engineers will build the software
and hardware in incremental manner from smaller blocks and
then use test vectors to verify correct functionality of each
separate block. Because each building block can be isolated
from effects of other blocks and tested with known data the
testing here is relatively easy and does not create especially
big challenges. Challenges arise when the complete system
must be tested. This is caused by interrelations between all
building blocks, execution in real-time and possibly when
receiving live GNSS signals in difficult reception conditions.
This was encountered also during the DGC development of
GNSS receivers.

In the rest of this section we outline which information
from the receiver would be helpful and the possible aids
in receiver testing and debugging and the drawbacks of the
already available choices. Only the tools that are the most
popular and the most relevant to the topic of the proposed
solution are presented.

A. A short anatomy of the patient

First we would like to outline which information is helpful
to the engineer when he is debugging a GNSS receiver. An
engineer (or a group of engineers from different fields) first of
all needs to validate correct functionality of the receiver. This
requires some test input signals and some test measurements
in various places along the signal processing chain. To do this
an access is needed to some key points of the GNSS receiver
as is shown in Figure 1.

In the figure we see typical receiver internal details and the
key points in the receiver signal processing chain where re-
ceiver operation can be monitored. The description of receiver
operation can be found for example in [2] and will be omitted
in this paper.

Point 1 can be connected to a GNSS signal simulator instead
of antenna to provide tests signals for the receiver.

At point 2 the correct functionality of the receiver front-end
can be validated.

Signals from points 3 and 4 would be very useful as they
allow to see the actual correlation results and also which values
are fed back by the loop close software. From the correlation
values it is possible to observe the actual tracking noise,
steady state errors or any anomalies in the received signals.
Interference effects and channel software responses to it also

978-1-4244-8739-4/10/$26.00 ©2010 IEEE

GNSS Receiver

CPURF

front-

end

PVT SW

Serial

or

USB

port

Channels

Correlators

Generators

Channel SW
1

2 3

4

5

Fig. 1. The key measurement points along the GNSS receiver signal
processing chain.

could be monitored. Unfortunately these very useful signals
(and crucial in channel development) are the most difficult
to monitor. One of the reasons is that these signals are not
routed outside the receiver ASIC. The second reason is that the
physical signal transfer is implemented in a bus and is mixed
with data from other receiver devices (for example serial port,
timers etc.) that travel to and from the receiver’s CPU.

A bus is a group of signals, wires used to interconnect two or
more devices. It enables data exchange between these devices.
The bus itself is composed of two main subgroups of signals.
One is used to transfer actual data and the second is used to
indicate the destination or the source address of the transfered
data. Commonly these two subgroups are called data bus and
address bus.

In a simple bus there can be only one active data transfer
at any instance of time. Devices ”take turns” to send data
through the bus that is shared between them. This means that
the stream of transfer operations in the bus will contain a mix
of data (in time domain) coming from different sources.

In this paper a single event on the bus, like a data transfer
to the processor or a transfer from the processor, will be called
a bus transaction.

Receiver PVT solution messages and other status data are
sent by the receiver software through point 5. The receiver
developer can modify the receiver software to supply virtually
any data that is available to the CPU. But in practice the
amount or rate of such data can be severely limited by the
connection speed to the PC or the receiver’s CPU performance.

B. Debuggers

A debugger is a software tool that allows to stop and inspect
a program running on a CPU. The debugger itself can run on
the same CPU or externally, for example on a PC. In the latter
case there must be some hardware means that enables this PC
to communicate with the CPU under test. The debugger can
use a dedicated hardware connection to the receiver, or it can
use the existing serial, or USB data connection for the same
purpose. The debugger is the primary way to test any system
that contains a CPU. The setup with a debugger is shown in
Figure 2.

GNSS Receiver

CPURF

front-

end

PVT SW

Serial

or

USB

port

Channels

Correlators

Generators

Channel SW
1

2 3

4

5

Debugger

optional HW

connection

Fig. 2. GNSS receiver test setup with a debugger.

Apart from of code inspection, the debugger allows to read
data from the receiver memory. This means that any data that
are used by the CPU can be also accessed by the debugger.
This corresponds to access data at points 3, 4, and 5 as
shown in the figure. But this can only be done when the
receiver software is temporally stopped. Unfortunately for a
GNSS receiver this stop brakes the signal processing as the
channels are not stopped, and the incoming signal is arriving
continuously. After such stop the receiver will have to restart
its normal operation from the acquisition step.

It is possible to log the data of interest (for example the
correlation values) in the receiver memory. Additional code
must be inserted into receiver software to do this data logging.
After the logging is complete the receiver program is stopped
and the debugger then can read the complete log of the data.
Or alternatively the receiver CPU could send this data through
the existing connection to the PC (point 5 in the figures). But
in this case the receiver CPU must have processing power
surplus to handle this relatively high speed data transfer.

Such data storage solution requires substantial amounts of
receiver memory, especially if data from all channels must be
logged for minutes. For a single GPS channel which is based
on six 32 bits wide correlators the created data rate is about
24 KB/s or 1.44 MB/min. This number has to be multiplied by
the number of monitored channels. This is especially a clearly
visible problem for receivers that use on chip memory with
size a few hundreds of kilobytes (such type of memory is
expensive and therefore as small as possible). This allows to
capture short snapshots of receiver operation. Furthermore the
receiver operation is still interrupted by the debugger, although
not constantly.

An additional problem is that due to limited memory space
some conditions must be placed in the receiver software when
to activate the logging of data. It is not always possible in the
receiver software to detect the conditions or the events that
shall activate data logging (for example a too large deviation
from the true trajectory or a particular behavior of a channel).
If the cause of the receiver problems is not known, it becomes
even more tedious to define conditions when to log the receiver
data.

In addition to these inconveniences the additional code
and storage of log data can alter the receiver behavior. This
is because the additional code alters the length of software
procedures (in particularly this is critical for code that is
serving channels) and also because some software bugs are
sensitive to the memory layout of the receiver software. In such
cases the previously observed receiver problems can disappear
or change their manifestation patterns.

C. Logic analyzers

Logic analyzers are dedicated tools to visualize and to log
digital signals. For a not familiar reader it can be described as
an equivalent of an electrocardiography device for monitoring
of digital circuits. It can show the actual binary values of
digital signals as well as their changes in a time plot. The
logic analyzers are always used to debug and verify the GNSS
receiver hardware (and also any other kind of digital devices).

The advanced (and expensive) logic analyzers can show
and log more than 100 signals and can contain capabilities
to directly decode the bus activity of a CPU. Also it can have
DSP related capabilities for example to do FFT and other kinds
of signal plots (alone or if connected to additional equipment).
This feature allows the analyzer to plot signal spectrum of the
receiver IF signal from test point 2 shown in Figure 1.

In an FPGA based receiver development it is possible to
monitor with logic analyzer virtually any signal inside of the
FPGA chip. If ASICs are used, then only signals at the outputs
of the chips can be monitored, unless the ASIC design includes
special facilities to access internal signals.

Although the logic analyzers can interpret the actual values
of the data words sent between CPU and the channels (points
3 and 4 in Figure 1), it will have trouble to sort out which data
at what time instance belongs to which channel and even to
what particular component of this channel. This means that it
cannot present the captured data at points 3 and 4 in a unique
way.

D. GNSS signal simulators

A GNSS simulator (or a generator) is used to generate
a precisely specified set of GNSS signals as they would be
observed by a receiver moving along a predefined track. The
signals at the GNSS simulator output are at RF frequency (L1,
E5 etc.). Typically the simulation includes atmosphere effects,
multipath, and to some degree other effects. The output of a
GNSS simulator is connected to the receiver instead of the
receiver GNSS antenna (at point 1 in Figure 3). Then the
receiver computed position, velocity, and time data from point
5 is compared to reference data supplied by the simulator.

Hardware GNSS simulators use precisely calibrated soft-
ware and hardware to simulate in real-time as precise as
possible signals at RF. Therefore good GNSS simulators are
expensive.

There is a different class of GNSS simulators that do not use
hardware to generate signals. These are pure software based
simulators. Some of them simulate complete GNSS systems
from end to end. This means that the signals are simulated

HW GNSS Simulator

GNSS Receiver

CPURF

front-

end

PVT SW

Serial

or

USB

port

Channels

Correlators

Generators

Channel SW
1

2 3

4

5

GNSS

signal

simulation

Predefined

receiver

trajectory

Comparison

of PVT data

Results

Fig. 3. GNSS receiver test setup with a simulator.

all the way from satellite constellation and propagation to
the computation of the receiver position. Any intermediate
signals in this simulation chain can be generated including
the sampled IF signals after receiver front-end.

Such simulators cannot be used for a real, non PC based
GNSS receiver tests as there is no direct way to interface
the simulated signals to the actual receiver hardware. These
simulators are mostly used for research and development
purposes.

Hardware simulators are very good to verify GNSS receiver
operation and to detect or to recreate the problematic cases.
But on their own, they do not provide any additional insight
into the receiver signal processing part and cannot aid directly
in pinpointing to the malfunctioning part of the receiver.

E. Missing information

Out of the listed existing development and debugging aids
none can provide a convenient means to access the interme-
diate results of GNSS signal processing.

Signals at point 2 can be accessed even in some receiver
ASICs, but this is usually only necessary during optimization
of the developed receiver front-end.

Signals from points 3 and 4 are the most valuable in channel
debugging and the most difficult to access.

All data in the receiver CPU and the receiver memory can
be accessed by a software debugger tool, but the debugger
access can interrupt signal processing.

In view of these problems the DGC has developed new
aiding tools to access information at points 3 and 4 as shown in
the figures in this section. The proposed solution is transparent
to the receiver signal processing chain and therefore does not
interrupt it.

III. THE BASIC DGC DEBUGGING SOLUTION

The basic DGC solution is a bit similar to the logic analyzer
approach, but the DGC solution is using a dedicated design
which makes the hardware very simple and cheap. The more
complex data processing and analysis software are executed

GNSS Receiver

CPURF

front-

end

PVT SW

Serial

or

USB

port

Channels

Correlators

Generators

Channel SW
1

2 3

4

5

Additional hardware

FIFO

Glue logic

USB chip

Fig. 4. Basic version of the proposed GNSS receiver debugging setup.

on a PC. The signals are captured only at the instance of bus
transaction to or from the channels. Figure 4 shows the DGC
debugging setup.

The points 3 and 4 in the figure physically are implemented
in a form of a data bus and both data transfers travel through
this single bus. This means that only a copy of bus signals
(data and part of address lines and a transfer direction flag)
must be made to get access to both the correlation information
and the loop closure data. This bus transaction copy is stored
in a FIFO buffer. From there this information is fetched by a
dedicated USB chip and sent over a USB connection. The USB
data stream is captured by a software running on a PC. The
captured data then can be stored in a file for post processing
or can be analyzed and displayed in real-time.

The software analyzes the captured data by inspecting one
receiver CPU transfer at a time. First it must decode from the
captured address lines the channel and the component of the
channel that is accessed by this data transfer. To do this, the
configuration of the receiver address space must be known to
the software. Then the actual captured data can be appended to
an array that is associated to this component (NCO increments,
correlator values). At the end the time plots are made of each
from these arrays or data analysis is performed. For example
the variance of the code tracking noise can be computed from
increment values that is sent to the code NCO.

In practice it means also that any other data exchange on the
same bus between CPU and any other peripherals (like serial
ports, timers) can be captured and presented by the proposed
tools if needed.

IV. THE COMPLETE DEBUGGING SOLUTION

In the augmentation of the basic GNSS debugging setup
we address the issue of test GNSS signals. The most reliable
testing conditions are obtained by use of GNSS simulators.
There are two problems associated with signal simulators.

One is the high price. Even if the simulator is acquired, it
can happen that it has to be sheared across members of the
development team as it is too expensive to acquire a GNSS
simulator per developer.

TABLE I
AN EXAMPLE OF VISIBILITY PREDICTIONS FOR GIOVE SATELLITES AT

THE DGC SITE

Date Time Satellite Maximum elevation [◦]

28/10/2010 12:51:30 GIOVE-B 71.6
28/10/2010 18:26:30 GIOVE-A 71.9
29/10/2010 04:04:07 GIOVE-B 11.6
29/10/2010 06:39:42 GIOVE-A 35.2
29/10/2010 18:23:45 GIOVE-B 85.5
29/10/2010 22:42:20 GIOVE-A 30.6

The second problem is that although simulators can simulate
many real life signal propagation conditions, they are unable
to simulated all cases. Besides this, in real life various kinds
of interferences can be associated with each particular receiver
site. Therefore the receiver can exhibit unstable operation,
although it has successfully passed tests with a simulator.

An alternative solution is to use live GNSS signals. This
solution has its own problems. First, there is no control and
no or little knowledge about true parameters of the received
signals. Also it can be hard to recreate the signal reception
conditions for repeated tests.

The second problem is the availability of signals. For
example GIOVE or COMPASS signals may be available just
a few times per day. Some of these observations can have
low elevation angles and therefore signal reception can be
obstructed. An example of signal availability is shown in
Table I.

The proposed solution is shown in Figure 5. The proposed
alternative is a combination of the two approaches. The live
signals are used for receiver tests. But a copy of these signals is
made in the receiver at point 2 by the debugging hardware and
is sent to the PC using the same USB link as in the previous
solution. The copy of the received signals is saved in a file on
the PC.

Later the PC software instructs the debugging hardware
tools in the receiver to substitute the digital IF stream from the
front-end at point 2 with data that were recorded previously.
Then the signal record is played back to the receiver. The
ADC sampling clock signal is used to clock the played back
IF signal samples.

An arbitrating hardware must be added to share the same
USB chip by the two data streams. Also the USB chip must
be steered to indicate which data stream sample is currently
transfered. The USB connection (and the chip) natively can
support multiple data streams in parallel. Note that the FIFO
for the IF signal must support data transfer in both directions
if signal playback function is required.

This setup enables repeatable tests with the same recorded
GNSS signals. The recorded signals can be thoroughly ana-
lyzed for example in a PC based SDR and parameters of all
signals can be determined.

This setup also allows to use much more efficiently the few
signals from Galileo, COMPASS or any other of today’s or
future system. In the same way the signals from the GNSS

GNSS Receiver

CPURF

front-

end

PVT SW

Serial

or

USB

port

Channels

Correlators

Generators

Channel SW
1

2

3

4

5

Additional hardware

FIFO

Glue logic

USB chip

FIFO

Mux

Fig. 5. The complete version of the proposed GNSS receiver debugging
setup.

simulators can be reused, too. This can help in situations
when access to the GNSS simulators is time limited. A set
of reference test records from a GNSS simulator can be
established and from that point the receiver tests can be done
without access to the simulator.

It is also possible to exchange signal records between
engineers or obtain them from customers to do receiver per-
formance investigations. The contents of the received signals
can be thoroughly analyzed in post-processing mode on the
PC to identify the cause of the receiver problems or detailed
contents of the recorded signal.

Now the possibility opens to use the pure software GNSS
simulators as now the hardware link exists that can inject the
simulated signals from the simulator into the signal processing
chain of the receiver.

Furthermore possibilities open for experiments with receiver
front-end design or optimizations, because actual front-end
hardware is not required. The simulated GNSS signals or re-
sampled signals from a very high quality live GNSS signal
record can be used.

As the IF signal records can take a lot of storage space it is
beneficial if the software running in the PC has an option to
activate the recording function only when particular reception
conditions or position measurements are observed. A buffer
can be used in the software to store a piece of signal that was
received some time before the actual event of interest was
detected. This allows to investigate pre-conditions before the
event of interest.

V. IMPLEMENTATION OF THE DEBUGGING SETUP

The test implementation is done in the same FPGA based
platform as is used for the DGC real-time receiver. The
receiver in this example is based on an ML510 FPGA board
that contains Xilinx Virtex 5 FX130 FPGA chip. An L1 GNSS
front-end is connected to the FPGA board. The front-end is
using the Maxim 2769 GNSS front-end chip. The sampling
frequency is set to the default value for this front-end which
is 16.368 MHz. A serial RS-232 connection to a PC is used

Fig. 6. The Cypress FX2 USB module attached to the FPGA board.

to receive position, measurement messages, and other status
messages.

The FIFO and the glue logic are implemented in the FPGA
fabric. The USB connection on the receiver side is handled
by a dedicated USB data streaming chip FX2 from Cypress
Semiconductor [4]. The USB chip board is attached to the
FPGA board and is shown in Figure 6.

The receiver channels (an IP block) and the receiver CPU
are attached to a PLB bus [3]. Internally it contains sub-
buses for data and address lines and additional signals for
signaling different events and commands (read, write, etc.).
In the current receiver implementation the data bus is 32 bits
wide and the address bus is 64 bits wide.

The proposed debugging setup captures only a necessary
part of the PLB bus signals. The complete 32 data bits and 23
lowest address bits contain enough information for debugging
purposes. In addition a bus flag is also captured (a single bit
signal) that indicates the type of data transfer (read or write
from CPU perspective). This means that in total 56 signals
are captured by the debugging hardware at each data transfer
from or to receiver channels.

The bus capture event is executed only when an access to the
channel hardware is detected. For this purpose the chip select
(CS) signal from the channel IP block is used. CPU access
to other peripherals is not captured to reduce the amount of
captured data.

The instance of data capture takes place in this implemen-
tation at the raising edge of the bus read or write acknowledge
signal.

The Cypress FX2 USB chip supports only 16 bits wide data
interface. This requires the captured 56 bit vector to be split
into 16 bit wide data chunks. This is done automatically by the
FIFO buffer IP block, as it supports this feature of different
bus widths at input and output of the FIFO.

The chosen FIFO supports only power of 2 based ratios
between data widths at input and output. For a 16 bit output
constraint and the chosen captured data width the closest

00 A22-A10 10 11F 01 A9-A0 D31-D28 D27-D14 D13-D0

064

16 bits 16 bits 16 bits 16 bits

32 bits from data bus23 bits from address bus

Data direction flag

(read not write signal)

Fig. 7. The structure of the 64 bits vector at the FIFO input.

choice is a 64 bit wide FIFO input (16 × 4). Therefore one
bus capture write to the FIFO yields four 16 bit reads at the
output.

Separate clock domains were implemented to make the
receiver hardware and the USB chip more independent.
Presently the FIFO input is clocked by the CPU bus clock
at 100 MHz. The FIFO connection to the USB chip is clocked
at 30 MHz. The Xilinx FIFO IP block supports operation
with two clock domains and therefore prevents data corruption
when it crosses clock domains.

The four 16 bit pieces must be recombined at the PC side.
There is a need for a mechanism to identify which 16 bit
piece belongs to which captured bus transaction. The two most
significant bits of every 16 bit transfer are reserved for this
purpose.

The two bits indicate the sequence number (0 to 3) of the
16 bit transfers that belong to the same data set. The first 16
bit chunk of a bus transaction capture has this value set to 0,
and the last one set to 3.

The two reserved bits reduce the amount of the useful data
that can be transfered in a single capture by 8 bits. Therefore
the width of the captured address bus was specifically set to
23 bits to make the total size of captured data equal to 56 bits.
The final structure of the captured data is shown in Figure 7.

The current software at the PC side does processing of the
incoming USB data stream in three steps which are shown in
Figure 8. First it recombines the four 16 bits data chunks of
each bus transaction and stores the results in two arrays. One
is used to store the 32 data bus values and the other is used
to store the address values. The data transfer direction bit is
included in the contents of the address data.

In the second step the address information is decoded. This
allows to identify to which component of the channel (and of
which channel) the data in this bus transaction is associated.
As a result in this step the data array contents from the first
step is rearranged and stored into separate arrays for each
component (code and carrier NCOs, all correlators etc.) per
receiver channel (channel data structure).

The third step is the data analysis and plotting of results.
In the current setup, Matlab is used to do the three data

processing steps. At the end of the processing it produces per
channel figures that contain plots of correlation results, the
frequency values supplied to the code and carrier generators,
and the code and carrier tracking error measurements. The plot
is very similar to the channel plots made by the DGC Matlab
SDR [1].

Recombine 16 bit parts

Bus DataAddress Data

Decode address; rearrange data

Data structures for channels

Analysis of data

Plot of results

Record file

Fig. 8. The PC software data processing sequence.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3000-2000-10000100020003000 Bits of the navigation message
Time (s)I prompt amplitude

Fig. 9. The inphase prompt correlator values captured by the proposed tool
at an instance of receiver performance degradation.

VI. RESULTS

The DGC has successfully implemented the basic debugging
setup. The tracking plots were created by Matlab scripts. This
allowed immediately to have a much clearer picture of the
nature of receiver problems. Due to size constraints of the
present paper we provide only one sample plot in Figure 9.
In this plot you can see the inphase prompt correlator values
during a case when signal tracking performance was degraded.
The picture implies that there is a strong multipath signal
received by the channel, but further investigations are needed
to prove that.

Due to human resource limitations DGC has not yet im-
plemented the full debugging setup. But already the existing
solution made the receiver testing much simpler as the data
capture can now be done at any time instance. There was
no need to write complicated checks in receiver software to
activate data logging. Instead, the logging was activated from
the PC whenever position plots on the PC were indicating
deviations from the nominal receiver operation.

Absence of time limits for the records made it possible to
capture the complete picture of signal processing and not just a
small window of it. The length of the records is only limited
by the size of the PC storage capacity in contrast to a few
seconds when DGC was using memory buffers in the receiver
to record channel activity. The current USB transfer data rate
is about 40MB/min for a 14 channel receiver.

Separate tests verified the capability to capture GNSS
signals from a stand alone GNSS front-end using the same
USB chip, but without connection to the receiver bus capture

hardware.
It took about 3 weeks to implement the basic setup for a

developer that has basic HDL development skills and a prior
experience of USB data transfer design as is presented in this
paper. The development time includes design and implemen-
tation of the USB chip interface hardware and Matlab code
development.

The FPGA recourse use of this implementation is 2 (out of
298) RAMB36 EXPs blocks and 30 (out of 20480) slices.

Although this implementation of tools is done in the receiver
FPGA, it is also possible to use a separate very small FPGA
combined with the USB chip (similar to [5]). In this case the
access to the receiver CPU bus and IF signals must be provided
by the receiver FPGA or ASIC (see section VII-A regarding
access to the signals in ASICs).

VII. OTHER EXTENSIONS OF THE CURRENT SOLUTION

Current implementation of the tools is using a record file
to store the captured bus data and the results are plotted after
post-processing of records. In future implementations the plots
(or a subset of plots) shall be done in real-time. The data rate of
the captured data is not expected to cause performance issues
for today’s PCs.

Other applications of the presented debugging setup are
possible.

For example the tools allow to monitor the increment values
that are supplied to the code and carrier NCOs. The channel
setup events and values are also easily detected. Furthermore
it is possible to detect the channel loop closure procedure
activations from the processor bus activities that are performed
to service the channels interrupt signals (it was verified in
tests). This yields information about receiver time.

It is possible to create (or use the same code from the
receiver) software routines in the PC to obtain the raw GNSS
time of transmission measurements. This allows to verify
receiver measurement and position computation routines. A
much more thorough testing can be done in the PC as there
are no more real-time operation, receiver memory size or CPU
performance constraints.

Another example is a multipath monitoring, visualizing
receiver. The proposed tool is capturing data from multiple
correlators per channel as the receiver CPU only reads data
from these extra correlators. But the receiver CPU does not
need to handle and prepare all these data according to some
protocol that is used for connection through point 5. The
proposed debugging hardware will do that at a high data rate
without further involvement of the receiver CPU.

If multiple front-ends are used or if the sampling frequency
is very high, the current USB bandwidth will be too small to
transfer all these data. In this case the USB connection can be
substituted with faster Ethernet or PCI Express connections.

A. Application in receiver ASICs

The complete solution is relatively easy to implement in
a development receiver version, but it requires substantial
number of signals to be routed to the pins of the ASIC.

However some of the chips may have already most of the
signals present at their pins.

If the front-end chip is implemented in a separate chip, then
there is access to the digital IF samples. With some simple
additional hardware it is possible to inject samples of test or
recoded GNSS IF signals.

The access to the CPU bus can be complicated or impossi-
ble, but some designs of ASICs do have bus signals provided
to outside world. Most often it used for connection of external
memory or peripherals. However with more complex CPUs
this can be of no use as such CPUs can have separate buses
for memory and peripherals.

VIII. CONCLUSION

The authors have surveyed a set of available solutions
and found that none of them completely fulfilled the GNSS
receiver debugging and optimization needs. The essential
information from receiver channels was severely time limited
or did not show the full picture.

The proposed solutions provide great improvement in visu-
alization of receiver signal processing activities and already
has proved to be very helpful in receiver debugging.

After the first tests it was noted that the combination of
an FPGA based receiver and the proposed tools combines the
good qualities of hardware and PC based software defined
receivers. The GNSS signal processing is done at the speed
of a hardware receiver, but the signal processing visualization
is done with near SDR flexibility. For example it can take
about 2 hours to process 1 minute of a GNSS signal in a pure
Matlab GPS SDR. By the proposed tools it takes one minute
to receive the signal and a couple of minutes to process the
captured data.

These are very early conclusions, as the first tests were
finished a shortly before publication of this paper.

ACKNOWLEDGMENT

The authors acknowledge the financial support granted by
the Danish National Advanced Technology Foundation under
J.no. 009-2007-2.

REFERENCES

[1] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, S. H. Jensen , A Software-
defined GPS And Galileo Receiver. A single frequency approach. Boston,
MA: Birkhäser Boston, 2006.

[2] E. D. Kaplan and C. J.Hegarty, Understanding GPS. Principles and
applications, 2nd ed. Boston, MA: Artech House Publishers, 2005.

[3] CoreConnect Architecture—Processor Local Bus (PLB), Xilinx, Inc.
Available:
http://www.xilinx.com/ipcenter/processor central/coreconnect/
coreconnect plb.htm

[4] EZ-USB FX2LP Overview, Cypress Semiconductor. Available:
http://www.cypress.com/?id=193

[5] E-Series FPGA Cards, Pico Computing. Available:
http://www.picocomputing.com/e series.html

