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Abstract

Over the past few decades, numerous strategies to virtualise traditional instru-
ments have been developed. Although one could create digital musical instru-
ments using pre-recorded samples of their real-life counterparts, the playabil-
ity will not be captured. Instead, a simulation of the underlying physics of the
instrument could be created, and is much more flexible to player interaction.
This physical model will allow a musician to be much more expressive when
playing the digital instrument than if static samples were to be used. Using ad
hoc hardware to control the simulation could potentially make the simulated
instrument feel identical to the original.

Applications of physical modelling for musical instruments include simu-
lating instruments that are unplayable as they are too rare or vulnerable. A
model of the underlying physics of the instrument could potentially resurrect
the instrument making it available to the public again. Furthermore, as a
simulation is not restricted by the laws of physics, one could extend the possi-
bilities of the original instrument. Properties such as the material or geometry
of an instrument could be dynamically changed which broadens the range of
expression of the musician. One could even imagine physically impossible
musical instruments which still exhibit a natural sound due to the underlying
models.

In this project, finite-difference time-domain (FDTD) methods have been
chosen, as they have an advantage in terms of generality and flexibility regard-
ing the systems they can model. A drawback of these methods is that they are
quite computationally expensive, and although many highly accurate models
based on these methods have existed for years, the computing power to run
them in real time has only recently become available. The main challenge is
thus to run the simulations in real time to allow for proper player interaction.

This thesis presents the development and real-time implementation of
various physical models of traditional musical instruments based on FDTD
methods. These instruments include the trombone and more obscure instru-
ments such as the hurdy gurdy and the tromba marina. Furthermore, a novel
method is presented that paves the way for dynamic FDTD-based musical
instrument simulations allowing for physically impossible instrument manip-
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ulations. Finally, this work doubles as an aid for beginners in the field of
musical instrument simulations based on FDTDmethods, and aims to provide
a low-entry-level explanation of the literature and theory that the physical
models are based on.

vi



Resumé

I løbet af de sidste årtier, er der blevet udviklet adskillige strategier til at
lave virtuelle udgaver af traditionelle musikinstrumenter. Selvom digitale
musikinstrumenter baseret på traditionellemusikinstrumenter, kan skabesved
hjælp af lydoptagelser af deres virkelige modstykke, er det ofte på bekostning
instrumenternes spilbarhed. En anden strategi ville være at implementere en
digital simulering af instrumentets underliggende fysik, hvilket ville give en
mere fleksibel og naturlig interaktion. Denne digitale simulering, en fysisk
model af instrumentet, ville gøre det muligt for en musiker at være mere
udtryksfuld når han eller hun spiller på det digitale musikinstrument end
med statiske lydoptagelser. Derudover, ved at bruge ad hoc hardware til at
styre simuleringen, kunne man potentielt få det digitale musikinstrument til
at føles identisk med originalen.

Fysiskmodellering afmusikinstrumenter kan også anvendes til at simulere
musikinstrumenter, der er sjældne eller for sårbare til at må spilles på. Her
ville enmodel af instrumentets underliggende fysikpotentielt kunnegenoplive
instrumentet ved gøre det tilgængeligt og spilbart igen. Ydermere, kunne
man forbedre det originale instrument, eftersom en digital simulering ikke
er begrænset af fysikkens love. Egenskaber som instruments materiale eller
geometri kunne dynamisk ændres og udvide musikerens udtryksmuligheder.
Man kunne endda forestille sig fysisk umulige musikinstrumenter, der stadig
har en naturlig klang på grund af de underliggende modelleringsprincipper.

Til dette projekt er finite-difference time-domain (FDTD) metoderne blevet
valgt sommodelleringsteknik, siden disse metoder er generelle og fleksible og
derfor har en fordel i forhold til de forskellige typer af systemer som de kan
modellere. En ulempe ved FDTD metoderne er at de er beregningstunge, og
selvom der har eksisteret nøjagtige modeller baseret på disse metoder i årevis,
er computer regnekraften til at køre dem i realtid først blevet tilgængelig for
nyligt. Den største udfordring er derfor at køre simuleringerne i realtid og at
opnå naturlig interaktion imellem udøveren og simuleringen.

Denne afhandling beskriver udviklingen og implementeringen af forskel-
lige fysiske modeller af traditionelle musikinstrumenter baseret på FDTD
metoder i realtid. Disse instrumenter inkluderer trombone og mindre kendte
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Resumé

instrumenter som drejelire og tromba marina. Desuden præsenteres en ny
metode, der muliggør dynamiske parametre i FDTD-baserede musikinstru-
mentsimuleringer og tillader instrumentmanipulationer som er umulige i den
virkelige verden. Derudover, kan denne afhandling bruges som et hjælpemid-
del til begyndere inden for simuleringer af musikinstrumenter, og sigter mod
at give en begyndervenlig forklaring af den litteratur og teori, som de fysiske
modeller er baseret på.
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Preface

This PhD thesis is the product of a 3-year long endeavour on physical mod-
elling musical instruments using finite-difference time-domain (FDTD) meth-
ods. The main contributions include several real-time implementations of
traditional musical instruments ranging from string instruments to brass in-
struments. Furthermore, a novel method has been created to change the
material properties of the simulations in real time, which allows for physi-
cally impossible manipulations of the instrument. This thesis is structured
as a collection of papers preceded by an introduction describing the methods
on which the publications are based in extended detail. A comprehensive
overview of the structure of this thesis appears at the end of Chapter 1.

A personal note

The field of physical modelling for sound synthesis is cross-disciplinary and
combinesmathematics, physics and computer science. Asmy background did
not include any of these disciplines, the terminology and different notations
used by the literature were slightly overwhelming at first.

After overcoming the initial steep learning curve, I discovered that existing
work lacks a lot of intuition needed for readers without a background in any
of these disciplines. Rather, much of the literature assumes that the reader
has a degree in at least one of the aforementioned topics. In his seminal
work Numerical Sound Synthesis, which is the most complete work to date
on physically modelling musical instruments using FDTD methods, Stefan
Bilbao says that, in order to read his book, "a strong background in digital signal
processing, physics, and computer programming is essential." This inspired me to
use this opportunity to write a large part as an aid for beginners in the field,
while simultaneously relating it to the contributions made during the PhD
project. Additionally, I hope that this enhanced level of detail supports the
reproducibility of my contributions without overshadowing them.
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Chapter 1

Physical Modelling of
Musical Instruments

The earliestmusical instruments date back to the start of human civilisation [1].
It has only been over the last sixty years, that technological advances have al-
lowed for the creation of digital versions of traditionalmusical instruments. At
the time of writing, an uncountable number of digital musical instruments ex-
ists, including digital keyboards that produce sounds from various real (and
non-real) instruments, as well as digital instrument plug-ins used by music
producers. Many of these digital instruments are based on samples, or record-
ings, of their real-life counterparts, while others use computationally efficient
methods to generate sounds, some inspired by physical musical instruments.
The earliest sound synthesis techniques date back to the late 1950s where Max
Mathews proposed a technique called wavetable synthesis [2]. Not long after,
in the 1960s, efficient sinusoidal-based and filter-based sound synthesis tech-
niques such as additive synthesis, subtractive synthesis, and FM (frequency
modulation) synthesis were invented [3, 4]. The latter became widely popular
through the Yamaha DX7 synthesiser created in 1983, that synthesised sounds
based solely on this technique [5]. Through a simple change of variables, FM
synthesis can generate sounds ranging from brass instruments to drums.

Most of these techniques are referred to as spectralmodellingmethods,where
the manipulation of sinusoids or filtering noise produces (harmonic) sounds,
which could be perceived by the listener as originating from a physical instru-
ment. This top-down approach which starts at the perception of the listener,
has advantages in terms of computational efficiency, but is quite limited by the
systems it can model [6].

As computing power increased over the last few decades, using physical
models rather than samples or spectral modellingmethods gained an increased
popularity. Physical modelling, in the context of sound and music, is a way

3
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to generate sound based on physical processes, including string vibrations
in a guitar, air propagation in a trumpet, or even the reflections in a concert
hall. When compared to spectral modelling, this is a bottom-up approach that
attempts to model the sound from the source.

This work focuses on simulating1 traditional musical instruments using
physical modelling. The interest in physically modelling traditional musical
instruments is twofold: 1) sound generation, and 2) understanding of the
underlying physical processes. The main focus of this PhD project is the
former.

One of the reasonswhy onewould use physicalmodels rather than samples
of the real instrument, is that a model is much more flexible to player control.
Consider the violin as an example, where the performer controls the bow
force, velocity and position along the string, as well as the finger determining
the pitch of the string. A physical model can generate the sound in real time
based on these performance parameters. If samples were to be used, every
single combination of these parameters would need to be recorded in order
to capture the entire instrument. A more in-depth reasoning behind using
physical models for sound generation will be given in Section 1.4.

This chapter continues by giving a brief overview of the history of physical
modelling for sound synthesis after which an overview of various modelling
techniques will be given. Next, several applications of physical modelling will
be presented, which aim to explain why musical instrument simulations exist
in the first place. Finally, an overview of the objectives and contributions of
this PhD project will be given, as well as an overview of this thesis.

1.1 A brief history
Most likely the very first example of a physically modelled musical sound is
the “Bicycle Built for Two” by Kelly, Lochbaum, andMatthews in 19612. It uses
what later got known as the Kelly-Lochbaum vocal-tract model to generate a
voice and was published the year thereafter [7].

The very first musical instrument simulations were based on discretisation
of differential equations using finite-difference time-domain (FDTD) methods.
These were carried out around 1970 by Hiller and Ruiz [8, 9, 10], and were
applied to thewave equation to simulate string sounds. The sound generation,
however,was far fromreal-timeand it took severalminutes togenerate onlyone
second of sound. In 1983, Cadoz et al. introduced CORDIS, a real-time sound
generating system based onmass-spring networks [11]. The first physical model
of the bowed string was proposed by McIntyre et al. in their 1983 publication

1The term emulated is only used in the title of this thesis (because of the alliteration), but is
synonymous to simulated in this context.

2http://ccrma.stanford.edu/~jos/wav/daisy-klm.wav
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1.2. Exciter-resonator approach

[12]. In the same year Karplus and Strong devised an extremely efficient way
to generate a string sound in [13] later known as the Karplus-Strong algorithm.
Based on these ideas, Smith coined the term digital waveguides in the late 1980s
and early 1990s in [14, 15] and continued to develop the method [16]. Around
the same time, Adrien in [17] and later together with Morrison and Adrien in
[18] introduced modal synthesis, a way to synthesise the sound of an object by
decomposing it into its modes of vibration.

Although more techniques have been developed in the last 20-30 years,
most of the developments in the field of physical modelling for musical in-
struments are based on those presented in this section. Before moving on
to further details about these methods in Section 1.3, a modular approach to
subdivide a musical instrument will be presented.

1.2 Exciter-resonator approach
Nearly any musical instrument can be subdivided into a resonator component
and an exciter component, both of which can be simulated individually. This
modular approach to musical instruments was first introduced by Borin, De
Poli and Sarti in [19] and later developed by De Poli and Rocchesso in [20] and
is used to structure this thesis. Examples or resonator-exciter combinations
are the violin and the bow, or the trumpet and the lips of the player.

A resonator is a passive system, in this project mostly assumed to be linear,
and does not emit sound unless triggered by an external source. Exciters can
be seen as these external sources, and generally have a nonlinear element.3
Exciters insert energy into a resonator and cause it to vibrate and emit sound,
and the method of excitation greatly influences the sound of the resonator.
In the real world, the interaction between the exciter and the resonator is bi-
directional. In otherwords, the exciter not only affects the state of the resonator,
but the resonator affects the exciter as well. For the most part, this is also what
is attempted to be modelled in this project.

Thenext sectiondiscusses various techniques that canbeused to implement
the resonator. Details on excitation modelling are left for Part III.

3The difference between linear and nonlinear systems is in their response to input level or
amplitude. The behaviour of linear systems does not change with the level of the input. Instead, it
only scales (linearly) with the input level, i.e., an input to a linear systemwith twice the amplitude
yields an output of twice the amplitude. The behaviour of nonlinear systems, however, does
change depending on the level of the input. Although linear systems are rarely found in the
real world, under low amplitude excitations most systems can still be considered linear and their
nonlinear effects can be ignored.
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1.3 Physical modelling techniques
The time-evolution of dynamic systems, including that ofmusical instruments,
can bewell described by partial differential equations (PDEs) [1, 21]. Examples
of dynamic systems are a guitar string, a drum-membrane, or air propagation
in a concert hall; three very different concepts, but can all be based on the same
types of equations of motion. Many of these equations and other knowledge
currently available on the physics of musical instruments have been collected
by Fletcher and Rossing in [1]. Though these equations are very powerful,
only few have a closed-form solution, and in order for them to be imple-
mented, they need to be approximated. In the past decades, much research
has been done on implementing these PDEs to model and simulate different
musical instruments. Great overviews of implementation techniques are given
by, for example, Välimäki et al. in [22] and Smith in [6, 16].

The most popular physical modelling techniques that are described in this
literature can be found below:

Modal Synthesis decomposes a system into a series of uncoupled ‘modes of
vibration’ and can be seen as a physically-based additive synthesis technique.
First used in amusical context byMorrison and Adrien in [18], it is a technique
that is still used today due to its computational efficiency, especially when
simulating higher-dimensional systems such as (two-dimensional) plates or
(three-dimensional) rooms. It is especially effective when used to describe a
linear system with a small number of long-resonating modes [23, 6]. When
used to describe nonlinear systems, however, themodes become ‘coupled’ and
the system will quickly become more computationally expensive. Recent de-
velopments using the FAUST programming language allow a 3D-mesh model
of any three-dimensional object to directly be decomposed into its modes of
vibration, and used as a sound-generating physical model [24].

Finite-Difference Time Domain (FDTD) methods aim to solve PDEs by approxi-
mating them with difference equations, discretising a continuous system into
grid points in space and time. In a musical context, this technique was first
used for the case of string vibration by Hiller and Ruiz in [8, 9, 10] and later
by Chaigne in [25, 26]. An extensive overview of FDTD methods in the con-
text of sound synthesis is given by Bilbao in [21]. Although computationally
expensive, especially when working with higher-dimensional systems, this
technique could potentially accurately model any system, whether it is linear
or nonlinear, time-invariant or time-variant.

Digital Waveguide Modelling (or Digital Waveguides (DWGs)) is a technique
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that discretises wave propagation and scattering. The technique was first pre-
sented by Smith in [14, 15], and is mostly used for one-dimensional systems,
such as strings and acoustic tubes, and decomposes their system into travelling
wave components. This technique has also been used in higher-dimensional
systems, such as the waveguide mesh [27], but is superior in efficiency when
used in the one-dimensional case [22]. Some authors have combined DWGs
with FDTD methods (such as in [28, 29]) to accurately model nonlinear be-
haviour while maintaining a high-speed implementation.

Mass-spring networks can be similar in nature to FDTDmethods, but treat each
grid point as an individual mass connected to other masses through springs
in a network. Pioneered in a musical context by Cadoz in [30, 11, 31] it is
currently being further developed by Leonard and Villeneuve in a real-time,
interactive environment [32, 33].

Discussion

This work focuses on physical modelling using FDTD methods. The main
advantage of these methods is that they are extremely general and flexible
in terms of the types and number of systems they can model. They allow
any set of PDEs to be directly numerically simulated without making any
assumptions regarding travelling wave solutions or modes. Moreover, FDTD
methods allow for various PDEs, e.g. a violin body and four strings, to be
connected in a fairly straightforward manner. DWGs, for example, assume
a travelling wave solution, which makes complex nonlinear effects extremely
hard to model using this technique. To use modal synthesis for modelling a
PDE, it requires the system to have a closed-form or analytical solution. If this
is not available, (finite-element) analysis of the system could be performed to
obtain the modal shapes and frequencies of the system. This in itself is very
computationally expensive and requires a lot of storage if themodal data needs
to be saved [34].

The main drawback of FDTD methods is the fact that they require great
attention to numerical stability of the solution [21]. For a wrong choice of
parameters, the implemented system could become unstable and “explode”4.
Stability analysis as well as energy analysis techniques are invaluable in the
process of ensuring a stable implementation, and much attention to this will
be given throughout this thesis.

A final drawback of using FDTD methods is that – especially for higher-
dimensional systems – they are much more computationally expensive than
other methods, such as DWGs or modal synthesis techniques. The bright side

4The author learned the hard way that one should always implement a limiter when working
with real-time physical models to avoid dangerously loud sounds due to unstable implementa-
tions.
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– if one believes in Moore’s law [35] – is that it can be assumed that computing
power will continue to increase and that within several years, running high-
quality real-time simulations of musical instruments based on FDTDmethods
will not be an issue.

1.4 Applications of physical modelling
It might not be clear why one would go through the hassle of modelling
a musical instrument. Why could one not use a recording of the original
instrument and play that back at the right moment? Or taking another step
back, whynot buy a real instrument and learn to play that instead? This section
aims to answer those questions, by providing some applications of physical
modelling for musical instrument simulations.

1.4.1 Samples vs. physical modelling
Despite the existence of many techniques to simulate musical instruments
mentioned in the previous section, the bulk of the currently available digital
musical instruments are still based on samples. This is mainly due to the com-
putational power needed to generate sounds, as opposed to simple playback
of recordings. Furthermore, digital musical instruments based on samples
have an optimally realistic sound. As the output of the digitised instrument is
exactly that of the original instrument, the digital version should thus sound
indistinguishable from the original.

That said, it can be argued that these are the only advantages of using
samples over physical models in this context. Samples are static and unable to
adapt to changes in performance; the recording ismade by one playerwith one
playing style or technique, using one specificmicrophone to record the sample,
and so on. Even if one accepts this, capturing the entire interaction space of an
instrument is nearly impossible. Imagine recording a violin with every single
combination of bowing force, velocity, position, duration and other aspects
such as vibrato, pizzicato. Even if a complete sample library could be created,
this would contain an immense amount of data and take an incredible amount
of time to record.5

Using physical models to simulate the musical instrument instead, allows
the sounds to be generated based on all the aforementioned interaction pa-
rameters. One is not stuck to a single recording of the instrument and, given
the right tools or controller, one can alter the sound just as one can with its
real-life counterpart.

5This was actually done in 2019 for four century-old bowed-string instruments in the Italian
city of Cremona. The recordings lasted fiveweeks, six days aweek, eight hours a day, and required
the city center to be as quiet as possible to record the instruments [36, 37].
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A drawback of physical models is that, in order to generate a realistic
sound, a highly accurate physical description of the original instrument is
needed. Apart from (potentially) taking a lot of time to develop this model
and tuning its parameters, the eventual implementation will be (much) more
computationally expensive than if samples were to be used. Generally, the
more accurate the model is, and thus the more realistic its sound, the higher
the computational cost becomes.

The main trade-off between samples and physical models is thus storage
versus speed, or hard-disk versus CPU. Whether one method should be used
over the other depends on the situation. If efficiency is required and the lack
of flexibility in the sound is not an issue, samples might be the better choice.
If, on the other hand, one wants to create a full digital version of a traditional
instrument that responds to player-interaction in the same way as the original
instrument would, a physical model should be chosen instead.

1.4.2 Resurrect old or rare instruments
Many instruments exist that are too old, too rare, or too valuable to be played.
Some live behind museum glass only to be looked at by visitors, never to
be played again. In these cases, it might even be hard to record samples
of the musical instrument. If, however, the physics (geometry and material
properties) of the instrument are available, a physical model of the instrument
could be created, bringing its sound back too life.

Applications of physical modelling are not limited to old or rare instru-
ments. Popular musical instruments also require maintenance and might
need to be replaced after years of usage. A simulation of these instruments
will not age (unless that is, of course, desired and included in the model).

1.4.3 Go beyond what is physically possible
As a digital simulation is not restricted by the laws of physics of the real world,
this opens up a substantial amount of possibilities. Musical instrument sim-
ulations make it possible for parameters like shape, size, material properties,
etc. to be dynamically changed, which is physically impossible or very hard to
do. A physicalmodel of a violin could potentially change size and ‘morph’ into
a cello while the simulation is running and a player is interacting with it. New
ways of interaction and expression could be devised that control the physics
of the instrument, expanding the range of possibilities for the musician.

Furthermore, different instrument components can be combined to create
hybrid instruments. For example, one could bow the air in a trumpet, or lip-
excite a string (similar to what Smith states in [6]). This could potentially result
in unique sounds that can only be created using physical models.
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1.5 Project objectives and main contributions
This section presents several research questions and provides the main objec-
tives and contributions of the project.

How can computationally expensive physical models be made playable in
real-time?

Even though physical modelling has been a popular research field in the past
few decades, relatively little research has been done on making the models
work in real-time, i.e., ‘playable’ [38]. Several virtual string instruments and
different electric pianos have been made real-time by Pfeifle and Bader in
[39, 40, 41]. The authors used field programmable gate arrays (FPGAs) for
implementing models based on FDTD methods. Furthermore, Roland’s V-
series use COSM (Composite Object Sound Modelling) technology [42] that
implement real-time physical models in hardware instruments. In the NESS
project, Stefan Bilbao and his team focused on implementing systems using
FDTD methods in real-time, using parallelisation techniques and the GPU
[34, 43].

The biggest challenge in real-time audio applications, as opposed to those
only involving graphics for example, is that the sample rate required is ex-
tremely high. As Nyquist’s sampling theory states, a sampling rate of at least
40 kHz is necessary to produce frequencies up to the human hearing limit of
20 kHz [44]. Most graphics applications are made with a temporal sample rate
(mostly referred to as frames per second (FPS)) of around 60 Hz [45], which is
orders of magnitude smaller than the auditory sample rate. For comparison,
for a commonly used auditory sample rate of 44100 Hz, running a simulation
for audio requires 735x as many iterations as if this simulation was done for
graphics only.

The main objective of this project is to implement physical models using
FDTD methods in real time without the need of special hardware, i.e., on a
regular personal computer or laptop. The objective is not to renew the under-
lying models themselves, but to create novel combinations of existing models
to simulate relatively unknown instruments as test cases for this objective. The
instrumentsmodelled over the course of this project are the esraj (bowed sitar),
hammered dulcimer and hurdy gurdy presented in paper [A], the trombama-
rina presented in paper [D] and the trombone presented in paper [H], all
implemented in real time using FDTD methods. An extended summary of
these papers can be found in Part V and the complete papers are included in
Part VII. Details on the real-time implementation can be found in Chapter 13.
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How can (the sound of) traditional instruments be extended upon?

As mentioned in Section 1.4.3, using physical modelling to simulate real-life
instruments, relieves the physical limitations that the real world imposes on
them. As FDTD methods are quite rigid, dynamically changing parameters
while the instrument simulation is running, is a challenge. Other techniques,
such as modal synthesis are much more suitable for this, see e.g. [38, 46],
but come with the drawbacks mentioned in Section 1.3. Therefore, one of the
main objectives of this project was to devise a method to allow parameters in
musical instrument simulations based on FDTD methods to be dynamically
varied.

Indeed, during this PhD project, a novel method was devised to smoothly
change parameters over time, introducing this to FDTDmethods. Thismethod
was published in [G] and will be elaborated on in Chapter 12.

How can the now-virtual instruments be controlled in an expressive way?

A substantial challenge in the field of musical instrument simulations is their
control. In many physical instruments, one interacts immediately with the
sound-creating object, such as a string on a guitar or a membrane on a drum.
This allows themusician to bemuchmore expressive than if they only used the
keyboard and mouse. Expressivity, however, is not the only thing that makes
an instrument interesting and enjoyable to play. The interactionwith amusical
instrument simulations could feel very ‘dry’ or unnatural as there is no haptic
feedback; something present in (nearly) all physical musical instruments.

The last objective of this PhD project is thus to find ways to control the
instrument simulations in an expressive way. Over the course of this PhD
project, the Sensel Morph, or Sensel for short, has been used extensively [47].
The Sensel is a controller containing ca. 20,000 pressure sensors that allow for
highly expressive control of the instruments. This controller has been used in
papers [A], [B], [C] and [D].

Although the Sensel allows for more expressive control than a keyboard
andmouse, it does not resemble anyof the interactionparadigmsof the original
instruments. It was thus attempted to include a controller that would be more
suited for controlling the musical instrument simulation and allow for a more
intuitive control. For one of the projects, a virtual-reality (VR) implementation
of the tromba marina was controlled by the PHANTOM Omni, which is a
six-degrees-of-freedom (6-DoF) haptic device [48]. The controller contains a
hand-held pen-like object that is attached to a robotic arm, and can be linked
to a virtual environment to provide force and vibrotactile feedback through
the arm, based on this environment. This project is presented in paper [E].
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1.6 Thesis outline
The thesis uses a ‘collection of papers’ format, and is divided into several
parts. See Figure 1.1 for a visual overview of the thesis structure. Parts I, II,
III and IV are used as an introduction for the main contributions of the PhD
project in Part V, and – with the exception of Chapter 8 – do not contain any
of the contributions made during this project. Much effort has been put in
explaining the existing methods and models from the literature used in this
work, in a way that is slightly more in-depth and pedagogical than might be
common for a PhD thesis, while simultaneously relating this existing work to
the contributions of this project. It is the hope of the author, that going this
extra mile could make this thesis (and these parts in particular) a contribution
in itself: To put this research field into reach for beginners in the area of
physical modelling for sound synthesis using FDTD methods, without the
need of much experience in the fields of physics, mathematics or computer
science. To this end, although a ‘collection of papers’ format has been used,
the introductory part has been written in an extended and detailed form.

Part I: Introduction

  1. Physical Modelling

  2. FDTD Methods

  3. Analysis Techniques 

Part II: Resonators

  4. Stiff String

  5. Acoustic Tubes

  6. 2D Systems

Part IV: InteractionsPart III: Exciters

  7: Physically Inspired

  8: Bow

  9: Lip Reed

Part V: Contributions

12. Dynamic Grids

Part VII: Papers

Part VIII: Appendix

Part VI:   17. Conclusions and Perspectives

Preface & Acknowledgments

Abstract

  10: Collisions

  11: Connections

13. Real-time 14. Large-Scale 15. Tromba Marina 16. Trombone

C

A B D EG H

Fig. 1.1: The outline of this thesis. The contributions made throughout the PhD project are
marked in yellow. Most are collected in Part V, though the novel work done on the bow will
already appear in Chapter 8. The parts marked in green, describe the physical models on which
the contributions are based. The basics of the methods used for these models are introduced in
Part I marked in orange. The chapters that can be seen as an extended summary of the papers in
Part VII are indicated by the letter of the respective paper.
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Part I: Introduction

This part introduces the field of physical modelling for musical instruments
in Chapter 1, by giving a brief history of the field and providing background
for the project. Furthermore, the objectives andmain contributions of the PhD
project are detailed. Chapter 2 provides a thorough introduction to FDTD
methods, using simple sound-generating systems as examples, after which
Chapter 3 introduces several analysis techniques in a tutorial-like fashion.

Part II: Resonators

The resonator component of a musical instrument, as introduced in Section
1.2, can – for most instruments – be further decomposed into more basic
resonators. In order to model the violin, for example, one can decompose
the entire resonator into four strings and its body. This part presents the
various resonators used for the contributions: Chapter 4 presents a model for
the stiff string, Chapter 5 introduces acoustic tubes that can be used to model
brass instruments, and Chapter 6 introduces two-dimensional systems such as
membranes and plates which can be used to simulate simplified instrument
bodies.

Part III: Exciters

As stated in Section 1.2, the excitation greatly determines the behaviour of the
resonator. This part presents various ways in which the resonators introduced
in Part II can be excited. Chapter 7 introduces physically inspired excitations
as an easy way to excite the resonators, Chapter 8 introduces the bow and
presents the contribution made in paper [C], and finally, Chapter 9 presents
the lip reed used to excite brass instruments.

Part IV: Interactions

To properly model a full instrument, the interactions between the various
resonators in isolation must be taken into account. This part describes two dif-
ferent ways that the resonators can interact with each other: collisions between
various resonators are presented in Chapter 10 and connections between them
in Chapter 11.

Part V: Contributions

This part contains extended summaries of the main contributions of the PhD
project. Chapter 12 summarises paper [G] and extends it by providing some
implementation details and design considerations. Chapter 13 explains the
considerations necessary for real-time implementation of physical models. An
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extended summary of papers [A] and [B] is provided in Chapter 14. Papers
[D] and [E] are summarised in Chapter 15 and are extended with details on
the implementation, and finally, paper [H] is summarised in Chapter 16, and
is extended with design considerations and details on the implementation.

Part VI: Conclusions and Perspectives

Chapter 17 concludes by providing a summary of the thesis. Furthermore,
perspectives for the future and possible continuations of this work are given
as well.

Finally, Part VII: Papers contains the main publications made over the course
of this PhD project and an appendix appears in Part VIII: Appendix including
(among other topics) additional information on matrices, code examples, and
derivations.
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Chapter 2

Introduction to
Finite-Difference
Time-Domain Methods

“Since Newton, mankind has come to realize that the laws of physics
are always expressed in the language of differential equations.”

- Steven Strogatz

This chapter introduces some important concepts needed to understand finite-
difference time-domain (FDTD) methods. These techniques are what the im-
plementation of the physical models presented later on in this document are
based on. By means of a simple mass-spring system and the 1D wave equa-
tion, the notation and terminology used throughout this document will be ex-
plained. Furthermore, some code examples using the MATLAB programming
language [49] will be used. Unless denoted otherwise, the theory presented in
this chapter and the notation have been taken from [21].

2.1 Differential equations
Differential equations can be used to describe the motion of dynamic systems,
including vibrations in musical instruments. In this work, these equations are
used to describe, among others, the movement of a string, an instrument body
and the air pressure in an acoustic tube.

A characteristic feature of these equations is that, rather than an absolute
value or state of a system, such as displacement from the equilibrium of a
string, or the pressure in a tube, the time derivative of its state – its velocity
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– or the second time derivative – its acceleration – is described. From this,
the absolute state of the system can then be computed. This state is usually
described by the variable u which is always a function of time, i.e., u = u(t).
If the system is distributed in space, u also becomes a function of space, i.e.,
u = u(x, t), or with two spatial dimensions, u = u(x, y, t), etc. Though this
work only describes systems of up to two spatial dimensions, one can easily
extend to three dimensions (see e.g. [50]) and potentially higher-dimensional
systems. See Section 2.1.1 for more information on dimensions.

If u is univariate, and only a function of time, the differential equation
that describes the motion of the system is called an ordinary differential equation
(ODE). Various ways to describe the second derivative in time of u, or the
acceleration of u are

d2u

dt2
(Leibniz’s notation),

ü (Newton’s notation),

D2
t u (Euler’s notation).

Leibniz’s notation could be considered the most standard notation but is not
necessarily compact. Newton’s notation on the other hand allows for an ultra
compact notation using dots above the function to denote time-derivatives.
For this reason, Newton’s notation will be used for ODEs in isolation. The
drawback of this notation is that it can only be used for univariate functions.
Finally, Euler’s notation indicates a derivative using an operator which can be
applied to a function.

If u is also a function of at least one spatial dimension, the equation of
motion is a called a partial differential equation (PDE). The literatureusesdifferent
types of notation for taking (continuous-time) partial derivatives. Applied to
a state variable u these can look like

∂2u

∂t2
(Leibniz’s notation),

utt (subscript notation),

∂2
t u (Euler’s notation),

where the subscript notation could be seen as the partial derivative counter-
part to Newton’s notation due to its compactness. In the remainder of this
document, Euler’s notation will be used for PDEs, due to their similarity to
operators in discrete time (introduced in Section 2.2.2). Also, it allows for
more compactness when creating bigger operators with multiple (connected)
systems (see e.g. Chapter 15). Moreover, state-of-the-art literature in the field
of FDTD methods for sound synthesis use this notation as well [23].
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2.1. Differential equations

2.1.1 Dimensions and degrees of freedom
All objects in the physical world are three-dimensional (3D) as they have a
non-zero width, length and depth. Moreover, these objects can move in these
three dimensions and thus have three translational degrees of freedom (DoF) (the
three rotational DoF are ignored here). To reduce the complexity of themodels
describing physical systems as well as computational complexity (computa-
tional cost), simplifications can be made to reduce both the dimensionality of
the spatial distribution of a physical object as well as that of the translational
DoF.

Generally, the spatial distribution of an object can be simplified if one (or
more) of the dimensions are small, relative to the wavelengths of interest. A
guitar string, for instance, hasmuch greater length than its width or depth and
can therefore be reduced to a one-dimensional (1D) system. If a 3D description
were to be kept, the relative displacement between two locations on one cross-
section along the length of the string would be taken into account. One could
imagine that this displacement will always be orders of magnitude smaller
than the relative displacement of two points along the string length and is thus
negligible. Similarly, the thickness of a drum membrane is much smaller than
its length andwidth and can therefore be simplified to a two-dimensional (2D)
system.1

The translational DoF, on the other hand, describe nowmany “coordinates”
a state variable includes. Inmuchof the literature onFDTDmethods in thefield
of musical acoustics, the state variable only has one coordinate. In most string
models, for example, only the transverse displacement in one polarisation is
considered (seeChapter 4) and theotherpolarisation aswell as the longitudinal
motion of the string (motion along the string length) are ignored. In other
words, every point along the string can only move up and down, not side-to-
side and not forward and back. Although this greatly simplifies the system
at hand and reduces computational complexity, this is not what happens in
reality. Nonlinear effects such as pitch glides, due to tension modulation
caused by high-amplitude string vibration, are not present in the simplified
model and have not been included in this project.

Work has been done on strings with dual (transverse) polarisation by
Desvages [51] and Desvages and Bilbao [52] using FDTDmethods. Models in-
cluding longitudinal string vibration, where the longitudinal and transversal
displacements are coupled, can be found in [21, 53]. In [32], Villeneuve and
Leonard present a mass-spring network where the state of every individual
mass has 3 translational DoF. Due to these additional DoF, these networks
do capture the aforementioned effects, but greatly increase the computational
complexity of the models.

1In this work, ‘1D’ and ‘2D’ will also be used to abbreviate ‘one dimension’ and ‘two dimen-
sions’.
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Although the dimensionality reduction ignores some of the physical pro-
cesses, surprisingly realistic sounding models can be made despite these sim-
plifications. Due to computational considerations, allmodels used in thiswork
thus only have 1 translational DoF.

Notation

When describing the state of a system, the spatial dimensions it is distributed
over appear in the argument of the state variable. For example, the state of a
2D system with 1 translational DoF, is written as u(x, y, t).

The translational DoF, on the other hand, determines the number of coor-
dinates that the state variable describes. A 1D systemwith 3 translational DoF
can thus be written as u(x, t) where u is a vector containing the coordinates
for all three translational DoF.

2.1.2 Ranges of definition and domains
When modelling physical systems, one needs to provide a range of definition
over which they are defined. For a 1D system u = u(x, t), ranges of definition
must be given for x and t. Usually, the temporal range is defined for t ≥ 0,
meaning that the system is defined for non-negative time. This will be the case
for all systems presented in this work.

In space, the range of definition is usually referred to as a (spatial) domain,
denoted by the symbol D. Using the example above, x may be defined over
D, which is written as x ∈ D. For analysis purposes, infinite domains (D =

R = (−∞,∞)) or semi-infinite domains (D = R+ = [0,∞)) may be used,
but for implementation purposes, a finite domain needs to be established. For
higher dimensional systems, one needs to define higher dimensional domains.
A 2D system u = u(x, y, t), for simplicity assumed to be rectangular, may be
defined over ‘horizontal domain’ Dx and ‘vertical domain’ Dy , which are both
1D domains. The system is then defined for (x, y) ∈ D where D = Dx ×Dy .

2.2 Discretisation using FDTD methods
Differential equations are powerful tools to describe the motion of physical
systems. Despite this, only few of these have a closed-form, or analytical,
solution. More complex systems require methods that do not perfectly solve,
but rather approximate the solutions to these equations. FDTDmethods are the
most straightforward approach to numerically approximate differential equa-
tions. Thesemethods are considered to be among themost general and flexible
techniques in terms of the systems they can model, and relatively simple to
understand once some familiarity with them is obtained. The main concern
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2.2. Discretisation using FDTD methods

with these methods is the numerical stability of the eventual approximation.
Conditions for stability can be mathematically derived and will be introduced
in Chapter 3.

FDTD methods essentially subdivide a continuous differential equation
into discrete points in time and space, a process called discretisation. Once an
ODE or PDE is discretised using thesemethods it is now called a finite-difference
(FD) schemewhich approximates the original differential equation. See Figure
2.1. In the following, for generality and ease of explanation, a 1D system will
be used, and (again) the theory and notation follows [21].

t

1
fs

1
fs

1
fs
1
fs

Fig. 2.1: A continuous PDE is discretised to a FD scheme. In a PDE, time passes continuously,
whereas for a FD scheme, time passes in finite increments with a duration of the reciprocal of the
sample rate fs.

2.2.1 Grid functions
The first step to approximate continuous PDEs, is to define a discrete grid over
time and space. See Figure 2.2. A system described by a state variable u =

u(x, t) defined over time t and one spatial dimension x, can be discretised to a
grid functionunl . Here, integers l andndescribe the spatial and temporal indices
respectively, and arise from the discretisation of the continuous variables x and
t, according to x = lh and t = nk. The spatial step h, or grid spacing, describes
the distance (inm) between two neighbouring grid points, and is closely related
to the stability of the FD scheme. The temporal step k, or time step, is the time
(in s) between two consecutive temporal indices and can be calculated k = 1/fs
for a sample rate fs (in Hz). In many audio applications fs = 44100 Hz, which
is the sample rate that will be used in this work (unless denoted otherwise).

As mentioned in Section 2.1.2, a 1D system needs to be defined over a
temporal range of definition and one spatial domain. In discrete time, t ≥ 0 is
discretised to n ∈ N0.2 The spatial domain D can be subdivided into N equal
sections, or intervals, of length h (see Figure 2.2). The grid points describing
the state of the system are placed at the edge of each interval, including the

2In this work, N0 is used to denote the set of non-negative integers (N0 = 0, 1, 2, . . .).
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Fig. 2.2: The spatio-temporal grid that appears when a 1D system u(x, t) with x ∈ D is discretised
to a grid function unl . The spatial domain D is divided into N intervals of length h and spatial
range of interest l = {0, . . . , N}. Time is subdivided into time steps of duration k and together
with the discretised domain, forms a grid over space and time. Some grid points are labelled with
the appropriate grid function.

end points. The spatial range of interest then becomes l ∈ {0, . . . , N} and the
total number of grid points is N + 1, which is one more than the number of
intervals.

To summarise, for a 1D system:

u(x, t) u unl , with x = lh and t = nk,

l ∈ {0, . . . , N} and n ∈ N0.

2.2.2 Finite-difference operators
Now that the state variable has a discrete counterpart, it leaves the derivatives
to be discretised, or approximated. First, shift operators are introduced, which
can be applied to a grid function and ‘shift’ its indexing, either temporally or
spatially. These are denoted by es, where subscript s denotes the type and
direction of the shift. Forward and backward shifts in time, together with the
identity operation are

et+u
n
l = un+1

l , et−u
n
l = un−1

l , and 1unl = unl . (2.1)

Similarly, forward and backward shifts in space are

ex+u
n
l = unl+1, and ex−u

n
l = unl−1. (2.2)
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2.2. Discretisation using FDTD methods

These shift operators are rarely used in isolation, though they do appear in
energy analysis techniques detailed in Section 3.4. The operators do, however,
form the basis of commonly used finite-difference (FD) operators. The first-order
derivative in time can be discretised in three different ways. The forward,
backward and centred difference operators are

∂t u





δt+ , 1
k (et+ − 1) , (2.3a)

δt− , 1
k (1− et−) , (2.3b)

δt· , 1
2k (et+ − et−) , (2.3c)

where “,”means “equal to bydefinition”. These operators can then be applied
to grid function unl , and expanded, to get

∂tu u





δt+u
n
l = 1

k

(
un+1
l − unl

)
, (2.4a)

δt−u
n
l = 1

k

(
unl − un−1

l

)
, (2.4b)

δt·u
n
l = 1

2k

(
un+1
l − un−1

l

)
, (2.4c)

and all approximate the first-order time derivative of u. Note that the centred
difference has a division by 2k as the time difference between n+ 1 and n− 1

is, indeed, twice the time step. Figure 2.3a shows the stencils of the operators
introduced above. A stencil shows the grid points needed to perform the
operation of a FD operator.

Similar operators exist for a first-order derivative in space, where the for-
ward, backward and centred difference are

∂x u





δx+ , 1
h (ex+ − 1) , (2.5a)

δx− , 1
h (1− ex−) , (2.5b)

δx· , 1
2h (ex+ − ex−) , (2.5c)

and when applied to unl are

∂xu u





δx+u
n
l = 1

h

(
unl+1 − unl

)
, (2.6a)

δx−u
n
l = 1

h

(
unl − unl−1

)
, (2.6b)

δx·u
n
l = 1

2h

(
unl+1 − unl−1

)
. (2.6c)

Higher-order differences can be approximated through a composition of first-
order difference operatorswhere their definitions aremultiplied.3 The second-

3Alternatively, one could first apply one operator to a grid function, expand it, and apply the
other operator to all individual grid functions in the result of the first expansion thereafter.
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Chapter 2. Introduction to Finite-Difference Time-Domain Methods

x

(a) Temporal operators.

x

x

(b) Spatial operators.

Fig. 2.3: The stencils of various FD operators applied to the grid point highlighted with a red
square. Black grid points are used in the calculation, and white grid points are not. The averaging
operators follow the same pattern.

order difference in time may be approximated using

∂2
t u δt+δt− = δtt ,

1

k2
(et+ − 2 + et−) , (2.7)

where “2” is the identity operator applied twice. This can be done similarly
for the second-order difference in space

∂2
x u δx+δx− = δxx , 1

h2
(ex+ − 2 + ex−) , (2.8)

both of which can be applied to a grid function unl in a similar fashion. Figure
2.3b shows the stencils of the spatial operators introduced above.

Also useful are averaging operators, all of which approximate the identity
operation. The temporal forward, backward and centred averaging operators
are

1 u





µt+ , 1
2 (et+ + 1) , (2.9a)

µt− , 1
2 (1 + et−) , (2.9b)

µt· , 1
2 (et+ + et−) . (2.9c)

Notice how these definitions are different than the difference operators in Eq.
(2.3): the terms in the parentheses are added rather than subtracted, and rather
than a division by the time step k there is a division by 2. Also notice that
the centred averaging operator does not have an extra division by 2 as in Eq.
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2.2. Discretisation using FDTD methods

(2.3c). Applied to unl , the definitions in Eq. (2.9) become

unl u





µt+u
n
l = 1

2

(
un+1
l + unl

)
, (2.10a)

µt−u
n
l = 1

2

(
unl + un−1

l

)
, (2.10b)

µt·u
n
l = 1

2

(
un+1
l + un−1

l

)
. (2.10c)

Similarly, spatial averaging operators are

1 u





µx+ , 1
2 (ex+ + 1) , (2.11a)

µx− , 1
2 (1 + ex−) , (2.11b)

µx· , 1
2 (ex+ + ex−) , (2.11c)

and when applied to unl

unl u





µx+u
n
l = 1

2

(
unl+1 + unl

)
, (2.12a)

µx−u
n
l = 1

2

(
unl + unl−1

)
, (2.12b)

µx·u
n
l = 1

2

(
unl+1 + unl−1

)
. (2.12c)

Finally, using forward and backward averaging operators, second-order tem-
poral and spatial averaging operators can be created according to

1 u µtt = µt+µt− , 1

4
(et+ + 2 + et−) , (2.13)

and
1 u µxx = µx+µx− , 1

4
(ex+ + 2 + ex−) . (2.14)

The stencils of the averaging operators follow the samepattern as the difference
operators.

Operators and derivatives in 2D will be discussed in Chapter 6.

Accuracy

As FDTD methods approximate continuous systems, the resulting solution is
rarely 100% accurate. To determine the accuracy of the FD operators above,
one can perform a Taylor series analysis. The Taylor series is an infinite sum and
its expansion of a function f about a point a is defined as

f(x) =

∞∑

n=0

(x− a)n

n!
f (n)(a) (2.15)

where superscript (n) denotes the nth derivative of f with respect to x. The
analysis will be performed on the temporal operators in this section, but also
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Chapter 2. Introduction to Finite-Difference Time-Domain Methods

applies to the spatial operators presented.
Using continuous function u = u(t) and following Bilbao’s “slight abuse

of notation” in [21], one may apply FD operators to continuous functions
according to

δt+u(t) =
u(t+ k)− u(t)

k
. (2.16)

Assuming that u is infinitely differentiable, u(t+k), i.e., u at the next time step
(in continuous time), can be approximated using a Taylor series expansion of
u about t according to

u(t+ k) = u(t) + ku̇+
k2

2
ü+

k3

6
˙̈u+O(k4). (2.17)

Here, (followingNewton’s notation introduced in Section 2.1) the dot describes
a single temporal derivative andO includes additional terms in the expansion.
The power of k in the argument ofO describes the order of accuracy, the higher
the power of k the more accurate the approximation. Equation (2.17) can be
rewritten to

u(t+ k)− u(t)

k
= u̇+

k

2
ü+

k2

6
˙̈u+O(k3),

and using Eq. (2.16) can be written to

δt+u(t) = u̇+O(k). (2.18)

This says that the forward difference operator approximates the continuous
first order derivative with an additional error term that depends on k. As the
power of k in O’s argument is 1, the forward operator is first-order accurate.
One can also observe that, as expected, the error gets smaller as the time step
k gets smaller and indicates that higher sample rates result in more accurate
simulations (through k = 1/fs).

One can arrive at a similar result for the backward operator. Applying Eq.
(2.3b) to u(t) yields

δt−u(t) =
u(t)− u(t− k)

k
. (2.19)

One can then approximate u(t− k) by performing a Taylor series expansion of
u about t according to

u(t− k) = u(t) + (−k)u̇+
(−k)2

2
ü+

(−k)3

6
˙̈u+O(k4), (2.20)

u(t− k)− u(t)

k
= −u̇+

k

2
ü− k2

6
˙̈u+O(k3),

δt−u(t) = u̇+O(k). (2.21)

Notice that the sign of O does not matter.
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2.2. Discretisation using FDTD methods

Fig. 2.4: The accuracy of the forward, backward and centred difference operators in (2.3) visu-
alised. The centred difference operator much more closely approximates the derivative, or the
slope, of u at twhen compared to the forward and backward difference operators.

Applying the centred operator in Eq. (2.3c) to u(t) yields

δt·u(t) =
u(t+ k)− u(t− k)

2k
, (2.22)

indicating that to find the order of accuracy for this operator, both Eqs. (2.17)
and (2.20) are needed. Subtracting these and substituting their definitions
yields

u(t+ k)− u(t− k) = 2ku̇− 2k3

6
˙̈u+ 2O(k5),

u(t+ k)− u(t− k)

2k
= u̇+O(k2),

δt·u(t) = u̇+O(k2), (2.23)

and shows that the centred difference operator is second-order accurate.
As a first-order derivative indicates the slope of a function, the differences

in accuracy between the above operators can be visualised as in Figure 2.4. It
can be observed that the derivative approximation – the slope – of the centred
operator matches much more closely the true derivative of u at t.

Higher-order differences, such as the second-order difference in time oper-
ator in Eq. (2.7) can also be applied to u(t) to get

δttu(t) =
u(t+ k)− 2u(t) + u(t− k)

k2
, (2.24)
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Chapter 2. Introduction to Finite-Difference Time-Domain Methods

and can be proven to be second-order accurate by adding Eqs. (2.17) and (2.20):

u(t+ k) + u(t− k) = 2u(t) + k2ü+O(k4),

u(t+ k)− 2u(t) + u(t− k)

k2
= ü+O(k2),

δttu(t) = ü+O(k2). (2.25)

The accuracy of averaging operators can be found in the same way and
follow a similar pattern.

µt+u(t) = u(t) +O(k), µt−u(t) = u(t) +O(k),

µt·u(t) = u(t) +O(k2), µttu(t) = u(t) +O(k2).
(2.26)

2.2.3 Identities
For working with FD schemes, either for implementation or analysis, it can
be extremely useful to rewrite the operators presented above to equivalent
versions of themselves. These are called identities and for future reference,
some useful ones are listed below:4

δtt =
2

k
(δt· − δt−) , (2.27a)

δt· = δt+µt− = δt−µt+, (2.27b)

µt± = ±k
2
δt± + 1, (2.27c)

δt± = ±2

k
(µt± − 1), (2.27d)

µt· = kδt· + et−. (2.27e)

That these equalities hold, can easily be proven by expanding the operators de-
fined in Section 2.2.2. Naturally, these identities also hold for spatial operators
by simply substituting the ‘t’ subscripts for ‘x’.

2.3 The mass-spring system
Though a complete physical modelling field on their own (see Chapter 1),
mass-spring systems are also sound-generating systems and lend themselves
well to illustrating and explaining FDTDmethods in practice. Startingwith the
continuous-time ODE, the current section follows the discretisation process to
a FD scheme using the operators described in Section 2.2.2. Finally, the scheme

4The ± operators in a single equation are either all ‘+’ or all ‘−’ and are used for a more
compact notation.
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2.3. The mass-spring system

is rewritten to an update equation that can be implemented, and the output of
the system is shown.

2.3.1 Continuous time
Using dots to indicate a temporal derivative, the ODE of a simple mass-spring
system is defined as

Mü = −Ku, (2.28)

where u = u(t) is the distance from the equilibrium position (in m),M > 0 is
the mass of the mass (in kg) and K ≥ 0 is the spring constant (in N/m) also
referred to as the spring stiffness. An alternative way to write Eq. (2.28) is

ü = −ω2
0u, (2.29)

with angular frequency (in rad/s)

ω0 =
√
K/M. (2.30)

This way of writing the mass-spring ODE is more compact and can more
directly be related to the fundamental frequency f0 = ω0/2π (in Hz) of the
system.

Apart from the choices of K and M , the behaviour of the mass-spring
system is determined by its initial conditions, being u(0) and ∂tu(0), i.e., the
displacement and velocity of the mass at t = 0. If the initial conditions are
non-zero, the path that the displacement of the mass follows over time is
sinusoidal (see Figure 2.5), which is also why the mass-spring system is often
referred to as the simple harmonic oscillator. The amplitude of the sinusoid is
determined by the initial conditions, whereas the frequency is determined by
M andK.

u

0

t

Fig. 2.5: Mass-spring system over time. The system follows a harmonic (sinusoidal) motion.
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Intuition

The behaviour of the mass-spring system in Eq. (2.28) arises from two basic
laws of physics: Newton’s second law and Hooke’s law.

Starting with Newton’s second law – force equals mass times acceleration –
and relating this to the variables used in Eq. (2.28) yields an expression for
force

F = Mü. (2.31)

This equation in isolation can be used to, for example, calculate the force
necessary to accelerate a mass of M kg to ü m/s2. Next, the force generated
by the spring follows Hooke’s law:

F = −Ku, (2.32)

which simply states that the force generated by a spring with stiffness K is
negatively proportional to the value of u. In otherwords, the further the spring
is extended (from the equilibrium u = 0), the more force will be generated in
the opposite direction. Finally, as the sole force acting on the mass is the one
generated by the spring, the two expressions for the force F can be set equal
to each other and yield the equation for the mass-spring system in (2.28).

The sinusoidal behaviour of the mass-spring system, or a least the fact that
the mass “gets pulled back” to the equilibrium, is apparent from the minus-
sign in Eq. (2.32). The frequency of the sinusoid, depends on the value of K
as the “pull” happens to a higher degree for a higher spring stiffness. That the
frequency of the system is also dependent on the mass M can be explained
by the fact that a lighter object is more easily moved and vice versa, which is
apparent from Eq. (2.31). In other words, the pull of the spring has a greater
effect on the acceleration of a lighter object than a heavier one.

Finally, if u = 0 there is no spring force present and the acceleration remains
unchanged. This is exactlywhatNewton’s first law states: if the net force acting
on an object is zero, its velocity will be constant. If the mass is not in motion,
this means that it remains stationary. If it is, the velocity is unchanged at the
exact moment that u = 0.

2.3.2 Discrete time
Following the discretisation process introduced in Section 2.2, one can approx-
imate the PDE in Eq. (2.28). The displacement of the mass is approximated
using

u(t) ≈ un, (2.33)

with time t = nk, time step k = 1/fs, sample rate fs and temporal index and
n ∈ N0. Note that the “grid function” does not have a subscript l as u is not
distributed in space and is now simply called a time series.
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2.3. The mass-spring system

Using the operators found in Section 2.2.2, Eq. (2.28) can be discretised as
follows:

Mδttu
n = −Kun, (2.34)

which is the first appearance of a FD scheme in this work. Expanding the δtt
operator yields

M

k2

(
un+1 − 2un + un−1

)
= −Kun,

and solving for un+1 results in the following recursion or update equation:

un+1 =

(
2− Kk2

M

)
un − un−1, (2.35)

which can be implemented in a programming language such as MATLAB.

2.3.3 Implementation and output
A simple MATLAB script implementing the mass-spring system described in
this section is shown in Appendix C.1. The most important part of the algo-
rithm happens in a for-loop recursion, where update equation (2.35) is imple-
mented. At the end of each loop, the system states are updated and prepared
for the next iteration.

To be able to start the simulation of the scheme, the initial conditions given
in Section 2.3.1 must be discretised at n = 0. As n is only defined for values
greater than zero, the forward difference operator is used for the discrete initial
velocity. A simple way to obtain a sinusoidal motion with an amplitude of 1,
is to set the initial conditions as follows:

u0 = 1 and δt+u
0 = 0. (2.36)

The latter equality can be expanded and solved for u1 to obtain its definition:

1

k

(
u1 − u0

)
= 0,

u0=1
⇐===⇒ u1 − 1 = 0,

u1 = 1.

In short, setting u0 = u1 = 1 yields an oscillatory behaviour with an amplitude
of 1. Note that any other non-zero initial condition will also yield oscillatory
behaviour, but likely with a different amplitude.

The values forK andM are restricted by a stability condition

k < 2

√
M

K
, (2.37)
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Fig. 2.6: The time domain and frequency domain output of a mass-spring system with f0 = 440
Hz.

which will be elaborated on in Section 3.3. If this condition is not satisfied, the
system will exhibit (exponential) growth and is unstable.

The output of the system can be obtained by ‘recording’ the displacement
of the mass and listening to this at the given sample rate fs. An example of
this can be found in Figure 2.6 where the frequency of oscillation f0 = 440 Hz.

2.4 The 1D wave equation
Arguably the most important PDE in the field of physical modelling for sound
synthesis is the 1D wave equation. It can be used to describe transverse vibra-
tion in an ideal string, longitudinal vibration in an ideal bar or the pressure in
an acoustic tube (see Chapter 5) [21]. Although the behaviour of this equation
alone does not appear in the real world as such – as no physical system is ideal
– it is extremely useful as a test case and a basis for more complicated models.

2.4.1 Continuous time
The 1D wave equation is a PDE that describes the motion of a system dis-
tributed in one dimension of space. Consider the state of a 1D system
u = u(x, t) of length L (in m) defined for time t ≥ 0 and x ∈ D withD = [0, L].
The PDE describing its motion is

∂2
t u = c2∂2

xu, (2.38)

where c is the wave speed of the system (in m/s). If the PDE is used to model
an ideal string, the wave speed can be defined as c =

√
T/ρA, with tension

T (in N), material density ρ (in kg/m3) and cross-sectional area A (in m2). If
instead, it is used to model pressure in an acoustic tube c is the speed of sound
in air. Figure 2.7 shows the wave propagation of the 1D wave equation excited
using a raised cosine.
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2.4. The 1D wave equation

(a) t = 0 ms. (b) t = 1 ms. (c) t = 2 ms.

Fig. 2.7: Wave propagation in the 1D wave equation in Eq. (2.38) with c ≈ 127 m/s.

Intuition

As with the mass-spring system in Section 2.3 the working of the PDE in (2.38)
arises from Newton’s second law, even though this connection might be less
apparent.

The 1D wave equation in (2.38) states that the acceleration of u(x, t) at lo-
cation x is determined by the second-order spatial derivative of u at that same
location (scaled by a constant c2). In the case that u describes the transverse
displacement of an ideal string, this second-order derivative denotes the cur-
vature of this string. As c2 is always positive, the sign (or direction) of the
acceleration is fully determined by the sign of the curvature. In other words,
a ‘positive’ curvature at location x along the ideal string yields a ‘positive’ or
upwards acceleration at that same location.

What a ‘positive’ or ‘negative’ curvature implies is more easily seen when
a simple function describing a parabola is taken, e.g. y(x) = x2, and conse-
quently taking its second derivative to get y′′(x) = 2. The answer is a positive
number which means that y has a positive curvature.

So, what does this mean for the 1Dwave equation? As a positive curvature
implies a positive or upwards acceleration as per Eq. (2.38), u with a positive
curvature at a location xwill start to move upwards and vice versa. Of course,
the state of a physical system such as u will rarely have a perfect parabolic
shape, but the argument still applies. See Figure 2.8 for a visualisation of the
forces acting on u due to curvature.

How the 1D wave equation relates to Newton’s second law, becomes ap-
parent by slightly rewriting Eq. (2.38). Recalling the definition of c for an ideal
string, one can rewrite the 1D wave equation to

ρA∂2
t u = T∂2

xu,

where ρAdescribes themass per unit lengthof the string. As the forces present in
the system act on infinitesimally small portions of the string Newton’s second
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law appears by a multiplication of dx

ρA∂2
t udx︸ ︷︷ ︸
ma

= T∂2
xudx︸ ︷︷ ︸
F

,

where ρAdx is the mass of a (tiny) portion of the string of length dx (in m),
∂2
t u is the acceleration of that portion and T∂2

xudx describes the force acting
on that portion, yielding Newton’s second law.

0 0.2 0.4 0.6 0.8 1

-1
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0

0.5

1

Fig. 2.8: The forces acting on the 1D wave equation described by u(x, t) due to curvature. The
arrows indicate the direction and magnitude of the force along the system, and consequently the
acceleration through Eq. (2.38).

Boundary conditions

When a system is distributed in space, boundary conditionsmust be determined.
Recalling that x is defined over domain D = [0, L], the boundaries, or end
points of the systemare locatedatx = 0andx = L. Twooften-usedalternatives
for the boundary conditions are

u(0, t) = u(L, t) = 0 (Dirichlet, fixed), (2.39a)
∂xu(0, t) = ∂xu(L, t) = 0 (Neumann, free). (2.39b)

The Dirichlet boundary condition says that at the end points of the system,
the state is 0 at all times. The Neumann condition on the other hand, says that
rather the slope of these points needs to be 0, but that the end points are free
to move transversely. In the former case, incoming waves invert after reaching
the boundary whereas in the latter incoming waves are reflected un-inverted.
See Figure 2.9.

If both boundaries of the 1D wave equation share the same condition, the
fundamental frequency of the simulation can be calculated using

f0 =
c

2L
. (2.40)
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2.4. The 1D wave equation

(a) The Dirichlet boundary condition in Eq.
(2.39a) fixes the boundary, which causes the
incoming waves to invert.

(b) The Neumann or free boundary condi-
tion in Eq. (2.39b) fixes the slope at the
boundary, causing the incoming waves to
not invert.

Fig. 2.9: The behaviour of the 1D wave equation with (a) Dirichlet or (b) Neumann boundary
conditions.

Scaling

As much of this thesis follows Bilbao’sNumerical Sound Synthesis [21], it might
be good to talk about a major discrepancy between the PDEs and FD schemes
that appear there and those used here. Non-dimensionalisation, or scaling, is
extensively used in [21] and much of the literature published around that time
(e.g. [54, 53]) and can be useful to reduce the number of parameters used to
describe a system.

Scaling techniques normalise the domain x ∈ [0, L] to x′ ∈ [0, 1] with
x′ = x/L . The 1D wave equation in (2.38) can then be rewritten to

∂2
t u = γ2∂2

x′u, (2.41)

where scaled wave speed γ = c/L has units of frequency. The scaling has
removed the necessity for both c and L and simply specifying the scaled wave
speed γ is enough to parametrise the behaviour of the system. The parameter
reduction gets more apparent for more complex systems and could greatly
simplify the models used, at least in notation and parameter control.

Although this parameter reduction might be useful for resonators in iso-
lation, when multiple resonators interact with each other (see Part IV), it is
better to keep the systems dimensional. As a big part of this work includes in-
teraction between multiple resonators, only dimensional systems will appear
in this thesis.

2.4.2 Discrete time
Coming back to the PDE presented in Eq. (2.38), one continues by finding a
discrete-time approximation for it. As explained in Section 2.2.1, a continuous
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state variable u = u(x, t) can be discretised using x = lh with grid spacing
h (in m) and t = nk with time step k (in s). The grid function unl approxi-
mating u can then be indexed by spatial index l ∈ {0, . . . , N} with number of
intervals between the grid points N and temporal index n ∈ N0. Continuing
with the approximations of the derivatives in the 1D wave equation, the most
straightforward discretisation of Eq. (2.38) is the following FD scheme

δttu
n
l = c2δxxu

n
l . (2.42)

Other schemes exist (see e.g. [21]), but are excluded as they have not been used
in this project. Expanding the operators using the definitions given in Section
2.2.2 yields

1

k2

(
un+1
l − 2unl + un−1

l

)
=
c2

h2

(
unl+1 − 2unl + unl−1

)
. (2.43)

and solving for un+1
l yields

un+1
l =

(
2− 2λ2

)
unl + λ2

(
unl+1 + unl−1

)
− un−1

l . (2.44)

Here,
λ =

ck

h
(2.45)

is called the Courant number and plays a big role in stability and quality of
the FD scheme. More specifically, λ needs to abide the (famous) Courant-
Friedrichs-Lewy or CFL condition for short [55]

λ ≤ 1, (2.46)

which acts as a stability condition for scheme (2.42). More details on this are
given in Section 2.4.4.

As c, k and h are interdependent due to the CFL condition, it is useful to
rewrite Eq. (2.46) in terms of known variables. As the time step k is based on
the sample rate and thus (usually) fixed, and c is a user-defined wave speed,
the CFL condition can be rewritten in terms of the grid spacing h:

h ≥ ck, (2.47)

which, in implementation, is used as a stability condition for the scheme. See
Section 3.3 for more information on how to derive a stability condition from a
FD scheme.
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2.4. The 1D wave equation

Stencil

As was done for several FD operators in Figure 2.3, it can be useful to visualise
the stencil, or region of operation, of a FD scheme. A stencil of a scheme
visualises what grid values are necessary to calculate the state at the next time
step un+1

l . Figure 2.10 shows the stencil for scheme (2.42) and – in essence
– visualises the various shifts of the grid function in Eq. (2.44). One could
visualise this stencil to be placed on the left-most points of the grid shown
in Figure 2.2. The update equation then iterates this stencil over the entire
domain and calculates all values of un+1

l based on known values of unl and
un−1
l .

Fig. 2.10: The stencil, or region of operation, for the FD scheme in (2.42). The time steps of the
various grid points are colour-coded by yellow (n+ 1), light blue (n) and dark blue (n− 1).

Boundary conditions and virtual grid points

The end points of the discrete domain are located at l = 0 and l = N . Sub-
stituting these locations into Eq. (2.44) shows that grid points outside of the
defined domain are needed, namely un−1 and unN+1. These can be referred to
as virtual grid points and can be accounted for by discretising the boundary
conditions in Eq. (2.39). Discretising these (using the most accurate centred
spatial difference operator for the Neumann condition) yields

un0 = unN = 0 (Dirichlet, fixed), (2.48a)
δx·u

n
0 = δx·u

n
N = 0 (Neumann, free). (2.48b)
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If Dirichlet boundary conditions are used, the states of the boundary points
will always be zero and can therefore be excluded from the calculations. The
range of calculation then simply becomes l ∈ {1, . . . , N − 1} and no virtual
grid points are needed when performing the update.

If, on the other hand,Neumann conditions areused, the rangeof calculation
remains l ∈ {0, . . . , N} and definitions for the virtual grid points need to be
found. Expanding the operators in Eq. (2.48b) and solving for un−1 and unN+1

provides the definitions for these virtual grid points based on values inside
the defined domain:

1

2h

(
un1 − un−1

)
= 0,

un1 − un−1 = 0,

un−1 = un1 .

1

2h

(
unN+1 − unN−1

)
= 0,

unN+1 − unN−1 = 0,

unN+1 = unN−1.

At the boundaries, the update equation in Eq. (2.44) will then have the above
definitions for the virtual grid points substituted and will become

un+1
0 =

(
2− 2λ2

)
un0 + 2λ2un1 − un−1

0 , (2.49)

and
un+1
N =

(
2− 2λ2

)
unN + 2λ2unN−1 − un−1

N , (2.50)

at the left and right boundary respectively.

2.4.3 Implementation
This section provides information on the excitation and output of the system.
See Appendix C.2 for a MATLAB implementation of the 1D wave equation.

Excitation

A simple way to excite the system is to initialise the state using a raised cosine,
or Hann window. More information on this will be given in Chapter 7, but for
completeness, the formula for a discrete raised cosine will be given here.

The discrete raised cosine can be parametrised by its center location l0 and
width w (in ‘number of grid spacings’) from which the start index ls and end
index le can be calculated, according to

ls = l0 − bw/2c and le = l0 + bw/2c , (2.51)

where b·c denotes the flooring operation and needs to be used as all the above
variables are integers. Furthermore, both ls and le must fall into the defined
spatial range of calculation. Then, a raised cosine with an amplitude of 1 can

36



2.4. The 1D wave equation

be calculated and used as an initial condition for the system according to

u1
l = u0

l =

{
0.5− 0.5 cos

(
2π(l−ls)

w

)
, ls ≤ l ≤ le,

0, otherwise.
(2.52)

As done for the implementation of the mass-spring system in Section 2.3.3,
both u0

l and u1
l are initialised with the same state, as to only have an initial

displacement, and not an initial velocity.
In MATLAB, an easier way to obtain a raised cosine is to use the hann(w)

function which returns a raised cosine (or Hann window) of width w (in grid
points).5

Output and modes

After the system is excited, one can retrieve the output of the system by se-
lecting a grid point lout and listening to that at the given sample rate fs. An
example using the parameters in Table 2.1 and Dirichlet boundary conditions
is shown in Figure 2.11.

Name Symbol (unit) Value
User-defined parameters
Length L (m) 1
Wave speed c (m/s) 1470
Sample rate fs (Hz) 44100
Derived parameters
Fundamental frequency f0 (Hz) 735
No. of intervals N (-) 30
Time step k (s) ≈ 2.27 · 10−5

Grid spacing h (m) ≈ 0.033
Courant number λ (-) 1
Excitation and output
Center location l0 (-) 0.2N
Width w (-) 4
Output location lout 3

Table 2.1: Parameters used for 1D wave equation example used in this section. The user-defined
parameters have been chosen such that λ = 1.

As can be seen from Figure 2.11, the output of the 1D wave equation
contains many peaks in the frequency spectrum on top of the fundamental
frequency. These are called harmonic partials or harmonics for short and arise

5This slight discrepancy requires to use hann(w+1) in order to get the same result as Eq.
(2.52).
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from the various modes of vibration present in the system (see Figure 2.12).
Although thePDEhasnot been implementedusingmodal synthesis (discussed
in Chapter 1), the system can still be decomposed into different modes of
vibration, each corresponding to a harmonic frequency. These modes are
assumed to vibrate independently, and their weighted sum yields the eventual
behaviour of the system.6

Fig. 2.11: The time-domain and frequency domain output of the 1D wave equation with f0 = 735
Hz and fs = 44100 Hz (N = 30 and λ = 1) and Dirichlet boundary conditions. The system is
initialised with a raised cosine described in Eq. (2.52) with l0 = 0.2N) and w = 4 and the output
is retrieved at lout = 3.

Fig. 2.12: The first 10 modal shapes of the 1D wave equation with Dirichlet boundary conditions
defined for x ∈ [0, L] (only shown for mode 1). The modes are normalised to have the same
amplitude and vibrate at their respective modal frequencies with the extremes indicated by the
black and the grey plot. The number of the shape can be determined by the number of antinodes
present in the shape.

The number of modes present in the continuous PDE of the 1Dwave equa-
tion is theoretically infinite. The number present in the discrete FD scheme,
however, is determined by the number of moving points in the system. If
Dirichlet boundary conditions are used, thismeans that there areN−1modes,
and N + 1 modes for Neumann boundary conditions. If the CFL condition is
satisfied with equality, the frequencies of these modes are integer multiples of
the fundamental: fm = mf0 for mode numberm ∈ {1, . . . , N−1} for Dirichlet

6Modes of the vibrating stringwere first discovered by Sauveur in 1701who said that “especially
at night” he observed “other small sounds” on top of the fundamental frequency and coined the
terms ‘node’ and ‘harmonic’ [56].
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and m ∈ {0, . . . , N} when using Neumann boundary conditions. The fre-
quency of the harmonics – and even the modal shapes – can be analytically
derived using modal analysis as will be explained in Section 3.5.

The amplitude of the different modes depends on the excitation location
(and type) and the output location. Figure 2.11, for example, seemingly shows
that the system only exhibits 24modes, rather than the 29 (N−1) predicted. As
the system is excited at 0.2N , or in otherwords, 1/5th of the lengthof the system,
this means that every 5th mode will be attenuated. To understand how and/or
why this happens, one can refer to Figure 2.12 and see that every 5th modal
shape has a node at 1/5th of its length. If the system is excited exactly there, this
modal shape will not obtain any energy and will thus not resonate. Similarly,
if the system is excited exactly in the middle, every 2nd modal frequency will
be attenuated as there is a node present in the corresponding modal shape.
The output would then only contain odd-numbered modes.

2.4.4 Stability and simulation quality
As shown in Eq. (2.46), the Courant number needs to abide the CFL condition
in order for the scheme to be stable. A system is regarded unstable if it exhibits
(exponential) unbounded growth. If Neumann boundary conditions (free) are
used, it is possible that the system drifts off over time. This does not mean that
the system is unstable, it is actually entirely physically possible.7

Besides stability, the value of λ is closely related to the quality of the
simulation. If λ = 1, Eq. (2.42) is actually an exact solution to Eq. (2.38), which
is quite uncommon in the realm of differential equations. See Figure 2.13a.
Identically, if Eq. (2.47) is satisfied with equality, the FD scheme is an exact
solution to the PDE, and if h deviates from this condition, the quality of the
simulation decreases.

If λ < 1, the quality of the simulation decreases in an effect called numer-
ical dispersion. Dispersion is a phenomenon where some frequencies travel
faster through a medium than others, which is desired in some models (see
e.g. Chapter 4). Numerical dispersion, however, which is due to numerical
inaccuracy, never is! Figure 2.13b shows an example when λ = 0.9, and one
can observe that the wave propagation does not match the ideal case as Figure
2.13a shows. Moreover, bandlimiting effects occur, meaning that the highest
frequency that the system can generate decreases. See Figure 2.14. Higher
modes get ‘squished’ together and are not exact multiples of the fundamental
anymore. Section 3.5 elaborates on how to calculate the exact modal frequen-
cies of a FD implementation of the 1D wave equation.

Finally, if λ > 1 the system becomes unstable. An example is shown in
Figure 2.13c. Unstable behaviour usually comes in the formof high frequencies

7Imagine a ‘free’ guitar string where the ends are not connected to the nut and bridge of a
guitar. The string can be taken far away from the guitar without it breaking or exploding.
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Fig. 2.13: Grid function unl visualised ∼100 samples after excitation. (a) If λ = 1, the solution is
exact. (b) If λ < 1 dispersive behaviour shows. (c) If λ > 1 the CFL condition in Eq. (2.46) is not
satisfied and the system is unstable.
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0 0.5 1 1.5 2 2.5

10
4

-60

-40

-20

0

20

40

60

(c) λ = 1.001

Fig. 2.14: Frequency spectra of the simulation output. The Courant number is set to (a) λ = 1, (b)
λ = 0.9 and (c) λ = 0.5. One can observe that for lower values of λ the bandwidth of the output
decreases drastically.

(around the Nyquist frequency of fs/2) growing without bounds.
In what situation would the stability condition then not be satisfied with

equality? As mentioned in Section 2.2.1, a continuous domain D = [0, L] for
a system of length L needs to be divided into N equal sections of length h in
the discretisation process. A logical step to calculate N would be to divide
L by h calculated using Eq. (2.47) satisfied with equality to get the highest
possible simulation quality. However, this calculation might not result in an
integer value, which N should be. To stay as close to the stability condition as
possible, the following calculations are performed in order:

h := ck, N :=

⌊
L

h

⌋
, h :=

L

N
, λ :=

ck

h
. (2.53)

In otherwords, Eq. (2.47) is satisfiedwith equality andused to calculate integer
N . After this, h is recalculated based on N and used to calculate the Courant
number using Eq. (2.45). This process assures that N is an integer and that
the CFL condition is satisfied, though not necessarily with equality.

To understand why h needs to be recalculated, consider the following ex-
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ample. Consider the 1D wave equation defined over domain D = [0, L] where
L = 1. Furthermore, the system should produce a fundamental frequency
of f0 = 750 Hz which requires a wave speed of c = 1500 m/s according to
Eq. (2.40). If a sample rate of fs = 44100 Hz is used, and recalling that
k = 1/fs, these values can be filled into Eq. (2.47) satisfied with equality, and
yields h ≈ 0.034. Dividing the length by the grid spacing, yields L/h = 29.4,
meaning that exactly 29.4 intervals of size h fit in the domain D. However, the
number of intervals needs to be an integer and, using Eq. (2.53), yieldsN = 29.
If h is not recalculated according to Eq. (2.53), the total length will be 29 times
the grid spacing h. This results in L ≈ 0.986 and is slightly less than the origi-
nal length of 1. Although the CFL condition will be satisfied with equality, the
fundamental frequencywill be slightly higher than desired: f0 ≈ 760.34 Hz. If
h is recalculated based onN , then L and f0 will be unchanged, and the system
will have the correct fundamental frequency. The Courant number λ ≈ 0.986

is still very close to satisfying the condition in Eq. (2.46), and the decrease in
bandwidth and quality will be perceptually irrelevant – or at the very least,
less perceptually relevant than the change in f0 if h is not recalculated.

Possible solution

One of the main contributions of the PhD project is published in paper [G]
and summarised in Chapter 12, where a ‘fractional’ number of intervals is
introduced. This removes the necessity of the flooring operation in Eq. (2.53)
and circumvents the recalculation of h to always satisfy the stability condition
with equality while retaining the correct fundamental frequency.

Intuition

It might not be immediately clear why a too low value for h might cause
instability. Some intuition is provided in [21, Fig. 6.9], but here, an alternative
way to see this is given.

In a FD implementation of the 1Dwave equation, grid points can only affect
their neighbours as seen in update equation (2.44). Using the values in Table
2.1 as an example,N = 30 and if λ = 1, it takes exactly 30 samples, or iterations
of Eq. (2.44), for a wave to travel from one boundary to the other.

If h were to be chosen to be twice as big so that there are only half as
many intervals between the grid points as per Eq. (2.53) (N = 15), the grid
points could be set to ‘affect’ their neighbours to a lesser degree. This way, the
wave still takes the same amount of time to travel between the boundaries and
the fundamental frequency stays approximately the same. This is essentially
what happens when λ < 1 (in this case λ = 0.5) and can be observed from
the update equation in Eq. (2.44); the effect that the neighbouring grid points
have on each other will indeed be less. The output of the system will have
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approximately the same fundamental frequency as if λ = 1, but its partials
will be detuned due to numerical dispersion as explained in this section.

If, on the other hand, hwere to be chosen to be twice as small so that there
are twice as many intervals between grid points (N = 60), it is impossible
for the waves to travel from one boundary to the other in 30 samples. If they
could interact with their second neighbour, this would be possible, but the FD
scheme in Eq. (2.42) does not allow for this. Indeed, as λ = 2 in this case,
the effect that the grid points have on each other will be disproportionate.
In a way, grid points have too much energy which they can not lose to their
neighbours, because their effect should have reached their second neighbour
over the course of one sample. The way to solve this would be to halve the
time step k (or double the sample rate fs), which would allow grid points to
interact with their second neighbours over the course of once the old time step
(as this is now divided into two time steps). This also shows in the fact that
λ = 1 again (as halving k cancels out halving h) and grid points transfer their
energy to their neighbours proportionately again.
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Chapter 3

Analysis Techniques

This chapter provides some useful techniques to analyse FD schemes. Tech-
niques to analyse PDEs also exist, but this work is more practically oriented,
and will focus on the discrete schemes. This chapter can be seen as a ‘tuto-
rial’ on how to use these techniques. Starting off with some necessary theory
on matrices in a FDTD context and other mathematical tools, this chapter
continues to introduce

• Frequency domain analysis, which can be used to determine stability con-
ditions of (linear and time/shift-invariant) FD schemes,

• Energy analysis, which can both be used to debug implementations of
FD schemes, as well as determine stability conditions in a more general
fashion, and

• Modal analysis which can be used to determine the modal frequencies
(and damping per mode) that a FD scheme exhibits.

3.1 Matrices in a FDTD context
For several purposes, such as implementation in MATLAB and several analysis
techniques described shortly, it is useful to write a FD scheme in matrix form.1
Matrix multiplication when working with FDTD methods usually involves
multiplying a square matrix (with equal rows and columns) onto a column
vector. Consider a (N +1)× (N +1) square matrix A and a (N +1)×1 column
vector u. Multiplying these results in a (N + 1)× 1 column vector w:

Au = w. (3.1)

1Appendix B provides some basic knowledge on matrices and linear algebra for those unfa-
miliar with this.
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Expanding this operation results in



a00 a01 . . . a0N

a10 a11 . . . a2N

...
...

...
aN0 aN1 . . . aNN




︸ ︷︷ ︸
A




u0

u1

...
uN




︸ ︷︷ ︸
u

=




a00u0 + a01u1 + . . .+ a0NuN
a10u0 + a11u1 + . . .+ a1NuN

...
aN0u0 + aN1u1 + . . .+ aNNuN




︸ ︷︷ ︸
w

(3.2)

where the indexing of the matrix elements starts at 0 rather than 1 here, as it
relates better to operations used in a FDTD context.

3.1.1 FD operators in matrix form
FD operators approximating spatial derivatives and averages introduced in
Section 2.2.2 can be written in matrix form and applied to a column vector un

containing the state of the system at time index n. These matrices are square
and their sizes depend on the number of grid points the system is described
for, as well as the boundary conditions. Not assuming a specific size for now,
the FD operators in (2.5) can be written in matrix form according to

Dx+ =
1

h




. . .

0

−1

. . .

−1

1

−1

1

−1

1

0

. . .

. . .




Dx− =
1

h




. . .

. . .

0

−1

1

−1

1

−1

1

. . .
1

0

. . .




Dx· =
1

2h




. . .

. . .

0

−1

0

. . .

−1

0

1

−1

0

1

. . .
0

1

0

. . .

. . .




where the diagonal dots denote that the values on the respective diagonals
continue until the top-left and bottom-right corners of thematrix. A0 indicates
that the rest of the values in the matrix are zeros.

Averaging operators µx+, µx− and µx· are defined in a similar way:
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Mx+ =
1

2




. . .

0

1

. . .

1

1

1

1

1

1

0

. . .

. . .




Mx− =
1

2




. . .

. . .

0

1

1

1

1

1

1

. . .
1

0

. . .




Mx· =
1

2




. . .

. . .

0

1

0

. . .

1

0

1

1

0

1

. . .
0

1

0

. . .

. . .




It is important to notice that only spatial operators arewritten in thismatrix
form and then applied to state vectors at different time steps (un+1, un and
un−1).

Finally, the identity matrix is a matrix with only 1s on the diagonal and 0s
elsewhere:

I =




. . .

0

1

1

1

1

0

. . .




,

and has the following special property

IA = AI = A.

3.1.2 Schemes and update equations in matrix form
With the spatial operators in matrix form presented above, the FD scheme of
the 1D wave equation in Eq. (2.42) can be written in matrix form.

If the Dirichlet boundary conditions in (2.48a) are used, the end points of
the system do not have to be included in the calculation. The values of the
grid function unl for l ∈ {1, . . . , N − 1} can then be stored in a column vector
according to un = [un1 , . . . , u

n
N−1]T . Furthermore, (N − 1) × (N − 1) matrix
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Dxx is defined as

Dxx =
1

h2




0

1

−2

. . .
−2

1

1

. . .
1

1

−2

. . .

−2

1

0


. (3.3)

If instead, Neumann boundary conditions in Eq. (2.48a) are used, the values
of unl for the full range l ∈ {0, . . . , N} need to be stored as un = [un0 , . . . , u

n
N ]T

and the (N + 1)× (N + 1) matrix Dxx will be

Dxx =
1

h2




0

1

−2

. . .
−2

2

1

. . .
1

2

−2

. . .

−2

1

0


, (3.4)

where the 2s in the top and bottom row correspond to the multiplication by 2

with un1 and unN−1 in update equations (2.49) and (2.50) respectively.
Regardless of the boundary conditions, the FD scheme in (2.42) can be

written in matrix form as

1

k2

(
un+1 − 2u + un−1

)
= c2Dxxu

n, (3.5)

and rewritten to a matrix form of the update equation analogous to Eq. (2.44)

un+1 = (2I + c2k2Dxx)un − un−1. (3.6)

The identity matrix is necessary here for correct matrix addition.

3.2 Mathematical tools and product identities
Some useful mathematical tools used for the energy analysis techniques pre-
sented in Section 3.4 will be shown here. The tools shown here can be applied
to 1D systems. These will be extended to 2D systems in Chapter 6. Unless
denoted otherwise, the notation and theory will follow [21].
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3.2.1 Inner product
For two functions f = f(x, t) and g = g(x, t) defined for x ∈ D where D =

[0, L], their l2 inner product and l2 norm are defined as

〈f, g〉D =

∫

D
fgdx and ‖f‖D =

√
〈f, f〉D. (3.7)

These functions do not have to be time-dependent (i.e., they can also simply be
f(x) and g(x)), but as all functions used in thiswork are in fact time-dependent,
this is left for coherence. It is also important to note that these functions do not
have to be ‘isolated’ state variables per se (such as u(x, t) used in the previous
chapter), but could also be state variables with a derivative applied to it (such
as ∂tu(x, t)).

The discrete inner product of any two (1D) functions fnl and gnl defined for
l ∈ d, with discrete domain d = {0, . . . , N}, is

〈fnl , gnl 〉d =

N∑

l=0

hfnl g
n
l , (3.8)

where themultiplication byh is thediscrete counterpart of dx in the continuous
definition in (3.7). Also useful are the primed inner product

〈fnl , gnl 〉′d =

N−1∑

l=1

hfnl g
n
l +

h

2
fn0 g

n
0 +

h

2
fnNg

n
N , (3.9)

and the more general weighted inner product

〈fnl , gnl 〉εl,εrd =

N−1∑

l=1

hfnl g
n
l +

εl
2
hfn0 g

n
0 +

εr
2
hfnNg

n
N , (3.10)

where free parameters 0 < εl, εr ≤ 2 scale the boundary points of the regular
inner product. Naturally, if εl = εr = 1, Eq. (3.10) reduces to Eq. (3.9), and if
εl = εr = 2, (3.10) reduces to (3.8).

3.2.2 Summation by parts
Extremely useful when performing energy analysis on distributed systems is
summation by parts, which is the discrete counterpart of integration by parts.
Although its application will only be apparent when actually performing an
energy analysis (see e.g. Sections 3.4.3 and 4.4), some definitions will be
presented here for future reference.

Here, the same functions as in the previous section, f(x, t) and g(x, t) and
domainD, will be used. Applying a spatial derivative to g, and using Eq. (3.7),
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integration by parts is defined as

〈f, ∂xg〉D = −〈∂xf, g〉D + fg|L0 (3.11)

where fg|L0 describes the boundary terms that appeared in the process. One
can observe that the spatial derivative switched functions, and is now applied
to f rather than g.

In discrete time, using the same two (1D) functions as before: fnl and gl
and are defined for l ∈ d with discrete domain d = {0, . . . , N}. Then, using
the discrete inner product in Eq. (3.8), two variants of summation by parts are
defined as

〈fnl , δx−gnl 〉d = −〈δx+f
n
l , g

n
l 〉d + fnN+1g

n
N − fn0 gn−1, (3.12a)

〈fnl , δx+g
n
l 〉d = −〈δx−fnl , gnl 〉d + fnNg

n
N+1 − fn−1g

n
0 . (3.12b)

A derivation of Eq. (3.12a) is given in Appendix F.1. As in the case of inte-
gration by parts in Eq. (3.11), the process of summation by parts causes the
derivative to be applied to the other function and causes the sign of the re-
sulting inner product to change. Important to note, is that the sign (forward /
backward) of the derivative operator has also changed. Lastly, discrete bound-
ary terms have appeared and it can be seen that values outside of the defined
domain are needed, i.e., gnN+1 and fn−1. These can be accounted for by the
boundary conditions imposed on the system (see Section 2.4.2 as an example).

One could also choose to work with reduced domains after summation by
parts. Domains that have one fewer point at the boundaries are defined as
d = {0, . . . , N − 1}, d = {1, . . . , N} and d = {1, . . . , N − 1}. The following
identities can be shown to hold

〈fnl , δx−gnl 〉d = −〈δx+f
n
l , g

n
l 〉d + fnNg

n
N − fn0 gn−1, (3.13a)

〈fnl , δx+g
n
l 〉d = −〈δx−fnl , gnl 〉d + fnNg

n
N+1 − fn0 gn0 , (3.13b)

and, using the primed inner product in Eq. (3.9),

〈fnl , δx−gnl 〉′d = −〈δx+f
n
l , g

n
l 〉d + fnNµx−g

n
N − fn0 µx−gn0 , (3.14a)

〈fnl , δx+g
n
l 〉′d = −〈δx−fnl , gnl 〉d + fnNµx+g

n
N − fn0 µx+g

n
0 , (3.14b)
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or the more general weighted inner product in Eq. (3.10)

〈fnl , δx−gnl 〉εl,εrd = −〈δx+f
n
l , g

n
l 〉d + fnNg

n
N−1 − fn0 gn0

+
εr
2
fnN (gnN − gnN−1) +

εl
2
fn0 (gn0 − gn−1),

(3.15a)

〈fnl , δx+g
n
l 〉εl,εrd = −〈δx−fnl , gnl 〉d + fnNg

n
N − fn0 gn1

+
εr
2
fnN (gnN+1 − gnN ) +

εl
2
fn0 (gn1 − gn0 ).

(3.15b)

The above identities will prove useful in energy analysis techniques later on.
A derivation of Eq. (3.13a) is given in Appendix F.1.

Finally, recalling that δxx = δx+δx−, one can apply summation by parts
twice to get the following identities

〈f, δxxg〉d = 〈δxxf, g〉d + fNδx+gN − gNδx+fN − f0δx−g0 + g0δx−f0, (3.16a)
〈f, δxxg〉d = 〈δxxf, g〉d + fNδx+gN − gNδx−fN − f0δx−g0 + g0δx+f0, (3.16b)

〈f, δxxg〉′d = 〈δxxf, g〉′d + fNδx·gN − gNδx·fN − f0δx·g0 + g0δx·f0. (3.16c)

3.2.3 Product identities
Some useful identities used in this work are

(δt·u
n
l )(δttu

n
l ) = δt+

(
1

2
(δt−u

n
l )2

)
, (3.17a)

(δt·u
n
l )unl = δt+

(
1

2
unl et−u

n
l

)
, (3.17b)

(δt+u
n
l )(µt+u

n
l ) = δt+

(
1

2
(unl )2

)
, (3.17c)

(δt·u
n
l )(µt·u

n
l ) = δt+

(
1

2
µt−(unl )2

)
, (3.17d)

(δt·u
n
l )(µttu

n
l ) = δt+

(
1

8
(unl + et−u

n
l )2

)
, (3.17e)

unl et−u
n
l = (µt−u

n
l )2 − k2

4
(δt−u

n
l )2. (3.17f)

These identities can be used for spatial derivatives as well, by substituting the
‘t’ subscripts for ‘x’.

When an operator is applied to a product of two grid functions, the discrete
counterpart of the product rule needs to be used according to

δt+(unl w
n
l ) = (δt+u

n
l )(µt+w

n
l ) + (µt+u

n
l )(δt+w

n
l ). (3.18)

The same rule applies when the backward operator δt−(unl w
n
l ) or centred
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operator δt·(unl wnl ) is used. In that case, the forward operators δt+ and µt+ in
Eq. (3.18) need to be substituted for the backward or centred versions of the
operators respectively.

3.3 Frequency domain analysis
Frequency domain analysis, also called Fourier analysis, is a way to determine
various properties of a FD scheme, including conditions for stability. The
process is similar to finding stability for digital filters. In essence, a FD scheme
can be seen as a complex filter of which its coefficients are defined by physical
parameters. This section will explain how to obtain a frequency domain
representation of a scheme and will mainly follow [21], albeit in a slightly
more practical manner.

Frequency domain representation and ansatz

Frequency domain analysis of FD schemes starts by performing a z-transform
on the scheme. The z-transform converts a discrete signal into a frequency
domain representation, and is extensively used in the field of digital signal
processing (DSP) to analyse the behaviour and especially stability of digital
filters. To not go too much into detail here, the interested reader is referred to
the very comprehensive explanation on the z-transform given in [57, Ch. 5].

If a system is distributed in space, one can perform a spatial Fourier trans-
form on a grid function. Frequency domain analysis in the distributed case is
called von Neumann analysis which first appeared in [58] co-authored by John
vonNeumann. Later, this technique got amore general treatment in [59] and is
heavily used in [21]. The discrete-time z-transform and discrete spatial Fourier
transform performed on a 1D grid function are defined as [21]

û =

∞∑

n=−∞
unl z

−n and ũ =

∞∑

l=−∞
unl e
−jlβh (3.19)

with complex number z = esk, complex frequency s = jω+σ (more elaborated
on in 3.5) and real wavenumber β. Frequency domain analysis in 2D will be
elaborated on in Section 6.2.4.

A shortcut to performing a full frequency domain analysis is to use a test
solution, or ansatz, and replace the grid functions by their transforms. The
grid function for a 1D system can be replaced by an ansatz of the form (1D)
[21]

unl
A

=⇒ znejlβh (3.20)

where “ A=⇒” indicates to replace the grid function with the ansatz.
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3.3. Frequency domain analysis

Like in the DSP realm, the power of z indicates a temporal shift, i.e., z−1

is a one-sample delay. In a FDTD context, this corresponds to a time shift
as seen in Section 2.2.2. For spatially distributed systems, a shift in l can be
interpreted as a phase shift of a frequency with wavenumber β. See Table 3.1
for the frequency domain representation of grid functions with their temporal
and spatial indices shifted in different ways.

Grid function Ansatz Result
unl z0ej0βh 1

un+1
l z1ej0βh z

un−1
l z−1ej0βh z−1

unl+1 z0ej1βh ejβh

unl−1 z0ej(−1)βh e−jβh

unl+2 z0ej2βh ej2βh

unl−2 z0ej(−2)βh e−j2βh

un−1
l+1 z−1ej1βh z−1ejβh

un−1
l−1 z−1ej(−1)βh z−1e−jβh

Table 3.1: Frequency domain representation of a grid function using ansatz (3.20) with frequently
appearing temporal and spatial shifts.

Using thesedefinitions, the effect of various operators on agrid function can
be written in their frequency domain representation. For systems distributed
in space, the following trigonometric identities are extremely useful when
performing the analyses [60, p. 71]:

sin(x) =
ejx − e−jx

2j
⇒ sin2(x) =

ej2x + e−j2x

−4
+

1

2
, (3.21a)

cos(x) =
ejx + e−jx

2
⇒ cos2(x) =

ej2x + e−j2x

4
+

1

2
. (3.21b)

Take for example

δxxu
n
l =

1

h2

(
unl+1 − 2unl + unl−1

) A
=⇒ 1

h2

(
ejβh − 2 + e−jβh

)
.

Then, using x = βh/2, identity (3.21a) can be rewritten to

ejβh − 2 + e−jβh = −4 sin2(βh/2),

and substituted into the above to get

δxxu
n
l
A

=⇒ − 4

h2
sin2(βh/2).
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Examples of various temporal FD operators applied to grid functions in their
frequency domain representation are

δt+u
n
l
A

=⇒ 1

k
(z − 1) , δt−u

n
l
A

=⇒ 1

k

(
1− z−1

)
,

δt·u
n
l
A

=⇒ 1

2k

(
z − z−1

)
, δttu

n
l
A

=⇒ 1

k2

(
z − 2 + z−1

)
,

(3.22)

and for spatial operators, identity (3.21a) can be used to obtain

δxxu
n
l
A

=⇒ − 4

h2
sin2(βh/2), (3.23a)

δxxxxu
n
l
A

=⇒ 16

h4
sin4(βh/2). (3.23b)

Proving stability

Similar to digital filters, the system is stable when the roots of the characteristic
polynomial in z (for the feedback components) are bounded by 1 (unity)

|z| ≤ 1. (3.24)

In a FDTDcontext, the frequencydomain representation of a FD scheme results
in a characteristic equation – which is usually a second-order polynomial – in z
and needs to satisfy condition (3.24) for all wave numbers β. It can be shown
that for a polynomial of the form

z2 + a(1)z + a(2) (3.25)

its roots satisfy condition (3.24) when it abides the following condition [21]

|a(1)| − 1 ≤ a(2) ≤ 1. (3.26)

If a(2) = 1, the simpler condition

|a(1)| ≤ 2, (3.27)

suffices.

3.3.1 Mass-spring system
Recalling the FD scheme of the mass-spring system in Eq. (2.35)

Mδttu
n = −Kun,
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a frequency domain representation can be obtained using the ansatz in Eq.
(3.20)with l = 0. Using Table 3.1 and Eqs. (3.22) as a reference and substituting
the definitions yields

M

k2

(
z − 2 + z−1

)
= −K.

Gathering the terms and moving all to the left-hand side, the characteristic
equation for the mass-spring system can be obtained:

z −
(

2− Kk2

M

)
+ z−1 = 0. (3.28)

To begin to prove stability, this equation needs to be written in the form found
in (3.25). Multiplying all the terms by z, and noticing that a(2) = 1, one could
continue with condition (3.27). However, the scheme used here is a special
case where the roots of the characteristic equation can not be identical [21].
When this happens, the output of the system will grow linearly and is called
“marginally unstable”. This means that |a(1)| 6= 1 and the condition in (3.27)
becomes |a(1)| < 2. Continuing with this conditions yields

∣∣∣∣−2 +
Kk2

M

∣∣∣∣ < 2,

−2 < −2 +
Kk2

M
< 2,

0 <
Kk2

M
< 4.

If only non-zero values are chosen for K, k and M they are positive (as they
are already defined as being non-negative) and the first condition is always
satisfied. The second condition is then easily solved for k by

k < 2

√
M

K
. (3.29)

Recalling that ω0 =
√
K/M (see Eq. (2.30)), Eq (3.29) can be more compactly

written as
k <

2

ω0
. (3.30)

3.3.2 1D wave equation
This section will derive the stability condition for the 1D wave equation pre-
sented in Section 2.4 using von Neumann analysis.
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Recalling the FD scheme in (2.42):

δttu
n
l = c2δxxu

n
l ,

its frequency domain representation can be obtained using the definitions in
Eqs. (3.22) and (3.23a):

1

k2

(
z − 2 + z−1

)
= −4c2

h2
sin2 (βh/2) . (3.31)

Also recalling that λ = ck/h (see Eq. (2.45)), the characteristic equation of the
1D wave equation is

z +
(
4λ2 sin2(βh/2)− 2

)
+ z−1 = 0. (3.32)

The scheme is then stable if the roots satisfy condition (3.24). As the charac-
teristic equation is of the form in Eq. (3.25) (after multiplication with z) with
a(2) = 1, stability is shown by abiding condition (3.27) for all β. When applied
to the characteristic equation (3.32), it can be seen that

|4λ2 sin2(βh/2)− 2| ≤ 2,

|2λ2 sin2(βh/2)− 1| ≤ 1,

−1 ≤ 2λ2 sin2(βh/2)− 1 ≤ 1,

0 ≤ 2λ2 sin2(βh/2) ≤ 2,

0 ≤ λ2 sin2(βh/2) ≤ 1.

Observing that all terms in λ2 sin2(βh/2) are squared, this term will always be
non-negative and will therefore always satisfy the first condition. Continuing
with the second condition, and knowing that the sin2(βh/2)-term is bounded
by 1 for all β, yields the following stability condition:

λ ≤ 1.

This is the CFL condition given in Eq. (2.46). To obtain the stability condition
in terms of the grid spacing, the definition for λ is substituted and written in
terms of the grid spacing

h ≥ ck, (3.33)

which is the stability condition given in Eq. (2.47).

3.3.3 Discussion
Although frequency domain analysis is very useful, it can only be applied to
linear and time-invariant (LTI) systems and linear and shift-invariant (LSI) sys-
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tems. These, respectively, describe systems whose properties do not change
over time (LTI) and in space (LSI).2 Furthermore, the analysis assumes sys-
tems with infinite domains, so boundary conditions are not included. Energy
analysis techniques, on the other hand, allow these types of systems, even
nonlinear systems, to be analysed. Moreover, these techniques can work with
finite domains, such that boundary conditions can be handled as well. Energy
analysis techniques will be presented below.

3.4 Energy analysis
Of all analysis techniques described in this chapter, energy analysis is, without
a doubt, the most important when working with FD schemes. First of all, from
a practical point of view, it is essential for debugging implementations of FD
schemes. Especially when trying to model more complex systems, program-
ming errors are unavoidable, and energy analysis can be extremely helpful in
locating the errors. Secondly, energy analysis techniques can be used to obtain
stability conditions in a much more general sense than the frequency domain
analysis techniques presented in Section 3.3. Where frequency domain analy-
sis is restricted to LTI and LSI systems with infinite domains (for distributed
systems), energy analysis can be applied to nonlinear systems and include
boundary conditions [21].

Gustafsson et al. in (the first edition of) [61] worked with energy to find
stability conditions for FD schemes. The authors referred to this as ‘the energy
method’ and it effectively circumvented the need of a frequency domain repre-
sentation to find stability conditions (as presented in Section 3.3). Later, energy,
or more specifically ‘energy as a conserved quantity’, was used to determine
stability and passivity of systems. Bilbao gives an elaborate overview in [21]
where this has been extensively used to show stability of many FD schemes.

One of the main goals when performing energy analysis, is to find an
expression for the total energy present in the system. This is referred to as the
Hamiltonian and denoted by H in continuous time and h in discrete time. In
this work, the focus of the energy analysis will be practically oriented and only
the discrete time case will be considered.

In this section, four steps are presented and can be followed to perform
a full energy analysis of a FD scheme and implement it afterwards. Then,
the analysis will be performed on the mass-spring system and the 1D wave
equation presented in Chapter 2. Finally, it will be shown how to obtain
stability conditions through the techniques presented in this section.

2Acoustic tubes with a spatially-varying cross-section presented in Chapter 5 are examples of
non-LSI systems.
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3.4.1 Energy analysis: A 4-step tutorial

Step 1: Obtain the rate of change of the total energy δt+h

The first step to energy analysis is to take the appropriate norm of the scheme
(see Eq. (3.7)), which yields an expression for the rate of change of the energy
of the system: δt+h. Usually, thismeans to take the inner product of the scheme
with (δt·unl ) over a discrete domain d. See Section 3.2.1 for more details on the
inner product. Note that the forward time difference δt+ is used (and not the
backwards or centred) because of convention and preference.3

For the units of the resulting energy balance to add up (also see Step 3),
it is useful to perform the analysis on a scheme with all physical parameters
written out.4

Step 2: Identify different types of energy and obtain the total energy h by
isolating δt+

The energy of a FD scheme can generally be divided into three different types:
the total energy contained within the system, or Hamiltonian h, energy losses
through damping q and energy input through external forces or excitations p.
For distributed systems, an additional boundary term b appears, but vanishes
under ‘regular’ (lossless and not energy-storing) boundary conditions. Nearly
any energy balance is thus of the form

δt+h = b− q− p. (3.34)

This equation essentially says that the total energy present in the system
changes due to losses and inputs. For a lossless systemwithout externally sup-
plied energy over the course of the simulation (so initial conditions excluded),
the energy should remain unchanged over the course of the simulation:

δt+h = 0 =⇒ hn = h0. (3.35)

As the eventual interest lies in the total energy of the system h and not its
rate of change, δt+ must be isolated in the definition of δt+h. In this step, the
identities in Section 3.2.3 are extremely useful, as well as summation by parts
described in Section 3.2.2 for distributed systems.

TheHamiltonian itself canusuallybe further subdivided intokinetic energy
and potential energy, denoted by the symbols t and v respectively:

h = t + v (3.36)

As a rule of thumb, the definition for kinetic energy contains ‘velocity squared’

3[Bilbao, verbally]
4So using the discretised version of e.g. Eq. (2.28) rather than Eq. (2.29).
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(as in the classical-mechanics definitionEkin = 1
2Mu̇) and the potential energy

includes the restoring forces of the system.

Step 3: Check the units in the expression for h

To know that the previous steps have been carried out correctly, it is good to
check whether the units of the resulting expression for h is indeed in Joules,
or kg · m2· s−2. The other quantities such as energy losses q and inputs p,
should be in Joules per second or in SI units: kg · m2· s−3. As mentioned in
Step 1, it is therefore useful to have all physical parameters written out so that
the units will be correct in this step. Some information about operators and
grid functions and how they ‘add’ units are given in Table 3.2. Finally, the
appearance of a grid function unl ‘adds’ the unit of whatever it describes. For
example, if unl describes a displacement in m, it will ‘add’ a unit of m to the
equation.

Name Operator Unit
Inner product (1D) 〈·, ·〉d m
Norm (1D) ‖·, ·‖2d m
First order ops. in time δt+, δt−, δt· s−1

Second order op. in time δtt s−2

First order ops. in space δx+, δx−, δx· m−1

Second order op. in space δxx m−2

Shift operators et−, ex+, . . . -
Averaging operators µt+, µtt, µx·, . . . -

Table 3.2: Units of operators.

Step 4: Implement the definitions for energy and debug the FD scheme

In the end, the definition for the energy can be implemented and used as a
check for whether the FD scheme has been implemented correctly. Usually,
the energy of the system is calculated for every iteration in the main loop and
plotted after the simulation. For a system without losses or energy inputs,
the energy should be unchanged according to Eq. (3.35) and can be plotted
according to

hne =
hn − h0

h0
, if h0 6= 0, (3.37)

where hne can be seen as the normalised energy and shows the error variation.
Although this equation should always return 0 (as hn = h0), in a finite precision
simulation,minutefluctuations of the energy shouldbevisibledue to rounding
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errors. Plotting the Hamiltonian should show fluctuations within machine
precision, which is usually in the range of 10−15. Over time, the fluctuations can
add up, and possibly end up out of this range, but generally, any fluctuations
less than in the 10−10 range indicate that there is no programming error. See
e.g. Figures 3.1 and 3.2.

For a systemwith losses or energy inputs, a discrete integration, or summed
form can be used (as done in e.g. [62]):

hne =
hn − h0 + k

∑n−1
m=0 (qm + pm)

h0
, if h0 6= 0. (3.38)

3.4.2 Mass-spring system
Recalling the FD scheme for the simple mass-spring system in Eq. (2.34)

Mδttu
n = −Kun

an energy analysis can be performed using the four steps described above.

Step 1: Obtain δt+h

The energy balance of the simple mass-spring system presented in Section 2.3
can be obtained by first taking the product of scheme (2.34) with (δt·un):

δt+h = M(δt·u
n)(δttu

n) +K(δt·u
n)(un) = 0. (3.39)

Note that an inner product is not necessary here, as the system is not dis-
tributed.

Step 2: Identify energy types and isolate δt+

As there are no losses or externally supplied energy present in the system, all
terms are part of the Hamiltonian h. To isolate δt+ from Eq. (3.39), one can use
identities (3.17a) and (3.17b) to get the following:

δt+h = δt+

(
M

2
(δt−u

n)2 +
K

2
unet−u

n

)
= 0, (3.40)

and the following definition for h can be obtained

h =
M

2
(δt−u

n)2 +
K

2
unet−u

n = 0. (3.41)
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This can be rewritten in terms of the kinetic energy t, and potential energy v,
according to

h = t + v, with t =
M

2
(δt−u

n)2, and v =
K

2
unet−u

n. (3.42)

Step 3: Check units

Asmentioned above, the energy h needs to be in Joules, or kg ·m2· s−2. Taking
the terms in Eq. (3.42) one-by-one and writing them in their units results in

t =
M

2
(δt−u

n)2
in units
−−−−−→ kg · (s−1 ·m)2 = kg ·m2 · s−2,

v =
K

2
unet−u

n
in units
−−−−−→ N ·m−1 ·m ·m = kg ·m2 · s−2,

which indeed have the correct units.

Step 4: Implementation

Equation (3.47) can then be implemented in the same for-loop recursion where
the update is calculated.

%% Calculate the energy using Eq. (3.42)

% Kinetic energy
kinEnergy(n) = M / 2 * (1/k * (u - uPrev))^2;

% Potential energy
potEnergy(n) = K / 2 * u * uPrev;

% Total energy (Hamiltonian)
totEnergy(n) = kinEnergy(n) + potEnergy(n);

Figure 3.1 shows the normalised energy (according to Eq. (3.37)) of the mass-
spring systemandshows that thedeviation is indeedwithinmachineprecision.

3.4.3 1D wave equation
Energy analysis could be directly performed on the FD scheme in Eq. (2.42).
However, as mentioned above, it is useful to write out all physical parameters
such that the units of the scheme add up to energy in Joules. Taking the
definition for the wave speed for the ideal string c =

√
T/ρA and multiplying

both sides of Eq. (2.42) by ρA yields

ρAδttu
n
l = Tδxxu

n
l , (3.43)
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he

h

v

t

Fig. 3.1: The kinetic (blue), potential (red), and total (black) energy of an implementation of the
mass-spring system are plotted in the left panel. The right panel shows the normalised energy
(according to Eq. (3.37)). Notice that the scaling of the y-axis is 10−14 and the energy is thus
within machine precision.

where l ∈ dwith discrete domain d ∈ {0, . . . , N}, andN + 1 is number of grid
points. Furthermore, Dirichlet boundary conditions as given in Eq. (2.48a) are
used. A note on using Neumann boundary conditions is given at the end of
this section.

Step 1: Obtain δt+h

Taking an inner product using Eq. (3.43) with (δt·unl ) and moving all terms to
the left-hand sideyields thedefinition for the rate of changeof theHamiltonian:

δt+h = ρA〈δt·unl , δttunl 〉d − T 〈δt·unl , δxxunl 〉d = 0. (3.44)

Step 2: Identify energy types and isolate δt+

As in the case of the mass-spring system in the previous section, there are no
losses or externally supplied energy present in the system, and all terms are
part of the Hamiltonian h.

To isolate δt+ in Eq. (3.44), the terms have to be rewritten in a way that it
fits the product identities in Section 3.2.3. Summation by parts as described
in Section 3.2.2 can be used. Using identity (3.13a) with fnl , δt·unl and
gnl , δx+u

n
l , the second term can be rewritten to

−T 〈δt·unl , δxxunl 〉d = T 〈δx+(δt·u
n
l ), δx+u

n
l 〉d − b,

where the boundary term

b = T (δt·u
n
N )(δx+u

n
N )− T (δt·u

n
0 ) (δx+u

n
−1)︸ ︷︷ ︸

δx−un0

,

and reduced domain d = {0, . . . , N − 1}. As Dirichlet boundary conditions
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3.4. Energy analysis

are used, the boundary term vanishes as

un0 = unN = 0 =⇒ δt·u
n
0 = δt·u

n
N = 0.

In other words, if the states of the system at the boundaries are zero, their
velocity will also be zero. Then, using the discrete inner product in Eq. (3.8),
Eq. (3.44) can be expanded to

δt+h = ρA

N∑

l=0

h(δt·u
n
l )(δttu

n
l ) + T

N−1∑

l=0

h(δt·δx+u
n
l )(δx+u

n
l ) (3.45)

Then, using identities (3.17a) and (3.17b), δt+ can be isolated

δt+h = δt+

(
ρA

2
‖δt−unl ‖2d +

T

2
〈δx+u

n
l , et−δx+u

n
l 〉d
)
, (3.46)

and the definition for the Hamiltonian and the kinetic and potential energy
can be found:

h = t + v,

with t =
ρA

2
‖δt−unl ‖2d, and v =

T

2
〈δx+u

n
l , et−δx+u

n
l 〉d.

(3.47)

Step 3: Check units

Writing out the definitions for kinetic and potential energy in Eq. (3.47) re-
spectively, yields

t =
ρA

2
‖δt−unl ‖2d

in units
−−−−−→ kg ·m−3 ·m2 ·m · (s−1 ·m)2

= kg ·m2 · s−2,

v =
T

2
〈δx+u

n
l , et−δx+u

n
l 〉d

in units
−−−−−→ N ·m · (m−1 ·m ·m−1 ·m−1m)

= kg ·m2 · s−2,

and are indeed in Joules. Notice that an extra ‘m’ unit appears due to the norm
and inner product.

Step 4: Implementation

The energy balance in Eq. (3.47) can be implemented with the following code
in the for-loop recursion:
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%% Calculate the energy using Eq. (3.47)

% Kinetic energy
kinEnergy(n) = rho * A / 2 * h * sum((1/k * (u-uPrev)).^2);

% Potential energy
potEnergy(n) = T/(2*h) * sum(([u; 0] - [0; u]) ...

.* ([uPrev; 0] - [0; uPrev]));

% Total energy (Hamiltonian)
totEnergy(n) = kinEnergy(n) + potEnergy(n);

Here, u is the vector u = [un1 , . . . , u
n
N−1]T (as Dirichlet boundary conditions

are used) and need to be concatenated with 0 in the calculation of the potential
energy as the boundaries needs to be included in the calculation, despite them
being 0.5 Figure 3.2 shows the plot of the normalised energy according to Eq.
(3.37) and shows that the deviation of hn is within machine precision.

he

h

v

t

Fig. 3.2: The kinetic (blue), potential (red), and total (black) energy of an implementation of the
1D wave equation are plotted in the left panel. The right panel shows the normalised energy
(according to Eq. (3.37)) and shows that the deviation of the energy is within machine precision.

Neumann boundary conditions

If Neumann boundary conditions – as per Eq. (2.48b) – are used instead, the
primed inner product in Eq. (3.9) needs to be used in Step 1. Using the identity
in (3.14a), summation by parts of the second term results in

−T 〈δt·unl , δxxunl 〉′d = T 〈δx+(δt·u
n
l ), δx+u

n
l 〉d − b,

5As can be seen from the definition of v in Eq. (3.47), the domain used for the inner product is
d = {0, . . . , N − 1} and v contains a forward difference in its definition requiring unN as well.

62



3.4. Energy analysis

where the boundary term

b = T (δt·u
n
N )(µx−δx+u

n
N )− T (δt·u

n
0 )(µx−δx+u

n
0 ),

Eq. (2.27b)
⇐======⇒ = T (δt·u

n
N )(δx·u

n
N )− T (δt·u

n
0 )(δx·u

n
0 ).

As the Neumann boundary condition states that

δx·u
n
0 = δx·u

n
N = 0,

the boundary term vanishes and the energy balance results in

h = t + v,

with t =
ρA

2

(
‖δt−unl ‖′d

)2

, and T

2
〈δx+u

n
l , et−δx+u

n
l 〉d.

(3.48)

Using u for the vector u = [un0 , . . . , u
n
N ]T , this is then implemented as

%% Calculate the energy using Eq. (3.48)

% Scaling of the boundaries through weighted inner product
scaling = [0.5; ones(N-1, 1); 0.5];

% Kinetic energy
kinEnergy(n) = rho * A / 2 * h * sum(scaling .* (1/k * (u-uPrev)).^2);

% Potential energy
potEnergy(n) = T/(2*h) * sum(u(2:end) - u(1:end-1) ...

.* (uPrev(2:end) - uPrev(1:end-1)));

% Total energy (Hamiltonian)
totEnergy(n) = kinEnergy(n) + potEnergy(n);

3.4.4 Stability using energy analysis techniques
Section 3.3 showed how to obtain a stability condition of a FD scheme using
a frequency domain representation. Although not operating in the frequency
domain, the energy analysis techniques presented here may also be used to
obtain stability conditions of FD schemes. These techniques might even be
considered more powerful than the frequency domain approach, as it can also
be used to analyse spatially varying and nonlinear systems.

To arrive at a stability condition, the energy must be non-negative (h ≥ 0) or,
in some cases positive definite (h > 0). Below, the mass-spring system and the
1D wave equation will be used as a test case.
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Mass-spring system

Section 3.3.1 mentions that the mass-spring system is a special case in that the
roots of its characteristic equation can not be identical. When proving stability
using energy analysis, this means that the energy of the system needs to be
positive definite. It can be shown that an equation of the form

x2 + y2 + 2axy (3.49)

is positive definite if |a| < 1.
Equation (3.49) can be used to prove stability for the mass spring system

using the energy balance in Eq. (3.42). One can easily conclude that t is non-
negative due to the fact that M > 0 and (δt−un) is squared. The potential
energy v, however, is of indefinite sign. Expanding the operators in Eq. (3.42)
yields

h =
M

2k2

(
(un)2 − 2unun−1 + (un−1)2

)
+
K

2
unun−1,

=
M

2k2

(
(un)2 + (un−1)2

)
+

(
K

2
− M

k2

)
unun−1.

Dividing all terms byM/2k2 this equation is of the form in Eq. (3.49):

h = (un)2 + (un−1)2 +

(
Kk2

M
− 2

)
unun−1.

For h to be positive definite, the following condition must hold
∣∣∣∣
Kk2

2M
− 1

∣∣∣∣ < 1.

This can then be written as

−1 <
Kk2

2M
− 1 < 1

0 <
Kk2

2M
< 2

where, as long asK and k are non-zero, the first inequality is always satisfied.
Then the condition solved for k can easily be shown to be

k < 2

√
M

K
(3.50)

which is identical to the definition in Eq. (3.29).
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1D wave equation

For the 1D wave equation, the energy must be proven to be non-negative. One
can take the energy balance in Eq. (3.47) and conclude that t is non-negative
due to the non-negativity of the parameters and (δt−unl ) being squared. The
potential energy, however, is of indefinite sign. One can rewrite vusing identity
(3.17f) as

v =
T

2
〈δx+u

n
l , et−δx+u

n
l 〉d,

=
T

2

N−1∑

l=0

h(δx+u
n
l )(et−δx+u

n
l ),

=
T

2

N−1∑

l=0

h

(
(µt−δx+u

n
l )2 − k2

4
(δt−δx+u

n
l )2

)
,

=
T

2

(
‖µt−δx+u

n
l ‖2d −

k2

4
‖δt−δx+u

n
l ‖2d
)
.

One can then use the following bound for spatial differences [21]

‖δx+u
n
l ‖d ≤

2

h
‖unl ‖′d ≤

2

h
‖unl ‖d, (3.51)

to put a condition on v

v ≥ T

2

(
‖µt−δx+u

n
l ‖2d −

k2

4

(
2

h
‖δt−unl ‖d

)2
)
,

v ≥ T

2

(
‖µt−δx+u

n
l ‖2d −

k2

h2
‖δt−unl ‖2d

)
,

Substituting this condition into the energy balance in Eq. (3.47) yields

h = t + v ≥ ρA

2
‖δt−unl ‖2d +

T

2

(
‖µt−δx+u

n
l ‖2d −

k2

h2
‖δt−unl ‖2d

)
,

h = t + v ≥
(
ρA

2
− Tk2

2h2

)
‖δt−unl ‖2d +

T

2
‖µt−δx+u

n
l ‖2d.

Recalling that c =
√
T/ρA and λ = ck/h (see Section 2.4), all terms can be

divided by ρAwhich yields

h = t + v ≥ 1

2

(
1− λ2

)
‖δt−unl ‖2d +

c2

2
‖µt−δx+u

n
l ‖2d, (3.52)
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and is non-negative for

1− λ2 ≥ 0,

λ ≤ 1.

This is the same (CFL) condition obtained through von Neumann analysis in
Section 3.3.2.

3.5 Modal analysis
Modes are the resonant frequencies of a system. The number of modes that a
discrete system contains depends on the number of moving points. A mass-
spring system thus has one resonating mode, but – as briefly touched upon in
Section 2.4.3 – a FD scheme of the 1Dwave equationwithN = 30 andDirichlet
boundary conditionswill have 29modes. Modal analysis can be used to obtain
objective data on what modes a FD scheme should contain. This can then be
used to determine whether this matches one’s expectations or whether the
output of the system matches what the analysis predicted. Although this
method is only fully accurate for LTI systems, it can still provide valuable
information about systems with slow (sub-audio rate) parameter changes.6
This section will show how to numerically obtain the modal frequencies of a
FD scheme using the 1D wave equation as a test case.

Recall the matrix form of the 1D wave equation from Eq. (3.5)

1

k2

(
un+1 − 2un + un−1

)
= c2Dxxu

n.

Following [21], one can insert a test solution of the form un = znφ into the
above equation, which yields the following characteristic equation:

(z − 2 + z−1)φ = c2k2Dxxφ. (3.53)

This is an eigenvalue problem (see Section B.4) where the pth solution φp
may be interpreted as the modal shape of mode p. The corresponding modal
frequencies (or eigenfrequencies) are the solutions to the following equations:

zp − 2 + z−1
p = c2k2eigp(Dxx),

zp +
(
− 2− c2k2eigp(Dxx)

)
+ z−1

p = 0. (3.54)

Furthermore, one can substitute a test solution zp = espk with complex fre-
quency sp = jωp+σp which contains the (angular) frequency ωp and damping

6The modal analysis techniques presented here have indeed been used extensively in Chapter
12, precisely for this reason.
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σp ≤ 0 of the pth mode.7 As there is no damping present in the system, the test
solution reduces to zp = ejωpk which can be substituted into Eq (3.5) to get

ejωpk + e−jωpk − 2− c2k2eigp(Dxx) = 0,

ejωpk + e−jωpk

−4
+

1

2
+
c2k2

4
eigp(Dxx) = 0.

Finally, using the trigonometric identity in Eq. (3.21a) yields

sin2(ωpk/2) +
c2k2

4
eigp(Dxx) = 0,

sin(ωpk/2) =
ck

2

√
−eigp(Dxx),

ωp =
2

k
sin−1

(
ck

2

√
−eigp(Dxx)

)
, (3.55)

and can be rewritten to

fp =
1

πk
sin−1

(
ck

2

√
−eigp(Dxx)

)
(3.56)

to get the modal frequency of the pth mode in Hz.
See Figure 3.3 for a plot of the modal frequencies of an implementation of

the 1Dwave equationwith the parameters given in Table 2.1. The figure shows
one great advantage of performingmodal analysis on a FD scheme, as opposed
to only obtaining the spectrum of its output. Although the values from the
analysis do correspond to the partials shown in the frequency domain output
of the 1D wave equation in Figure 2.11, the latter does not show all modes
present in the system. This is due to the input and output locations of the
system as discussed in Section 2.4.3. The modal analysis does obtain the
frequency data regardless of the aforementioned input and output locations.

3.5.1 One-step form
For more complicated systems, specifically those containing damping terms, it
is useful to rewrite the update in a one-step form (also referred to as a state-space
representation). The damping terms cause the coefficients of z and z−1 in the
characteristic equation to not be identical and the trigonometric identities in
(3.21) can not be used directly. Although the eigenvalue calculation needs to
be done on a larger matrix, it allows for a more general and direct way to
calculate the modal frequencies and damping coefficients per mode.

7Notice that regardless of the possible damping coefficient per mode, the eventual amplitude
of each will mostly be determined by the locations of the excitation and output as discussed in
Section 2.4.3.
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Fig. 3.3: Modal frequencies of the 1D wave equation with the parameters given in Table 2.1.

If matrix A has an inverse, any scheme of the form

Aun+1 = Bun + Cun−1, (3.57)

can be rewritten to
[
un+1

un

]

︸ ︷︷ ︸
wn+1

=

[
A−1B A−1C

I 0

]

︸ ︷︷ ︸
Q

[
un

un−1

]

︸ ︷︷ ︸
wn

(3.58)

which relates the unknown state of the system to the known state through
matrix Q. The sizes of the identity matrix I and zero matrix 0 are the same
size as A,B and C.

Again, solutions of the form wn = znφ can be assumed (where φ is now
less-trivially connected to the modal shapes)

zφ = Qφ, (3.59)

which can be solved for the pth eigenvalue as

zp = eigp(Q). (3.60)

As the scheme could exhibit damping, the test solution zp = espk is used.
Substituting this yields

espk = eigp(Q),

sp =
1

k
ln
(
eigp(Q)

)
. (3.61)

Solutions for the frequency and damping for the pth eigenvalue can then be
obtained through

ωp = I(sp) and σp = R(sp), (3.62)
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where I(·) andR(·) denote the “imaginary part of” and “real part of”, respec-
tively.

As the elements of Q are real-valued, the solutions sp in Eq. (3.61) come
in complex conjugates (pairs of numbers of which the imaginary part has an
opposite sign). For analysis, only the I(sp) ≥ 0 should be considered as these
correspond to non-negative frequencies.

3.6 Conclusion
This chapter presented three different analysis techniques in discrete time,
that are of extreme utility when working with FD schemes. Frequency do-
main analysis, or von Neumann analysis in the distributed case, can be used
to obtain stability conditions for LTI and LSI systems. Energy analysis tech-
niques can also be used to prove stability and passivity, but for a larger range
of systems including LTI, LSI, and nonlinear systems. Furthermore, energy
analysis can be used in a practical manner to debug implementations of FD
schemes and ensure that no programming errors have been made. Finally,
modal analysis can be used to analyse the behaviour of a scheme in terms of its
modal frequencies and modal shapes. This can be used to determine whether
the auditory output matches the predictions of the analysis. Although analo-
gous techniques in continuous time also exist, a more practical angle has been
chosen for this work and only the discrete time methods have been presented.
For more information about the techniques in continuous time, see [21].

All three analysis techniques will be extensively used in the rest of this
document to analyse the FD schemes used in this project.
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Part II

Resonators
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Resonators

Although thephysicalmodels described in thepreviouspart – the simplemass-
spring system and the 1Dwave equation – are also considered resonators, they
are ideal cases. In otherwords, these can not be found in the realworld as effects
such as losses or frequency dispersion are not included.

This part presents the different resonators used over the course of the
project that better include these non-ideal physical processes and is structured
as follows: Chapter 4 introduces the stiff string, an extension of the 1D wave
equation, Chapter 5 introduces acoustic tubes, used to model brass instru-
ments, and finally, Chapter 6 introduces 2D systemswhich, in this project, have
been used to simulate (simplified) instrument bodies. The analysis techniques
introduced in the previous part will be applied to all models and described in
detail.
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Chapter 4

The Stiff String

In earlier chapters, the case of the ideal stringwas presented, andwasmodelled
using the 1D wave equation. This system generates an output with harmonic
partials that are integer multiples of the fundamental frequency (if the CFL
condition is satisfied with equality). In the real world, however, strings exhibit
a phenomenon called dispersion due to stiffness in thematerial, hence the name
stiff string. The stiffness in a string is dependent on its material properties and
geometry and will be elaborated on in this chapter. The stiff string played a
prominent part in the following papers: [A], [B], [C], [D] and [E].

This chapter presents the PDE of the stiff string in continuous time, and
goes through the discretisation process. The analysis techniques presented
in Chapter 3 will then be applied to the resulting FD scheme and derived in
detail. Finally, an example of an implicit scheme will be given and comparison
to the earlier FD scheme will be made. Unless denoted otherwise, this chapter
follows [21].

4.1 Continuous time
Consider a lossless stiff string of length L and with a circular cross-section. Its
transverse displacement is described by u = u(x, t) (in m) defined for x ∈ D
with domain D = [0, L] and time t ≥ 0. The PDE describing its motion is

ρA∂2
t u = T∂2

xu− EI∂4
xu, (4.1)

and is parametrised by material density ρ (in kg/m3), cross-sectional area
A = πr2 (in m2), radius r (in m), tension T (in N), Young’s modulus E (in Pa)
and area moment of inertia I = πr4/4 (in m4). In the limit as r → 0, Eq (4.1)
reduces to the 1Dwave equation in Eq. (2.38) where c =

√
T/ρA, i.e., the ideal

string. If instead T = 0, Eq. (4.1) reduces to the ideal bar equation.
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A more compact way to write Eq. (4.1) is

∂2
t u = c2∂2

xu− κ2∂4
xu (4.2)

with wave speed c =
√
T/ρA (in m/s) and stiffness coefficient κ =

√
EI/ρA

(in m2/s).
The difference between the ideal string and the stiff string is the term

containing a 4th-order spatial derivative. This term adds stiffness to the system
and causes dispersion. As opposed to unwanted numerical dispersion due to
numerical error (see Section 2.4.4) this type of dispersion is physical and thus
something desired in the model. This phenomenon causes higher frequencies
to travel faster through a medium than lower frequencies. See Figure 4.1.
Furthermore, frequency dispersion is closely tied to inharmonicity, an effect
where ‘harmonic’ partials get further apart as frequency increases (see Eq. (4.6)
below). Frequency dispersion and inharmonicity will be further discussed in
Section 4.2.3.

(a) t = 0 ms. (b) t = 1 ms. (c) t = 2 ms.

Fig. 4.1: Frequency dispersion in a stiff string due to stiffness.

4.1.1 Adding losses
Before moving on to the discretisation of the PDE in Eq. (4.1), losses can
be added to the system. In the physical world, strings lose energy through
e.g. air viscosity and thermoelastic effects. All frequencies lose energy and
die out (damp) over time, but higher frequencies do so at a much faster rate.
This phenomenon is called frequency-dependent damping and can be modelled
using a mixed derivative ∂t∂2

x. This way of frequency-dependent damping
first appeared in [63] and has been used extensively in the literature since (see
e.g. [64, 65]). A damped stiff string can be modelled as

ρA∂2
t u = T∂2

xu− EI∂4
xu− 2σ0ρA∂tu+ 2σ1ρA∂t∂

2
xu, (4.3)

where the non-negative loss coefficients σ0 (in s−1) and σ1 (in m2/s) determine
the frequency-independent and frequency-dependent losses respectively. Ap-
pendix D attempts to provide some intuition on workings of these damping
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terms.
A more compact way to write Eq. (4.3), is to divide all terms by ρA to get

∂2
t u = c2∂2

xu− κ2∂4
xu− 2σ0∂tu+ 2σ1∂t∂

2
xu. (4.4)

Boundary conditions

Section 2.4 presents two types of boundary conditions for the 1Dwave equation
in Eq. (2.39). In the case of the stiff string, these can be extended to

u = ∂xu = 0 (clamped) (4.5a)
u = ∂2

xu = 0 (simply supported) (4.5b)
∂2
xu = ∂3

xu = 0 (free) (4.5c)

at x = 0, L. See Figure 4.2 for plots of the first modal shape for each respective
boundary condition.1 If simply supported boundary conditions are chosen,
and for low values of κ, the frequencies exhibited by the system can be ex-
pressed in terms of the fundamental frequency f0 = c/2L (as in Eq. (2.40))
and frequency of partial p (in Hz) is defined as [66]

fp = f0p
√

1 +Bp2, (4.6)

with inharmonicity coefficient

B =
κ2π2

c2
.
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(a) Clamped.
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(b) Simply supported.
0 0.5 1
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-0.5

0

0.5

1

(c) Free.

Fig. 4.2: Plots of the first (normalised) modal shape for the three boundary conditions in Eqs.
(4.5). The extremes are indicated with solid black and dashed grey lines respectively.

1Note that there is a zero-frequency mode if free boundary conditions are used for both ends
of the string, which is technically the first mode.
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Chapter 4. The Stiff String

4.2 Discrete time
For the sake of compactness, Eq. (4.4) will be used in the following. Naturally,
the same process can be followed for Eq. (4.3), the only difference being a
multiplication by ρA of all terms.

Following Section 2.2.1 and using the FD operators presented in Section
2.2.2, Eq. (4.4) can be discretised as

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l + 2σ1δt−δxxu

n
l , (4.7)

and is defined for domain l ∈ {0, . . . , N} and number of grid points N + 1.
The δxxxx operator is defined as the second-order spatial difference in Eq. (2.8)
applied to itself:

δxxxx = δxxδxx =
1

h4

(
e2
x+ − 4ex+ + 6− 4ex− + e2

x−
)
. (4.8)

Amultiplication of two shift operators applied to a grid function simplymeans
to apply each shift individually.

A definition for the mixed-derivative operator can similarly be found. Re-
calling the definitions for δt− in Eq. (2.3b) and δxx Eq. (2.8), their combination
results in

δt−δxx =
1

k
(1− et−)

1

h2
(ex+ − 2 + ex−) ,

=
1

kh2
(ex+ − 2 + ex− − et−(ex+ − 2 + ex−)) . (4.9)

To have two different shift operators multiplied together still simply means to
apply each of them to the grid function individually. The reason a backwards
difference is used here is to keep the system explicit. A scheme is explicit if the
values of un+1

l can be calculated from known values at times n and n − 1. If
this is not the case and values of e.g. un+1

l+1 and un+1
l−1 are required to calculate

un+1
l , the scheme is called implicit. An example of an implicit scheme, that uses

the centred operator for the temporal derivative in the frequency-dependent
damping term instead, can be found in Section 4.6.

Using the definitions above, the operators in scheme (4.7) can be expanded,
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4.2. Discrete time

and after amultiplication of all terms by k2 and collecting the terms, this yields

(1 + σ0k)un+1
l =

(
2− 2λ2 − 6µ2 − 4σ1k

h2

)
unl

+

(
λ2 + 4µ2 +

2σ1k

h2

)
(unl+1 + unl−1)

− µ2(unl+2 + unl−2) +

(
−1 + σ0k +

4σ1k

h2

)
un−1
l

− 2σ1k

h2
(un−1
l+1 + un−1

l−1 ),

(4.10)

with
λ =

ck

h
and µ =

κk

h2
. (4.11)

The update equation follows by dividing both sides by (1 + σ0k).
The stability condition for the FD scheme in (4.7) is defined as

h ≥

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
, (4.12)

andwill be derived in Section 4.3 using vonNeumann analysis. This condition
can then be used to calculate the number of intervals N in a similar fashion
as for the 1D wave equation shown in Eq. (2.53). First, Eq. (4.12) should be
satisfied with equality, after which the following calculations are performed:

N :=

⌊
L

h

⌋
and h :=

L

N
,

which can then be used to calculate λ and µ in Eq. (4.11).

Stencil

As done in Section 2.4.2, a stencil for the FD scheme in Eq. (4.7) can be created,
and is shown in Figure 4.3. In order to calculate un+1

l , 5 points at the current
time step are needed due to the 4th-order spatial derivative. Due to the mixed
derivative in the frequency-dependent damping term, neighbouring points at
the previous time step are also required.

4.2.1 Boundary conditions

Due to the 4th-order spatial derivative, two virtual grid points need to be
accounted for at the boundaries of the system. Discretising the boundary
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Chapter 4. The Stiff String

Fig. 4.3: The stencil for the damped stiff string scheme in Eq. (4.7) (adapted from [A]).

conditions in (4.5) yields

unl = δx±u
n
l = 0 (clamped) (4.13a)

unl = δxxu
n
l = 0 (simply supported) (4.13b)

δxxu
n
l = δx·δxxu

n
l = 0 (free) (4.13c)

at l = 0, N . The operator in the clamped condition uses the δx+ operator at the
left boundary (l = 0) and δx− at the right (l = N ). Notice that to discretise ∂3

x

in the free boundary condition in Eq. (4.5c), the more accurate δx·δxx operator
has been chosen over the less accurate δx−δxx and δx+δxx operators for the left
and right boundary respectively.

Below, the boundary conditions are expanded to obtain definitions for the
virtual grid points.

Clamped

Expanding the operators for the clamped condition yields

un0 = un1 = 0 and unN−1 = unN = 0. (4.14)

This can be simplified by reducing the range of calculation to l ∈ {2, . . . , N−2}.

Simply supported

As the states of the end points of a system with simply supported boundary
conditions are 0 at all times, the range of calculation can be reduced to l ∈
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4.2. Discrete time

{1, . . . , N − 1}. Evaluating the update equation in Eq. (4.10) at l = 1 and
l = N − 1 shows that definitions for the virtual grid points un−1 and unN+1 are
required. A definition for un−1 can be found by expanding Eq. (4.13b) at l = 0:

1

h2

(
un1 − 2un0 + un−1

)
= 0,

un0 =0
⇐===⇒ un1 + un−1 = 0,

un−1 = −un1 , (4.15)

and similarly for unN+1 by expanding the condition at l = N :

unN+1 = −unN−1.

Substituting the first definition into the expanded scheme in Eq. (4.10) at l = 1,
yields

(1 + σ0k)un+1
1 =

(
2− 2λ2 − 5µ2 − 4σ1k

h2

)
un1 +

(
λ2 + 4µ2 +

2σ1k

h2

)
un2

− µ2un3 +

(
−1 + σ0k +

4σ0k

h2

)
un−1

1 − 2σ1k

h2
un−1

2 .

(4.16)

Doing the same for l = N − 1 yields

(1 + σ0k)un+1
N−1 =

(
2− 2λ2 − 5µ2 − 4σ1k

h2

)
unN−1 +

(
λ2 + 4µ2 +

2σ1k

h2

)
unN−2

− µ2unN−3 +

(
−1 + σ0k +

4σ0k

h2

)
un−1
N−1 −

2σ1k

h2
un−1
N−2.

(4.17)

Free

Although rarely used for the stiff string (rather for the ideal bar), free boundary
conditions are given here for completeness. The free boundary condition
requires all points to be calculated and the range of calculation remains l ∈
{0, . . . , N}. At each respective boundary, two virtual grid points are needed:
un−1 and un−2 at the left and unN+1 and unN+2 at the right boundary respectively.
The third-order spatial FD operator in Eq. (4.13c) is defined as:

δx·δxx =
1

2h3
(ex+ − ex−) (ex+ − 2 + ex−) ,

=
1

2h3

(
e2
x+ − 2ex+ + 2ex− − e2

x−
)
, (4.18)
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Chapter 4. The Stiff String

and can be used to solve for un−2 at l = 0:

1

2h3

(
un2 − 2un1 + 2un−1 − un−2

)
= 0,

un−2 = un2 − 2un1 + 2un−1.

As un0 is not necessarily 0 at all times, solving the first part of the boundary
condition (i.e., δxxun0 = 0) yields a different result than in the simply supported
case:

1

h2

(
un1 − 2un0 + un−1

)
= 0,

un−1 = 2un0 − un1 .

The same can be done at l = N to get the following definitions for the virtual
grid points

unN+2 = unN−2 − 2unN−1 + 2unN+1 and unN+1 = 2unN − unN−1.

The update equations for the boundary points will not be given here. Instead
thematrix form of the FD schemewith free boundarieswill be provided below.

Discussion

In practice, the simply supported boundary condition is mostly chosen as this
most realistically reflects string terminations in the real world. The clamped
condition could be chosen for simplicity as this does not require an alternative
update at the boundaries. The free boundary condition is more often used to
model the boundaries of (damped) ideal bar (Eq. (4.3) with T = 0).

4.2.2 Implementation and matrix form
When using MATLAB, for a more compact implementation, it is useful to write
the scheme in matrix form (see Section 3.1.2). The FD scheme of the stiff string
in (4.7) can be written as

Aun+1 = Bun + Cun−1 (4.19)

where

A = (1 + σ0k), B = 2I + c2k2Dxx − κ2k2Dxxxx + 2σ1kDxx,

and C = −(1− σ0k)I− 2σ1kDxx.

Notice that A is a scalar rather than a matrix.
The size of the state vectors and the matrix-form operators depend on the
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4.2. Discrete time

boundary conditions. For clamped conditions, the state vectors (un+1, un and
un−1) andmatrices will be of size (N−3)×1 and (N−3)×(N−3) respectively.
The Dxx matrix will be of the form given in Eq. (3.3) and the matrix form of
the δxxxx operator is

Dxxxx =
1

h4




6 −4 1 0

−4 6
. . . . . .

1
. . . . . . . . . 1
. . . . . . 6 −4

0 1 −4 6



. (4.20)

For simply supported conditions, the state vectors and matrices will be of
size (N − 1)× 1 and (N − 1)× (N − 1) respectively. Again, Dxx is as defined
in Eq. (3.3) and Dxxxx can be obtained by multiplying two Dxx matrices
according to

Dxxxx = DxxDxx =
1

h4




5 −4 1 0

−4 6
. . . . . .

1
. . . . . . −4 1
. . . −4 6 −4

. . .

1 −4
. . . . . . 1

. . . . . . 6 −4

0 1 −4 5




. (4.21)

Finally for free boundary conditions given in Eq. (4.13c), the state vectors
and matrices are (N + 1)× 1 and (N + 1)× (N + 1) respectively. Now, the Dxx

matrix is of the form in Eq. (3.4) instead, and

Dxxxx =
1

h4




1

−2

2

0

. . .
−4

5

−4

1

. . .
6

−4

2

1

−4

. . .
−4

1

2

−4

6

. . .
1

−4

5

−4

. . .

0

2

−2

1




. (4.22)
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4.2.3 Parameters and output
The values of the parameters naturally determine the properties of the output
sound. Where in the 1D wave equation, only the fundamental frequency f0

could be affected (through c and L in Eq. (2.40)), the stiff string has manymore
aspects that can be changed. See Table 4.1 for parameters most commonly
used in this project.

Name Symbol (unit) Value
Length L (m) 1
Material density ρ (kg/m3) 7850
Radius r (m) 5 · 10−4

Tension T (N) 100 ≤ T ≤ 104

Young’s modulus E (Pa) 2 · 1011

Freq.-independent damping σ0 (s−1) 1
Freq.-dependent damping σ1 (m2/s) 0.005

Table 4.1: Parameters and their values most commonly used over the course of this project.

A formula exists to calculate the loss coefficients σ0 and σ1 from T60 values
at different frequencies (see [21, Eq. (7.29)]). During this project, however,
these values have been tuned by ear and are usually set to be approximately
those found in Table 4.1.

Output

Figure 4.4 shows the time domain and frequency domain output (retrieved
at l = bN/20c) of an implementation of the stiff string excited using a raised-
cosine (see Chapter 7). The parameters used can be found in Table 4.1 where
T = 3951 N, and r = 9.35 · 10−4 m to highlight dispersive effects. Finally,
simply supported boundary conditions are chosen. From the left panel, one
can observe that over time, dispersive effects show, where higher-frequency
components in the excitation travel faster through the medium than lower-
frequency components. In frequency domain (the right panel in Figure 4.4),
this shows in the fact that the partials are not perfect integer multiples of the
fundamental. Notice that the partials are closer to each other for lower fre-
quencies and further apart as their frequency increases. Finally, the frequency-
dependent damping term causes higher frequencies to have a lower amplitude
than lower frequencies.

Apart from the obvious material properties such as density, stiffness and
geometry, perceptual qualities of the sound are surprisinglymuch determined
by σ1, and for lower values the output can become extremely metallic.
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4.3. von Neumann analysis and stability condition

Fig. 4.4: The time-domain and frequency domain output of the stiff string. The parameters are set
as in Table 4.1 where r = 9.35 · 10−4 m to highlight dispersive effects and T = 3951 N.

4.3 von Neumann analysis and stability condition
In order to obtain the stability condition for the damped stiff string, one can
performavonNeumannanalysis, as presented in Section 3.3, on the FDscheme
in Eq. (4.7). A detailed derivation can be found inAppendix F.2, and a compact
version will be presented here.

Using the definitions found in Eq. (3.22) for the temporal operators, and
Eqs. (3.23a) and (3.23b) for the spatial operators, the frequency domain repre-
sentation of Eq. (4.7) can be obtained:

1

k2

(
z − 2 + z−1

)
=− 4c2

h2
sin2(βh/2)− 16κ2

h4
sin4(βh/2)− σ0

k
z +

σ0

k
z−1

− 8σ1

kh2
sin2(βh/2) +

8σ1

kh2
sin2(βh/2)z−1,

and after collecting the terms, the characteristic equation is as follows

(1 + σ0k)z +

(
16µ2 sin4(βh/2) +

(
4λ2 +

8σ1k

h2

)
sin2(βh/2)− 2

)

+

(
1− σ0k −

8σ1k

h2
sin2(βh/2)

)
z−1 = 0. (4.23)

Rewriting this to the form in Eq. (3.25), and using condition (3.26), its roots
can be shown to be bounded by unity for all β under the following condition
(see Appendix F.2)

4µ2 + λ2 +
4σ1k

h2
≤ 1.

Recalling the definitions for λ and µ from Eq. (4.11), one yields a quadratic
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equation in h2 which can be shown to be bounded by

h ≥

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
. (4.24)

This is the stability condition for the damped stiff string also shown in Eq.
(4.12).

4.4 Energy analysis
As mentioned in Section 3.4, it is useful to perform the energy analysis on the
scheme with all physical parameters written out. Discretising the PDE in Eq.
(4.3) yields

ρAδttu
n
l = Tδxxu

n
l − EIδxxxxunl − 2σ0ρAδt·u

n
l + 2σ1ρAδt−δxxu

n
l , (4.25)

defined for l ∈ dwith discrete domain d = {0, . . . , N}. This section will follow
the 4 steps described in Section 3.4.

Step 1: Obtain δt+h

The first step is to take the inner product (see Eq. (3.8)) of the scheme with
(δt·unl ) over discrete domain d:

δt+h = ρA〈δt·unl , δttunl 〉d − T 〈δt·unl , δxxunl 〉d + EI〈δt·unl , δxxxxunl 〉d
+ 2σ0ρA〈δt·unl , δt·unl 〉d − 2σ1ρA〈δt·unl , δt−δxxunl 〉d = 0.

(4.26)

Step 2: Identify energy types and isolate δt+

As there is damping present in the system, and the system is distributed, the
energy balance will be of the form

δt+h = b− q, (4.27)

with boundary term b and damping term q. The latter is defined as

q = 2σ0ρA‖δt·unl ‖2d − 2σ1ρA〈δt·unl , δt−δxxunl 〉d, (4.28)

where the virtual grid points needed to calculate the second term are defined
by the boundary conditions given in Eq. (4.13). Furthermore, b appears after
rewriting Eq. (4.26) using summation by parts (see Section 3.2.2), specifically,
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using Eq. (3.13a) for the second term and Eq. (3.16b) for the third, yields

δt+h = ρA〈δt·unl , δttunl 〉d + T 〈δt·δx+u
n
l , δx+u

n
l 〉d + EI〈δt·δxxunl , δxxunl 〉d

= b− q,

where the boundary term becomes

b = T
(

(δt·u
n
N )(δx+u

n
N )− (δt·u

n
0 )(δx+u

n
−1)
)

+ EI
(

(δt·u
n
N )(δx+δxxu

n
N )− (δxxu

n
N )(δx−δt·u

n
N )
)

− EI
(

(δt·u
n
0 )(δx−δxxu

n
0 )− (δxxu

n
0 )(δx+δt·u

n
0 )
)
.

For the clamped and simply supported boundary conditions in (4.13a) and
(4.13b) it can easily be shown that b = 0. If free conditions as in Eq. (4.13c)
are used, the boundary conditions will vanish when the primed inner product
in Eq. (3.9) is used in Step 1 and identity (3.16c) is used when performing
summation byparts. Below, only the simply supported casewill be considered.

Isolating δt+ to obtain the total energy h in the definition for δt+h above,
requires identities (3.17a) and (3.17b) and yields

δt+h = δt+

(
ρA

2
‖δt−unl ‖2d +

T

2
〈δx+u

n
l , et−δx+u

n
l 〉d +

EI

2
〈δxxunl , et−δxxunl 〉d

)

= −q.
From this, the definition for the Hamiltonian h, the kinetic energy t and poten-
tial energy v can be found:

h = t + v, with t =
ρA

2
‖δt−unl ‖2d, and

v =
T

2
〈δx+u

n
l , et−δx+u

n
l 〉d +

EI

2
〈δxxunl , et−δxxunl 〉d ,

(4.29)

and can be shown to be non-negative if condition (4.12) is satisfied.

Step 3: Check units

Comparing the acquired definitions in Eq. (4.29) to those for the 1D wave
equation in Eq. (3.47), one can observe that the definitions are nearly identical,
the only difference being the second term in the definition for v in Eq. (4.29).
Writing this term out in units, and recalling that Pa (the unit for E) in SI units
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is kg·m−1·s−2, yields

EI

2
〈δxxunl , et−δxxunl 〉d

in units
−−−−−→ Pa ·m4 ·m · (m−2 ·m ·m−2 ·m)

= kg ·m2 · s−2,

and indeed has the correct units.
As described in Section 3.4, the damping terms in q need to have units of

Joules per second, or kg · m2· s−3. Writing the terms in Eq. (4.28) out in their
units yields

2σ0ρA‖δt·unl ‖2d
in units
−−−−−→ s−1 · kg ·m−3 ·m2 ·m · (s−1 ·m)2

= kg ·m2 · s−3,

−2σ1ρA〈δt·unl , δt−δxxunl 〉d
in units
−−−−−→ m2 · s−1 · kg ·m−3 ·m2

·m · (s−1 ·m)(s−1 ·m−2 ·m)

= kg ·m2 · s−3,

which also have the correct units.

Step 4: Implementation

An implementation of the energy calculation for the simply supported bound-
ary condition is given in Algorithm 4.1. The calculation of the damping is
omitted, but the full algorithm (including other boundary conditions) can be
found online [67]. Figure 4.5 shows that the damping present in the system
causes h to decrease in the left panel. The right panel shows that the deviation
of the total energy calculated using Eq. (3.38) is within machine precision.
%%%% Before the main loop: %%%%

% Initialise Dx+ operator to calculate potential energy due to tension
% As the domain is reduced by one, the matrix needs to be of size N x N
Dxp = sparse(1:N, 1:N, -ones(1, N), N, N) + ...
sparse(1:N-1, 2:N, ones(1, N-1), N, N);

%%%% In the main loop: %%%%

% energy in the system
kinEnergy(n) = rho * A * h / 2 * sum((1/k * (u - uPrev)).^2);
potEnergy(n) = T / 2 * h * sum((Dxp * [0; u]) .* (Dxp * [0; uPrev]))

... + E * I * h / 2 * sum((Dxx * u) .* (Dxx * uPrev));

Algorithm 4.1: Calculating h for the simply supported boundary condition.
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he

h

v

t

Fig. 4.5: The kinetic (blue), potential (red), and total (black) energy of an implementation of the
stiff string are plotted in the left panel. The right panel shows the normalised energy (according
to Eq. (3.38)) and shows that the deviation of the energy is within machine precision.

4.5 Modal analysis
To be able to perform amodal analysis on the FD scheme in Eq. (4.7), it must be
written in a one-step form – introduced in Section 3.5.1 – due to the damping
present in the system. Using the matrix form of the damped stiff string in Eq.
(4.19), the one-step form can be written as

[
un+1

un

]

︸ ︷︷ ︸
wn+1

=

[
B/A C/A

I 0

]

︸ ︷︷ ︸
Q

[
un

un−1

]

︸ ︷︷ ︸
wn

, (4.30)

where the definitions for B, C and A can be found in Section 4.2.2. In this
analysis, the definitions for Dxx and Dxxxx for simply supported boundary
conditions will be used.

Assuming test solutions of the form wn = znφ, and recalling that z = esk

and complex frequency s = jω + σ (see Section 3.5.1), yields the following
eigenvalue problem (see Section B.4):

zφ = Qφ, (4.31)

which can be solved for the pth complex modal frequency

sp =
1

k
ln
(
eigp(Q)

)
. (4.32)

The (angular) frequency of the pth mode can then be obtained using I(sp) and
the damping per mode as R(sp). Only selecting the non-negative frequencies
obtained from I(sp), these can be plotted, and are shown in Figure 4.6. The
parameters used are the ones found in Table 4.1 with T = 1.88 · 106 N, and
r = 1.58 · 10−2 m, which are unnaturally high values to highlight inharmonic
behaviour. The left panel shows that the system is indeed inharmonic, i.e.,
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Fig. 4.6: The modal frequencies and damping per mode for the stiff string using the values in
Table 4.1 and T = 1.88 · 106 N and r = 1.58 · 10−2 m to highlight effects of stiffness.

modal frequencies increase more as the modal number increases. The right
panel shows that higher modes exhibit a higher amount of damping. This is
due to the frequency-dependent damping term. If σ1 = 0 in Eq. (4.7), it can be
shown that σp = σ0 for every mode p (in this case σ0 = −1).

4.6 Implicit scheme
Although not used in the published work of this project, it is useful to touch
upon an example of an implicit scheme. Consider a discretisation of Eq.
(4.4) where the (more accurate) centred operator is used for the frequency-
dependent damping term:

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l + 2σ1δt·δxxu

n
l . (4.33)

Using the centred operator in the mixed-spatio-temporal operator renders the
system implicit, meaning that a definition for un+1

l can not explicitly be found
from known values. The stencil in Figure 4.7 also shows this: in order to
calculate un+1

l , neighbouring points at the next time step un+1
l+1 and un+1

l−1 are
needed. The issue is that these values are unknown at the time of calculation.

Luckily, as the scheme is linear, it can be treated as a system of linear
equations and solved following the technique described in Section B.3. The
drawback is that this requires one matrix inversion per iteration which can be
extremely costly.2 However, both von Neumann and modal analysis (below)
show that using the centred instead of the backwards operator has a positive
effect on the stability and the modal behaviour of the scheme.

Considering simply supported boundary conditions such that the region
of operation is l ∈ {1, . . . , N − 1}, the system will haveN − 1 unknowns (un+1

l

for l ∈ {1, . . . , N − 1}) that can be calculated using N − 1 (update) equations.

2In the context of FDTD methods, the matrices to be inverted are diagonally dominant, which
means that if the off-diagonals are small, specialised methods such as the iterative Jacobi method
(see e.g. [68]) could, with a few iterations, yield an answer for the inverse.
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4.6. Implicit scheme

Writing this inmatrix formusing column vectorun = [un1 , u
n
2 , . . . , u

n
N−1] yields

Aun+1 = Bun + Cun−1, (4.34)

where

A = (1 + σ0k)I− σ1kDxx, B = c2k2Dxx − κ2k2Dxxxx,

and C = −(1− σ0k)I− σ1kDxx.

Equation (4.34) can be considered a system of linear equations (see Section B.3)
and the state at the next time step un+1 can then be retrieved using a matrix
inversion (see B.2)

un+1 = A−1
(
Bun + Cun−1

)
. (4.35)

Fig. 4.7: The stencil for the damped stiff string scheme in (4.33).

4.6.1 von Neumann analysis
This section follows the same process as in Section 4.3. A full derivation is
given in Appendix F.3 and a compact version is given here.

The definitions in Section 3.3 can be used to obtain a frequency domain
representation of the FD scheme in Eq. (4.33):

1

k2

(
z − 2 + z−1

)
=− 4c2

h2
sin2(βh/2)− 16κ2

h4
sin4(βh/2)− σ0

k
z +

σ0

k
z−1

− 4σ1

kh2
sin2(βh/2)z +

4σ1

kh2
sin2(βh/2)z−1,
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Chapter 4. The Stiff String

and collecting the terms, yields the following characteristic equation:
(

1 + σ0k +
4σ1k

h2
sin2(βh/2)

)
z +

(
16µ2 sin4(βh/2) + 4λ2 sin2(βh/2)− 2

)

+

(
1− σ0k −

4σ1k

h2
sin2(βh/2)

)
z−1 = 0. (4.36)

Rewriting this to the form found in Eq. (3.25) and using condition (3.26),
one can show that its roots are bounded by unit for all β under the following
condition (see Appendix F.3):

4µ2 + λ2 ≤ 1,

and places the following condition on the grid spacing:

h ≥

√
c2k2 +

√
c4k4 + 16κ2k2

2
. (4.37)

Comparing this to the stability condition for the explicit scheme in Eq.
(4.12), one can observe that the terms containing σ1 have vanished. It can thus
be concluded that, if the centred (rather than the backwards) difference is used
to discretise the temporal derivative in the frequency-dependent damping
term, σ1 no longer influences the stability of the scheme and the condition is
more relaxed. What this means in terms of behaviour of the scheme will be
elaborated on in the following section.

4.6.2 Modal analysis
As the matrix form of the implicit FD scheme in Eq. (4.34) matches the form
in Eq. (3.57), one can perform a modal analysis by writing the scheme in a
one-step form as explained in Section 3.5.1. The results of the analysis are
shown in Figure 4.8 using the same values for T and r as in Section 4.5. To
highlight the difference between using the backwards and centred difference
for the frequency-dependent damping term, σ1 has been set to 1, which is
much higher than one would normally use.

One can observe from Figure 4.8 that especially higher-frequency modes
in the explicit scheme are affected by σ1. In the continuous case, the modal
frequencies should only be affected by values for c and κ as per Eq. (4.6) and
the damping should not influence the frequencies of the partials, as one could
expect. However, as σ1 increases, h increases due to Eq. (4.12), causing λ and µ
to decrease. This introduces numerical dispersion as explained in Section 2.4.4,
and the higher the value of σ1, the more numerical dispersion is introduced.

As the stability condition for the implicit scheme in Eq. (4.37) does not
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4.6. Implicit scheme

contain σ1, this value will not affect λ and µ and will thus not affect the modal
frequencies. As can be observed from the figure, it even allows for one more
grid point to be included in the simulation. It can be concluded that a more
accurate simulation can be obtained with fewer numerically dispersive effects,
because the frequency-dependent damping term no longer affects the stability
condition for the implicit scheme.

5 10 15 20
0

0.5

1

1.5

2
10

4 Modal frequency

5 10 15 20

-2000

-1500

-1000

-500

0
Damping per mode

Explicit

Implicit

Fig. 4.8: A comparison between the modal frequencies and damping per mode of the explicit
(blue) and implicit (red) scheme.

4.6.3 Conclusion
This section presented an implicit discretisation of the stiff string where the
centred operator has been used to discretise the temporal derivative in the
frequency-dependent damping term. Bymeans of stability analysis andmodal
analysis, several advantages that the implicit scheme has over its explicit coun-
terpart (presented in Section 4.2) have been shown.

As these advantages only show for higher values of σ1, much higher than
the ones used in this project, it has been chosen to use the explicit scheme for
all further implementation. The decrease in accuracy is negligible for lower
values of σ1 and the calculation of the scheme becomes much more complex if
the implicit scheme is used.
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Chapter 5

Acoustic Tubes

The dynamics of woodwind and brass instruments is based on wave propa-
gation in acoustic tubes. Although the physical processes that generate the
sound are fundamentally different from those in strings, the underlying mod-
els have many similarities. The main difference between acoustic tubes and
(ideal) strings, is that tubes have a varying cross-sectional area, causing wave
dispersion and greatly influencing behaviour of the system.

In this project, the behaviour of acoustic tubes is approximated using 1D
systems. Although higher-dimensional models might better capture some
physical effects (see e.g. [69]), 1D systems already show good agreement
between model and measurement [70]. Moreover, looking towards real-time
implementation of these models, the choice to simplify to 1D has been made
due to the low relative computational cost.

This chapter first presents Webster’s equation, which extends the 1D wave
equation presented in Section 2.4 by introducing a spatially varying cross-
section. Although not used for the contributions in Part V, Webster’s equation
forms a good basis for the second part of this chapter, which decomposes
Webster’s equation into a system of two coupled first-order PDEs. This has
been used to model the trombone in paper [H].

5.1 Webster’s equation
For an (axially symmetric) acoustic tube of length L (in m), where the wave-
lengths of the frequencies at interest aremuch larger than the radius of the tube,
one can simplify the system to be one-dimensional [23]. For low-amplitude
vibrations, the air propagation in this tube can be described using Webster’s
equation [71]

S∂2
t Ψ = c2∂x(S∂xΨ), (5.1)
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Chapter 5. Acoustic Tubes

with acoustic potential Ψ = Ψ(x, t) (in m2/s), the cross-sectional area along the
tube (or bore profile) S = S(x) (in m2) and the speed of sound in air c (in m/s).
The state variable Ψ is defined for t ≥ 0 and x ∈ D where domain D = [0, L].
If S(x) is constant, Eq. (5.1) reduces to the 1D wave equation in Eq. (2.38).
This shows that for a cylindrical acoustic tube, the fundamental frequency is
not affected by the cross-sectional area, but solely relies on length L and wave
speed c according to Eq. (2.40).1

The acoustic potential can be related to pressure p = p(x, t) (in Pa) and
particle velocity v = v(x, t) (in m/s) according to [23]

p = ρ0∂tΨ, and v = −∂xΨ, (5.2)

with air density ρ0 (in kg/m3).
The interesting thing about the presence of a variable cross-section, is that

it causes dispersive or scattering behaviour, especially at locations of high
(spatial) variation of S. See Figure 5.1.

(a) t = 1 ms. (b) t = 5 ms. (c) t = 8 ms.

Fig. 5.1: Wave propagation and dispersion in an acoustic tube of varying cross-section (shown in
grey) modelled by Webster’s equation in Eq. (5.1). Positive acoustic potential Ψ is shown in red
and negative in blue, highlighted by a black line for clarity.

Boundary conditions

The choices for boundary conditions in an acoustic tube are open and closed,
defined as [23]2

∂tΨ(0, t) = 0, ∂tΨ(L, t) = 0, (Dirichlet, open), (5.3a)
∂xΨ(0, t) = 0, ∂xΨ(L, t) = 0, (Neumann, closed). (5.3b)

This might be slightly counter-intuitive when compared to the 1D wave equa-
tion, as “closed" might imply the “fixed" or Dirichlet boundary condition. The

1Equation (5.1) also reduces to the 1D wave equation if the acoustic tube is conical, i.e., if
∂xS(x) is constant.

2The Dirichlet condition is identical to the one shown in Eq. (2.39a), but is derived from a
boundary condition for the pressure p(0, t) = p(L, t) = 0. The time-derivative has thus been kept
here.
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5.1. Webster’s equation

opposite can be intuitively shown by imagining a wave front with a positive
acoustic potential moving through a tube and hitting a closed end. What re-
flects is also a wave front with a positive acoustic potential, i.e., the sign of the
potential does not flip. This also happens using the free orNeumann condition
for the 1D wave equation (see Figure 2.9). Here, the following conditions are
chosen:

∂xΨ(0, t) = 0 and ∂tΨ(L, t) = 0, (5.4)

i.e. closed at the left end and open at the right end.

5.1.1 Discrete time
The state variable is discretised to the grid function Ψn

l and is defined for
n ∈ N0 and l = {0, . . . , N}, where N is the number of intervals between
the grid points. As the cross-section is distributed in space, S(x) needs to
be discretised to a grid function as well, albeit only in space (as it is not time-
varying). Following [23], it is useful to introduce interleaved grid points at l−1/2

and l + 1/2 for S and are defined as

Sl−1/2 = µx−S(x = lh) and Sl+1/2 = µx+S(x = lh). (5.5)

These approximate a ‘true’ (possibly measured) bore profile S(x) sampled at
x = lh with grid spacing h (see Figure 5.2). Using these definitions, one can
discretise Eq. (5.1) to the following FD scheme [21]:3

S̄lδttΨ
n
l = c2δx−

(
Sl+1/2(δx+Ψn

l )
)
, (5.6)

where
S̄l = µx+Sl−1/2 = µx−Sl+1/2 = µxxS(x = lh), (5.7)

the choice of which will become apparent in Section 5.1.6. The right-hand side
of the scheme contains an operator applied to two grid functions (S and Ψ)
multiplied onto each other. In order to expand this, the product rule must be
used. Recalling Eq. (3.18) and applying this to backwards spatial operators
instead yields

δx−(unl w
n
l ) = (δx−u

n
l )(µx−w

n
l ) + (µx−u

n
l )(δx−w

n
l ). (5.8)

Using the product rule, the right-hand side of Eq. (5.6) can be expanded to

S̄δttΨ
n
l = c2

[
(δx−Sl+1/2)(µx−(δx+Ψn

l )) + (µx−Sl+1/2)(δx−(δx+Ψn
l ))
]
,

3Notice that in [21], Webster’s equation is S̄lδttΨ
n
l = c2δx+(Sl−1/2(δx−Ψn

l )) but is identical
to Eq. (5.6). This discretisation has been chosen for a more straightforward energy analysis in
Section 5.1.5.
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Fig. 5.2: Approximations to S(x) used in Eq. (5.6). Dashed lines indicate the interleaved grid on
which S is sampled (Eq. (5.5)) and solid lines indicate S̄ which are averages of these (Eq. (5.7)).

and solving for Ψn+1
l yields the following update equation (see Appendix F.4):

Ψn+1
l = 2(1− λ2)Ψn

l −Ψn−1
l +

λ2Sl+1/2

S̄l
Ψn
l+1 +

λ2Sl−1/2

S̄l
Ψn
l−1, (5.9)

where
λ =

ck

h
, (5.10)

and, similar to the 1D wave equation in Section 2.4.2, needs to abide

λ ≤ 1 (5.11)

in order for the scheme to be stable. See Section 5.1.6 for a derivation. The
number of grid points N can then be calculated in the same way as for the 1D
wave equation in Eq. (2.53), and the stencil is similar to Figure 2.10.

Notice that at the boundaries, Eq. (5.9) requires values of S outside of the
defined domain through its definition in Eq. (5.7) (i.e., SN+1/2 and S−1/2). To
solve this, one can set S̄0 = S(0) and S̄N = S(L) fromwhich S−1/2 and SN+1/2

can be calculated according to

S̄0 =
1

2
(S1/2 + S−1/2) ⇒ S−1/2 = 2S̄0 − S1/2, (5.12a)

S̄N =
1

2
(SN+1/2 + SN−1/2) ⇒ SN+1/2 = 2S̄N − SN−1/2. (5.12b)

Although these values will not be needed when discretising the boundary
conditions in Eq. (5.3), they will be useful at a later point.

Boundary conditions

One can discretise the continuous boundary conditions in Eq. (5.4) (closed at
x = 0, open at x = L) using centred difference operators for higher accuracy
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according to

δx·Ψ
n
0 = 0 ⇒ Ψn

−1 = Ψn
1 , (Neumann, closed), (5.13a)

δt·Ψ
n
N = 0 ⇒ Ψn

N = 0, (Dirichlet, open). (5.13b)

At the left boundary, Eq. (5.9) can be expanded to

Ψn+1
0 = 2(1− λ2)Ψn

0 −Ψn−1
0 +

λ2S1/2

S̄0
Ψn

1 +
λ2S−1/2

S̄0
Ψn
−1,

Eq. (5.13a)
⇐======⇒ Ψn+1

0 = 2(1− λ2)Ψn
0 −Ψn−1

0 +
λ2(S1/2 + S−1/2)

S̄0
Ψn

1 ,

and as S̄0 = 1
2 (S1/2 + S−1/2) through Eq. (5.7), this can be solved to

Ψn+1
0 = 2(1− λ2)Ψn

0 −Ψn−1
0 + 2λ2Ψn

1 . (5.14)

One can implement the right boundary condition by simply reducing the range
of operation to l = {0, . . . , N − 1}, as Ψn

N = 0 according to Eq. (5.13b). A more
realistic boundary condition for the open end is presented in the following.

5.1.2 Radiation
One of the ways that an acoustic tube loses energy is through radiation. The
right boundary condition presented in Eq. (5.4) can be changed to be radiating
according to [21]

∂xΨ(L, t) = −a1∂tΨ(L, t)− a2Ψ(L, t), (5.15)

where, for a tube terminating on an infinite plane [72]

a1 =
1

2(0.8216)2c
, and a2 =

L

0.8216
√
S0S(1)/π

, (5.16)

which determine the amount of loss and inertia at the radiating boundary
respectively.

The radiating boundary in Eq. (5.15) can then be discretised to [21]

δx·Ψ
n
N = −a1δt·Ψ

n
N − a2µt·Ψ

n
N , (5.17)

which can be expanded and solved for Ψn
N+1 according to

Ψn
N+1 = h

(
−a1

k
(Ψn+1

N −Ψn−1
N )− a2(Ψn+1

N + Ψn−1
N )

)
+ Ψn

N−1. (5.18)
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Substitution into Eq. (5.9) at l = N yields the following update equation:

Ψn+1
N =

2(1− λ2)Ψn
N −Ψn−1

N + α−Ψn−1
N + 2λ2Ψn

N−1

(1 + α+)
, (5.19)

where
α± = h

(a1

k
± a2

) λ2SN+1/2

S̄N
. (5.20)

One can observe that SN+1/2 is needed, which is outside the defined domain.
As mentioned before, setting S̄N = S(L), one can calculate SN+1/2 using Eq.
(5.12b) to solve the issue.

5.1.3 Excitation
Although excitations will be discussed more in-depth in Chapter 7, a simple
way to excite Webster’s equation will be presented here.

Following [23], one can create an input signal vin = vin(t) that interacts with
the particle velocity of the tube. As this relates to the acoustic potential as in
Eq. (5.2), one can change the boundary condition of the left boundary to

∂xΨ(0, t) = −vin. (5.21)

Discretising this using the centred spatial operator, yields

δx·Ψ
n
0 = −vnin ⇒ Ψn

−1 = 2hvnin + Ψn
1 , (5.22)

and can be substituted into the update equation in Eq. (5.9) at l = 0 to get

Ψn+1
0 = 2(1− λ2)Ψn

0 −Ψn−1
0

λ2S1/2

S̄0
Ψn

1 +
λ2S−1/2

S̄0
(2hvnin + Ψn

1 ) ,

Ψn+1
0 = 2(1− λ2)Ψn

0 −Ψn−1
0 + 2λ2Ψn

1 +
2hλ2S−1/2

S̄0
vnin. (5.23)

The input signal is arbitrary, but looking towards lip excitation, and following
[21], one can set the input to a pulse train as shown in Figure 5.3. More details
on the pulse train can be found in Section 7.2.2.

5.1.4 Matrix form and output
One can write scheme (5.6) in matrix form by saving the state in a vector
Ψn = [Ψn

0 , . . . ,Ψ
n
N ]T and creating a Dxx matrix that includes the effect of the

100



5.1. Webster’s equation

Fig. 5.3: A pulse train with a frequency of 213 Hz a duty cycle of 25% and an attack of 22 ms, used
to generate the output in Figure 5.4.

cross-sectional area S. Assuming Neumann boundary conditions yields

Dxx =
1

h2




−2 2 0
S1/2

S̄1
−2

S3/2

S̄1

. . . . . . . . .
Sl−1/2

S̄l
−2

Sl+1/2

S̄l
. . . . . . . . .

SN−3/2

S̄N−1
−2

SN−1/2

S̄N−1

0 2 −2




. (5.24)

Notice that there are no appearances of S at the boundaries as these vanish due
to the boundary conditions as in Eq. (5.14). Using IN as the N × N identity
matrix, one can write scheme (5.6) in matrix form as

AΨn+1 = BΨn + CΨn−1 + vn, (5.25)

where

A =

[
IN 0

0 1 + α+

]
, B = 2I + c2k2Dxx, and C =

[
−IN 0

0 −1 + α−

]
,

and the (N + 1)× 1 input vector vn consists of zeros except for the first index:

vni =

{
2hλ2S−1/2

S̄0
vnin, if i = 1,

0, otherwise.
(5.26)

Notice how the radiation is included by changing the last entry of matrices
A and C. The output of an implementation of Webster’s equation is shown
in Figure 5.4. The parameters used for the scheme, the input signal and the
geometry used to obtain the output can be found in Table 5.1, Figure 5.3, and
Figure 5.5 respectively. Notice that the frequencies of thepartials arenot integer
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multiples of the fundamental (as for the 1D wave equation in Figure 2.11) due
to the varying geometry of the acoustic tube and the radiating boundary.

Fig. 5.4: The output of Webster’s equation at Ψn
N using the input in Figure 5.3, the parameters in

Table 5.1, and the geometry in Figure 5.5.

Name Symbol (unit) Value
Length L (m) ≈ 3
Wave speed c (m/s) 343
Cross-sectional area S(x) See paper [H]

Table 5.1: Parameters for the implementation of Webster’s equation. The length is slightly below
3 m to yield λ = 1 in Eq. (5.11).
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Fig. 5.5: The geometry used for the implementation. See paper [H] for more details.

5.1.5 Energy analysis
The energy analysis of Webster’s equation with a radiating boundary might
seem straightforward. However, due to the varying cross-sectional area, the
energy balance deserves a more detailed treatment, especially at the bound-
aries. For this analysis, (centred) Neumann boundary conditions are used for
both boundaries (for generality) and the input is ignored. This section follows
the steps presented in Section 3.4.
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Step 1: Obtain δt+h

Usually, to ensure vanishing boundary terms when using centred Neumann
boundary conditions, the primed inner product in Eq. (3.9) is chosen. How-
ever, as the system has a spatially varying cross-section, the more general
weighted inner product in Eq. (3.10) has to be chosen instead.

Taking an inner product weighted by free parameters 0 < εl, εr ≤ 2 at the
left and right boundary respectively, of scheme (5.6) with (δt·Ψn

l ) over discrete
domain d, yields

δt+h = 〈δt·Ψn
l , S̄lδttΨ

n
l 〉εl,εrd − c2〈δt·Ψn

l , δx−(Sl+1/2(δx+Ψn
l ))〉εl,εrd = 0. (5.27)

Step 2: Identify energy types and isolate δt+

As the right boundary is set to be radiating according to Eq. (5.17), the energy
balance will eventually be of the following form:

δt+(h + hb) = b− qb, (5.28)

where hb is the energy stored by the radiating boundary through the inertia
term, qb describes the energy losses through radiation and b is the general
boundary term.

Starting at Eq. (5.27), the last term can – using identity (3.15a) – be rewritten
to

c2〈Sl+1/2δt·δx+Ψn
l , (δx+Ψn

l )〉d + br − bl,

where

br = c2(δt·Ψ
n
N )
(εr

2
SN+1/2(δx+Ψn

N ) +
(

1− εr
2

)
SN−1/2(δx−Ψn

N )
)
, (5.29a)

bl = c2(δt·Ψ
n
0 )
(εl

2
S−1/2(δx−Ψn

0 ) +
(

1− εl
2

)
S1/2(δx+Ψn

0 ))
)
, (5.29b)

are the right and left boundary term respectively (notice that bl is subtracted).
One can immediately observe that the boundary terms vanish if Dirichlet
boundary conditions would be used.

Then, using identities (3.17a) and (3.17b) yields

δt+h = br − bl,

where
h = t + v, with t =

1

2

(
‖
√
S̄lδt−Ψn

l ‖εl,εrd

)2

and

v =
c2

2
〈Sl+1/2δx+Ψn

l , et−δx+Ψn
l 〉d.

(5.30)

Notice that S̄l is included in the norm by using its square-root.
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The next step is to find definitions for εl and εr such that the boundary
terms vanish if radiation were to be ignored. In other words, the boundary
terms need to be rewritten such that

δx·Ψ
n
0 = 0 ⇒ bl = 0

δx·Ψ
n
N = 0 ⇒ br = 0

for the left and right boundary respectively. It can be shown that, for the
special cases of εr = SN−1/2/µxxSN and εl = S1/2/µxxS0, the boundary terms
vanish:

br = c2(δt·Ψ
n
N )SN−1/2(2− εr)(δx·Ψn

N ), (5.31a)
bl = c2(δt·Ψ

n
0 )S1/2(2− εl)(δx·Ψn

0 ). (5.31b)

See Appendix F.5 for a derivation of this.
To add the energy stored and dissipated by the radiating boundary, its

definition in Eq. (5.17) can be substituted into the right boundary term br in
Eq. (5.31a) as

br = c2(δt·Ψ
n
N )SN−1/2(2− εr)(−a1δt·Ψ

n
N − a2µt·Ψ

n
N ),

= c2SN−1/2(2− εr)
(
−a1(δt·Ψ

n
N )2 − a2(δt·Ψ

n
N )(µt·Ψ

n
N )
)
.

This can then be decomposed in hb and qb used in Eq. (5.27).
Using identity (3.17d) yields the definitions for hb and qb in Eq. (5.28)

hb =
c2SN−1/2(2− εr)a2

2
µt−(Ψn

N )2, and qb = c2SN−1/2(2− εr)a1(δt·Ψ
n
N )2.

(5.32)
Finally, b = bl and can be shown to vanish for both Dirichlet and (centred)
Neumann conditions.

Step 3: Check units

To obtain the correct units, the quantities for pressure and particle velocity in
Eq. (5.2) need to be substituted into the scheme. As this substitution will be
made in Section 5.2, the unit check will be omitted here.

Step 4: Implementation

Figure 5.6 shows the energetic output of Webster’s equation with a radiating
boundary at x = L. To highlight the effect of the radiation, the parameters are
set to L = 1 m and S(x) = 0.01 m2 for all x ∈ D. The system is excited with
a raised cosine close to the left boundary, and when the excitation reaches the
radiating boundary, the total energy in the system decreases due to the losses.
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5.1. Webster’s equation

The energy stored by the boundary hb is also shown and indeed increases
when the wave reaches the boundary.

he

h

v

t

hb

Fig. 5.6: The kinetic (blue), potential (red), and total (black) energy as well as the energy stored by
the radiation condition (green) of an implementation of Webster’s equation are plotted in the left
panel. The right panel shows the normalised energy (according to Eq. (3.38)) and shows that the
deviation of the energy is within machine precision.

5.1.6 Stability through energy analysis
Frequency domain analysis as presented in Section 3.3, or more specifically,
von Neumann analysis, can not be performed on Webster’s equation due to
the varying cross-section of the system [21]. Instead, stability conditions can
be obtained through energy analysis explained in Section 3.4.4. This section
follows the process presented in [21, Sec. 9.1.5, pp. 255–256].

Consider the following scheme

[S]lδttΨ
n
l = c2δx−(Sl+1/2(δx+Ψn

l )), (5.33)

where [S]l is a yet undetermined second-order approximation to the true ge-
ometry of the acoustic tube and will be shown to be S̄l below. As done for the
1D wave equation in Section 3.4.4, the potential energy v in Eq. (5.30) can be
rewritten using identity (3.17f) as

v =
c2

2

(
‖
√
Sl+1/2µt−δx+Ψn

l ‖2d −
k2

4
‖
√
Sl+1/2δt−δx+Ψn

l ‖2d
)
.

For spatially varying systems, one can use the following extension of the bound
given in Eq. (3.51) [21]

‖
√
φlδx+u

n
l ‖d ≤

2

h
‖
√
µx−φlu

n
l ‖d, (5.34)

where spatially varying function φl > 0 is defined over the same domain as u.
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The following condition can then be put on v

v ≥ c2

2

(
‖
√
Sl+1/2µt−δx+Ψn

l ‖2d −
k2

4

(
2

h
‖
√
µx−Sl+1/2δt−Ψn

l ‖d
)2
)
,

v ≥ c2

2

(
‖
√
Sl+1/2µt−δx+Ψn

l ‖2d −
k2

h2
‖
√
µxxSlδt−Ψn

l ‖2d
)

≥ c2

2

(
‖
√
Sl+1/2µt−δx+Ψn

l ‖2d −
k2

h2

(
‖
√
µxxSlδt−Ψn

l ‖εl,εrd

)2
)
,

where the last step is possible because 0 < εl, εr ≤ 2. Substituting this into the
energy balance in Eq. (5.30) yields

h = t + v ≥ 1

2

(
‖
√

[S]lδt−Ψn
l ‖εl,εrd

)2

+
c2

2

(
‖
√
Sl+1/2µt−δx+Ψn

l ‖2d −
k2

h2

(
‖
√
µxxSlδt−Ψn

l ‖εl,εrd

)2
)
,

and as ‖√Sl+1/2µt−δx+Ψn
l ‖2d is non-negative, the following is also true:

h = t + v ≥ 1

2

(
‖
√

[S]lδt−Ψn
l ‖εl,εrd

)2

− λ2

2

(
‖
√
µxxSlδt−Ψn

l ‖εl,εrd

)2

.

This can be written as

h ≥ 1

2

∑

d

(√
[S]l − λ2

√
µxxSl

)
(δt−Ψn

l )2, (5.35)

which is non-negative if

min
(√

[S]l − λ2
√
µxxSl

)
≥ 0,

λ ≤ min
(√

[S]l
µxxSl

)
.

For the special choice of [S]l = µxxSl, this condition reduces to

λ ≤ 1, (5.36)

also given in (5.11). This choice of [S]l is equal to S̄l through Eq. (5.7), hence,
its choice in Eq. (5.6).
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5.2 First-order system
Until now, only PDEs that are second-order in time have been presented,
i.e., that are dependent on the acceleration of the state variable. This section
presents a systemof two coupledfirst-order PDEswhich are insteaddependent
on the velocity. State-of-the-art research on brass instruments in the context of
FDTD methods also uses this coupled system (see e.g. [73, 62]), and has been
used in this project to model the trombone in paper [H].

5.2.1 Continuous time
Using the same variables as before for cross-sectional area S = S(x), wave
speed c, and air density ρ0, a system of coupled PDEs that describes air prop-
agation in an acoustic tube can be defined as follows:

S

ρ0c2
∂tp = −∂x(Sv), (5.37a)

ρ0∂tv = −∂xp. (5.37b)

Here, the pressure p = p(x, t) (Pa) and particle velocity v = v(x, t) (m/s) are
defined for x ∈ D with domain D = [0, L] and tube length L (in m). These
state variables are related to the acoustic potential Ψ, as shown in Eq. (5.2), as

p = ρ0∂tΨ, v = −∂xΨ. (5.38)

Indeed it can be shown by substituting these definitions into Eq. (5.37a),
Webster’s equation can be obtained:

S

ρ0c2
∂t(ρ0∂tΨ) = −∂x(S(−∂xΨ)) =⇒ S∂2

t Ψ = c2∂x(S∂xΨ).

Boundary conditions

For the first-order PDE system in Eq. (5.37), the boundary conditions are
defined as follows:

p(0, t) = 0, p(L, t) = 0, (Dirichlet, open), (5.39a)
S(0)v(0) = 0, S(L)v(L) = 0, (Neumann, closed), (5.39b)

which, through Eq. (5.38), relate to the boundary conditions of Webster’s
equation in Eq. (5.3).
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n � 1/2

n

n + 1/2

n + 1

n � 1

l � 1/2l � 1 l l + 1/2 l + 1

k

h

Fig. 5.7: The interleaved grid used for the system of FD schemes in Eq. (5.40). Grid points on the
regular grid (in black) are used for pressure p, while points on the interleaved grid (in white) are
used for particle velocity v.

5.2.2 Discrete time
It is useful to place either p or v on an interleaved grid (see Figure 5.7). Follow-
ing [62], v is placed on this interleaved grid both in space and time. Accord-
ingly, system (5.37) is discretised as

S̄l
ρ0c2

δt+p
n
l = −δx−(Sl+1/2v

n+1/2
l+1/2 ), (5.40a)

ρ0δt−v
n+1/2
l+1/2 = −δx+p

n
l , (5.40b)

after which the update equations become

pn+1
l = pnl −

ρ0cλ

S̄l
(Sl+1/2v

n+1/2
l+1/2 − Sl−1/2v

n+1/2
l−1/2 ), (5.41a)

v
n+1/2
l+1/2 = v

n−1/2
l+1/2 −

λ

ρ0c
(pnl+1 − pnl ), (5.41b)

where (again) λ = ck/h ≤ 1 for stability. The pressure is defined for l =

{0, . . . , N} and the velocity for l = {0, . . . , N − 1} where N is the number of
intervals between the grid points on the pressure grid. Notice that the range of
calculation for the particle velocity one index smaller than that of the pressure.

An advantage of using an interleaved grid like this, is that the forward and
backward FD operators are second-order accurate, and can be shown through
a Taylor series expansion as done in 2.2.2 (also see [62]).
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5.2. First-order system

Boundary conditions

The boundary conditions in Eq. (5.39a) can be discretised as follows

pn0 = 0, pnN = 0, (Dirichlet, open), (5.42a)
µx−(S1/2v

n
1/2) = 0, µx+(SN−1/2v

n
N−1/2) = 0, (Neumann, closed). (5.42b)

5.2.3 Matrix form
System (5.40) can be written in matrix form, by saving the states of pnl and
vn+1
l+1/2 in vectors as

pn = [pn0 , . . . , p
n
N ]T , and vn+1/2 = [v

n+1/2
1/2 , . . . , v

n+1/2
N−1/2]T , (5.43)

which are of sizes (N + 1)× 1 andN × 1 respectively. One may then write the
scheme in matrix form as

vn+1/2 = vn−1/2 + Bpp
n (5.44a)

pn+1 = pn + Bvv
n+1/2 (5.44b)

where

Bv =
ρ0c

λ




− 2S1/2

S̄0
0

S1/2

S̄1
−S3/2

S̄1

. . . . . .
SN−3/2

S̄N−1
−SN−1/2

S̄N−1

0
2SN−1/2

S̄N




(5.45)

is of size (N + 1)×N , and

Bp =
λ

ρc




1 −1 0

1 −1
. . . . . .

1 −1

0 1 −1




(5.46)

is of size N × (N + 1).
Alternatively, one canwrite the scheme in a one-step form by concatenating

the states of the pressure and particle velocity into one vector. Thematrix form
will then be [

pn+1

vn+1/2

]
= B

[
pn

vn−1/2

]
, (5.47)
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where
B =

[
IN+1 + BvBp Bv

Bp IN

]
(5.48)

is of size (2N + 1) × (2N + 1), and may be directly used as matrix Q for the
modal analysis using a one-step form described in Section 3.5.1.

5.2.4 Energy analysis
This section presents an energy analysis of the first-order system presented
above using the techniques presented in Section 3.4. The bulk of the analysis
follows [62, Sec. 3.4.1, pp. 80–81].

Step 1: Obtain δt+h

To obtain the correct energy balance, an inner product of Eq. (5.40a)withµt+pnl
needs to be taken over discrete domain d = {0, . . . , N}. Using the primed inner
product in Eq. (3.9) and, after taking all terms to the left-hand side, yields4

δt+h =
1

ρ0c2
〈µt+pnl , S̄δt+pnl 〉′d + 〈µt+pnl , δx−(Sl+1/2v

n+1/2
l+1/2 )〉′d = 0. (5.49)

Step 2: Identify energy types and isolate δt+

For the rest of the analysis, the following superscripts and subscripts will be
assumed unless denoted otherwise: n and l for p, l for S̄, l + 1/2 for S, and
l + 1/2 and n + 1/2 for v. After performing summation by parts of the last
term using identity (3.14a), Eq. (5.49) becomes

δt+h =
1

ρ0c2
〈µt+p, S̄δt+p〉′d − 〈µt+δx+p, Sv〉d = −b, (5.50)

where the boundary term is

b = br − bl, with
br = (µt+pN )µx+(SN−1/2vN−1/2) and (5.51)
bl = (µt+p0)µx−(S1/2v1/2), (5.52)

4The primed rather than theweighted inner product can be used here as the eventual boundary
terms can be shown to vanish when using the boundary conditions in Eq. (5.42a).
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and can be shown to vanish under the boundary conditions shown in Eq.
(5.42a). Then, Eq. (5.40b) can be substituted into Eq. (5.50) to get

δt+h =
1

ρ0c2
〈µt+p, S̄δt+p〉′d − 〈µt+(−ρ0δt−v), Sv〉d = 0 (5.53)

=
1

ρ0c2
〈µt+p, S̄δt+p〉′d + ρ0〈δt·v, Sv〉d = 0. (5.54)

Finally, one can use identities (3.17c) and (3.17b) for the first and second term
respectively to get

h = t + v, where

t =
ρ0

2
〈Sv, et−v〉d and v =

1

2ρ0c2

(
‖
√
S̄p‖′d

)2

.
(5.55)

Step 3: Check units

Writing the terms in Eq. (5.55) in their units yields

t =
ρ0

2
〈Sv, et−v〉d

in units
−−−−−→ kg ·m−3 ·m · (m2 ·m · s−1 ·m · s−1),

= kg ·m2 · s−2,

v =
1

2ρ0c2

(
‖
√
S̄p‖′d

)2 in units
−−−−−→ (kg ·m−3 ·m2 · s−2)−1 · (m · kg ·m−1 · s−2)2,

= kg ·m2 · s−2,

and indeed have the correct units.

Step 4: Implementation

Figure 5.8 shows the energetic output of an implementation of the first order
system in Eq. (5.40), and shows that the energy is within machine precision.

5.2.5 Levine and Schwinger radiation model
As done in Section 5.1, radiation can be added to the right boundary acoustic
tube. The radiation model used in this project was proposed by Levine and
Schwinger in [74], discretised by Silva et al. [75]. Although other radiation
models exist, state-of-the-artworkbyBilbao andHarrisononbrass instruments
based on the first-order system in (5.37) also use this model [76, 62]. See Figure
5.9 for a circuit representation of the Levine and Schwinger radiation model.
This section will only go into practical details necessary for implementation of
the algorithm. Further background is provided in [62].
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he

h

v

t

Fig. 5.8: The kinetic (blue), potential (red), and total (black) energy of an implementation of the
first-order system in Eq. (5.40) are plotted in the left panel. The right panel shows the normalised
energy (according to Eq. (3.37)) and shows that the deviation of the energy is within machine
precision.

Fig. 5.9: The circuit representation of the Levine and Schwinger radiation model.

The system can be described as

v̄ = µt+v(1) +
1

R2
µt+p(1) + Crδt+p(1), (5.56a)

p̄ = Lrδt+v(1), (5.56b)

p̄ =

(
1 +

R1

R2

)
µt+p(1) +R1Crδt+p(1), (5.56c)

where p̄n+1/2 and v̄n+1/2 are placed on the interleaved temporal grid and are
related to the tube by

p̄ = µt+p
n
N , S̄N v̄ = µx−

(
SN+1/2v

n+1/2
N+1/2

)
. (5.57)

Using the above, an update for pn+1
N based on known values of the system can

be obtained (see Appendix (F.6) for a derivation):

pn+1
N =

1− ρ0cλζ3
1 + ρ0cλζ3

pnN −
2ρ0cλ

1 + ρ0cλζ3


vn(1) + ζ4p

n
(1) −

SN−1/2v
n+1/2
N−1/2

S̄N


 , (5.58)
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where

ζ1 =
2R2k

2R1R2Cr + k(R1 +R2)
, ζ2 =

2R1R2Cr − k(R1 +R2)

2R1R2Cr + k(R1 +R2)

ζ3 =
k

2Lr
+

ζ1
2R2

+
Crζ1
k

and ζ4 =
ζ2 + 1

2R2
+
Crζ2 − Cr

k
.

Once pn+1
N is known, the internal states of the system can be updated as follows

vn+1
(1) = vn(1) +

k

Lr
µt+p

n
N , (5.59a)

pn+1
(1) = ζ1µt+p

n
N + ζ2p

n
(1). (5.59b)

The various parameters are taken from [62] and are

R1 = ρ0c, R2 = 0.505ρ0c,

Lr = 0.613ρ0

√
S̄N/π, and Cr = 1.111

√
S̄N

ρ0c2
√
π
.

5.2.6 Energy analysis
This section shows the result of the energy analysis of the above radiation
model. The full derivation will not be given here, but can be found in [62]. The
result is included in this thesis for completeness.

One can perform an energy analysis of the radiation model by recalling the
condition at the right boundary from Eq. (5.51)

br = (µt+pN )µx+(SN−1/2vN−1/2)
︸ ︷︷ ︸
µx−SN+1/2vN+1/2

, (5.60)

which, using Eq. (5.57), can be rewritten to

br = p̄S̄N v̄. (5.61)

Following the derivation in [62, Sec. 4.1.4, pp. 111–112], this can eventually be
rewritten to

δt+hrad + qrad = 0, (5.62)

where

hrad =
S̄N
2

(
Lrv

2
(1) + Crp

2
(1)

)
, and

qrad = S̄N

(
R1(µt+v

n
(2))

2 +R2(µt+v(3))
2
)
,
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with
vn(3) =

pn(1)

R2
, and µt+v

n
(2) =

µt+p
n
N − µt+pn(1)

R1
. (5.63)

Notice that hrad and qrad are non-negative and thus do not affect the stability
of the system.
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Chapter 6

2D Systems

The previous chapters considered systems distributed over one spatial di-
mension. As not all musical instruments or instrument-components can be
simplified to this, higher dimensional systems need to be taken into consider-
ation, such as 2D systems. 2D PDEs can be used to model drum membranes,
plate reverbs or simplified instrument bodies.

Apart from being slightly more complex than 1D models, the main issue
with 2D systems is that their implementations are orders ofmagnitude heavier
to compute than 1D schemes. This chapter will therefore also provide details
on how to best implement these schemes in MATLAB. Implementation in C++
will be detailed in Chapter 13.

This chapter starts by providing some additional information about 2D
grid functions and operators. Then, the 2D wave equation is presented, which
is used to extend the analysis techniques presented in Chapter 3 to 2D. Af-
terwards, two 2D models that have been used in this project, the thin plate
and the stiff membrane, will be described in a similar fashion. Unless denoted
otherwise, the theory in this chapter follows [21].

6.1 PDEs and FD schemes in 2D
The systems modelled in this work are simplified to be rectangular and are
defined on a Cartesian coordinate system. Consider a rectangular 2D system
with side lengthsLx andLy (both inm) and its state described by u = u(x, y, t).
The system is defined for t ≥ 0 and (x, y) ∈ D where domain D ∈ [0, Lx] ×
[0, Ly] is two-dimensional.

Similar to the 1D case explained in Section 2.2.1, the state variable can
be discretised to a 2D grid function according to u(x, y, t) u unl,m with space
x = lh and y = mh and time t = nk with k = 1/fs. The temporal index
n ∈ N0 and the spatial indices l ∈ {0, . . . , Nx} and m ∈ {0, . . . , Ny} index the
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grid function in space in the x and y directions respectively. Here, Nx is the
number of intervals between grid points in the x direction and Ny in the y
direction. For simplicity, the grid spacing h is set to be the same in both the x
and y directions in this work.

Additional operators

In continuous time, an additional operator referred to as the Laplacian, can be
defined as

∆ = ∂2
x + ∂2

y , (6.1)

which describes a second-order spatial derivative in 2D. A 4th-order spatial
derivative in 2D, used to model stiffness like in the stiff string in Chapter 4, is
called the biharmonic operator, and is defined as the Laplacian applied to itself:

∆∆ = ∂4
x + 2∂2

x∂
2
y + ∂4

y . (6.2)

In discrete time, the same temporal and spatial shift operators as defined
in Section 2.2.2 can be applied to grid function unl,m the latter of which only
affects the spatial index l. Additional operators affecting spatial index m for
the y direction are

ey+u
n
l,m = unl,m+1, and ey−u

n
l,m = unl,m−1. (6.3)

Using these shift operators, a discrete approximation of the Laplacian in Eq.
(6.1) can be made1

∆ u δ∆ , 1

h2
(ex+ + ex− + ey+ + ey− − 4) . (6.4)

Also see Figure 6.1a. Similarly, an approximation of the biharmonic operator
in Eq. (6.2) can be made as

∆∆ u δ∆δ∆ , 1

h4

[ (
e2
x+ + e2

x− + e2
y+ + e2

y−
)

+ 2 (ex+ey+ + ex+ey− + ex−ey+ + ex−ey−)

− 8 (ex+ + ex− + ey+ + ey−) + 20

]
.

(6.5)

Also see Figure 6.1b.

1Notice that the δ∆ operator is identical to δ∆� in [21]. The former will be used as it is more
compact, and it is the only discretisation to the Laplacian used in this work.
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(a) The δ∆ operator in Eq. (6.4). (b) The δ∆δ∆ operator in Eq. (6.5).

Fig. 6.1: The stencils of the 2D spatial FD operators in Eqs. (6.4) and (6.5) respectively. The red
square denotes what grid point the operator is applied to. The stencils follow the same layout as
Figure 2.3, but the vertical axis denotes a second spatial dimension rather than time.

6.2 The 2D wave equation
The 2D wave equation is the simplest 2D model in the context of musical
acoustics and, using the operators presented above, it is a fairly straightforward
extension to the 1D wave equation. Similar to how the 1D wave equation is
used to model an ideal string, the 2D wave equation can be used to model an
ideal membrane.

The first appearance of an implementation of the 2D wave equation in
a musical context was proposed by van Duyne and Smith who used digital
waveguides, or more specifically a waveguide mesh, to discretise it [27]. The
implementation is identical to the FD scheme that will be presented here (if
the stability condition of the latter is satisfied with equality).

This section will present the 2D wave equation in continuous time and its
discretisation afterwards. The resulting FD scheme is then used as a test-case
to extend the various analysis techniques presented in Chapter 3 to 2D.

6.2.1 Continuous time
Consider a system modelling the 2D wave equation with side lengths Lx and
Ly (both in m) and its state described by u = u(x, y, t). The system is defined
over (x, y) ∈ D with domain D = [0, Lx] × [0, Ly] and its motion is described
by the following PDE:

∂2
t u = c2∆u, (6.6)

with wave speed c (in m/s) and the Laplacian operator as defined in Eq. (6.1).
If the 2D wave equation is used to model an ideal membrane, the wave speed
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is defined as c =
√
T/ρH (in m/s), with tension per unit length T (in N/m),

material density ρ (in kg/m3) and thickness H (in m).

Boundary conditions

Similar to the 1Dwave equation, two alternatives for boundary conditions are

u(0, y, t) = u(Lx, y, t) = 0 ∀y,
u(x, 0, t) = u(x, Ly, t) = 0 ∀x,

}
(Dirichlet, fixed), (6.7a)

∂xu(0, y, t) = ∂xu(Lx, y, t) = 0 ∀y,
∂yu(x, 0, t) = ∂yu(x, Ly, t) = 0 ∀x,

}
(Neumann, free), (6.7b)

where ∀means ’for all values of’.

6.2.2 Discrete time
Using the definition for the approximation of the Laplacian in Eq. (6.4), the
2D wave equation PDE in Eq. (6.6) can be discretised to

δttu
n
l,m = c2δ∆u

n
l,m, (6.8)

with l ∈ {0, . . . , Nx} and m ∈ {0, . . . , Ny}, where Nx and Ny are the number
of intervals between grid points in the x and y direction respectively. The
operators can then be expanded (see Eq. (6.4)) and solving for unl,m yields the
following update equation

un+1
l,m = 2unl,m−un−1

l,m +λ2
(
unl+1,m + unl−1,m + unl,m+1 + unl,m−1 − 4unl,m

)
, (6.9)

where the Courant number
λ =

ck

h
, (6.10)

and needs to abide
λ ≤ 1√

2
(6.11)

for the scheme to be stable. See Section 6.2.4 for a derivation of this. Writing
this condition in terms of the grid spacing, places the following condition on
h:

h ≥
√

2ck . (6.12)
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Discrete boundary conditions

The boundary conditions in Eqs. (6.7) can be discretised to

un0,m = unNx,m = 0 ∀m,
unl,0 = unl,Ny = 0 ∀l,

}
(Dirichlet, fixed), (6.13a)

δx·u
n
0,m = δx·u

n
Nx,m = 0 ∀m,

δy·u
n
l,0 = δy·u

n
l,Ny = 0 ∀l,

}
(Neumann, free). (6.13b)

If the Dirichlet boundary conditions are used (for all sides), the domain of
calculation can simply be reduced to l ∈ {1, . . . Nx−1} andm ∈ {1, . . . Ny−1}.

Stencil

Figure 6.2 shows the stencil of the 2D wave equation FD scheme in Eq. (6.8).
The grid points use the same colour-coding as previous stencils (see e.g. Figure
2.10).

Fig. 6.2: The stencil for the 2D wave equation FD scheme in Eq. (6.8).
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6.2.3 Matrix form and output
Similar to how the number of intervals between grid points is calculated for 1D
systems in Eq. (2.53), it can be calculated in 2D using the following operations:

h :=
√

2ck, Nx :=

⌊
Lx
h

⌋
, Ny :=

⌊
Ly
h

⌋
, h := min

(
Lx
Nx

,
Ly
Ny

)
, λ :=

ck

h
,

(6.14)
where the ‘min’ operator selects the smallest value ofLx/Nx andLy/Ny to stay
as close to the stability condition as possible.

To implement the update equation in Eq. (6.9), one could save the states
of the system in matrices (as opposed to vectors in the 1D case such as done
in Section 4.2.2) and directly work with these. Using Dirichlet boundary
conditions the (Nx − 1)× (Ny − 1) state matrix at time index nwould be

Un =




un1,1 . . . un1,Nx−1
...

. . .
...

unNy−1,1 . . . unNy−1,Nx−1


 , (6.15)

and could be used tomake a ‘for-loop implementation’ of the update equation.
This could indeed be the strategy if one would implement the scheme in
e.g. C++ (see Chapter 13). For a more compact implementation in MATLAB,
however, one could ‘stack’ or ‘flatten’ the state matrices to vectors and update
the scheme using matrix-vector multiplication (as done for the stiff string in
Section 4.2.2 for example). Again using Dirichlet boundary conditions, the
stacked state vector will be structured as

un = [(un1 )T , . . . , (unNx−1)T ]T , with unl = [unl,1, . . . , u
n
l,Ny−1]T , (6.16)

and has a size of (Nx − 1) · (Ny − 1) × 1. See Figure 6.3 for a visualisation of
the matrix-stacking process.

To obtain amatrix formof the δ∆ operator that can be applied to this stacked
state vector, the Kronecker product and Kronecker sum must be introduced [77].
The Kronecker product between two arbitrarily-sized matrices (using their
dimensions as a subscript) is

AM×N ⊗BK×L =



a11B . . . a1NB
...

. . .
...

aM1B . . . aMNB



MK×NL

. (6.17)

The Kronecker sum between two square matrices is [50]

AM×M ⊕BN×N = IN ⊗A + B⊗ IM , (6.18)
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6.2. The 2D wave equation

Fig. 6.3: Stacking, or ‘flattening’ a 4× 4 matrix to a 16-element vector.

where IP is the identity matrix of size P × P .
ForDirichlet boundary conditions, theDxxmatrix of size (Nx−1)×(Nx−1)

and the Dyy matrix of size (Ny − 1) × (Ny − 1) can be defined (similar to Eq.
(3.3)) as

Dxx =
1

h2




0

1

−2

. . .
−2

1

1

. . .
1

1

−2

. . .

−2

1

0



︸ ︷︷ ︸
(Nx−1)×(Nx−1)

and Dyy =
1

h2




0

1

−2

. . .
−2

1

1

. . .
1

1

−2

. . .

−2

1

0



︸ ︷︷ ︸
(Ny−1)×(Ny−1)

.

(6.19)
Following [50], the matrix form of the δ∆ operator can then be defined as the
Kronecker sum of Dyy and Dxx, yielding

D∆ = Dyy⊕Dxx =




0

. . .
Dyy

Dyy

Dyy . . .

0




+
1

h2




0

. . .

. . .

I

−2I

. . .

I

−2I

I

. . .
−2I

I

. . .

. . .

0



,

(6.20)
where the identity matrix I = INx−1. The D∆ matrix is square and of size
(Nx − 1) · (Ny − 1)× (Nx − 1) · (Ny − 1).

Using the above, the FD scheme in Eq. (6.8) can then be compactly written
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in matrix form as

un+1 =
(
2I + c2k2D∆

)
un − un−1, (6.21)

where the identity matrix is of the same size as D∆. See Appendix C.3 for a
MATLAB implementation of the 2D wave equation.2

If one would like to visualise the system state as a 2D grid, one can revert
the stacked vector back to a matrix by using the reshape function in MATLAB:

uMatrix = reshape(u, Ny-1, Nx-1);

A 2D raised-cosine excitation can be implemented in the same way by reshap-
ing an excitation matrix to a vector (see Section 7.1.4).

Output

Figure 6.4 shows the wave propagation of an implementation of the 2D wave
equation with Dirichlet boundary conditions. Parameter values are Lx = 1.5

m, Ly = 1 mand c = 360 m/s. Waves reflect at the boundaries at an increasing
rate. This is also shown in Figure 6.5, where the output – taken at (x, y) =

(0.15, 0.85) – in time domain shows an increase in oscillations over time, due to
these reflections. The right panel shows that the output containsmany partials
that are close together, i.e., the output is highly inharmonic. As opposed to
the output of the 1D wave equation shown in Figure 2.11, where the partials
are integer multiples of the fundamental frequency, the 2D wave equation
exhibits aperiodic behaviour due to the aforementioned reflections, causing
this inharmonicity.

Fig. 6.4: Wave propagation of an implementation of the 2D wave equation with Lx = 1.5 m,
Ly = 1 m and c = 360 m/s. The system is excited with a 2D raised cosine at (0.25Lx, 0.5Ly).

2As thematrices are extremely sparse (many 0-entries), it is useful to utilise MATLABs optimisa-
tion for sparse matrices using the sparse() function. One can use speye() for sparse identity
matrices.
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6.2. The 2D wave equation

Fig. 6.5: The output of the 2D wave equation at (x, y) = (0.15, 0.85) corresponding to Figure 6.4.
The partials are extremely close together (notice that only frequencies up to 5000 Hz are shown)
which is related to the aperiodic nature of the system behaviour.

6.2.4 Frequency domain analysis in 2D
Section 3.3 showed how to perform frequency domain analysis to obtain sta-
bility conditions for a FD scheme. This section shows extensions to this in 2D
and follows [21, Ch. 10].

In 2D, the ansatz in Eq. (3.20) can be extended to

unl,m
A

=⇒ znejh(lβx+mβy) (6.22)

where βx and βy are components of a 2D wavenumber β in the x and y direc-
tions respectively. Frequency domain representations of temporal operators
shown in Eq. (3.22) do not change in the 2D case. Using

px = sin2(βxh/2) and py = sin2(βyh/2) (6.23)

for brevity, the following frequency domain representation of spatial operators
can be obtained through the ansatz in Eq. (6.22)

δxxu
n
l,m

A
=⇒ − 4

h2
pxu

n
l,m and δyyu

n
l,m

A
=⇒ − 4

h2
pyu

n
l,m, (6.24)

from which it follows that

δ∆u
n
l,m

A
=⇒ − 4

h2
(px + py)unl,m, (6.25)

δ∆δ∆u
n
l,m

A
=⇒ 16

h4
(px + py)2unl,m. (6.26)

Using these definitions, a frequency domain interpretation of the 2D wave
equation FD scheme in Eq. (6.8) can be obtained

1

k2

(
z − 2 + z−1

)
= −4c2

h2
(px + py).
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Recalling λ in Eq. (6.10), this can be rewritten to the following characteristic
equation

z +
(
4λ2(px + py)− 2

)
+ z−1 = 0. (6.27)

As (after multiplication by z) the characteristic equation is of the form in Eq.
(3.25) and a(2) = 1 , its roots are bounded by condition (3.27)

∣∣4λ2(px + py)− 2
∣∣ ≤ 2.

Further derivation yields

−2 ≤ 4λ2(px + py)− 2 ≤ 2,

0 ≤ 4λ2(px + py) ≤ 4,

and as the middle term is non-negative the first condition is always satisfied,
yields

λ2(px + py) ≤ 1.

Finally, as px and py are bounded by 1 for all wavenumbers βx and βy respec-
tively, the following condition must hold

2λ2 ≤ 1,

λ ≤ 1√
2

(6.28)

which is the stability condition given in Eq. (6.11).

6.2.5 Energy analysis in 2D
Energy analysis for the 1D case is introduced in Section 3.4. Extensions for the
analysis in 2D will be given here.

Analogous to the 1D inner product presented in Section 3.2.1, one can
define a 2D inner product. For two functions f = f(x, y, t) and g(x, y, t)

defined for a 2D domain D their inner product over this domain is defined as

〈f, g〉D =

∫∫

D
fgdxdy. (6.29)

Like in the 1D case, these functions do not have to be a function of time, but
they are here, for coherence.

For two (grid) functions fnl,m and gnl,m defined over a discrete domain d ∈
{0, . . . , Nx} × {0, . . . , Ny} their discrete inner product is defined as

〈fnl,m, gnl,m〉d =

Nx∑

l=0

Ny∑

m=0

h2fnl,mg
n
l,m. (6.30)
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6.2. The 2D wave equation

Notice that themultiplicationwith the grid spacing is squared due to the inner
product over a 2D domain (and is the discrete counterpart of dxdy). Useful for
energy analysis are the following reduced 2D domains

dx = {0, . . . , Nx − 1} × {0, . . . , Ny}, (6.31a)
dx = {1, . . . , Nx − 1} × {0, . . . , Ny}, (6.31b)
dy = {0, . . . , Nx} × {0, . . . , Ny − 1}, (6.31c)

dy = {0, . . . , Nx} × {1, . . . , Ny − 1} (6.31d)

d = {1, . . . , Nx − 1} × {1, . . . , Ny − 1} (6.31e)

Below, the steps to perform energy analysis presented in Section 3.4 will be
followed:

Step 1: Obtain δt+h

Using the definition of wave speed for the ideal membrane, i.e., c =
√
T/ρH ,

the FD scheme in Eq. (6.8) can be multiplied by ρH and a 2D inner product
(see Eq. (6.30)) with (δt·unl,m) over discrete domain d can be taken to yield a
definition for δt+h:

δt+h = ρH〈δt·unl,m, δttunl,m〉d − T 〈δt·unl,m, δ∆unl,m〉d = 0,

which can be rewritten to

δt+h = ρH〈δt·unl,m, δttunl,m〉d − T
(
〈δt·unl,m, δxxunl,m〉d + 〈δt·unl,m, δyyunl,m〉d

)
= 0.

Step 2: Identify energy types and isolate δt+

Summation by parts as described in Section 3.2.2 can also be applied to δyy
and the following energy balance follows

δt+h = b,

where

h = t + v with t =
ρH

2
‖δt−unl,m‖2d and

v =
T

2

(
〈δx+u

n
l,m, et−δx+u

n
l,m〉dx + 〈δy+u

n
l,m, et−δy+u

n
l,m〉dy

)
.

(6.32)
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Here, the reduced domains dx and dy are as defined in Eqs. (6.31). The
boundary term is

b =
T

2

[
〈δt·unNx,m, δx+u

n
Nx,m〉(Nx,y) − 〈δt·un0,m, δx−un0,m〉(0,y)

+ 〈δt·unl,Ny , δy+u
n
l,Ny 〉(x,Ny) − 〈δt·unl,0, δy−unl,0〉(x,0)

]
,

where (l, y) = {l} × {0, . . . , Ny} and (x,m) = {0, . . . , Nx} × {m} are slices of
domain d. The boundary term can be shown to vanish under Dirichlet bound-
ary conditions in Eq. (6.13a). Neumann conditions will not be considered
here.

Step 3: Check units

As the addition of the two inner products in the definition for v in Eq. (6.32)
does not affect the units, only one term is used to check the units. Recalling
that, as opposed to the 1D case, the symbol T is tension per unit length and
thus in N/m, one can write the terms in Eq. (6.32) in their units:

t =
ρH

2
‖δt−unl,m‖2d

in units
−−−−−→ kg ·m−3 ·m ·m2 · (s−1 ·m)2

= kg ·m2 · s−2

v =
T

2
〈δx+u

n
l,m, et−δx+u

n
l,m〉dx

in units
−−−−−→ N ·m−1 ·m2 · (m−1 ·m) · (m−1 ·m)

= kg ·m2 · s−2

which have the correct units.

Step 4: Implementation

Figure 6.6 shows the energetic output of an implementation of the 2D wave
equation and shows that the energy deviation is within machine precision.

6.2.6 Modal analysis in 2D
Given that the state vector is stacked as described in Section 6.2.3 and the
update equation is written in matrix form as in Eq. (6.21), performing a modal
analysis on a 2D system does not differ from a 1D system and follows the same
process presented in Section 3.5.

Inserting a test solution of un = znφ into the matrix form of the 2D wave
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6.2. The 2D wave equation

he

h

v

t

Fig. 6.6: The kinetic (blue), potential (red), and total (black) energy of an implementation of the
2D wave equation are plotted in the left panel. The right panel shows the normalised energy
(according to Eq. (3.37)) and shows that the deviation of the energy is within machine precision.

equation in Eq. (6.21) yields the following characteristic equation
(
z − 2 + z−1

)
φ = c2k2D∆φ. (6.33)

The pth modal frequency can then be obtained by finding the roots of

zp +
(
−2− c2k2eigp(D∆)

)
+ z−1

p = 0, (6.34)

which, using test solution zp = ejωpk for (angular) frequency ωp, can be shown
to be

fp =
1

πk
sin−1

(
ck

2

√
−eigp(D∆)

)
. (6.35)

Notice the similarity to the equation for the modal frequencies of the 1D wave
equation in Eq. (3.56). Again, the number of modes is equal to the number of
moving grid points in the system.

See Figure 6.7 for the result of a modal analysis of the 2D wave equation.
One can observe that the modes do not follow a linear pattern as opposed
to those of the 1D wave equation shown in Figure 3.3. This confirms the
inharmonic behaviour of the 2Dwave equation discussed 6.2.3. Notice that the
modal density is higher around fs/4 and that the modal pattern is symmetric
around this frequency. This was also observed by van Duyne and Smith in the
case of the waveguide mesh [27].

Modal shapes

Using the line of code in Appendix B.4 and the reshape function, the modal
shapes of the system can also be obtained. Figure 6.8 shows the six lowest-
frequencymodes of the 2Dwave equation with Lx = 1.5 mand Ly = 1 m. The
mode number (x, y) corresponds to themodal number in the x and y direction.
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4 Modal frequency

Fig. 6.7: Modal frequencies of the FD scheme implementing the 2D wave equation in Eq. (6.8)
with Lx = 1.5 m, Ly = 1 m and c ≈ 3118 m/s, such that λ = 1/

√
2 according to Eq. (6.11).

Fig. 6.8: The first six (lowest-frequency) modal shapes of 2D wave equation with Lx = 1.5 m and
Ly = 1 m.

6.3 The thin plate
The thin plate, also known as the Kirchhoff model [78], differs from the 2D
wave equation in that its restoring force is solely due to stiffness rather than
tension. Like for the stiffness term in the stiff string (see Chapter 4), this causes
frequency dispersion, and exhibits interesting timbres.

The plate model is quite versatile and can be used to model a plate reverb
[79] as well as simplified instrument bodies, as done in [A], [B], [D] and [E].
This section presents the thin plate PDE and FD scheme, after which it will be
subjected to the various analysis techniques extended to 2D in the previous
section.
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6.3. The thin plate

6.3.1 Continuous time
Consider a rectangular thin plate with side lengths Lx and Ly (both in m)
and its transverse displacement described by u = u(x, y, t) (in m). The system
is defined for (x, y) ∈ D where 2D domain D = [0, Lx] × [0, Ly]. Using the
biharmonic operator introduced in Eq. (6.2), the PDE for the thin plate can be
defined as [78]

ρH∂2
t u = −D∆∆u, (6.36)

whereD = EH3/12(1−ν2) is a stiffness coefficient (inkg ·m2·s−2) parametrised
by Young’s ModulusE (in Pa), thicknessH (in m) and the dimensionless Pois-
son’s ratio ν. Although Eq. (6.36) does not hold for thick plates and only
accounts for low-amplitude vibration (as it is linear), these properties can be
assumed in musical instrument simulations, making this model sufficient in
this work.

Adding losses to Eq. (6.36) yields

ρH∂2
t u = −D∆∆u− 2σ0ρH∂tu+ 2σ1ρH∂t∆u (6.37)

where, as in the case of the stiff string in Eq. (4.3), σ0 and σ1 are the frequency-
independent (in s−1) and frequency-dependent damping coefficient (in m2/s)
respectively.

Boundary conditions

Similar to the stiff string, clamped and simply supported boundary conditions
can be defined as

u = ∂xu = 0, if y = {0, Ly}, ∀x
u = ∂yu = 0, if x = {0, Lx}, ∀y

}
(Clamped), (6.38a)

u = ∂2
xu = 0, if y = {0, Ly}, ∀x

u = ∂2
yu = 0, if x = {0, Lx}, ∀y

}
(Simply supported). (6.38b)

Naturally, a free condition can be added too, but is much less trivial. As it will
not be used in this work, it will not be given here, and the interested reader is
instead referred to [21, Ch. 12].

6.3.2 Discrete time
Equation (6.37) can be discretised to the following FD scheme:

ρHδttu
n
l,m = −Dδ∆δ∆unl,m − 2σ0ρHδt·u

n
l,m + 2σ1ρHδt−δ∆u

n
l,m (6.39)
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where l ∈ {0, . . . , Nx} andm ∈ {0, . . . , Ny}. Like for the stiff string FD scheme
in Eq. (4.7), the backwards difference operator is used for the frequency-
dependent damping term to yield an explicit scheme. A more compact way to
write this scheme is after a division by ρH which yields

δttu
n
l,m = −κ2δ∆δ∆u

n
l,m − 2σ0δt·u

n
l,m + 2σ1δt−δ∆u

n
l,m, (6.40)

with

κ =

√
D

ρH
. (6.41)

Using the expansion of the discrete biharmonic operator in Eq. (6.5), Eq. (6.40)
can be expanded and solved for un+1

l,m according to

un+1
l,m = (2− 20µ2 − 4S)unl,m

+ (8µ2 + S)(unl+1,m + unl−1,m + unl,m+1 + unl,m−1)

− 2µ2(unl+1,m+1 + unl−1,m+1 + unl+1,m−1 + unl−1,m−1)

− µ2(unl+2,m + unl−2,m + unl,m+2 + unl,m−2),

+ (σ0k − 1 + 4S)un−1
l,m

− S(un−1
l+1,m + un−1

l−1,m + un−1
l,m+1 + un−1

l,m−1)

(6.42)

where
µ =

κk

h2
(6.43)

and S = 2σ1k/h
2 for compactness. See Figure 6.9 for the stencil of this scheme.

The stability condition of the scheme can be shown to be

h ≥ 2

√
k

(
σ1 +

√
κ2 + σ2

1

)
, (6.44)

and will be derived in Section 6.3.4.
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(a) Full stencil.

(b) Stencil of unl,m. (c) Stencil of un−1
l,m .

Fig. 6.9: The stencil of the plate with coefficients corresponding to those in update equation (6.42).
(a) A full overview of the stencil. (b) The current time-step n highlighted. (c) The previous time-
step n− 1 highlighted.

Discrete boundary conditions

The boundary conditions shown in Eq. (6.38) can be discretised to

unl,m = δx+u
n
l,m = 0 ifm = 0 ∀l

unl,m = δx−u
n
l,m = 0 ifm = Ny ∀l

unl,m = δy+u
n
l,m = 0 if l = 0 ∀m

unl,m = δy−u
n
l,m = 0 if l = Nx ∀m





(Clamped), (6.45a)

unl,m = δxxu
n
l,m = 0 ifm = {0, Ny} ∀l

unl,m = δyyu
n
l,m = 0 if l = {0, Nx} ∀m

}
(Simply supported). (6.45b)
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The clamped condition can be implemented by simply reducing the discrete
range of operation to l = {2, . . . , Nx − 2} and m = {2, . . . , Ny − 2}. For the
simply supported case, the range of operation reduces to l = {1, . . . , Nx − 1}
and m = {1, . . . , Ny − 1}, and similar to the simply supported stiff string
described in Section 4.2.1, the virtual grid points needed for this condition
become

un−1,m = −un1,m and unNx+1,m = −unNx−1,m ∀m,
unl,−1 = −unl,−1 and unl,Ny+1 = −unl,Ny−1 ∀l.

6.3.3 Matrix form and output
Similar to the implementation of the 2D wave equation in Section 6.2.3, one
can use a stacked state vector. If simply supported boundary conditions are
used, one can easily obtain a matrix form of the δ∆δ∆ operator by multiplying
two D∆ matrices presented in Eq. (6.20) to get D∆∆ = D∆D∆.

Using a stacked form of the state as described in Eq. (6.16) the scheme in
Eq. (6.40) in matrix form is

Aun+1 = Bun + Cun−1, (6.46)

where

A = (1 + σ0k), B = 2I− κ2k2D∆∆ + 2σ1kD∆,

and C = −(1− σ0k)I− 2σ1kD∆,

and the identity matrix I is of the same size as D∆∆ and D∆.

Name Symbol (unit) Value
Side length x Lx (m) 1.5
Side length y Ly (m) 1
Material density ρ (kg/m3) 7850
Thickness H (m) 5 · 10−3

Young’s modulus E (Pa) 2 · 1011

Poisson’s ratio ν (-) 0.3
Freq.-independent damping σ0 (s−1) 1
Freq.-dependent damping σ1 (m2/s) 0.005

Table 6.1: Parameters for the thin plate and possible values to use as a starting point for the
simulation.

As a starting point for implementation, possible parameters are given in
Table 6.1. Figure 6.10 shows the wave propagation of a thin plate using these
parameters, and excited using the same excitation as used for the 2D wave
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6.3. The thin plate

Fig. 6.10: Wave propagation of a thin plate with simply supported boundary conditions and
parameters as shown in Table 6.1. The system is excited with a 2D raised cosine at (x, y) =
(0.25Lx, 0.5Ly) and dispersive effects are apparent.

Fig. 6.11: The output of the thin plate at (x, y) = (0.15, 0.85) corresponding to Figure 6.10.

equation in Section 6.2.3 (a 2D raised cosine at (x, y) = (0.25Lx, 0.5Ly)). When
compared to Figure 6.4, dispersive effects – where higher-frequency compo-
nents travel faster than lower-frequency ones – are apparent due to stiffness.

Figure 6.11 shows the time domain and frequency domain output of the
thin plate at (x, y) = (0.15Lx, 0.85Ly). Compared to the output of the 2Dwave
equation in Figure 6.5, there are several interesting differences. The amplitude
ismuch lower, waves are closer together and the firstwave arrivesmuch earlier,
all due to dispersive effects.

Modal analysis

Although the results will not be given here, a modal analysis can be performed
on the thin plate by using the matrix form in Eq. (6.46), and writing this in a
one-step form described in Section 3.5.1.

6.3.4 Frequency domain analysis
This section follows the process presented in Section 3.3 with the extensions
to 2D shown in 6.2.4.

Using Eqs. (6.25) and (6.26) one can obtain a frequency domain represen-
tation of the FD scheme in Eq. (6.40) and obtain the following characteristic
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equation

(1 + σ0k)z+

(
16µ2(px + py)2 +

8σ1k

h2
(px + py)− 2

)

+

(
1− σ0k −

8σ1k

h2
(px + py)

)
z−1 = 0.

(6.47)

This can, similar to the damped stiff string in Section 4.3, be solved to

4µ2(px + py)2 +
4σ1k

h2
(px + py) ≤ 1.

Recalling the definitions px and py in Eq. (6.23), and given the fact that these
are bounded by 1, the following can be written:

4µ2(1 + 1)2 +
4σ1k

h2
(1 + 1) ≤ 1

and solved for h:

h ≥ 2

√
k

(
σ1 +

√
σ2

1 + κ2

)
, (6.48)

which is the stability condition given in Eq. (6.44).

6.3.5 Energy analysis
Using the steps described in Section 3.4 with the extensions to 2D presented
in Section 6.2.5, one can obtain the total energy of the FD scheme in Eq. (6.40).

Step 1: Obtain δt+h

To obtain the rate of change of the total energy, one can take an inner product
of the scheme in Eq. (6.40) with (δt·unl,m) over discrete (2D) domain d =

{0, . . . , Nx} × {0, . . . , Ny} to get

δt+h = ρH〈δt·unl,m, δttunl,m〉d +D〈δt·unl,m, δ∆δ∆unl,m〉d
+ 2σ0ρH〈δt·unl,m, δt·unl,m〉d − 2σ1ρH〈δt·unl,m, δt−δ∆unl,m〉d = 0.

(6.49)

Step 2: Identify energy types and isolate δt+

Due to thedampingpresent in the systemandbecause the system is distributed
in space, the energy balance will be of the following form

δt+h = b− q,
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with boundary term b and damping term

q = 2σ0ρH‖δt·unl,m‖2d − 2σ1ρH〈δt·unl,m, δt−δ∆unl,m〉d. (6.50)

Expanding the stiffness term in Eq. (6.49) to

D〈δt·unl,m, (δxx + δyy)δ∆u
n
l,m〉d

⇐⇒ D
(
〈δt·unl,m, δxxδ∆unl,m〉d + 〈δt·unl,m, δyyδ∆unl,m〉d

)
,

one can perform summation by parts twice, using Eq. (3.16b) for both terms
to get

D
(
〈δt·δxxunl,m, δ∆unl,m〉dx + 〈δt·δyyunl,m, δ∆unl,m〉dy

)
+ b.

The definitions for the reduced domains can be found in Eqs. (6.31). Finally,
as the boundaries are always 0 due to the boundary conditions in Eq. (6.45),
dx and dy can be further reduced to d and the terms can be combined as

D〈δt·δ∆unl,m, δ∆unl,m〉d + b,

and using identities (3.17a) and (3.17b) a definition for the total energy can be
found:

h = t + v, with t =
ρH

2

∥∥δt−unl,m
∥∥2

d
and

v =
D

2
〈δ∆unl,m, et−δ∆unl,m〉d .

(6.51)

The definition of the boundary term bwill not be given here, but can be shown
to vanish under the boundary conditions given in Eq. (6.45) [21].

Step 3: Check units

As t is identical to its definition in Eq. (6.32), only the units for vwill be checked
here. Recalling thatD = EH3/12(1− ν2), which in units is kg·m2·s−2, yields

v =
D

2
〈δ∆unl,m, et−δ∆unl,m〉d

in units
−−−−−→ kg ·m2 · s−2 ·m2 · (m−2 ·m) · (m−2 ·m)

= kg ·m2 · s−2

and shows that v indeed has the correct units.

Step 4: Implementation

Figure 6.12 shows the energetic output of an implementation of the thin plate.
Notice that the damping present in the system causes h to decrease.
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he

h

v

t

Fig. 6.12: The kinetic (blue), potential (red), and total (black) energy of an implementation of the
thin plate are plotted in the left panel. The right panel shows the normalised energy (according
to Eq. (3.38)) and shows that the deviation of the energy is within machine precision.

6.4 The stiff membrane
The term stiff membrane, as defined in [1], is essentially a 2D version of the stiff
string. It can be used to model membranes with dispersive effects or provide
tension control for thin plates. In this work, the stiff membrane has only been
used in paper [F] to model a drum membrane.

Similar to previous sections, this section will provide the continuous-time
and discrete-time equations of the model. Only a frequency domain analysis
will be given, as energy analysis (and modal analysis) are too similar to those
previously presented.

6.4.1 Continuous time
The PDE for a stiff membrane can be obtained as a combination of the 2Dwave
equation in Eq. (6.6) and the thin plate in Eq. (6.36). Adding losses as in Eq.
(6.37) yields the following PDE

ρH∂2
t u = T∆u−D∆∆u− 2σ0ρH∂tu+ 2σ1ρH∂t∆u, (6.52)

where the parameters are identical to those in Eqs. (6.6) (with c =
√
T/ρH)

and (6.37).

6.4.2 Discrete time
Using familiar operators, Eq. (6.52) can be discretised to

ρHδttu
n
l,m = Tδ∆u

n
l,m−Dδ∆δ∆unl,m−2σ0ρHδt·u

n
l,m+2σ1ρHδt−δ∆u

n
l,m, (6.53)

or, using a more compact form after division by ρH , to

δttu
n
l,m = c2δ∆u

n
l,m − κ2δ∆δ∆u

n
l,m − 2σ0δt·u

n
l,m + 2σ1δt−δ∆u

n
l,m, (6.54)
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where c =
√
T/ρH and κ =

√
D/ρH .

The update equation can then be obtained using the expansions of the
Laplacian and biharmonic operators in Eqs. (6.4) and (6.5) respectively, to get

un+1
l,m = (2− 4λ2 − 20µ2 − 4S)unl,m

+ (λ2 + 8µ2 + S)(unl+1,m + unl−1,m + unl,m+1 + unl,m−1)

− 2µ2(unl+1,m+1 + unl−1,m+1 + unl+1,m−1 + unl−1,m−1)

− µ2(unl+2,m + unl−2,m + unl,m+2 + unl,m−2),

+ (σ0k − 1 + 4S)un−1
l,m

− S(un−1
l+1,m + un−1

l−1,m + un−1
l,m+1 + un−1

l,m−1)

(6.55)

where
λ =

ck

h
and µ =

κk

h2
(6.56)

and again, S = 2σ1k/h
2 for compactness. The stability condition for this

scheme will be given in Section 6.4.4.

6.4.3 Implementation
Writing Eq. (6.54) in matrix form, yields

Aun+1 = Bun + Cun−1, (6.57)

with

A = (1 + σ0k), B = 2I + c2k2D∆ − κ2k2D∆∆ + 2σ1kD∆,

and C = −(1− σ0k)I− 2σ1kD∆.

Notice that the only differencewith Eq. (6.46) is the addition of thewave speed
term in the definition of the B matrix.

6.4.4 Frequency domain analysis
Following familiar techniques from Sections 3.3 and 6.2.4, the characteristic
equation of the FD scheme in Eq. (6.54) can be obtained:

(1 + σ0k)z+

(
4λ2(px + py) + 16µ2(px + py)2 +

8σ1k

h2
(px + py)− 2

)

+

(
1− σ0k −

8σ1k

h2
(px + py)

)
z−1 = 0.

(6.58)
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Similar to the stiff string in Section 4.3 and the thin plate in Section 6.3.4, this
can be solved to

λ2(px + py) + 4µ2(px + py)2 +
4σ1k

h2
(px + py) ≤ 1,

and recalling that px and py are bounded by 1, yields

2λ2 + 16µ2 +
8σ1k

h2
≤ 1.

Finally, recalling thedefinitions forλ andµ fromEq. (6.56), this canbe rewritten
in terms of h to get the following stability condition for the stiff membrane:3

h ≥
√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2. (6.59)

3This stability condition was wrong in paper [F]. It has been corrected here and included in
Appendix A.
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Exciters
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Exciters

As mentioned in Chapter 1, nearly all musical instruments can be subdivided
into an exciter and a resonator component. Several resonators have been
introduced in Part II, and different mechanisms to excite these are introduced
in this part. First, various examples of physically inspired excitations will be
presented in Chapter 7, some of which made a brief appearance in Parts I and
II. Chapter 8 introduces the bow as an excitation mechanism and presents the
contribution made in paper [C]: the elasto-plastic friction model applied to a
FDTD-based stiff strings. Finally, Chapter 9 presents the lip reed as a way to
excite brass instruments.

141



142



Chapter 7

Physically-Inspired
Excitations

This short chapter introduces several simple ways to excite the different res-
onators presented in Part II. First, variousways to excite resonators using initial
conditions are provided, after which examples of time-varying excitations are
given, such that the systems can also be excited later during the simulation.

7.1 Initial conditions
The easiest way to excite a system is to set its initial conditions to non-zero
values. This has been done several times before using a raised cosine (see e.g.
Section 2.4.3). To give the system an initial displacement, not an initial velocity,
one initialises both u0

l and u1
l with the same values. In the following, the 1D

wave equation will be used as an example (Eq. (2.38)):

∂2
t u = c2∂2

xu (7.1)

where u = u(x, t) is the state of the system defined for t ≥ 0 and x ∈ D with
domain D = [0, L] and length L (in m). Furthermore, c = 735 m/s. Following
2.2.1, the state variable can be discretised to unl where n ∈ N0 and l ∈ d with
discrete domain d = {0, . . . , N} and number of grid points N + 1. The FD
scheme is (Eq. (2.42))

δttu
n
l = c2δxxu

n
l . (7.2)

7.1.1 Impulse
The simplest way to excite a system is to set the value of one grid point to
non-zero, which is referred to as an impulse excitation. Figure 7.1 shows an
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implementation of the 1D wave equation where u0
l = u1

l = 1 at l = b0.5Nc.
One can observe that the variations between two neighbouring grid points are
extremely high. If the CFL condition in Eq. (2.46) is satisfied with equality,
the systemwill exhibit high amounts of energy around the Nyquist frequency,
which is generally unwanted.

(a) n = 1. (b) n = 6. (c) n = 11.

Fig. 7.1: The 1D wave equation initialised with an impulse at l = b0.5Nc.

7.1.2 Raised cosine
To avoid the high-frequency behaviour caused by the impulse, a spatially
smooth excitation must be created. The raised cosine is most often used for this
property and is extensively used throughout the literature [21]. Initialising the
displacement of a distributed system with a raised cosine can be interpreted
as a pluck. A different pluck excitation is presented in Section 7.1.3.

A raised cosine is parametrised by its amplitude eamp, its center location
x0 and its width xw. Applied to a distributed 1D system defined over domain
x ∈ D, the (continuous-time) excitation function containing a raised cosine is
defined as

erc(x) =

{
eamp

2

(
1− cos

(
2π(x−xs)

xw

))
, if xs ≤ x ≤ xe,

0, otherwise,
(7.3)

where
xs = x0 −

xw
2
, and xe = x0 +

xw
2

(7.4)

are the start and end locations of the excitation. Furthermore, xs, xe ∈ D,
which puts a constraint on the width and location of the excitation.

In discrete time1, the center location is defined as l0 = bx0/hc, where b·c
denotes the flooring operation, h is the grid spacing. The discrete start and

1One could sample the continuous function in Eq. (7.3) at locations x = lh. In this chapter,
looking towards straightforward implementation, amore practical approach has been chosen, and
discrete definitions are given separately.
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end locations of the raised cosine are

ls = l0 − bw/2c and le = l0 + bw/2c , (7.5)

with ls, le ∈ d and, finally, w = bxw/hc.2 Equation (7.3) can then be discretised
as

El,rc =

{
eamp

2

(
1− cos

(
2π(l−ls)

w

))
, if ls ≤ l ≤ le,

0, otherwise.
(7.6)

Figure 7.2 shows the 1D wave equation initialised with a raised cosine with
eamp = 1, l0 = b0.5Nc and w = b0.1Nc. Notice that the behaviour is much
more smooth than the impulse shown in Figure 7.1.

(a) n = 1. (b) n = 6. (c) n = 11.

Fig. 7.2: The 1D wave equation initialised with a raised cosine at the center of the system.

Strike

If one initialises the system with an initial velocity, i.e., only setting a displace-
ment at n = 1, and leaving u0

l = 0 for l ∈ d, one can use the raised cosine to
model a strike. Figure 7.3 shows a strike using the same values as for the pluck
in Figure 7.2 at n = 1, but leaving u0

l = 0. One can observe that, for the pluck,
the displacement of the system stays high rather than going back to 0 as in the
case of the pluck. Furthermore, the amplitude of the displacement is higher
than for the pluck (notice the scaling of the y-axis).

7.1.3 Triangular pluck
Another way to initialise the string, which is closer to reality, is to use a trian-
gular shape to model a pluck [1, 21].Using eamp as the maximum displacement
– at the corner of the triangle – and x0 ∈ D as the plucking position, the

2Notice that the width is given in ‘number of grid spacings’ and will thus affect w + 1 grid
points. This is also why the range in Eq. (7.6) includes both end points.
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(a) n = 1. (b) n = 6. (c) n = 11.

Fig. 7.3: The 1D wave equation initialised with a strike at the center of the system. Notice the
scaling of the y-axis compared to Figure 7.2.

triangular excitation can be defined as

etri(x) =

{
eamp
x0
x, if 0 ≤ x ≤ x0,

eamp
x0−L (x− L), if x0 < x ≤ L.

(7.7)

In discrete time, Eq. (7.7) becomes

El,tri =

{
eamp
l0
l, if 0 ≤ l ≤ l0,

eamp
l0−N (l −N), if l0 < l ≤ N.

(7.8)

Due to the spatial discontinuity at the corner, some high-frequency oscillations
(similar to the impulse) might emerge. Figure 7.4 shows an implementation of
the 1Dwave equation initialisedwith a triangular pluck excitation. The sample
rate is 441 kHz (10x theusual) to prevent these high-frequencyoscillations from
appearing in the plot (though they still exist to some degree).

(a) n = 1. (b) n = 101. (c) n = 201.

Fig. 7.4: The 1D wave equation initialised with a triangular pluck with l0 = b0.2Nc. Note that
sample rate has been set to fs = 441000 Hz to show a more ideal triangular motion.
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7.1.4 2D raised cosine
Introducing an extra coordinate y, one can extend the raised cosine presented
in Section 7.1.2 to 2D according to

erc(x, y)=





eamp
2

(
1− cos

(
2π(x−xs)

rw

))(
1− cos

(
2π(y−ys)

rw

))
,
if xs ≤ x ≤ xe,
and ys ≤ y ≤ ye,

0, otherwise,
(7.9)

where rw is the excitation radius. Similar to Eq. (7.4), the start and end
locations of the raised cosine in the x and y direction can be calculated as

xs = x0 −
rw
2
, xe = x0 +

rw
2
, ys = y0 −

rw
2
, and ye = y0 +

rw
2
,

where (x0, y0) is the center coordinate and xs, xe, ys, ye ∈ D for a 2D domainD.
In discrete time, Eq. (7.9) becomes

E(l,m),rc =





eamp
2

(
1− cos

(
2π(l−ls)

r

))(
1−cos

(
2π(m−ms)

r

))
,
if ls ≤ l ≤ le, and
ms ≤ m ≤ me,

0, otherwise,
(7.10)

where r = brw/hc is the discrete excitation radius (in ‘number of grid spac-
ings’). Furthermore, similar to Eq. (7.5),

ls = l0−br/2c , le = l0+br/2c , ms = m0−br/2c , andme = m0+br/2c (7.11)

for discrete center coordinate (l0,m0) and ls, le,ms,me ∈ d for a discrete 2D
domain d. As in the 1D case, this excitation can be used to model a simple
‘pluck’ and strike for a 2D system. See Figure 7.5 for a visualisation of a 2D
raised cosine. A simple way to implement the 2D raised cosine in MATLAB
using the hann function is shown in Algorithm 7.1.
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Fig. 7.5: A 2D raised cosine created using Eq. (7.10).

% Assuming Dirichlet boundary conditions and having initialised the
following

% - center locations for the x and y-directions: l0 and m0
% - radius of the excitation r (in grid points)

ls = l0 - floor(r/2); % start location x-direction
le = l0 + floor(r/2); % end location x-direction
ms = m0 - floor(r/2); % start location y-direction
me = m0 + floor(r/2); % end location x-direction

% Create excitation matrix
e = zeros(Ny-1, Nx-1);

% Add one to hann function as the width is given in ‘grid spacings’
% and affects r+1 grid points
e(ms:me, ls:le) = hann(r+1) * hann(r+1)’;

% Applying excitation to stacked matrix form as in Section 6.2.3
u = reshape(e, (Nx-1) * (Ny-1), 1);

Algorithm 7.1: A MATLAB implementation of a 2D raised cosine.

7.2 Time-varying excitations
Although various types of excitation can already be modelled using the initial
conditions presented in the previous section, they are temporally rigid. In
other words, the time of excitation is fixed to be at the start of the simulation.
In order to excite the system while the simulation is running, one can create
excitations that – on top of being spatially distributed – have a temporal profile
as well.

For the following, consider the ideal string of length L (in m), where its
transverse displacement is described by u = u(x, t) (in m). The system is
defined for t ≥ 0 and x ∈ D with domain D = [0, L]. The PDE of the ideal
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string with a time varying external force f(t) (in N) is defined as (Eq. (2.38))

ρA∂2
t u = T∂2

xu+ e(x)f(t) (7.12)

where e(x) is a spatial distribution function such as those presented in Section
7.1 (in m−1).

In discrete time, Eq. (7.12) becomes

ρAδttu
n
l = Tδxxu

n
l + Elf

n (7.13)

with discrete spatial distribution El and discrete time-varying external force
fn.

7.2.1 Raised cosine
To yield a smooth excitation over time, one can, similar to the spatially dis-
tributed raised cosine in Eq. 7.1.2, define a temporally distributed raised
cosine. Using the time of excitation t0 ≥ 0 and excitation duration td > 0 (both
in s), the temporal raised cosine can be used as a force function, as

f(t) =

{
famp

2

(
1− cos

(
qπ(t−t0)

td

))
, ts ≤ t ≤ t0 + td

0, otherwise.
(7.14)

As done in [64, 65], q alters the excitation to be a pluck when q = 1 and a strike
when q = 2. Finally, famp is the maximum force (in N).

As done in papers [A] and [B], the force function can be used in conjunction
with the distribution functions shown in Section 7.1. When used to scale a
spatially distributed raised cosine as in Eq. (7.3), one can model a pluck or a
strike, by setting q = 1 or q = 2 respectively. These alternatives are visualised
in Figure 7.6. Note, that if one would like famp to be the maximum force, one
must set eamp = 1 in Eq. (7.3).

In discrete time, the force function in Eq. (7.14) becomes

fn =

{
famp

2

(
1− cos

(
qπ(n−n0)

nd

))
, n0 ≤ n ≤ n0 + nd,

0, otherwise.
(7.15)

where nd = btd/kc is the duration of the excitation in samples.

7.2.2 Pulse train
As already briefly introduced in Section 5.1.3, one can create a pulse train to
excite an acoustic tube. This is inspired by [21] where the signal represents
the opening and closing of the glottis. As the characteristics of the lip reed are
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(a) Pluck (q = 1).

(b) Strike (q = 2).

Fig. 7.6: The time-varying raised cosine showing a (a) pluck and a (b) strike. The location of
excitation x0 is shown in green, the width xw in red and the excitation start t0 and duration td in
blue.

similar to the vocal folds [80], the pulse train has been used as a test signal here
(also see Section 9.3.2). A more complete model of the lip reed can be found
in Chapter 9.

The pulse train can be created using a clipped sinusoid, which can be used
as the input velocity to an acoustic tube. Algorithm 7.2 shows an example of
how to generate a pulse train. The frequency as well as the duty cycle (how
much of the signal is non-zero) can be set. Figure 7.7 shows the output of the
algorithm.
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Fig. 7.7: The pulse train generated using Algorithm 7.2 (f = 440 Hz, duty cycle = 75%).

%% Pulse train generator

fs = 44100; % Sample rate [Hz]
lengthSound = fs; % Length of the sound [samples]
f = 440; % Pulse train frequency
dutyC = 0.75; % Duty cycle [0-1]
amp = 1; % Amplitude

%% Create input signal
for n = 0:lengthSound

if mod(n, fs / f) <= fs / f * dutyC
vIn(n+1) = amp * sin(f * pi / dutyC * mod(n, fs / f) / fs);

else
vIn(n+1) = 0;

end
end

Algorithm 7.2: MATLAB code to generate a pulse train.
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Chapter 8

The Bow

The bow is an extremely interesting excitation mechanism from a simulation
perspective. A bow excites a string with a force due to friction, which intro-
duces a nonlinear element into the system. The string ‘sticks’ to the bow and
‘slips’ againwhen the restoring force of the string is too great and consequently
overcomes the friction force. This ‘stick-slip’ behaviour, first coined by Bowden
and Leben in 1939 [81] causes the string to move in a characteristic triangular
motion where the corner of the triangle moves back and forth along the string
(see Figure 8.1). Herman Helmholtz was the first to discover this behaviour in
the 19th century, which later got named Helmholtz motion in his honour [82].1

Fig. 8.1: Helmholtz motion. If the bow moves up on the left side of the string, the ‘Helmholtz
corner’ travels anti-clockwise.

1Also see https://www.youtube.com/watch?v=6JeyiM0YNo4
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fig. 8.2: An example of the (ideal) Helmholtz motion of a location xout along a bowed string.

The Helmholtz motion gives bowed string instruments, such as the violin
and cello, their characteristic sound. An ideal case is shown in Figure 8.2,
where, for a string described by u(x, t), the location of a point xout along the
string follows a sawtooth-like motion due to the ‘stick-slip’ behaviour.

The rest of this chapter is structured as follows: first, a brief history of
bowed-string simulations is presented. Then, an introduction to interpolation
and spreading operators, as well as an introduction to the Newton-Raphson
method will be given, both of which are necessary to work with bow-string
interaction. Finally, a static and a dynamic friction model are presented. The
latter, the elasto-plastic friction model, was applied to a FD scheme of the stiff
string during this project and is one of the contributions, published in paper
[C].

8.1 Brief history of bowed-string simulation
The first nonlinear systems in the context of musical instrument simulations,
including the bowed string, were presented by McIntyre, et al. in 1983 [12].
The first real-time implementation of the bowed string was proposed by Smith
in 1986 and used digital waveguides for the string and a look-up table for
the friction model [83]. Simultaneously, Florens et al. presented a real-time
implementationof the bowed string, but instead, the stringwasmodelledusing
mass-spring systems and the friction model used a static friction model [84]
(see Section 8.4). One of themost complex frictionmodels applied in amusical
context to-date is the elasto-plastic friction model proposed by Dupont [85],
which Serafin et al. [86, 87] applied to a digital waveguide implementation of
the string.

The first appearance of FDTD methods in bowed string simulations was
in a publication by Pitteroff and Woodhouse in [88]. Later, Maestre et al. in
[29] used FDTD methods to implement a thermal friction model proposed by
Woodhouse in [89]. In both cases, the string was implemented using digital
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waveguides. Desvages implemented a bowed string model using a static
friction model and a two-polarisation FDTD model for the string in [52, 51],
but did not implement this in real-time. The first real-time implementation
of a bowed stiff string fully modelled using FDTD methods was presented in
paper [A]. Finally, paper [C] presented the first (real-time) implementation of
the elasto-plastic friction model applied to a FD scheme in a musical context.

8.2 Interpolation and spreading operators
This section summarises and extends [21, Sec. 5.2.4 pp. 101–104].

To listen to, or interactwith a FD scheme between grid points, it is necessary
to use some form of interpolation. To this end, an interpolation operator I(xi)

can be introduced and can applied to a grid function [21]. This operator is
a function of xi, the (continuous) location of interest and can be defined in
various levels of accuracy. In this section, a 1D system u(x, t) is assumed
where x ∈ D for spatial domain D. The theory presented in this section will
be extended to 2D in Section 11.1.

An interpolation operator can be applied to a grid function unl , which
performs the following operation:

Il,o(xi)u
n
l =

∑

l∈d
Il,o(xi) · unl . (8.1)

Here, o is the order of the operator, and l ∈ d with discrete domain d, which
needs to be the same for both Il,o(xi) and unl .

The simplest interpolation operator is of ’0th’-order and is defined as

Il,0(xi) =

{
1, if l = li,

0, otherwise,
(8.2)

where the grid location of interest is defined as li = bxi/hc (see Figure 8.3a).
Instead of actually performing an interpolation operation, I0 simply floors its
input to the grid location below. A slightly more accurate way to perform
0th-order interpolation is to round xi/h to the nearest integer, rather than to
use the flooring operation.

First-order or linear interpolation uses the fractional part of the flooring
operation as well, according to αi = xi/h− li and is defined as

Il,1(xi) =





(1− αi), if l = li,

αi, if l = li + 1,

0 otherwise.
(8.3)

155



Chapter 8. The Bow

un
0 un

1 un
2 un

3 un
4 un

5
xi<latexit sha1_base64="MPxy7AX311JJDAVlCuXpBfkRVjE=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DEgiMcI5oHJEmYnvcmQ2dllplcSloAf4cWDIl79G2/+jZPHQRMLGoqqbrq7gkQKg6777aysrq1vbOa28ts7u3v7hYPDuolTzaHGYxnrZsAMSKGghgIlNBMNLAokNILB9cRvPII2Ilb3OErAj1hPiVBwhlZ6GHbaCEPMxLhTKLoldwq6TLw5KZI5qp3CV7sb8zQChVwyY1qem6CfMY2CSxjn26mBhPEB60HLUsUiMH42vXhMT63SpWGsbSmkU/X3RMYiY0ZRYDsjhn2z6E3E/7xWiuGVnwmVpAiKzxaFqaQY08n7tCs0cJQjSxjXwt5KeZ9pxtGGlLcheIsvL5N6ueSdl8p3F8XKzdMsjhw5JifkjHjkklTILamSGuFEkWfySt4c47w4787HrHXFmUd4RP7A+fwBT4ORvw==</latexit>

⇥<latexit sha1_base64="JpTEMm6a/kmiwLZ3nOIcub3W+Kw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEgiMcI5gHJEmYnk2TM7Mwy0yuEJeAnePGgiFf/x5t/4+Rx0MSChqKqm+6uKJHCou9/eyura+sbm7mt/PbO7t5+4eCwbnVqGK8xLbVpRtRyKRSvoUDJm4nhNI4kb0TD64nfeOTGCq3ucZTwMKZ9JXqCUXRSvY0i5rZTKPolfwqyTII5KcIc1U7hq93VLI25Qiapta3ATzDMqEHBJB/n26nlCWVD2uctRxV1S8Jseu2YnDqlS3rauFJIpurviYzG1o7iyHXGFAd20ZuI/3mtFHtXYSZUkiJXbLaol0qCmkxeJ11hOEM5coQyI9ythA2ooQxdQHkXQrD48jKpl0vBeal8d1Gs3DzN4sjBMZzAGQRwCRW4hSrUgMEDPMMrvHnae/HevY9Z64o3j/AI/sD7/AHerY+8</latexit>

Il,0(xi)u
n
l

<latexit sha1_base64="beBD6FNEkwtmajS0VdfeESANe10=">AAACAXicbZBLSwMxFIUz9VXrq+pGcBMsQgUpM1XQZUEQ3VWwD2jHIZNm2tDMg+SOtAwjgn/FjQtF3Pov3PlvTB8LbT0Q+DjnhuQeNxJcgWl+G5mFxaXllexqbm19Y3Mrv71TV2EsKavRUISy6RLFBA9YDTgI1owkI74rWMPtX4zyxj2TiofBLQwjZvukG3CPUwLacvJ7104ijs20OHDawAaQ8PQodsSdjgpmyRwLz4M1hQKaqurkv9qdkMY+C4AKolTLMiOwEyKBU8HSXDtWLCK0T7qspTEgPlN2Mt4gxYfa6WAvlPoEgMfu7xsJ8ZUa+q6e9An01Gw2Mv/LWjF453bCgygGFtDJQ14sMIR4VAfucMkoiKEGQiXXf8W0RyShoEvL6RKs2ZXnoV4uWSel8s1poXL5OKkji/bRASoiC52hCrpCVVRDFD2gZ/SK3own48V4Nz4moxljWuEu+iPj8wdbXpdB</latexit>

(a) 0th-order interpolation.

un
0 un

1 un
2 un

3 un
4 un

5
xi<latexit sha1_base64="MPxy7AX311JJDAVlCuXpBfkRVjE=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DEgiMcI5oHJEmYnvcmQ2dllplcSloAf4cWDIl79G2/+jZPHQRMLGoqqbrq7gkQKg6777aysrq1vbOa28ts7u3v7hYPDuolTzaHGYxnrZsAMSKGghgIlNBMNLAokNILB9cRvPII2Ilb3OErAj1hPiVBwhlZ6GHbaCEPMxLhTKLoldwq6TLw5KZI5qp3CV7sb8zQChVwyY1qem6CfMY2CSxjn26mBhPEB60HLUsUiMH42vXhMT63SpWGsbSmkU/X3RMYiY0ZRYDsjhn2z6E3E/7xWiuGVnwmVpAiKzxaFqaQY08n7tCs0cJQjSxjXwt5KeZ9pxtGGlLcheIsvL5N6ueSdl8p3F8XKzdMsjhw5JifkjHjkklTILamSGuFEkWfySt4c47w4787HrHXFmUd4RP7A+fwBT4ORvw==</latexit>

⇥<latexit sha1_base64="JpTEMm6a/kmiwLZ3nOIcub3W+Kw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEgiMcI5gHJEmYnk2TM7Mwy0yuEJeAnePGgiFf/x5t/4+Rx0MSChqKqm+6uKJHCou9/eyura+sbm7mt/PbO7t5+4eCwbnVqGK8xLbVpRtRyKRSvoUDJm4nhNI4kb0TD64nfeOTGCq3ucZTwMKZ9JXqCUXRSvY0i5rZTKPolfwqyTII5KcIc1U7hq93VLI25Qiapta3ATzDMqEHBJB/n26nlCWVD2uctRxV1S8Jseu2YnDqlS3rauFJIpurviYzG1o7iyHXGFAd20ZuI/3mtFHtXYSZUkiJXbLaol0qCmkxeJ11hOEM5coQyI9ythA2ooQxdQHkXQrD48jKpl0vBeal8d1Gs3DzN4sjBMZzAGQRwCRW4hSrUgMEDPMMrvHnae/HevY9Z64o3j/AI/sD7/AHerY+8</latexit>

Il,1(xi)u
n
l

<latexit sha1_base64="9/axloIDka1RFrOeY5VA7WGiJN4=">AAACAXicbZBLSwMxFIUz9VXrq+pGcBMsQgUpM1XQZUEQ3VWwD2jHIZNm2tDMg+SOtAwjgn/FjQtF3Pov3PlvTB8LbT0Q+DjnhuQeNxJcgWl+G5mFxaXllexqbm19Y3Mrv71TV2EsKavRUISy6RLFBA9YDTgI1owkI74rWMPtX4zyxj2TiofBLQwjZvukG3CPUwLacvJ7104ijq20OHDawAaQ8PQodsSdjgpmyRwLz4M1hQKaqurkv9qdkMY+C4AKolTLMiOwEyKBU8HSXDtWLCK0T7qspTEgPlN2Mt4gxYfa6WAvlPoEgMfu7xsJ8ZUa+q6e9An01Gw2Mv/LWjF453bCgygGFtDJQ14sMIR4VAfucMkoiKEGQiXXf8W0RyShoEvL6RKs2ZXnoV4uWSel8s1poXL5OKkji/bRASoiC52hCrpCVVRDFD2gZ/SK3own48V4Nz4moxljWuEu+iPj8wdc9JdC</latexit>

(b) Linear interpolation.
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(c) Cubic interpolation.

Fig. 8.3: Interpolation with varying orders of accuracy.

See Figure 8.3b.
The highest order interpolator used in this project is the Lagrange cubic

interpolator:

Il,3(xi) =





−αi(αi − 1)(αi − 2)/6, l = li − 1,

(αi − 1)(αi + 1)(αi − 2)/2, l = li,

−αi(αi + 1)(αi − 2)/2, l = li + 1,

αi(αi + 1)(αi − 1)/6, l = li + 2,

0, otherwise.

(8.4)

See Figure 8.3c. Notice that the sum of all values of Il,o(xi) add up to 1,
regardless of the order of the interpolator or the value of αi.

One could potentially create higher-order interpolation operators, but as
one is restricted to a finite domain, the flexibility of the implementation re-
duces. Notice that if αi = 0, the higher-order interpolators reduce to the
0th-order interpolator in Eq. (8.2).

Apart from interpolation operators, one may define spreading operators
which can be interpreted as an inverse interpolation operation. A spread-
ing operator J(xi) is used to interact with a distributed FD scheme in the form
of an excitation or other interactions, such as connections or collisions between
multiple schemes (also see Part IV).

The spreadingoperators can bedefined in the sameway as the interpolation
operators described above, yielding a 0th-order spreading operator

Jl,0(xi) =
1

h

{
1, if l = li,

0, otherwise,
(8.5)

a linear spreading operator

Jl,1(xi) =
1

h





(1− αi), if l = li,

αi, if l = li + 1,

0, otherwise,
(8.6)
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and a Lagrange cubic spreading operator

Jl,3(xi) =
1

h





−αi(αi − 1)(αi − 2)/6, l = li − 1,

(αi − 1)(αi + 1)(αi − 2)/2, l = li,

−αi(αi + 1)(αi − 2)/2, l = li + 1,

αi(αi + 1)(αi − 1)/6, l = li + 2,

0, otherwise.

(8.7)

Notice that the spreading operator uses a scaling by 1/h. An intuition this
will be given in Section 11.1.1. As is the case for interpolation operators,
higher-order spreading operators reduce to Eq. (8.5) if αi = 0.

Spreading operators approximate the spatial Dirac delta function δ(x− xi)
(in m−1), which is a test function defined as

δ(x) =

{
∞, x = 0,

0, otherwise,
and

∫ ∞

−∞
δ(x)dx = 1, (8.8)

used in continuous time to locate an external force to a location xi along a
system distributed over space x. Note that the definition in (8.8) will not be
used directly. Instead, it can be approximated using the spreading operators
presented in this section.

Identities

The following identity is extremely useful when solving systems including in-
terpolation and spreading operators of the same order o for any (grid) function
f and discrete domain d:

〈fl, Jl,o(xi)〉d = Il,o(xi)fl, (8.9)

where l ∈ d. From this, it follows that taking the norm of a spreading operator
over a given domain, is identical to applying to its ‘dual’ interpolation operator
(of the same order o and same input xi):

〈Jl,o(xi), Jl,o(xi)〉d = ‖Jl,o(xi)‖2d = Il,o(xi)Jl,o(xi). (8.10)

See Section 3.2.1 for more details on the inner product and the norm.

Other distributions

This section presented interpolation and spreading operators that interact
with the state of a FD scheme at a single location xi and either interpolate or
distribute over a range of points. Althoughmultiple grid points might be used
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for these operations, the interpolation or spreading is not distributed. Physical
exciters such as mallets or bows have a non-zero width and thus interact with
a larger part of the system. One could make an arbitrary distribution function
E with elements el (in 1D) where l ∈ d for discrete domain d of the system at
hand. The distribution and spreading operators become

Il =
el∑
d el

and Jl =
1

h
Il. (8.11)

Although any values for E would work, the sum of E needs to be normalised
to 1 to retain correct scaling, as shown in Eq. (8.11).

8.3 The Newton-Raphson method
Before moving on to more complex nonlinear excitation mechanisms, it is
useful to goover theprocess of how to solve someof thesemechanismsusing an
iterative root-finding method called the Newton-Raphson method (or Newton-
Raphson for short).

If a FD scheme can not be solved explicitly, due to an implicit dependence
on a variable for example, Newton-Raphson can be used. For a continuous
and differentiable function f(x) = 0, its root can be approached using the
following iteration

xi+1 = xi −
f(xi)

f ′(xi)
, (8.12)

with iteration number i and the tick is used to denote a derivation with respect
to x. This iteration will then be carried out until the difference between the
values of two consecutive iterations is smaller than a given threshold:

|xi+1 − xi| < ε, (8.13)

where ε is small, but its value depends on the situation at hand. To prevent
Newton Raphson from iterating endlessly (if the iteration can not converge),
one can put a cap on the number of iterations allowed.

Preferably, the starting point of the iteration, x0, should be close to the
value of where the root is expected to be. This is especially the case for a
higher-ordered function with multiple roots (non-uniqueness) or many local
variations.

Algorithm8.1 shows an example of an implementation ofNewton-Raphson
using f(x) = ex − 1 ⇒ f ′(x) = ex and Figure 8.4 visualises the iterative
algorithm.
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% An example of the Newton Raphson method using f(x) = exp(x) - 1

x = 1; % starting point
eps = 1e-4; % threshold

% if the threshold has not been crossed before this number of
% iterations, do not iterate more
maxIterations = 100;

% loop until a maximum number of iterations
for i = 1:maxIterations

% calculate next iteration (Eq. (8.12)
xNext = x - (exp(x) - 1) / (exp(x));

% threshold check (Eq. (8.13)
if abs(xNext - x) < eps

break; % break out of the for loop
end

% update the value of x
x = xNext;

end
disp("The root of f(x) is at x = " + xNext)

Algorithm 8.1: Example of an implementation of the Newton-Raphson method using f(x) =
ex − 1.
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Fig. 8.4: The Newton-Raphsonmethod. The x-value of the root of the tangent line at f(xi) is used
to evaluate the next iteration.
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8.3.1 Multivariate Newton-Raphson
ForM functions fm dependent on the same number of independent variables
xm withm = {1, . . . ,M}, Newton-Raphson can be extended to

xi+1 = xi −




∂f1(xi)
∂x1

. . . ∂f1(xi)
∂xM

...
. . .

...
∂fM (xi)
∂x1

. . . ∂fM (xi)
∂xM




︸ ︷︷ ︸
J(xi)

−1 

f1(xi)

...
fM (xi)


 , (8.14)

where the column vector x = [x1, . . . , xM ]T is the collection of independent
variables, and the iteration number is (again) denoted by i. The matrix in Eq.
(8.14) is referred to as the Jacobian matrix J and contains the derivatives of all
functions with respect to each individual independent variable.

As an example, consider the following system of equations2:

f1(x) = 3x1 − cos(x2x3)− 3/2 = 0, (8.15a)
f2(x) = 4x2

1 − 625x2
2 + 2x3 − 1 = 0, (8.15b)

f3(x) = 20x3 + e−x1x2 + 9 = 0, (8.15c)

where x = [x1, x2, x3]T . The Jacobian matrix will be

J(x) =




3 x3 sin(x2x3) x2 sin(x2x3)

8x1 −1250x2 2

−x2e
−x1x2 −x1e

−x1x2 20


 ,

and its roots can be found by iteratively calculating Eq. (8.14).

8.4 Static friction models
A friction model is a nonlinear function that is (at least) dependent on the
relative velocity vrel between the bow and the string. This function scales how
much the bow force affects the bowed object. In static friction models, the
friction force is defined as a function of this relative velocity only. The first
mathematical description of friction was proposed by Coulomb in 1773 [90] to
which static friction, or stiction, was added by Morin in 1833 [91] and viscous
friction, or velocity-dependent friction, by Reynolds in 1886 [92]. In 1902,
Stribeck found a smooth transition between the static and the coulomb part of
the friction curve now referred to as the Stribeck effect [93]. The latter is still
the standard for static friction models today.

2Taken from http://fourier.eng.hmc.edu/e176/lectures/NM/node21.html
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Many static friction models contain a discontinuity where the relative ve-
locity between the vrel = 0, due to a multiplication with sgn(vrel) in their
definition. In this project, only the following static friction model has been
used [21]

Φ(vrel) =
√

2avrele
−av2rel+1/2, (8.16)

as it is continuous and differentiable, but still approximating discontinuous
bow models. These characteristics make this model easier to work with in
implementation. A definition for vrel will be given below.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 8.5: The friction model in Eq. (8.16) with a = 100.

8.4.1 The bowed stiff string
Consider a stiff string, its transverse displacement described by u(x, t) defined
for x ∈ D (see Chapter 4). The relative velocity between the string at bow
position xB = xB(t) ∈ D and the bow can then be described as

vrel = ∂tu(xB, t)− vB(t) (8.17)

(in m/s) with bow velocity vB = vB(t) (in m/s).
Recalling the PDE of the stiff string in Eq. (4.3)

ρA∂2
t u = T∂2

xu− EI∂4
xu− 2σ0ρA∂tu+ 2σ1ρA∂t∂

2
xu, (8.18)

one can add the bow force to the equation according to

ρA∂2
t u = T∂2

xu−EI∂4
xu−2σ0ρA∂tu+2σ1ρA∂t∂

2
xu−δ(x−xB)fBΦ(vrel) (8.19)

where spatial Dirac delta function δ(x−xB) (in m−1) (see Section 8.2) positions
the bow along the string and fB = fB(t) ≥ 0 is the bow force (in N).3

3If the spatial Dirac delta function were omitted, the bow force would be applied to the entire
string domain rather than only the bow location xB.
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Intuition

From Eq. (8.19) it can be seen that the bow force gets scaled by the friction
model Φ(vrel) shown in Figure 8.5. The figure shows that if vrel is too large
(either positively or negatively), the bow term in (8.19) becomes 0. If, on
the other hand, vrel is closer to 0, the bow will have an effect on the string.
This can be interpreted in terms of static and dynamic friction4. A stationary
object requires more force to be moved than a moving object, i.e., the static
friction coefficient is always higher than the dynamic friction coefficient. This
is essentially what the friction model tries to simulate.

It might seem counter-intuitive that the bow term is subtracted from the
scheme. This is due to the definition of the relative velocity in Eq. (8.17). For
a negative bow velocity vB, vrel becomes positive. As sgn (Φ(vrel)) = sgn(vrel)

through Eq. (8.16) and fB ≥ 0, the term δ(x− xB)fBΦ(vrel) will be positive for
a positive vrel. As a negative vB needs to have a downwards, or negative, effect
on the string, the sign of the bow term also needs to be negative to achieve this.

Discrete time

Dividing all terms in Eq. (8.20) by ρA and discretising the system yields

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l + 2σ1δt−δxxu

n
l − Jl(xnB)FnB Φ(vnrel),

(8.20)
with FnB = fnB /ρA and spreading operator Jl(xnB) = Jl,o(x

n
B) (in m−1) as de-

scribed in Section 8.2, where the order o remains undetermined for now. As
the bow position, bow velocity and bow force are time-dependent, these have
a superscript n in discrete time. These parameters are called control parameters
and will be supplied by the performer in an eventual implementation.

The relative velocity in Eq. (8.17) is discretised using a centred difference
operator according to

vnrel = Il(x
n
B)δt·u

n
l − vnB , (8.21)

with interpolation operator Il(xnB) = Il,o(x
n
B) and is of the same order as

Jl(x
n
B). Equation (8.21)makes the scheme implicit due to the centred difference

operator as the FD scheme in Eq. (8.20) is now nonlinearly dependent on un+1
l .

To solve Eq. (8.20) for un+1
l , an iterative root-finding algorithm is required,

such as Newton-Raphson described in Section 8.3. This process could be
circumvented by using a backward difference operator in Eq. (8.21), but this
will affect the accuracy and behaviour of the bow model.

4The terms ‘static’ and ‘dynamic’ used in this sentence, do not relate to a ‘static’ or ‘dynamic’
friction model. Rather it refers to the friction for an object at rest (static), versus that of an object
in motion (dynamic).
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Solution

To find a solution for un+1
l at the bow location, an inner product of the scheme

in Eq. (8.20) with spreading operator Jl(xnB) must be taken over the discrete
domain of the string d which isolates the scheme at the bowing location.
Performing this operation and using identity (8.9) yields

Il(x
n
B)δttu

n
l = c2Il(x

n
B)δxxu

n
l − κ2Il(x

n
B)δxxxxu

n
l − 2σ0Il(x

n
B)δt·u

n
l

+ 2σ1Il(x
n
B)δt−δxxu

n
l − ‖Jl(xnB)‖2dFnB Φ(vnrel).

(8.22)

One can rewrite Eq. (8.21) to

Il(x
n
B)δt·u

n
l = vnrel + vnB , (8.23)

andusing identity (2.27a), Eq. (8.22) canbe rewritten andassigned to a function
g(vnrel) according to

g(vnrel) =

(
2

k
+ 2σ0

)
vnrel + ‖Jl(xnB)‖2dFnB Φ(vnrel) + bn = 0, (8.24)

where the terms not dependent on vrel are collected in5

bn = − 2

k
Il(x

n
B)δt−u

n
l − c2Il(xnB)δxxu

n
l + κ2Il(x

n
B)δxxxxu

n
l

+

(
2

k
+ 2σ0

)
vnB − 2σ1Il(x

n
B)δt−δxxu

n
l .

(8.25)

One can then perform the Newton-Raphsonmethod detailed in Section 8.3
to iteratively solve for vrel

(vnrel)i+1 = (vnrel)i −
g
(
(vnrel)i

)

g′
(
(vnrel)i

) , (8.26)

where
g′(vnrel) =

2

k
+ 2σ0 + ‖Jl(xnB)‖2DFnB Φ′(vnrel),

and
Φ′(vnrel) =

√
2a
(
1− 2a(vnrel)

2
)
e−a(vnrel)

2+1/2.

5An interpolation operator applied to a spatial derivative can be expanded in a similar fashion
to when it is applied to a grid function. A first-order interpolator applied to δxxunl thus yields
Il,1(xi)δxxunl = (1− αi)δxxunli + αδxxunli+1.
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8.4.2 Implementation and output
To implement the bowed stiff string, one must perform the Newton-Raphson
iteration every sample. For the implementation shown in this section, the
threshold in Eq. (8.13) has been set to ε = 10−7 and the maximum number of
iterations to 100. In the following, the parameters used for the string are listed
in Table 4.1 with T = 1000 N and those for the bow are

xnB = 1/8, fnB = 1 N, vnB = 0.2 m/s, and a = 100.

Furthermore, 0th-order interpolation and spreading operator are used.
Figure 8.6 shows the behaviour of a bowed stiff string at the beginning of

the simulation and shows the characteristic stick-slip behaviour. Figure 8.7
shows the state of the same simulation 3 seconds later. One can observe the
Helmholtz corner move in an anti-clockwise direction as presented in Figure
8.1. Finally, the time domain output of the string at the bowing location shown
in Figure 8.8 generally follows the Helmholtz motion shown in Figure 8.2.

Fig. 8.6: Behaviour of a bowed stiff string at the start of the simulation.

8.4.3 Energy analysis
Following the energy analysis of the stiff string presented in Section 4.4, taking
an inner product of Eq. (8.20) (after multiplication by ρA) with (δt·unl ) over
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8.4. Static friction models

Fig. 8.7: Behaviour of a bowed stiff string simulation after 3 seconds. The string exhibits a
Helmholtz motion as presented in Figure 8.1.

Fig. 8.8: Time domain output at the bowing location of a bowed stiff string using the static friction
model in Eq. (8.16).

discrete domain d one arrives at the following

δt+h + q = −〈(δt·unl ), Jl(x
n
B)fnB Φ(vnrel)〉d

Eq. (8.9)
⇐=====⇒ = −Il(xnB)(δt·u

n
l )fnB Φ(vnrel)

Eq. (8.23)
⇐=====⇒ = −fnB Φ(vnrel)v

n
rel︸ ︷︷ ︸

loss

−fnB Φ(vnrel)v
n
B︸ ︷︷ ︸

power

,

where h and q are as defined in Eqs. (4.29) and (4.28) respectively. As
sgn

(
Φ(vnrel)

)
= sgn

(
vnrel
)
through Eq. (8.16), one can observe that the first

term on the right-hand side always has a negative effect on the rate of change
of the total energy. This term can therefore be interpreted as the loss of power
through the bow (as indicated). The last term is of indeterminate sign and can
thus be interpreted as the power supplied by the bow.
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The final energy balance can thus be written as

δt+h = −q− qB − p (8.27)

where
qB = fnB Φ(vnrel)v

n
rel and p = fnB Φ(vnrel)v

n
B .

Figure 8.9 shows the energy of the bowed stiff string corresponding to thewave
propagation in Figure 8.6. The bow only injects energy into the system when
it sticks to the string.

he

h

v

t

Fig. 8.9: The kinetic (blue), potential (red), and total (black) energy of the bowed stiff string. The
right panel shows the normalised energy (according to Eq. (3.38)) and shows that the deviation
of the energy is within machine precision.

8.5 Dynamic friction models
Asopposed to static frictionmodels, dynamic frictionmodels relate the relative
velocity to the friction force using a differential equation. Dynamic friction
models exhibit a phenomenon called hysteresis, which is the dependence of a
system on its history. This hysteresis loop is in the force versus velocity plane
and has been confirmed by measurements using a bowing machine in [89].

The first dynamic friction model was proposed by Dahl [94] and captured
hysteresis effects. The Stribeck effect (mentioned in Section 8.4) was, however,
not taken into account. The LuGre model (named after the collaboration
between Lund and Grenoble) was then proposed by Canudas de Wit et al.
in [95, 96], and extended the Dahl model by taking the Stribeck effect into
account. The model assumes a large ensemble of bristles between the two
sliding surfaces, each of which contributes a tiny amount to the total friction
force. The drawback of this model is that it exhibits drift for extremely small
external forces. In [85], Dupont et al. extended the LuGre model by allowing
for a purely elastic regime that solves the drift issue. This model is referred to
as the elasto-plastic friction model and is used in this project.

The first appearance of a contribution in this thesis is the elasto-plastic
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friction model applied to a stiff string implemented using FDTD methods.
This has been presented in paper [C] and will be summarised in this section.
Furthermore, this section extends the paper by providing a stability analysis
using the techniques presented in Section 3.4.4.

8.5.1 The elasto-plastic friction model
In a musical context, the elasto-plastic friction has been investigated in-depth
by Serafin et al. in [86, 87, 97]. Like the LuGre model, the elasto-plastic friction
model assumes that the friction between the bow and the string is caused by
a large quantity of bristles, all contributing a fraction of the total amount of
friction. See Figure 8.10.

(a)

(b)

(c)

(d)

vB

z

string

bow
z = 0

0 < |z| ≤ zba

zba < |z| < |zss|

|z| ≥ |zss|

Fig. 8.10: A visualisation of the microscopic displacements of the bristles between the bow and
the string assumed by the elasto-plastic friction model. The bow moves right with a velocity of
vB. (a) The average bristle displacement z = 0. (b) The bow moves right relative to the string and
the purely elastic, or ‘presliding’ regime, is entered (stick). (c) After |z| gets larger than the break-
away displacement zba, more andmore bristles start to ‘break’. This is defined as the elasto-plastic
regime. (d) After |z| ≥ |zss| all bristles have ‘broken’, the steady state (slip) is reached and the
purely plastic regime is entered. (Adapted from paper [C].)

Unless denoted otherwise, this section follows the original model in [85],
but with the appropriate corrections added as presented in paper [C]. As
opposed to the static friction model described in the previous section, the
friction force f (in N) is now dependent on the average bristle displacement
z = z(t) (in m) as well as the relative velocity v = v(t) (in m/s). The friction
force is defined as

f(v, z) = s0z + s1ż + s2v + s3w, (8.28)

with bristle stiffness s0 ≥ 0 (in N/m), bristle damping s1 ≥ 0 (in kg/s),
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viscous friction s2 ≥ 0 (in kg/s) and, as presented in [87], a dimensionless
noise coefficient s3 multiplied onto a pseudorandom function w = w(t) (in
N) generating values between −1 and 1. Moreover, for a string defined over
domain D, the relative velocity between the string at bowing location xB =

xB(t) ∈ D and the bow is defined as (similar to Eq. (8.17))

v = ∂tu(xB, t)− vB, (8.29)

with bow velocity vB = vB(t) (in m/s). Lastly, ż is the rate of change of the
bristle displacement (in m/s) and is related to v according to

ż = r(v, z) = v

[
1− α(v, z)

z

zss(v)

]
. (8.30)

Here, zss is the steady-state function

zss(v) =
sgn(v)

s0

[
fC + (fS − fC)e−(v/vS)

2
]
, (8.31)

where the vS is the Stribeck velocity (in m/s). Furthermore, using the normal
force fN = fN(t) (in N), the Coulomb force and stiction force can be calculated
according to fC = fNµC and fS = fNµS respectively (both in N). In these defini-
tions, µC and µS are the dimensionless dynamic and static friction coefficients
respectively. A plot of the steady state function can be found in Figure 8.11.
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Fig. 8.11: The steady-state function zss(v) plotted against relative velocity v with s0 = 104,
µC = 0.3, µS = 0.8, vS = 0.1 and fN = 5.

Finally, α(v, z) in Eq. (8.30) is an adhesion map between the bow and the
string and is defined as

α(v, z) =





0 |z| ≤ zba
αm(v, z) zba < |z| < |zss(v)|
1 |z| ≥ |zss(v)|



 if sgn(v) = sgn(z)

0 if sgn(v) 6= sgn(z),

(8.32)
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where the transition between the elastic and plastic behaviour is defined as

αm =
1

2

[
1 + sgn(z) sin

(
π
z − sgn(z) 1

2 (|zss(v)|+ zba)

|zss(v)| − zba

)]
, (8.33)

where the break-away displacement zba = zba(t) = 0.7fC/s0 determines the
value of z before bristles start to break. The adhesion map is visualised in
Figure 8.12 and relates to Figure 8.10 as described in its caption.

Fig. 8.12: Aplot of the adhesionmapα(v, z) in Eq. (8.32) plotted against zwhen sgn(v) = sgn(z).
The different coloured regions correspond to Figure 8.10 according to: yellow - a) & b), orange -
c) and red - d). (Adapted from paper [C].)

Discrete time

Equation (8.28) can be discretised to

f(vn, zn) = s0z
n + s1r

n + s2v
n + s3w

n, (8.34)

where Eq. (8.29) can be discretised to

vn = Il(x
n
B)δt·u

n
l − vnB , (8.35)

with interpolation operator Il(xnB) = Il,o(x
n
B) (of unspecified order o) and

rn = r(vn, zn) = vn
[
1− α(vn, zn)

zn

zss(vn)

]
(8.36)

is the discrete counterpart of Eq. (8.30). The discrete adhesion map is iden-
tical to the continuous definition given in Eqs. (8.32) and (8.33), but with
superscripts n added for appearances of v and z.
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8.5.2 Applied to a FDTD stiff string
In the same way as done with the static friction model in Section 8.4, one can
add the friction force to the stiff string PDE in Eq. (4.3) and discretise the
system as follows:

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l + 2σ1δt−δxxu

n
l − Jl(xnB)

f(vn, zn)

ρA
,

(8.37)
where spreading operator Jl(xnB) = Jl,o(x

n
B) and is of the same order as Il(xnB)

in Eq. (8.35). Following the same procedure as for the static friction model in
Section 8.4, one takes an inner product with Jl(xnB) over discrete string domain
d and using identities (8.9) and (2.27a), one can rewrite this similar to the static
friction model in Eq. (8.24) as

g1(vn, zn) =

(
2

k
+ 2σ0

)
vn + ‖Jl(xnB)‖2d

f(vn, zn)

ρA
+ bn = 0, (8.38)

where

bn =− 2

k
Il(x

n
B)δt−u

n
l − c2Il(xnB)δxxu

n
l + κ2Il(x

n
B)δxxxxu

n
l

+

(
2

k
+ 2σ0

)
vnB − 2σ1Il(x

n
B)δt−δxxu

n
l .

As g1 contains two unknown variables vn and zn that need to be solved for, the
multivariate Newton-Raphson method presented in 8.3.1 must be performed.
To be able to do this, an extra function, which is dependent on vn and zn, must
be included.

As r describes ż in Eq. (8.30), one can take another approach to approximate
ż using the trapezoid rule [21]

an = (µt−)−1δt−z
n =⇒ an =

2

k
(zn − zn−1) + an−1. (8.39)

As both an and rn approximate ż, these can be used to create the second
function necessary to solve the full system:

g2(vn, zn) = rn − an = 0. (8.40)

Finally, one can use the multivariate Newton-Raphson method described in
Section 8.3.1, which results in

[
vn

zn

]

i+1

=

[
vn

zn

]

i

−
[∂g1
∂v

∂g1
∂z

∂g2
∂v

∂g2
∂z

]−1 [
g1

g2

]
. (8.41)
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The derivatives in the Jacobian matrix are given in Appendix F.7.

8.5.3 Output
In the following, the same parameters as presented for the static frictionmodel
in Section 8.4.2 have been used for the string and the bow (where fN = fB).
Additional parameters used for the elasto-plastic friction model are given in
paper [C].

Figure 8.13 shows that the implementation of the elasto-plastic friction
model exhibits a hysteresis loop in the force versus velocity plane, as desired
from a dynamic friction model. The values around v = 0 are due to stick-
ing behaviour and the loop on the left is due to slipping behaviour. Figure
8.14 shows the output of the implementation and follows the characteristic
Helmholtz motion shown in Figure 8.2. When compared to the output of the
static friction model in Figure 8.8, the output of the elasto-plastic implemen-
tation seems to be more ‘smooth’ overall, which could be explained by the
inclusion of the bristles and their elasticity.
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Fig. 8.13: Hysteresis loop showing 500 values up to n = 3fs. (Adapted from paper [C].)

Fig. 8.14: Time domain output at the bow location of a stiff string bowed using an elasto-plastic
friction model.
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8.5.4 Stability through energy analysis
As the elasto-plastic bow model is a differential equation in itself, its approxi-
mation will need to abide a stability condition as well. As the system at hand
is nonlinear, frequency domain analysis as described in Section 3.3 can not
be performed. Energy analysis, on the other hand, can be used here to de-
termine the necessary stability condition for this model. This section follows
the concepts introduced in Section 3.4.4 to obtain a stability condition for the
elasto-plastic friction model. A similar process for finding stability for the
LuGre model has been done by Olsson in continuous time [98, p. 55]. The
derivation below is inspired by his.

First, all terms of Eq. (8.37) are multiplied by ρA to get the appropriate
units for the analysis. Then, the inner product with (δt·unl ) over the discrete
string domain d is taken to get

δt+hs + qs = −pB (8.42)

where the definitions for the discrete Hamiltonian hs and the damping term qs
for the string can be found in Section 4.4. The input power introduced by the
bow is defined as (writing f(vn, zn) = fn)

pB = 〈(δt·unl ), J(xnB)fn〉d

which, using identity (8.9), can be written as

pB = Il(x
n
B)δt·u

n
l f

n.

Finally, using Eq. (8.35) yields

pB = fnvn + fnvnB . (8.43)

The term fnvn is the important one as fnvnB is a driving term, and is zero
when the external bow velocity is zero. This means that this does not affect
the internal stability of the system. In the following, the superscript n is
suppressed for brevity.

Substituting Eq. (8.34) into fv and ignoring the noise term s3w
n for now,

yields
pB = fv = σ0zv + σ1rv + σ2v

2. (8.44)
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The definition for rn in Eq. (8.36) may be rewritten as

r = v

[
1− α z

zss(v)

]
,

r = v − vαz

zss(v)
,

v = r +
vαz

zss(v)
,

and (following Olsson) may be substituted in Eq. (8.44) as

pB = s0z

(
r +

vαz

zss(v)

)
+ s1r

(
r +

vαz

zss(v)

)
+ s2v

2, (8.45)

or

pB = s0zr + s1

(
r +

vαz

2zss(v)

)2

+
vαz2

zss(v)

(
s0 −

s1vα

4zss(v)

)
+ s2v

2. (8.46)

The power introduced by the bow can then be subdivided into the total energy
in the bristles and their damping. As r approximates ż the first term, one can
rewrite this to

δt+hbrist + qbrist ≥ 0,

which needs to be non-negative for passivity.
Starting with the damping term, which is defined as

qbrist = s1

(
r +

vαz

2zss(v)

)2

+
vαz2

zss(v)

(
s0 −

s1vα

4zss(v)

)
+ s2v

2, (8.47)

one can show that, as all coefficients are non-negative and sgn(v) = sgn(zss(v))

(through a multiplication by sgn(v) in the definition of in Eq. (8.31)), qbrist is
non-negative under the following condition:

s1 ≤
4s0zss(v)

v
. (8.48)

This is the same condition as Olsson presents for the LuGre model [98], and
means that as long as one knows the limit of the velocity of the system, the
coefficient s1 can be set accordingly.

Using identity (3.17b), the energy stored in the bristles can be shown to be

hbrist =
s0

2
znet−z

n, (8.49)

which is not necessarily non-negative. In [98], Olsson performs the analysis in
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continuous time, where the energy in the bristles is defined as

Hbrist =
s0

2
z2, (8.50)

which is clearly non-negative. Further work needs to be done to prove stability
for the discretisation of the elasto-plastic friction model in Eq. (8.34).6

8.6 Discussion and conclusion
This chapter presented the bow as a mechanism to excite stiff strings. Two
friction models have been presented: a static friction model where the friction
force is only a function of the relative velocity between the string and the bow,
and a dynamic elasto-plastic frictionmodel, which relates this relative velocity
to the friction force using a differential equation. The latter has been presented
in paper [C] where it was first applied to stiff strings based on FDTDmethods.
Stability analysis for the elasto-plastic friction model is ongoing, although a
stability condition for parameters of the model has been presented.

Although a successful implementation of the elasto-plastic friction model
has been made, it has not been used in the project beyond paper [C]. It was
found that small changes in parameters, both control and model parameters,
already yield large behavioural changes. An attempt was made at using the
elasto-plastic friction model with a fully modelled instrument (the tromba
marina presented in papers [D] and [E]), but this did not yield the desired
results, and the predictable static friction model was chosen instead. Future
work includes tuning the many parameters that the elasto-plastic model relies
on, and to apply this to fully modelled instruments.

An in-depth comparison between the static and the elasto-plastic friction
model in terms of perceptual differences, is also left for future work. A pre-
liminary comparison has been carried out by Onofrei in [99], where the author
noted that "the elasto-plastic model seems to behave more smoothly" than the static
friction model. This is also what is observed when comparing the output of
the frictionmodels in Figures 8.8 and 8.14. As said, these observations are pre-
liminary, and further work needs to be done to compare the various friction
models.

Finally, it must be noted that the applications of the bow are not limited to
strings, and can verywell be extended to other resonators. In [S4], for example,
the authors apply the elasto-plastic friction model to a 2D drum membrane to
simulate a friction drum inspired instrument.

6This could possibly include a different discretisation of s0z in Eq. (8.28) or adding a mass to
the bristles.
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The Lip Reed

The dynamics of wind instruments can be modelled by acoustic tubes as pre-
sented inChapter 5. Excitation of these instruments happens either by blowing
a jet of air across an opening, such as in a flute, or by the buzzing of a reed.
In [1], the authors state that all wind-instrument reeds fall into one of three
categories: the single reed, (clarinet, saxophone), the double reed (oboe, bas-
soon) and the lip reed (trumpet, trombone). The latter will be the focus of this
chapter.

Sections 5.1.3 and 7.2.2 presented a physically inspired pulse train that at-
tempts tomodel the opening and closing of the lips, using a clipped sinusoidal
signal. A more physical approach, which is bidirectional, is to model the lips
as a mass-spring-damper system that interacts with the left boundary of the
tube. The literature describes lip reedmodelswith varying degrees of freedom
(DoF) (see [1, 62] for an overview). Recent work includes vortex-induced vi-
bration into the lip reed model, that allows for the buzzing of the lips without
the need of an acoustic tube [S1].

As the contribution of this project to a brass instrument model was mainly
focusedon the resonator, the simple ‘outward strikingdoormodel’was chosen,
which is a simple single one-DoFmass-spring-damper system. Themodel is as
presented in [100], but excluding the collision. An alternative collision model
was added in paper [H] and will be elaborated on in Chapter 16.

This chapter starts by introducing the mass-spring-damper system, after
which the lip reed model will be given in continuous and discrete time. The
lip reed will be coupled to the first-order system of equations presented in 5.2.
Unless denoted otherwise, this chapter follows [62].
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9.1 Mass-spring systems revisited: Damping
Before moving on to the lip reed system, the mass-spring system given in
Section 2.3 will be extended to contain damping.

Recall the mass spring system presented in Eq. (2.28), where u = u(t) is
the displacement of the mass from its equilibrium position (in m). Damping
can be easily be added to yield a mass-spring-damper system as follows:

Mü = −Ku−Ru̇, (9.1)

with massM (in kg), spring constant K (in N/m) and damping coefficient R
(in kg/s). Figure 9.1 shows the behaviour of the system for different values of
R.

Equation (9.1) can then be discretised to the following FD scheme:

Mδttu
n = −Kun −Rδt·un. (9.2)

Expanding and solving for un+1 yields the following update equation:
(

1 +
Rk

2M

)
un+1 = 2un − un−1 − Kk2

M
un +

Rk

2M
un−1. (9.3)

(a) R = 0. (b) R = 50. (c) R = 200.

Fig. 9.1: The mass-spring-damper system in Eq. (9.1) with f0 = 440 Hz for different values ofR.

9.1.1 Energy analysis
Following Section 3.4 (without explicitly following the steps for brevity), one
can obtain the energy of Eq. (9.2) through a multiplication of the scheme by
(δt·un) to get

M(δttu
n)(δt·u

n) = −K(δt·u
n)un −R(δt·u

n)2. (9.4)

As there is damping present in the system, the energy balance will be of the
form

δt+h = −q.
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9.2. Continuous time

Using identities (3.17a) and (3.17b), h and q can be obtained from Eq. (9.4)

h = t + v, with t =
M

2
(δt−u

n)2, and v =
K

2
unet−u

n, (9.5)

and
q = R(δt·u

n)2. (9.6)

Figure 9.2 shows the energy output of themass spring damper systemwith
R = 50 and f0 = 2π

√
K/M = 440 Hz. One can observe that the damping

term causes the system to lose energy when themass is in motion (high kinetic
energy).

he

h

v

t

Fig. 9.2: The potential (red), kinetic (blue), and total (black) energy of the mass-spring-damper
system. The right panel shows the normalised energy (according to Eq. (3.38)) and shows that the
deviation of the energy is within machine precision.

9.2 Continuous time
As mentioned at the beginning of this chapter, the lip reed will be modelled
as a mass-spring-damper system as in Eq. (9.1). The system will be coupled
to an acoustic tube described by the first-order system of PDEs described in
Section 5.2, Eq. (5.37).

Using dots to denote derivatives with respect to time t, the PDE of the lip
reed connected to an acoustic tube is defined as

Mÿ = −Ky −Rẏ + Sr∆p, (9.7)

with displacement of the lip reed from equilibrium y = y(t) (in m), mass of the
lip reedM > 0 (in kg), lip stiffnessK ≥ 0 (in N/m), damping coefficientR ≥ 0

(in kg/s), and effective surface area of the lip Sr ≥ 0 (in m2). Furthermore,

∆p = ∆p(t) = Pm − p(0, t) (9.8)

is the difference between the pressure in the mouth Pm = Pm(t) and the
pressure at the left boundary of the acoustic tube p(0, t) (all in Pa). The
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M

Sr

K R

Pm(t)
∆p(t)

p(0, t)

y(t)

0

−H0

w

Fig. 9.3: Lip-reed system with parameters as appear in Section 9.2. (Adapted from paper [H].)

acoustic tube can be described by the first-order system presented in Section
5.2. See Figure 9.3 for a schematic representation of the lip reed.

The pressure difference in Eq. (9.8) causes a volume flow velocity (in m3/s)
and follows the Bernoulli equation

UB = UB(t) = w[y +H0]+sgn(∆p)

√
2|∆p|
ρ0

, (9.9)

with effective lip-reed width w (in m), density of air ρ0 (in kg/m3), static
equilibrium separation H0 (in m). Moreover, [·]+ describes the ‘positive part
of’ (see Chapter 10). The negative equilibrium separation −H0 can be seen as
the location of the lower lip, and when y+H0 ≤ 0, the lips are closed and UB is
0. Another volume flow (in m3/s) is generated by the lip reed itself according
to

Ur = Ur(t) = Srẏ, (9.10)

and assuming that the volume flow velocity is conserved, the total air volume
entering the acoustic tube at the left boundary is defined as

S(0)v(0, t) = UB(t) + Ur(t). (9.11)

Compact PDE

To reduce the number of variables in later derivations in this chapter, one can
divide all terms in Eq. (9.7) byM to obtain

ÿ = −ω2
0y − σrẏ +

Sr

M
∆p, (9.12)
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with angular frequency of the lip reed ω0 =
√
K/M (in rad/s) and loss pa-

rameter σr = R/M (in s−1).

9.3 Discrete time
This section follows the discretisation and derivation given in [62, Sec. 5.1.3,
pp. 140–141], with a slight change in notation.

The variables y, ∆p, and thereby UB and Ur are placed on the interleaved
temporal grid1, and the equations presented above can be discretised to the
following system:

δtty
n+1/2 = −ω2

0µt·y
n+1/2 − σrδt·yn+1/2 +

Sr

M
∆pn+1/2, (9.13a)

∆pn+1/2 = Pm − µt+pn0 , (9.13b)

U
n+1/2
B = w[yn+1/2 +H0]+sgn(∆pn+1/2)

√
2|∆pn+1/2|

ρ0
, (9.13c)

U
n+1/2
r = Srδt·y

n+1/2, (9.13d)

µx−(S1/2v
n+1/2
1/2 ) = U

n+1/2
B + U

n+1/2
r . (9.13e)

Here, pn0 and S1/2v
n+1/2
1/2 are discrete values at the left boundary of an acoustic

tube described by system (5.40). Expanding the operators in Eq. (9.13a) and
solving for yn+3/2, yields

αry
n+3/2 = 4yn+1/2 + βry

n−1/2 + ξr∆p
n+1/2, (9.14)

where2

αr = 2 + ω2
0k

2 + σrk , βr = σrk − 2− ω2
0k

2 , and ξr =
2Srk

2

M
. (9.15)

Although Eq. (9.14) seems to be implicitly dependent on the pressure dif-
ference ∆pn+1/2, it is possible to explicitly solve it. A derivation is shown
below.

9.3.1 Obtaining ∆p

In the following, the superscript n + 1/2 will be suppressed for y, ∆p, UB, Ur,
S1/2 and v1/2 for brevity.

1The variables are placed on the non-interleaved spatial grid, as the lip reed interacts with the
boundary of the tube (x = 0).

2Notice that all terms are multiplied by 2 to reduce fractions.
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Rewriting Eq. (9.13a)

Using identities (2.27a) and (2.27e), Eq. (9.13a) can be rewritten to

2

k
(δt· − δt−)y = −ω2

0(kδt· + et−)y − σrδt·y +
Sr

M
∆p,

and, after grouping the terms,

a1δt·y − a2∆p − an3 = 0, (9.16)

where

a1 =
2

k
+ ω2

0k + σr ≥ 0, a2 =
Sr

M
≥ 0 , and an3 =

(
2

k
δt− − ω2

0et−

)
y .

Note that the non-negativity property can be applied to a1 and a2 as these are
calculated solely from non-negative parameters. Equation (9.13d) can then be
substituted into Eq. (9.16)

a1

Sr
Ur − a2∆p − an3 = 0,

and consequently Eq. (9.13e), to get

a1

Sr

(
µx−(S1/2v1/2)− UB

)
− a2∆p − an3 = 0. (9.17)

Obtaining µx−(S1/2v1/2)

To obtain a definition for µx−(S1/2v1/2), one can use the FD scheme for the
pressure of the first-order system in (5.40a) and evaluate this at l = 0 to get

S̄0

ρ0c2
δt+p

n
0 = −δx−(S1/2v1/2). (9.18)

Using identity (2.27d) for δx− and δt+, this can be rewritten to

2S̄0

ρ0c2k
(µt+p

n
0 − pn0 ) =

2

h

(
µx−(S1/2v1/2)− S1/2v1/2

)
. (9.19)

and substituting Eq. (9.13b) yields

2S̄0

ρ0c2k
(Pm −∆p − pn0 ) =

2

h

(
µx−(S1/2v1/2)− S1/2v1/2

)
.

µx−(S1/2v1/2) = bn1 − b2∆p (9.20)
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where

bn1 = S1/2v1/2 +
S̄0h

ρ0c2k
(Pm − pn0 ), and b2 =

S̄0h

ρ0c2k
≥ 0 . (9.21)

Final steps

Equations (9.20) and (9.13c) can be substituted into Eq. (9.17) to get

a1

Sr

(
bn1 − b2∆p − w[y +H0]+sgn(∆p)

√
2|∆p|
ρ0

)
− a2∆p − an3 = 0,

−w[y +H0]+sgn(∆p)

√
2|∆p|
ρ0

− b2∆p − a2Sr

a1
∆p + bn1 −

an3Sr

a1
= 0,

−cn1 sgn(∆p)
√
|∆p| − c2∆p + cn3 = 0, (9.22)

where

cn1 = w[y +H0]+

√
2

ρ0
≥ 0, c2 = b2 +

a2Sr

a1
≥ 0, and cn3 = bn1 −

an3Sr

a1
.

(9.23)
Equation (9.22) can be divided by −sgn(∆p) to get a quadratic equation in√
|∆p|:

c2|∆p|+ cn1
√
|∆p| − cn3

sgn(∆p)
= 0. (9.24)

As cn1 , c2 ≥ 0, the following must be true for any real solutions to exist

sgn(cn3 ) = sgn(∆p) =⇒ cn3
sgn(∆p)

= |cn3 |, (9.25)

and one can solve for
√
|∆p|:

√
|∆p| = −c

n
1 ±

√
(cn1 )2 + 4c2|cn3 |
2c2

. (9.26)

Finally, because
√

(cn1 )2 + 4c2|cn3 | ≥ cn1 , one can only guarantee a positive
solution if the square root term is added. Using Eq. (9.25), the definition for
the pressure difference can be found:

∆p = sgn(cn3 )

(
−cn1 +

√
(cn1 )2 + 4c2|cn3 |
2c2

)2

, (9.27)

which can be used in the update of the lip reed in Eq. (9.13a).
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9.3.2 Coupling to the tube
The coupling of the lip reed to the acoustic tube is easily done by rewriting Eq.
(5.41a) evaluated at l = 0 to

pn+1
0 = pn0 −

ρ0cλ

S̄0

(
−2µx−(S1/2v1/2) + 2S1/2v1/2

)
. (9.28)

Equation (9.13e) can then be substituted to get

pn+1
0 = pn0 −

ρ0cλ

S̄0

(
−2(UB + Ur) + 2S1/2v1/2

)
. (9.29)

Figure 9.4 shows an implementation of the lip reed connected to an acoustic
tube. The lip reed is shown on the left and the left boundary of the tube is on
the right side of the lip reed. The frequency of the lips is set to f0 = 600 Hz
(ω0 = 1200π rad/s), the input pressure Pm = 2000 Pa and the other parameters
are as listed in paper [H]. The lip is initialised using y1/2 = y3/2 = −H0 such
that the lips are closed at the start of the simulation. Furthermore, the tube is
set to be cylindrical with a circular cross-section of S(x) = 5 · 10−5 m2. The
figure shows that the lips oscillate, and that when the lips are closed, i.e. when
y ≤ H0, no energy enters the acoustic tube.3

Fig. 9.4: A lip reed (shown at the left side of the plots) exciting a cylindrical acoustic tube. The
y-axis refers to the displacement of the lips and the pressure in the tube pnl is shown in red and
highlighted with a dashed line (not related to the y-axis).

9.4 Energy analysis
This section performs an energy analysis on the lip reed system, coupled to an
acoustic tube using the steps described Section 3.4. The analysis follows [62,
Sec 5.1.3, p. 139].

3This is similar behaviour to what the pulse train in Section 7.2.2 attempts to model.
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As all physical parameters need to bewritten out to obtain the correct units,
Eq. (9.7) is discretised to get

Mδtty
n+1/2 = −Kµt·yn+1/2 −Rδt·yn+1/2 + Sr∆p

n+1/2, (9.30)

and will be used in this analysis. Again, the superscript n + 1/2 will be
suppressed for y, ∆p, UB, Ur, S1/2 and v1/2 for brevity.

Step 1: Obtain δt+h

Multiplying Eq. (9.30) by (δt·y), and moving all terms to the left-hand side,
yields the rate of change of the energy in the lip reed hr:

δt+hr = M(δt·y)(δtty) +K(δt·y)(µt·y) +R(δt·y)2 − Sr(δt·y)∆p = 0.

One can substitute Eqs (9.13d), and (9.13e) thereafter, to get

δt+hr = M(δt·y)(δtty) +K(δt·y)(µt·y) +R(δt·y)2

−
(
µx−(S1/2v1/2)− UB

)
∆p = 0.

Finally, substituting Eq. (9.13b), yields

δt+hr = M(δt·y)(δtty) +K(δt·y)(µt·y) +R(δt·y)2

+ UB∆p − µx−(S1/2v1/2)(Pm − µt+pn0 ) = 0.

One can then include the tube by recalling that δt+ht = −br + bl, and that the
left boundary term is defined as (Eq. (5.52))

bl = (µt+p0)µx−(S1/2v1/2),

and substituting this (ignoring the right boundary term, i.e., br = 0) to get

δt+(hr + ht) = M(δt·y)(δtty) +K(δt·y)(µt·y) +R(δt·y)2

+ UB∆p − µx−(S1/2v1/2)Pm = 0.

Step 2: Identify energy types and isolate δt+

Using identities (3.17a) and (3.17d), the energy balance can be shown to be

δt+ (ht + hr) = −qr − pr, (9.31)

where the energy of the tube ht is as defined in Eq. (5.55) and the energy of
the mass is

hr = tr + vr, with tr =
M

2
(δt−y)2, and v =

K

2
µt−(y2). (9.32)
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Furthermore, the damping term is defined as

qr = R(δt·y)2 + UB∆p, (9.33)

and the input power as
pr = −(UB + Ur)Pm. (9.34)

It is interesting to note that due to the choice of discretisation of the lip reed,
tr, vr and qr are non-negative, making the lip reed strictly dissipative and thus
inherently stable.

Step 3: Check units

The kinetic and potential energy of the lip reed can be written in their units as

tr =
M

2
(δt−y)2

in units
−−−−−→ kg · (s−1 ·m)2 = kg ·m2 · s−2,

vr =
K

2
µt−(y2)

in units
−−−−−→ N ·m−1 ·m2 = kg ·m2 · s−2,

and have the correct units. Recalling that the damping and input power terms
need to have units of kg· m2·s−3, writing the individual components of these
terms in their respective units, yields

R(δt·y)2
in units
−−−−−→ kg · s−1 · (s−1 ·m)2 = kg ·m2 · s−3,

UB∆p
in units
−−−−−→ m3 · s−1 · kg ·m−1 · s−2 = kg ·m2 · s−3,

−(UB + Ur)Pm
in units
−−−−−→ m3 · s−1 · kg ·m−1 · s−2 = kg ·m2 · s−3,

and shows that the units are indeed correct.

Step 4: Implementation

Figure 9.5 shows the energetic output of the lip reed coupled to an acoustic
tube, corresponding to the behaviour shown in Figure 9.4. The total energy
of the system increases due to the input pressure and is mainly transferred to
the tube. That the lip reed is oscillating can be observed from the oscillations
in its kinetic and potential energy. The normalised energy (using Eq. (3.38))
does not include the first time index, as one full iteration of the coupling is
necessary to yield a correct energy calculation. Instead, one starts at n = 1 and
uses h1 instead of h0 in Eq. (3.38).
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he

h

ht

vr

tr

Fig. 9.5: The energy of the acoustic tube (green), the potential energy (red) the kinetic energy of
the lip reed (blue), and the total energy (black) of the system corresponding to Figure 9.4. The
right panel shows the normalised energy (according to Eq. (3.38), starting at n = 1) and shows
that the deviation of the energy is within machine precision.
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Part IV

Interactions
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Interactions

Mostmusical instruments are composedof several individual resonatorswhich
interact with one another. Part II introduced various resonators in isolation,
and this part describes different ways to model the interaction between these.

Chapter 10 describes collision interactions between different systems and
has been used for the interactions between the different components of the
trombamarina in papers [D] and [E]. Furthermore, the theory described in this
chapter has been used for the collision between the lips that excite the trom-
bone in paper [H]. Then, Chapter 11 describes various to connections between
models and has been used extensively for papers [A] and [B]. Furthermore,
the dynamic grid presented in paper [G], uses the principles described in this
chapter.
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Chapter 10

Collisions

Manymusical instruments rely on collisions in some shape or form. Examples
are the collision between a hammer and a piano string, a guitar pick and the
string, and even the collision between the lips of a trumpet player.

This work uses collision models that rely on penalising methods. The
colliding objects – although possibly perfectly rigid – are supposed to inter-
penetrate, and collision is interpreted as a penalty. The eventual force acting
on the colliding objects is then dependent on the level of penetration. For
deformable objects, such as the hammer felt tip of a piano, the penalty is de-
pendent on the level of deformation. These collision models were first used in
a musical context by e.g. [101, 102].

Thediscretisationsproposed in [101, 102] relyon implicit nonlinear schemes
which require an iterative method, such as the Newton-Raphson method pre-
sented in Section 8.3, to obtain their solution. The exact number of iterations
required per time step, especially in interactive applications, is usually un-
known. This could be detrimental to real-time applications, as the number of
iterations, and consequently the extra number of computations, could be very
large in a particular situation. Furthermore, and perhaps more importantly,
existence and uniqueness of the solution might not be available.

In [103] (co-authored by the PhD student [O3]), Ducceschi et al. pro-
pose a method based on quadratisation of the collision potential energy, that
circumvents the need of an iterative method to solve nonlinear collisions.
Energy quadratisation for explicit schemes first appeared in the context of
Port-Hamiltonian systems and was proposed by Lopes et al. and Falaize et
al. in [104, 105]. The introduction of an additional state variable, which is
what Ducceschi’s work is based on, was introduced in [106, 107]. Papers [D]
and [E] follow an earlier iteration of the non-iterative collision algorithm from
[108, 65] which exhibited spurious oscillations that Ducceschi et al. resolve in
[103]. Paper [H] uses the corrected collision model for the collision between
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the lips exciting the trombone. The corrected model will be used in this work
and presented in this chapter.

This chapter first provides a definition for the collision potential as well as
its quadratisation, used as the basis for the explicit method. Then, the method
will be applied to a simple mass-barrier collision and finally, to a mass-spring
– string collision which can be used to model a finger-fretted string.

Collision potential

Collisions can be modelled using a nonlinear collision potential, which can be
defined as [109]

φ(η) =
Kc

αc + 1
[η]αc+1

+ , (10.1)

with collision stiffness Kc ≥ 0 (in N/mαc ) and dimensionless nonlinear col-
lision coefficient αc ≥ 1. Here η = η(t) describes the relative displacement
between the two colliding bodies (in m). The [·]+ operator, defined as

[·]+ =
·+ | · |

2
, (10.2)

describes the ‘positive part of’ and when applied to η in Eq. (10.1) causes the
potential φ to only be non-zero when the two colliding bodies are in contact.

The derivative of Eq. (10.1) with respect to η is defined as

φ′(η) = Kc[η]αc
+ (10.3)

and can then be used in the PDE at hand.
The issue with this form of the collision potential, is that an iterative

method, such as Newton-Raphson presented in Section 8.3, needs to be used
in order to solve the system [103].

Quadratic form

Based on earlier work by Lopez and Falaize et al. [104, 105], the authors
propose in [103] to rewrite the potential in Eq. (10.3) in a quadratic form.
Using the chain rule and ψ = ψ(η), Eq. (10.3) can be rewritten as

φ′(η) = ψψ′ where ψ =
√

2φ and ψ′ =
ψ̇

η̇
, (10.4)

where a dot denotes a single derivative with respect to time.
This form of the potential can be discretised to a FD scheme that can be

solved explicitly. This process will be shown below, using an example of the
simple mass – rigid barrier collision.
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10.1. The mass – rigid barrier collision

10.1 The mass – rigid barrier collision
As a test case, a mass colliding with a rigid barrier is presented here, which is
arguably the simplest case of a collision. Consider a mass at location u = u(t)

(in m) colliding with a barrier at location b (in m).
If the barrier is placed above the mass, the force it exerts on the mass will

be negative and its system would be described as

Mü = −ψψ′, (10.5)

with mass M (in kg) and ψ = ψ(η) and ψ′ are as defined in Eq. (10.4) with
η = η(t) = u(t)− b.

Looking towards the discretisation the mass-barrier collision, one could
use the definitions in Eq. (10.4) to rewrite Eq. (10.5) to the following system of
equations

Mü = −ψg, (10.6a)
ψ̇ = gη̇, (10.6b)

η(t) = u(t)− b, (10.6c)

where g = ψ′.

Relative location of objects

When working with multiple interacting objects, it is important to consider
whether an object is located ‘above’ or ‘below’ the other, i.e., which (generally)
has a more positive or negative displacement than the other. A mass with a
displacement of 0.01 m will thus be ‘above’ a barrier with a displacement of
−0.05m. Along these lines, a positive force acting on an elementwill accelerate
it upwards and a negative force will accelerate it downwards.

The relative location of the two colliding objects will affect two things in
system (10.6):

Firstly, the location of the object determines the direction of the collision
force, i.e., the sign of the right-hand side in system (10.6). In this case, the
barrier is placed above the mass, and will exert a downwards (negative) force
on the mass during collision. If the barrier was placed below the mass, the
opposite would have applied.

Secondly, the definition of η in (10.6c) is affected by the relative location
of the objects. The collision potential in Eq. (10.1) is only non-zero when η
is positive. If the barrier is placed above the mass, u(t) − b will be positive
on collision. It is thus important to remember that η should be defined as the
element above subtracted from the element below.
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10.1.1 Discrete time
Before discretising system (10.6) in full, the discrete approximation to the
collision potential will be elaborated on. Following [103], ψ is placed on an
interleaved temporal grid (see Section 5.2.2) using

ψn−1/2 = µt−ψ
n, (10.7)

where the interleaved temporal grid is used here as it results in energy conser-
vation in discrete time (see Section 10.1.3). Approximations to ψ and g in Eq.
(10.6) can then be made as

ψ u µt+ψ
n−1/2 (10.8)

and
g u gn =

δt+ψ
n−1/2

δt·ηn
, (10.9)

respectively. Notice that applying a first-order difference operator to a grid
function on an interleaved grid is second-order accurate.1 The result of the
approximation in Eq. (10.9) allows ψ to be treated as an independent time
series:

δt+ψ
n−1/2 = gnδt·η

n. (10.10)

With the above approximations in place, system (10.6) can be discretised and
yields the following system of equations:

Mδttu
n = −

(
µt+ψ

n−1/2
)
gn, (10.11a)

δt+ψ
n−1/2 = gnδt·η

n, (10.11b)
ηn = un − b. (10.11c)

An explicit definition for gn

To be able to calculate ψn+1/2 and un+1 in system (10.11) explicitly, a definition
for gn only based on known values must be found. As gn u ψ′ as per Eq.
(10.9), the derivative can be computed analytically according to

gn = ψ′
∣∣∣∣
η=ηn

Eq. (10.4)
=

φ′√
2φ

∣∣∣∣
η=ηn

. (10.12)

1 δt+ψn−1/2 Eq. (10.9)
= δt+µt−ψn Eq. (2.27b)

= δt·ψn which is second-order accurate (see Section
2.2.2).
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Recalling (10.3) and (10.1), this can conveniently be rewritten to

gn =
Kc[η

n]αc
+√

2Kc
αc+1 [ηn]αc+1

+

= Kc

√
αc + 1

2Kc
[ηn]αc

+ [ηn]
−(αc+1)

2
+ =

√
Kc(αc + 1)

2
[ηn]

αc−1
2

+ .

(10.13)
This implementation is the one presented in [108], but exhibited spurious
oscillations and ‘sticking’ behaviour. This is due to the possibility of negative
forces for positive penetrations due to the discontinuity in the definition for gn
at ηn = 0.

In [103], the definition for gn is extended, starting out by using an implicit
equation for gn by directly discretising Eq. (10.9)

gnimp = 2
ψn+1/2 − ψn−1/2

ηn+1 − ηn−1
. (10.14)

If there is, however, no collision at n+ 1/2, ψn+1/2 = 0 and Eq. (10.14) reduces
to

gnimp = −2
ψn−1/2

ηn+1 − ηn−1
.

Furthermore, due to the fact that there is no collision, ηn+1 can be calculated
according to ηn+1 = η? = u?−b, where u? is the value of un+1 calculated using
the scheme in Eq. (10.11a) without the collision force. Expanding Eq. (10.11a)
without the collision force yields

M

k2

(
u? − 2un + un−1

)
= 0 =⇒ u? = 2un − un−1.

Thus, if there is no collision, gnimp can now be explicitly calculated from known
values and be used in the definition for gn according to [103]

gn =





κ

√
Kc(αc + 1)

2
· (ηn)

αc−1
2 , if ηn ≥ 0, (10.15a)

−2
ψn−1/2

η? − ηn−1
, if ηn < 0 and η? 6= ηn−1, (10.15b)

0, if ηn < 0 and η? = ηn−1. (10.15c)

Here, κ = 1 if ψn−1/2 ≥ 0, otherwise κ = −1 and aims to resolve the ‘sticking’
behaviour by forcing an outwardly-directed force at all times. As was done in
paper [H], condition (10.15c) has been added to the definition of gn from [103]
to prevent a division by 0 in Eq. (10.15b).

This definition for gn does not exhibit the spurious oscillations that the old
definition did, and can still be explicitly calculated from known values of the
system.
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Chapter 10. Collisions

10.1.2 Solving the system
To implement the system in Eq. (10.11), its definitions need to be slightly
rewritten. Using identity (2.27c), µt+ψn−1/2 can be rewritten to

µt+ψ
n−1/2 =

k

2
δt+ψ

n−1/2 + ψn−1/2.

Then, substituting (10.11b) into this, yields

µt+ψ
n−1/2 =

k

2
gnδt·η

n + ψn−1/2,

and inserting this into (10.11a), yields

Mδttu
n = −

(
k

2
gnδt·η

n + ψn−1/2

)
gn . (10.16)

As the position of barrier b is static, the following is true:

dη

dt
=

d

dt

(
u− b

)
=⇒ δt·η

n = δt·u
n, (10.17)

i.e., the time derivative of η equals the time derivative of u.2 Eq. (10.16) can
now be solved explicitly as un+1 is the only unknown in the system
(
M

k2
+

(gn)2

4

)
un+1 =

M

k2
(2un − un−1) +

(gn)2

4
un−1 − ψn−1/2gn , (10.18)

and can be solved by a simple division.
Finally, un+1 can be used to calculate ηn+1 by evaluating (10.11c) at n+ 1:

ηn+1 = un+1 − b, (10.19)

which is used to calculate ψn+1/2 by expanding and rewriting (10.11b) to

ψn+1/2 = ψn−1/2 +
ηn+1 − ηn−1

2
. (10.20)

Figure 10.1 shows themass – rigid barrier collision over time for two values
ofKc. The mass is initialised with an initial (upwards) velocity using u0 = −1

m and u1 = −0.95 m. The figure shows that the penetration of the mass with
the barrier causes a downwards force on the mass. As expected, this force is
higher for a larger value of Kc and causes the mass to accelerate downwards
more quickly.

2Note that if the barrier was placed underneath the mass, making (10.11c) ηn = b − un, this
would result in δt·ηn = −δt·un.
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(b)Kc = 109.

Fig. 10.1: The mass – rigid barrier collision over time with αc = 1.3 for different values ofKc.

10.1.3 Energy analysis
To prove that the collision term does not add any additional energy into the
system (retaining passivity) and that it does not add additional constraints on
the stability of the system, the energy analysis techniques presented in Section
3.4 can be used. Notice that for brevity, the steps presented in Section 3.4 will
not explicitly be followed.

Multiplying Eq. (10.11a) by (δt·un) yields

δt+hm = −
(
µt+ψ

n−1/2
)
gn(δt·u

n)

where the energy of the mass is defined as (see Eq. (3.42))

hm =
M

2
(δt−u

n)2. (10.21)

Expanding gn yields

δt+hm = −
(
µt+ψ

n−1/2
) δt+ψn−1/2

δt·ηn
(δt·u

n)

Eq. (10.17)
⇐=====⇒ = −

(
µt+ψ

n−1/2
)
δt+ψ

n−1/2,

which, using identity (3.17c), can be rewritten to

δt+(hm + hc) = 0, (10.22)

with collision energy

hc =
(ψn−1/2)2

2
. (10.23)

Recall that in order for a scheme to be passive, its energymust be non-negative,
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Chapter 10. Collisions

and the fact that ψ is squared proves passivity for system (10.11).
Figure 10.2 shows the energetic output of the mass – rigid barrier collision

corresponding to Figure 10.1a. The left panel shows that the kinetic energy
of the mass is transferred into the energy of the collision, after which it is
converted into kinetic energy of the mass again.

he

h

hm

hc

Fig. 10.2: The energy of the mass (blue), the collision (green) and the total energy (black) of the
mass – rigid barrier collision. The energy corresponds to the behaviour in Figure 10.1a. The right
panel shows the normalised energy (according to Eq. (3.37)) and shows that the deviation of the
energy is within machine precision.

10.2 Mass-spring – string collision
The mass-spring – string collision is slightly trickier than the mass – rigid
barrier collision, as there are two moving components rather than one. This
system is chosen as an example as it has the interesting use-case of fretting a
string to change the pitch, modelling the fretting finger as a mass.

Consider a lossless stiff string of length L, its transverse displacement
described by u = u(x, t) (in m) and defined for t ≥ 0 and x ∈ D with domain
D = [0, L]. The mass with displacement w = w(t) (in m) and t ≥ 0 will model
the fretting finger. The PDE for the stiff string and its parameter definitions
can be found in Eq. (4.1) and for the mass-spring system in Eq. (2.28). Placing
the string above the mass, the following system emerges:

ρA∂2
t u = T∂2

xu− EI∂4
xu+ δ(x− xm)ψg (10.24a)

Mẅ = −Kw − ψg (10.24b)
ψ̇ = gη̇, (10.24c)

η(t) = w(t)− u(xm, t), (10.24d)

where spatial Dirac delta function δ(x − xm) localises the mass (finger) along
the string at location xm ∈ D (see Eq. (8.8)). Furthermore, ψ = ψ(η) and g = ψ′

are as defined in Eq. (10.4).
Discretising system (10.24), with the collision discretised according to the
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10.2. Mass-spring – string collision

process explained in Section 10.1, yields

ρAδttu
n
l = Tδxxu

n
l − EIδxxxxunl + Jl(xm)

(
µt+ψ

n−1/2
)
gn, (10.25a)

Mδttw
n = −Kwn −

(
µt+ψ

n−1/2
)
gn, (10.25b)

δt+ψ
n−1/2 = gnδt·η

n, (10.25c)
ηn = wn − Il(xm)unl , (10.25d)

where l ∈ d with discrete domain d = {0, . . . , N} and number of grid points
along the string N + 1. Furthermore, spreading and interpolation operators
Il(xm) = Il,o(xm) and Jl(xm) = Jl,o(xm) are as defined in Section 8.2. The
order o is left unspecified. Following the same process as in Section 10.1.2,
Eqs. (10.25a) and (10.25b) can be rewritten to

ρAδttu
n
l = Tδxxu

n
l − EIδxxxxunl + Jl(xm)

(
k

2
gnδt·η

n + ψn−1/2

)
gn, (10.26a)

Mδttw
n = −Kwn −

(
k

2
gnδt·η

n + ψn−1/2

)
gn, (10.26b)

which can be used as a starting point for solving the system.

10.2.1 Solving the system
As the colliding objects are both moving, Eq. (10.17) is not valid anymore and
another strategy needs to be used. To start, one must isolate the string at the
collision location xm by taking an inner product of Eq. (10.26a) with Jl(xm)

over discrete domain d. Using identity (8.9) and dividing all terms by ρA yields

δttIl(xm)unl = c2Il(xm)δxxu
n
l − κ2Il(xm)δxxxxu

n
l

+
‖Jl(xm)‖2d

ρA

(
k

2
gnδt·η

n + ψn−1/2

)
gn.

with c =
√
T/ρA and κ =

√
EI/ρA. Expanding the temporal FD operators

yields

Il(xm)un+1
l = u?+

‖Jl(xm)‖2dk2

ρA︸ ︷︷ ︸
Jl

(
(gn)2

4

(
ηn+1 − ηn−1

)
+ ψn−1/2gn

)
, (10.27)

where

u? = Il(xm)(2unl − un−1
l ) + c2k2Il(xm)δxxu

n
l − κ2k2Il(xm)δxxxxu

n
l
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is the result of the update equation of the string at xm without the collision
term. Then, Eq. (10.25d) evaluated atn+1, which is ηn+1 = wn+1−I(xm)un+1

l ,
can be substituted into Eq. (10.27), which results in
(

1 + Jl
(gn)2

4

)
Il(xm)un+1

l − Jl
(gn)2

4
wn+1 = u?

+ Jl

(
− (gn)2

4
ηn−1 + ψn−1/2gn

)
.

(10.28)

Performing this same process on the FD scheme of the mass in Eq. (10.26b)
yields

− (gn)2k2

4M
Il(xm)un+1

l +

(
1 +

(gn)2k2

4M

)
wn+1 = w?

− k2

M

(
− (gn)2

4
ηn−1 + ψn−1/2gn

)
,

(10.29)

where
w? = 2wn − wn−1 − Kk2

M
wn

is (again) the result of the update equation of the mass without the colli-
sion term. Equations (10.28) and (10.29) can be treated as a system of linear
equations (see Section B.3) with unknowns Il(xm)un+1 and wn+1. Writing the
aforementioned equations in matrix form yields

[
Il(xm)un+1

l

wn+1

]
= A−1v (10.30)

where

A =



(

1 + Jl
(gn)2

4

)
−Jl (gn)2

4

− (gn)2k2

4M

(
1 + (gn)2k2

4M

)

 and

v =


 u

? + Jl

(
− (gn)2

4 ηn−1 + ψn−1/2gn
)

w? − k2

M

(
− (gn)2

4 ηn−1 + ψn−1/2gn
)

 .

From this, ηn+1 can be calculated, and can consequently be applied to the
string and mass in system (10.26).

Figure 10.3 shows an implementationof themass spring collision. Themass
is initialised with an upwards initial velocity, where w0 = −0.2, w1 = −0.1,
and collides with the string almost instantly after the start of the simulation.
As the first panel shows, the collision model allows for interpenetration of the
objects. Immediately after, the collision force accelerates the string upwards
and the mass downwards.
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10.2. Mass-spring – string collision
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Fig. 10.3: The collision of the mass (blue) and the string (red). The collision model allows for
interpenetration of the objects as shown in the left panel.

10.2.2 Energy analysis
This section follows Section 3.4 without explicitly following the steps for
brevity.

One can obtain the energy of the stiff string FD scheme in Eq. (10.25a) by
taking the inner product of scheme by (δt·unl ) over discrete domain d to obtain

δt+hs =
〈

(δt·u
n
l ), Jl(xm)

(
µt+ψ

n−1/2
)
gn
〉
d

(10.31)

where the energy of the string is (see Eq. (4.29))

hs = ts + vs, with ts =
ρA

2
‖δt−unl ‖2d, and

vs =
T

2
〈δx+u

n
l , et−δx+u

n
l 〉d +

EI

2
〈δxxunl , et−δxxunl 〉d .

Energy analysis for the mass in Eq. (10.25b) can be done by multiplying the
scheme by (δt·wn) to get

δt+hm = −(δt·w
n)
(
µt+ψ

n−1/2
)
gn, (10.32)

where (see Eq. (3.42))

hm = tm + vm, with tm =
M

2
(δt−w

n)2, and vm =
K

2
wnet−w

n.

The total energy in the system is the addition of Eqs. (10.31) and (10.32), which,
using identity (8.9) for the former, can be written as:

δt+(hs + hm) =
(
Il(xm)(δt·u

n
l )− (δt·w

n)
)(

µt+ψ
n−1/2

)
gn,

= δt· (Il(xm)unl − wn)︸ ︷︷ ︸
−δt·ηn

(
µt+ψ

n−1/2
)
gn.

201



Chapter 10. Collisions

Then, expanding gn according to Eq. (10.9) yields

δt+(hs + hm) = −δt·ηn
(
µt+ψ

n−1/2
) δt+ψn−1/2

δt·ηn

= −
(
µt+ψ

n−1/2
)
δt+ψ

n−1/2

which, using identity (3.17c), can be rewritten as

δt+(hs + hm + hc) = 0, (10.33)

with collision energy

hc =
(ψn−1/2)2

2
.

Again, the fact thatψ is squared here, means that hc is non-negative, andproves
passivity of the system.

Figure 10.4 shows the energy of the mass-spring collision corresponding to
the behaviour shown in Figure 10.3. One can observe that energy of the mass
is transferred to the string almost immediately after the start of the simulation.
Furthermore, the figure shows that the mass and the string collide again at
n ≈ 110. The interpenetration of the two colliding objects can be observed
from the small peaks in the value for hc at these times.
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hc

Fig. 10.4: The energy of the mass (blue), the string (red), the collision (green) and the total energy
(black) of the mass-string collision. The energy corresponds to the system in Figure 10.3. The
right panel shows the normalised energy (according to Eq. (3.37)) and shows that the deviation
of the energy is within machine precision.
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10.3. Two-sided collision: A connection

10.3 Two-sided collision: A connection
Using the methods presented in this chapter, one could devise a two-sided
collision and alter the collision potential in Eq. (10.1) to [65]3

φ(η) =
K

αc + 1
|η|αc+1, (10.34)

and taking its derivative with respect to η yields

φ′(η) = sgn(η)K|η|αc . (10.35)

One can observe that, as opposed to the (one-sided) potential presented in
Eq. (10.1), the collision force will be non-zero, for both a positive and negative
η. This two-sided collision can be used as a connection – as an alternative to
connections presented in Chapter 11 – and has been used in papers [D] and [E]
in combination with Eq. (10.1) to model the mechanics of the tromba marina.
See Chapter 15 for more details.

3The equation proposed in [65] contains a ‘dead zone’ that has been set to 0 here.

203



Chapter 10. Collisions

204



Chapter 11

Connections

Many musical instruments consist of multiple subsystems like the ones pre-
sented in Part II. For example, one could simulate a guitar by modelling six
separate instances of the stiff string presented in Chapter 4, and the sound
board (as a simplified instrument body), using a thin plate presented in Sec-
tion 6.3. The interaction between the strings and the body can then bemodelled
using connections.

Examples of connected resonators based on FDTD methods are shown in
e.g. [21] and [54]. The latter presents a modular approach to connect any
number of resonators in arbitrary ways using an extremely compact matrix
form of the entire system.

The first example presented in this chapter is the case of two ideal strings,
connected using a rigid and spring-like connection. Afterwards, the connec-
tion between a stiff string and a thin plate using a nonlinear spring will be
presented, and has been used extensively in papers [A] and [B]. Before mov-
ing on to these examples, interpolation and spreading operators in 2D will be
introduced.

11.1 Interpolation and spreading in 2D
This section summarises and extends [21, Sec. 10.2.1, pp. 293–294].

One can extend the interpolation and spreading operators presented in
Section 8.2 to 2D by adding an additional argument to the operators. Using
li = bxi/hc and mi = byi/hc, a 0th-order interpolation operator I0(xi, yi) =

I(l,m),0(xi, yi) is defined as

I0(xi, yi) =

{
1, if l = li andm = mi,

0, otherwise.
(11.1)
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Notice that the same value for the grid spacing h is used for both the x and y
direction.

Using the fractional part of the flooring operations αx = xi/h − li and
αy = yi/h −mi, a 2D linear interpolator I1(xi, yi) = I(l,m),1(xi, yi) can then be
composed as

I1(xi, yi) =





(1− αx)(1− αy) if l = li andm = mi,

(1− αx)αy if l = li andm = mi + 1,

αx(1− αy) if l = li + 1 andm = mi,

αxαy if l = li + 1 andm = mi + 1,

0, otherwise.

(11.2)

Spreading operators are defined in the same way as in Section 8.2. A
0th-order spreading operator J0(xi, yi) = J(l,m),0(xi, yi) can be defined as

J0(xi, yi) =
1

h2

{
1, if l = li andm = mi,

0, otherwise,
(11.3)

as well as a linear spreading operator J1(xi, yi) = J(l,m),1(xi, yi) as

J1(xi, yi) =
1

h2





(1− αx)(1− αy) if l = li andm = mi,

(1− αx)αy if l = li andm = mi + 1,

αx(1− αy) if l = li + 1 andm = mi,

αxαy if l = li + 1 andm = mi + 1,

0, otherwise.

(11.4)

Notice that the scaling is by 1/h2 (due to the 2D system) rather than 1/h in the
1D case. Some intuition on this will be given below.

As in the 1D case, the spreading operator approximates a spatial Dirac
delta function, which – in 2D – is defined as

δ(x, y) =

{
∞, x = y = 0,

0, otherwise,
and

∫ ∞

−∞

∫ ∞

−∞
δ(x, y)dxdy = 1. (11.5)

where δ(x, y) has units of m−2. Again, as described in Section 8.2, this defini-
tionwill be approximated by spreading operators, rather than be used directly.

11.1.1 Alternative interpretation of grid points
Section 2.2.1 gives an introduction to how a continuous 1D system is sub-
divided into grid points in space (see Figure 2.2) through the discretisation
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11.2. Connected ideal strings

process. An alternative way to see grid points after discretisation is shown
in Figure 11.1. Rather than grid ‘points’ with a spacing h between them, a
continuous system is divided into grid ‘sections’ of length h. This interpreta-
tion allows for the ‘weight’ of a grid point to be calculated from its material
properties and geometry. Notice that boundaries have a length of h/2 such
that the total length L = Nhm.

As an example, the weight of one grid point (or now rather grid section) of
a string can be calculated as ρAh. The weight of one grid point of a 2D system
can be calculated as ρHh2. As these grid points interact with each other, the
forces resulting from this interaction will be scaled by their respective weight
per grid point as will be shown in Section 11.5. This interpretation hopefully
provides a better intuition for the interactions between components shown in
this chapter.

h

un
Nun

0 un
1 un

N�1un
2 un

N�2

h hh h/2h/2

Fig. 11.1: Alternative interpretation of the discretisation of u(x, t) to a grid function unl . The
continuous system is divided into N − 1 sections of length h plus 2 sections of length h/2 at the
boundaries. Through this interpretation, the ‘weight’ of a grid point can be calculated from its
physical parameters.

11.2 Connected ideal strings
When working with multiple interacting systems, one finds that notation be-
comes extremely important. Subscripts will be extensively used in the fol-
lowing for extra clarity, and although this results in something of a notational
jungle, it is better to be explicit and avoid confusion in the end.

As a test case for the following sections, consider two ideal strings1 of length
Lu andLw (both inm) their transverse displacement denoted as u = u(x, t) and
w = w(χ, t) (both in m) respectively (see Section 2.4). The systems are defined
for x ∈ Du with domain Du = [0, Lu] and χ ∈ Dw with domain Dw = [0, Lw]

respectively. Notice that χ is used as the spatial coordinate forw to denote that
the two systems use different coordinate systems. Connecting these systems
at xc ∈ Du and χc ∈ Dw yields the following system of PDEs:

ρuAu∂
2
t u = Tu∂

2
xu− δ(x− xc)f, (11.6a)

ρwAw∂
2
tw = Tw∂

2
χw + δ(χ− χc)f, (11.6b)

1Recall that the ideal string is the 1D wave equation with c =
√
T/ρA.
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where subscripts u and w denote whether a variable belongs to system u or w
respectively. Notice that the ∂χ in Eq. (11.6b) denotes a partial derivative with
respect to χ and is an identical operation to ∂x, but on a different coordinate
system. Furthermore, f = f(t) is the connection force (in N) which should
be equal and opposite for the connected systems according to Newton’s third
law (hence the inverse signs). The definition for f depends on the connection
type, and two alternatives will be given shortly. Finally, the spatial Dirac delta
function δ is defined as in Eq. (8.8), and localises the connection force along
the systems.

Relative location of objects

As explained in Chapter 10 it is important to keep in mind the relative location
of two interacting objects, as this will affect the signs of the force terms added
to the PDEs. As opposed to the case of collisions, the connection will have a
negative effect on the object ‘above’ and a positive effect on the one ‘below’
due to the ‘pulling’ behaviour of a connection. From the signs of the force
terms in system (11.6), it can thus be concluded that u has been placed above
w. If f is positively dependent on η (the relative displacement between the
two objects at their respective connection locations), this will be defined as the
object below subtracted from the object above. For system (11.6) this will be

η(t) = u(xc, t)− w(χc, t), (11.7)

and will be used for a spring connection in Section 11.4.

11.2.1 Discrete time
One can then discretise the state variables u and w to grid functions unl and
wnm, using x = lhu and χ = mhw, where l ∈ {0, . . . , Nu} andm ∈ {0, . . . , Nw}.2
Also see Section 2.2.1. Furthermore, hu and hw are the values of the grid
spacing (both in m) and Nu + 1 and Nw + 1 are the number of grid points for
unl and wnm respectively. Dividing Eqs. (11.6a) and (11.6b) by ρuAu and ρwAw
respectively, yields

δttu
n
l = c2uδxxu

n
l − Jl,u(xc)

fn

ρuAu
, (11.8a)

δttw
n
m = c2wδχχw

n
m + Jm,w(χc)

fn

ρwAw
, (11.8b)

where cu =
√
Tu/ρuAu and cw =

√
Tw/ρwAw. The spreading operators

Jl,u(xc) = Jl,ou,u(xc) and Jm,w(χc) = Jm,ow,w(χc) are as defined in Section 8.2,
and their orders ou and ow are left unspecified.

2Here,m is used for the spatial index of wn
m to avoid double subscripts lu and lw .
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11.3. Rigid connection

The next step would be to solve for connection force fn. First, one needs to
isolate the schemes in system (11.8) at their respective connection locations xc
and χc. This is done by taking an inner product of each scheme in system (11.8)
with their respective spreading operator Jl,u(xc) and Jm,w(χc) over discrete
domains du = {0, . . . , Nu} and dw = {0, . . . , Nw} respectively. Using identity
(8.9) one can write

Il,u(xc)δttu
n
l = c2uIl,u(xc)δxxu

n
l − ‖Jl,u(xc)‖2du

fn

ρuAu
, (11.9a)

Im,w(χc)δttw
n
m = c2wIm,w(χc)δχχw

n
m + ‖Jm,w(χc)‖2dw

fn

ρwAw
. (11.9b)

Here, interpolation operators Il,u(xc) = Il,ou,u(xc) and Im,w(χc) = Im,ow,w(χc)

are as defined in Section 8.2. Notice that the order of these operators need to
match their ‘dual’ spreading operator, but the orders ou and ow may differ.

The definition of the force depends on the connection type. Below, two
alternatives will be presented: the rigid connection and the spring connection.

11.3 Rigid connection
The simplest connection-type is the rigid connection. This connection type
states that the displacement of two connected points should always be equal,
and thus the distance between them should be 0 at all times. For the rigid
connection, the following is true:

u(xc, t) = w(χc, t), (11.10)

which in discrete time becomes

Il,u(xc)u
n
l = Im,w(χc)w

n
m. (11.11)

For a rigid connection, the following must also hold:

Il,u(xc)δttu
n
l = Im,w(χc)δttw

n
m. (11.12)

In other words, if the displacement of two objects is equal, their acceleration
must also be. This definition can then immediately be used to solve for fn and
the right-hand sides in system (11.9) can be substituted in Eq. (11.12) to get

c2uIl,u(xc)δxxu
n
l −‖Jl,u(xc)‖2du

fn

ρuAu
=c2wIm,w(χc)δχχw

n
m+‖Jm,w(χc)‖2dw

fn

ρwAw
,
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which can be explicitly solved for fn according to

fn =
c2uIl,u(xc)δxxu

n
l − c2wIm,w(χc)δχχw

n
m

‖Jl,u(xc)‖2du
ρuAu

+
‖Jm,w(χc)‖2dw

ρwAw

. (11.13)

This value can then be used in the update equation obtained after expanding
system (11.8) as

un+1
l =

(
2− 2λ2

u

)
unl + λ2

u

(
unl+1 + unl−1

)
− un−1

l − Jl,u(xc)
k2fn

ρuAu
, (11.14a)

wn+1
m =

(
2− 2λ2

w

)
wnm+λ2

w

(
wnm+1+wnm−1

)
−wn−1

m + Jm,w(χc)
k2fn

ρwAw
, (11.14b)

where λu = cuk/hu ≤ 1 and λw = cwk/hw ≤ 1 are the Courant numbers for
each individual scheme (see Section 2.4).

Figure 11.2 shows an implementation of system (11.8) with xc = 0.25 m
and χc = 0.75 m. The ideal strings have the same mass per unit length, i.e.,
ρuAu = ρwAw, and the same length Lu = Lw = 1 m, but operate at different
wave speeds cu = 300 m/s and cw = 400 m/s. The offset between the systems
is made for clarity, and the locations connected by the grey line should have
the same displacement as posed by the rigid connection.

Fig. 11.2: The behaviour of two connected 1D wave equations. The systems are offset for clarity,
but the relative displacement at the connection location is 0.

11.3.1 Notation simplification
In the above equations, the orders of the spreading and interpolation operators
have been left unspecified to retain generality. If one would like to connect
two systems at specified grid points (so not in-between), the notation can be
greatly simplified.
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11.3. Rigid connection

Recalling that Il,u(xc) = Il,ou,u(xc) and Im,w(χc) = Im,ow,w(χc), one can
set the interpolation orders to 0, i.e., ou = ow = 0, to yield the following
short-hand notations

Il,0,u(xc)u
n
l = unlc , and Im,0,w(χc)w

n
m = wnmc

, (11.15)

where lc = bxc/huc andmc = bχc/hwc,

‖Jl,0,u(xc)‖2du =
1

hu
and ‖Jm,0,w(χc)‖2dw =

1

hw
. (11.16)

This simplifies Eqs. (11.9) to

δttu
n
lc = c2uδxxu

n
lc −

fn

ρuAuhu
, (11.17a)

δttw
n
mc

= c2wδχχw
n
mc

+
fn

ρwAwhw
, (11.17b)

which, after rewriting Eq. (11.12) to

δttu
n
lc = δttw

n
mc
, (11.18)

one can solve for fn, yielding the following simplified form of Eq. (11.13)

fn =
c2uδxxu

n
lc
− c2wδχχwnmc

1
ρuAuhu

+ 1
ρwAwhw

. (11.19)

Through this simplification, one can now clearly see that the connection forces
acting on each respective ideal string in Eq. (11.17) are scaled by the mass of
one grid ‘section’ as explained in Section 11.1.1.

11.3.2 Energy Analysis
This section follows the energy analysis techniques shown in Section 3.4,
though not explicitly following the steps for brevity. As the analysis has
previously been performed on the 1D wave equation, this part will not be
detailed here.

Starting with the FD scheme in Eq. (11.8a), one can take an inner product
of the scheme (after a multiplication with ρuAu) with (δt·unl ) over discrete
domain du, to get

δt+hu = 〈δt·unl ,−Jl,u(xc)f
n〉du , (11.20)

where hu is the total energy in system u and is as defined in Eq. (3.47). The
same can be done for Eq. (11.8b) (after a multiplication with ρwAw) by taking
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an inner product with (δt·wnm) over discrete domain dw to get

δt+hw = 〈δt·wnm, Jm,w(χc)f
n〉dw , (11.21)

where hw is the total energy in system w. As the total energy in the system is
an addition of hu and hw, and using identity (8.9) for the right hand sides of
Eqs. (11.20) and (11.21), one can write

δt+(hu + hw) = −Il,u(xc)δt·u
n
l f

n + Im,w(χc)δt·w
n
mf

n. (11.22)

Finally, due to the rigid connection inEq. (11.11), Il,u(xc)δt·unl = Im,w(χc)δt·wnm
(if the displacements are equal, their velocitiesmust also be) and the right hand
side vanishes:

δt+(hu + hw) = 0.

This shows that the rigid connection does not affect the total energy in the
system and thus does not affect the stability of the scheme.

Figure 11.3 shows the energy of an implementation of the 1D wave system
in (11.8) corresponding to the behaviour shown in Figure 11.2. One can observe
that energy is transferred from

he

h

hu

hw

Fig. 11.3: The energy of u (red), the energy of w (blue), and the total (black) energy of the system
of connected 1D wave equations in (11.8). The energy corresponds to Figure 11.2. The right panel
shows the normalised energy (according to Eq. (3.37)) and shows that the deviation of the energy
is within machine precision.

11.3.3 Matrix form
One can write the system in Eq. (11.8) with a rigid connection in matrix form,
albeit slightly more involved due to the interconnection of the schemes.

To start, the definition of the force in Eq. (11.13) must be substituted into
the system, which, after expansion of the left hand side of the system, becomes
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11.3. Rigid connection

un+1
l = 2unl − un−1

l + c2uk
2δxxu

n
l

− Jl,u(xc)
k2

ρuAu


c

2
uIl,u(xc)δxxu

n
l − c2wIm,w(χc)δχχw

n
m

‖Jl,u(xc)‖2du
ρuAu

+
‖Jm,w(χc)‖2dw

ρwAw


 ,

(11.23a)

wn+1
m = 2wnm − wn−1

m + c2wk
2δxxw

n
m

+ Jm,w(χc)
k2

ρwAw


c

2
uIl,u(xc)δxxu

n
l − c2wIm,w(χc)δχχw

n
m

‖Jl,u(xc)‖2du
ρuAu

+
‖Jm,w(χc)‖2dw

ρwAw


 .

(11.23b)

Using Dirichlet boundary conditions for both ideal strings, their values can be
stored in the following vectors:

un = [un1 , . . . , u
n
Nu−1]T , and wn = [wn1 , . . . , w

n
Nw−1]T .

These vectors can then be concatenated to one larger state vector, and after the
terms in Eqs. (11.23) are grouped by the grid functions at various time indices,
one obtains the following compact matrix form of system (11.8):

[
un+1

wn+1

]
= B

[
un

wn

]
−
[
un−1

wn−1

]
, (11.24)

where
B =

[
Bu 0

0 Bw

]
+

[
−ju
jw

] [
fu −fw

]
.

The matrix in the definition of B contains the operations of the 1D wave
equation (also see Eq. (3.5)),

Bu = 2INu−1 + c2uk
2(Dxx)u, and Bw = 2INw−1 + c2wk

2(Dxx)w, (11.25)

where matrices (Dxx)u and (Dxx)w are as defined in Eq. (3.3) and are of the
appropriate sizes. The vector multiplication in the definition of B results in a
matrix, and adds the effect of the connection force to the system. Here, ju and
jw are column vectors of size (Nu − 1) × 1 and (Nw − 1) × 1 containing the
values of the spreading operators Jl,u(xc) and Jm,w(χc) respectively. Finally,

fu =
k2

ρuAu

(
c2uiu(Dxx)u
iuju
ρuAu

+ iwjw
ρwAw

)
, and fw =

k2

ρwAw

(
c2wiw(Dxx)w
iuju
ρuAu

+ iwjw
ρwAw

)
,

where iu and iw are row vectors of size 1×(Nu−1) and 1×(Nw−1) containing
the values of the interpolation operators Il,u(xc) and Im,w(χc) respectively.
Here, iuju and iwjw are matrix-vector forms of ‖Jl,u(xc)‖2du and ‖Jm,w(χc)‖2dw
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respectively (see Eq. (8.10)), and reduce to a scalar.
Equation (11.24) can then easily be rewritten in a one-step formas described

in Section 3.5.1 and used for modal analysis.3

11.4 Spring connection
An alternative connection type is the spring connection. As in the rigid case,
forces are still equal and opposite, but spring connections allow the relative
displacement between the two connected elements to be non-zero. This rel-
ative displacement is used to determine the connection force. Interestingly,
a nonlinear component can be added to this connection without making the
system implicit. The most complex springs used in this project have a linear
and a nonlinear (cubic) component, as well as a damping term. For ease of
explanation, this section will only use a linear spring. A damped nonlinear
spring will appear in Section 11.5.

The force between two components connected by a linear spring can be
defined as

f = f(t) = Kη, (11.26)

whereK ≥ 0 is the spring constant (in N/m) and

η = η(t) = u(xc, t)− w(χc, t) (11.27)

is the relative displacement between the two systems at their respective con-
nection locations (in m).4

In discrete time, Eq. (11.26) becomes

fn = Kµt·η
n, (11.28)

where
ηn = Il,u(xc)u

n
l − Im,w(χc)w

n
m. (11.29)

Here, the centred averaging operator is used for stability (see Section 11.4.2),
but when substituted into system (11.9) seems to make the system implicit.
However, one can find an explicit solution, even for an arbitrary amount of
connections [54]. These systems are therefore referred to as being semi-implicit,
and the process of how to solve the system explicitly will be shown below.

3As the system does not exhibit damping, it could be rewritten and analysed directly, not using
a one-step form.

4Note that if u was placed ’below’ w (see Section 11.2), the signs of the force terms in system
(11.8) would have been flipped and u(xc, t) would have been subtracted from w(χc, t) in Eq.
(11.27) instead.
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11.4. Spring connection

11.4.1 Explicit solution
Compared to the rigid connection in Section 11.3, solving for fn requires an
extra step. After isolating the schemes at their respective connection locations
– resulting in Eqs. (11.9) – one needs to expand the scheme and solve for the
states at n+ 1:

Il,u(xc)u
n+1
l = u? − ‖Jl,u(xc)‖2du

k2fn

ρuAu
, (11.30a)

Im,w(χc)w
n+1
m = w? + ‖Jm,w(χc)‖2dw

k2fn

ρwAw
, (11.30b)

where
u? = Il,u(xc)(2u

n
l − un−1

l ) + c2uk
2Il,u(xc)δxxu

n
l ,

and
w? = Im,w(χc)(2w

n
m − wn−1

m ) + c2wk
2Im,w(χc)δχχw

n
m,

are the update equations of the system at their respective connection locations,
without the term containing the connection force (as done in Chapter 10).
Evaluating Eq. (11.29) at n+ 1 yields

ηn+1 = Il,u(xc)u
n+1
l − Im,w(χc)w

n+1
m ,

into which Eqs. (11.30) can be substituted, as

ηn+1 = u? − ‖Jl,u(xc)‖2du
k2fn

ρuAu
−
(
w? + ‖Jm,w(χc)‖2dw

k2fn

ρwAw

)
. (11.31)

A second definition for ηn+1 can be obtained after expanding Eq. (11.28):

ηn+1 =
2fn

K
− ηn−1 (11.32)

and can be substituted into Eq. (11.31) to get

2fn

K
−ηn−1 = u?−‖Jl,u(xc)‖2du

k2fn

ρuAu
−
(
w? + ‖Jm,w(χc)‖2dw

k2fn

ρwAw

)
. (11.33)

Finally, one can group the terms for fn

(
2

K
+
‖Jl,u(xc)‖2duk2

ρuAu
+
‖Jm,w(χc)‖2dwk2

ρwAw

)
fn = u? − w? + ηn−1
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and solve for the force, solely based on known values of the system

fn =
u? − w? + ηn−1

2
K +

‖Jl,u(xc)‖2duk2
ρuAu

+
‖Jm,w(χc)‖2dwk2

ρwAw

. (11.34)

Figure 11.4 shows the behaviour of system Eq. (11.8), connected with a
springwith spring constantK = 5 ·104 N/m. The same parameters, excitation
and connection locations are used as for the rigid connection in Section 11.3.
Compared to the behaviour of the systemwith a rigid connection in Figure 11.2,
one can observe that the distance between the two connected points gets larger
as the wave passes the connection point, which corresponds to the extension
of the spring.

Fig. 11.4: The behaviour of two ideal strings connected using a spring. The systems are offset for
clarity, but the relative displacement at the connection location at the start of the simulation is 0.

11.4.2 Energy analysis
This section follows the energy analysis techniques presented in Section 3.4
(without explicitly following the steps for brevity) and shows that the discreti-
sation of the spring force chosen in Eq. (11.28) is inherently stable.

Following the same process as in Section 11.3.2, one can analyse system
(11.8), and arrive at Eq. (11.22):

δt+(hu + hw) = −Il,u(xc)δt·u
n
l f

n + Im,w(χc)δt·w
n
mf

n,

which can be rewritten to

δt+(hu + hw) = −δt· (Il,u(xc)u
n
l − Im,w(χc)w

n
m) fn.

One can then substitute the definitions for fn and ηn from Eqs. (11.28) and
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11.4. Spring connection

(11.29) to get
δt+(hu + hw) = −K(δt·η

n)(µt·η
n), (11.35)

which, using identity (3.17d), can be rewritten to

δt+(hu + hw + hc) = 0, (11.36)

where
hc =

K

2

(
µt−(ηn)2

)
(11.37)

is the energy stored by the connection. As this definition is non-negative it does
not affect the stability of the system. The spring constant K could potentially
be infinitely large, which would effectively reduce the spring connection to a
rigid connection presented in Section 11.3.

Figure 11.5 shows the energy of an implementation of system (11.8) con-
nected with a spring with spring constant K = 5 · 104. other parameters are
the same as for the rigid connection in Section 11.3. One can observe that
when compared to Figure 11.3, less energy is transferred from u to w, and
some energy is stored in the spring shown in green.

he

h

hu

hw

hc

Fig. 11.5: The energy of u (red), the energy ofw (blue), the energy of the spring connection (green)
and the total energy (black) of the system of connected 1D wave equations in (11.8). The energy
corresponds to the system in Figure 11.4. The right panel shows the normalised energy (according
to Eq. (3.37)) and shows that the deviation of the energy is within machine precision.

Unstable discretisation

To show why an averaging operator is used in Eq. (11.28), consider a more
straightforward discretisation of Eq. (11.26) without the averaging operator,
such that

fn = Kηn.

Performing an energy analysis of the system would yield

δt+(hu + hw) = −K(δt·η
n)(ηn),
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(instead of Eq. (11.35)) and using identity (3.17b), this can be rewritten to

δt+(hu + hw + hc) = 0,

where
hc =

K

2
(ηnet−η

n) .

As this is not necessarily non-negative, the connectionplaces a larger restriction
on the stability of the system at the connection location. In other words, λ ≤ 1

for the ideal strings does not ensure stability at the connection location. Also
see [21, pp. 190–192].

11.5 String-plate connection
As an example of a more complicated connected system used in papers [A]
and [B], consider a stiff string connected to a plate using a nonlinear damped
spring. This could be interpreted as a simplified form of how the string would
be connected to the body in a stringed instrument. In the following, subscripts
‘s’ and ‘p’ are used to denote a string or plate parameter respectively.

11.5.1 Continuous time
Consider a damped stiff string of length L (in m), its transverse displacement
described by u = u(χ, t) (in m) defined for t ≥ 0 and χ ∈ Ds where domain
Ds = [0, L]. Its PDE is described by

ρsA∂
2
t u = T∂2

χu− EsI∂
4
χu− 2σ0,sρsA∂tu+ 2σ1,sρsA∂t∂

2
χu, (11.38)

where parameters are as in Eq. (4.3).
The transverse displacement of a damped rectangular thin plate of side

lengths Lx and Ly (both in m) can be described as w = w(x, y, t) (in m), which
is defined for t ≥ 0 and (x, y) ∈ Dp where domain Dp = [0, Lx] × [0, Ly]. Its
PDE is defined as

ρpH∂
2
tw = −D∆∆w − 2σ0,pρpH∂tw + 2σ1,pρpH∂t∂

2
xw, (11.39)

where parameters are as in Eq. (6.37).
One can connect the above PDEs, by adding a localised connection force.

After a division by ρsA and ρpH respectively the connected string-plate system
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becomes

∂2
t u = c2∂2

χu− κ2
s∂

4
χu− 2σ0,s∂tu+ 2σ1,s∂t∂

2
χu− δ(χ− χc)

f

ρsA
, (11.40a)

∂2
tw = −κ2

p∆∆w − 2σ0,p∂tw + 2σ1,p∂t∂
2
xw + δ(x− xc, y − yc)

f

ρpH
, (11.40b)

where δ(χ − χc) (in m−1) and δ(x − xc, y − yc) (in m−2) are the 1D and 2D
spatial Dirac delta functions defined in Eqs. (8.8) and (11.5) respectively and
locate the connection force at χc ∈ Ds (in m) along the string and (xc, yc) ∈ Dp
(in (m,m)) on the plate.

The force between the two components (inN) is set to be a nonlinear (cubic)
damped spring defined as (used in e.g. [64] and in scaled form in [54])

f = f(t) = K1η +K3η
3 +Rη̇, (11.41)

with linear and nonlinear spring coefficients K1 (in N/m) and K3 (in N/m3)
and damping coefficientR (in kg/s). Furthermore, the distance (inm) between
the string and the plate at their respective connection locations is defined as

η = η(t) = u(χc, t)− w(xc, yc, t). (11.42)

11.5.2 Discrete time
To discretise u(χ, t), one can use grid function unq where n ∈ N0 and q ∈
{0, . . . , N}with number of grid pointsN+1 (see Section 2.2.1). Next,w(x, y, t)

can be discretised using grid function wnl,m with l ∈ {0, . . . , Nx} and m ∈
{0, . . . , Ny} where Nx + 1 and Ny + 1 are the number of grid points in the x
and y direction respectively (see Section 6.1).

Using these grid functions, system (11.40) can then be discretised as

δttu
n
q = c2δχχu

n
q − κ2

s δχχχχu
n
q − 2σ0,sδt·u

n
q + 2σ1,sδt−δχχu

n
q

− Jq(χc)
fn

ρsA
,

(11.43)

δttw
n
l,m = −κ2

pδ∆δ∆w
n
l,m − 2σ0,pδt·w

n
l,m + 2σ1,pδt−δxxw

n
l,m

+ Jl,m(xc, yc)
fn

ρpH
,

(11.44)

where Jq(χc) = Jq,os(χc) is a 1D spreading operator of order os as defined
in Section 8.2 and Jl,m(xc, yc) = J(l,m),op(xc, yc) is a 2D spreading operator of
order op as defined in Section 11.1.
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The definition of the force in Eq. (11.41) can be discretised as5

fn = K1µttη
n +K3(ηn)2µt·η

n +Rδt·η
n, (11.45)

where
ηn = Iq(χc)u

n
q − Il,m(xc, yc)w

n
m. (11.46)

Here, Iq(χc) = Iq,os(χc) and Il,m(xc, yc) = I(l,m),op(xc, yc) are interpolation
operators of the same order as Jq(χc) and Jl,m(xc) respectively.

11.5.3 Solving for f
Following the same process as in Section 11.4.1, system (11.43) needs to be
isolated at the connection locations. This is done by taking an inner product of
the schemes in (11.43) with their respective spreading operators over discrete
domains du = {0, . . . , N} and dw = {0, . . . , Nx} × {0, . . . , Ny} respectively.
Taking these inner products, expanding the δtt and δt· operators (as these
contain un+1

q ) and solving for the states at n+ 1 yields

Iq(χc)u
n+1
q = u? − ‖Jq(χc)‖2du

k2fn

ρsA(1 + σ0,sk)
, (11.47a)

Il,m(xc)w
n
l,m = w? + ‖Jl,m(xc, yc)‖2dw

k2fn

ρpH(1 + σ0,pk)
, (11.47b)

where

u? =
(
Iq(χc)(2u

n
q − un−1

q ) + c2k2Iq(χc)δχχu
n
q − κ2

sk
2Iq(χc)δχχχχu

n
q

+ σ0,skIq(χc)u
n−1
q + 2σ1,sk

2Iq(χc)δt−δχχu
n
q

)
/(1 + σ0,sk),

(11.48a)

w? =
(
− κ2

pIl,m(xc)δ∆δ∆w
n
l,m + σ0,pkIl,m(xc)w

n−1
l,m

+ 2σ1,pIl,m(xc)δt−δxxw
n
l,m

)
/(1 + σ0,pk),

(11.48b)

are the update equations of the schemes at their respective connection locations
without the force term.

Evaluating Eq. (11.46) at n+ 1 and substituting Eqs. (11.47) yields

ηn+1 = u? − ‖Jq(χc)‖2du
k2fn

ρsA(1 + σ0,sk)

−
(
w? + ‖Jl,m(xc, yc)‖2dw

k2fn

ρpH(1 + σ0,pk)

)
.

(11.49)

5The second-order averaging operator has been chosen here to show an alternative discretisa-
tion of the linear term, but it could be replaced by a centred first-order averaging operator as used
in Eq. (11.28).
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Then expanding Eq. (11.45) to

fn =

(
K1

4
+
K3(ηn)2

2
+
R

2k

)

︸ ︷︷ ︸
rn+

ηn+1 +
K1

2
ηn+

(
K1

4
+
K3(ηn)2

2
− R

2k

)

︸ ︷︷ ︸
rn−

ηn−1,

and solving for ηn+1 yields

ηn+1 =
fn

rn+
− K1

2rn+
ηn − rn−

rn+
ηn−1. (11.50)

Substituting this into Eq. (11.49), one can find a definition for the connecting
force

fn =
u? − w? + K1

2rn+
ηn +

rn−
rn+
ηn−1

1
rn+

+
‖Jq(χc)‖2duk2
ρsA(1+σ0,sk) +

‖Jl,m(xc,yc)‖2dwk2
ρpH(1+σ0,pk)

. (11.51)

11.5.4 Implementation
This section shows an example of an implementation of the string-plate system.
The parameters for the stiff string can be found in Table 4.1 (with L = 1.5 m
and T = 555 N) and for the thin plate in Table 6.1 (with H = 5 · 10−4). Both
systems use simply supported boundary conditions. Additional parameters
used for the connection are

K1 = 104 N/m, K3 = 107 N/m3, and R = 10 kg/s.

The MATLAB code of the implementation can be found online [110].6 Figure
11.6 shows a visualisation of the string plate system excited with a raised
cosine.

In the following, the i and j vectors are as used in Section 11.3.3 and are of
the appropriate sizes. The matrices for the string can be found in Eq. (4.19)
and those for the plate in Eq. (6.46). When implementing connections (or any
other interactions for that matter), one mostly performs the following steps in
the main loop:

1. Calculate the entire scheme without force terms:

u? =
Bsu

n + Csu
n−1

As
, and w? =

Bpw
n + Cpw

n−1

Ap
. (11.52)

2. Obtain u? and w?:
u? = iuu

? and w? = iww?. (11.53)
6Note that in the online code, L, Lx and Ly have been halved to reduce computations and

avoid crashes on some machines.
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Fig. 11.6: The behaviour of the string-plate system connected with a nonlinear damped spring.
The string is shown in red, the plate in gray and the connection in green.

3. Calculate the connection force fn (Eq. (11.51)).

4. Add force terms to the schemes in Eq. (11.52):

un+1 = u? − ju
fnk2

ρsA(1 + σ0,s)
, and wn+1 = w? + jw

fnk2

ρpH(1 + σ0,p)
.

(11.54)

Calculating u? and w? beforehand reduces computations, and allows u? and
w? to be more easily obtained.

11.5.5 Energy analysis
Recalling the total energy and damping terms for the string and plate in Sec-
tions 4.4 and 6.3.5 respectively, one can – similar to Eq. (11.22) – arrive at the
following:

δt+(hs + hp) + qs + qp = −Iq(χc)(δt·u
n
q )fn + Il,m(xc)(δt·w

n
l,m)fn, (11.55)

which can be rewritten to

δt+(hs + hp) + qs + qp = −δt·
(
Iq(χc)u

n
q − Il,m(xc)w

n
l,m

)
fn.

Substituting the definitions for fn and ηn from Eqs. (11.45) and (11.46) respec-
tively, yields

δt+(hs + hp) + qs + qp = −(δt·η
n)(K1µttη

n +K3(ηn)2µt·η
n +Rδt·η

n).
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11.5. String-plate connection

Due to the nonlinear dependency on ηn one must isolate δt+ from the cubic
term manually, according to

K3(ηn)2(δt·η
n)(µt·η

n)

=
K3(η2)

2k
(ηn+1 − ηn−1)

1

2
(ηn+1 + ηn−1)

=
K3(ηn)2

4k

(
(ηn+1)2 − (ηn−1)2

)

=
K3

4k

(
(ηn+1ηn)2 − (ηnηn−1)2

)

= δt+

(
K3

4
(ηnηn−1)2

)
.

Finally, using identity (3.17e) for the linear term, the following balance follows

δt+(hs + hp + hc) = −qs − qp − qc, (11.56)

where the energy stored by the spring connection is

hc =
K1

8
(ηn + ηn−1)2 +

K3

4
(ηnηn−1)2,

and the damping term of the connection is

qc = R(δt·η
n)2.

Figure 11.7 shows the energetic output of the string-plate system correspond-
ing to the behaviour in Figure 11.6. One can observe that energy is transferred
from the string to the plate due to the connection. Furthermore, due to the
high value for spring-damping R, the total energy decreases substantially as
the excitation reaches the connection location along the string.

he

h

hs

hp

hc

Fig. 11.7: The energy of the string (red), the plate (blue), the spring connection (green) and the
total energy (black) of the connected string-plate system (11.43). The energy corresponds to the
system in Figure 11.6. The right panel shows the normalised energy (according to Eq. (3.38)) and
shows that the deviation of the energy is within machine precision.
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Contributions

This part presents the contributions made throughout this PhD project, and
can be seen as an extended summary of the published work in Part VII. As
much as possible, the summaries relate the content of the papers to the theory
presented in the rest of the thesis.

This part starts by introducing the dynamic grid in Chapter 12, a method to
dynamically vary grid configurations in FDTD simulations published in paper
[G], and extends the paper by providing implementation details and design
considerations. Chapter 13 provides details on real-time implementation of
physical models using FDTD methods, which have been used for many of the
contributions. Finally, several real-time implementations of full instrument
models that have been developed during the PhD will be presented: Chapter
14 provides an extended summary of papers [A] and [B], which present three
instrument-inspired case-studies using a large-scale modular environment.
Chapter 15 summarises papers [D] and [E], presenting the trombamarina, and
provides extra information on the implementation of the algorithm. Finally,
Chapter 16 provides an extended summary of paper [H] and extends the paper
by providing design considerations and implementation details.
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Chapter 12

The Dynamic Grid

This chapter provides an extended summary to the paper “Dynamic grids for
Finite-Difference Schemes in Musical Instrument Simulations” [G]. The paper
presents a novel method to smoothly add and remove grid points from a FD
scheme, which allows for dynamic parameter variations without compromis-
ing stability or quality of the simulation (see Section 2.4.4).

After a brief introduction, this chapter summarises paper [G] and extends it
by providing details on the implementation of the displacement correction and
the modal analysis shown in the paper. This chapter continues by providing
additional results of various experiments to substantiate choices made in the
paper. Finally, this chapter lists several examples of potential future use cases
for the method presented here.

12.1 Background and motivation
Simulating musical instruments using physical modelling – as mentioned in
Chapter 1 – allows for manipulations of the instrument that are impossible
in the physical world. Examples of this are changes in material density or
stiffness, cross-sectional area (strings, acoustic tubes), thickness (membranes,
plates) and size of the system in general. Using FDTD methods to discretise
PDEs, constrains the simulation to a grid of a finite amount of points. As
explained in Section 2.4.4, the definition of this grid ties the parameters set by
the user to the stability and quality of the simulation, making FDTD methods
extremely inflexible to parameter changes.

Apart from being potentially sonically interesting, dynamic parameter
changes also happen in the real world. A prime example is the trombone
published in paper [H] using the method presented here. A collection of
examples for potential future use cases of the method are listed in Section 12.4.
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12.2 Extended summary
This section summarises the dynamic grid method presented in paper [G] and
extends the paper by providing details on the implementation.

12.2.1 Problem statement
Consider the 1D wave equation as presented in Section 2.4, describing the
motion of a system of length L (in m), its state is denoted by q = q(x, t), and is
defined for t ≥ 0 and x ∈ D with domain D = [0, L]. This state variable can be
discretised to a grid function qnl with n ∈ N0 and l ∈ {0, . . . , N}, where N is
the number of intervals between the grid points. The PDE in Eq. (2.38) (using
state variable q) can then be discretised to the following FD scheme:

δttq
n
l = c2δxxq

n
l . (12.1)

If one would like to dynamically vary the wave speed c, several issues arise.
Performing the usual calculations for the number of intervals N , Courant
number λ ≤ 1 and grid spacing h (Eq. (2.53)),

h := ck, N :=

⌊
L

h

⌋
, h :=

L

N
, λ :=

ck

h
, (12.2)

shows that a change in c can cause abrupt changes in N due to the flooring
operation. One could avoid this issue by fixingN at the start of the simulation
and decrease c, i.e., tune it away from the stability condition. The issue here, is
that the simulation quality and bandwidth decreases very rapidly as explained
in Section 2.4.4.

Paper [G] proposes a fractional number of intervals N , where N = bNc,
such that grid points could potentially be added and removed from the grid
without causing artefacts. As the number of intervals is fractional, the flooring
operation in Eq. (12.2) can be removed, and h does not have to be recalculated.
Equation (12.2) can be changed to

h := ck, N :=
L

h
, λ :=

ck

h
, (12.3)

which results in that the stability condition is always satisfied with equality.
Issues regarding simulation quality and bandwidth could thus be resolved. In
the following, the variables c, h, N and N will receive a superscript n as they
are time-varying.
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12.2. Extended summary

12.2.2 Splitting the scheme
Rather thanworkingwith the scheme in Eq. (12.1) directly, paper [G] proposes
to split it into two separate subsystems, according to

δttu
n
lu = (cn)2δxxu

n
lu , (12.4a)

δttw
n
lw = (cn)2δxxw

n
lw , (12.4b)

where lu ∈ {0, . . . ,Mn} and lw ∈ {0, . . . ,Mn
w} and integers

Mn = d0.5Nne and Mn
w = b0.5Nnc (12.5)

are the number of intervals between grid points of each respective subsystem.
This yields a total of Mn + Mn

w + 2 grid points, which is one more than
the original scheme in Eq. (12.1). Paper [G] shows that this system can be
shown to exhibit identical behaviour to the original system, using the boundary
conditions described shortly.

Locations of grid points

The schemes in Eq. (12.4) are placed on the same domain x, where the left
boundary of unlu and the right boundary of wnlw – referred to as the outer
boundaries – are placed at the following locations:

xnu0
= 0, xnwMnw

= L. (12.6)

Here, xnql is the location of grid point ql (in m from the left boundary) at time
index n.

The right boundary of u and the left boundary of w – referred to as the
inner boundaries – are placed at the following locations:

xnuMn = Mnhn, xnw0
= L−Mn

wh
n. (12.7)

IfNn is an integer, the inner boundaries perfectly overlap (see Figure 12.1a). If
the wave speed cn changes, which consequently changes hn according to Eq.
(12.3), the outer boundaries will remain at their respective locations given by
Eq. (12.6) and all other grid points will move to or from the outer boundary
of their respective system according to1

xnulu = luh
n, xnwlw = L− (Mn

w − lw)hn. (12.8)

See Figure 12.1b. As an example, if cn decreases, hn decreases, causing all grid
points of system u to move towards the left boundary and all grid points of

1Notice that Eq. (12.8) applies to all grid points, and includes the definitions for the outer and
inner boundaries in Eqs. (12.6) and (12.7).
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(a)

(b)

(c)
Fig. 12.1: Illustration of the proposed method. In all figures, the x-axis shows the location of
the respective grid points, but ‘xn’ is omitted for brevity. (a) Locations of the states of two (1D
wave) systems connected at the inner boundaries (Nn = 30, xnuMn = xnw0

). (b) When cn,
and consequently hn, are decreased and the positions of the grid points change (Nn = 30.5,
xnuMn 6= xnw0

). (c) Figure 12.1b zoomed-in around the inner boundaries. The virtual grid points
unMn+1 and wn

−1 are shown together with the distance between them, expressed using α in Eq.
(12.9). (Taken from paper [G].)

system w to move towards the right boundary (except for grid points at the
outer boundaries).

The distance between the inner boundaries is expressed as the fractional
part of Nn

α = αn = Nn −Nn (12.9)

and essentially states how many times the grid spacing hn can fit between the
inner boundaries, which is always less than once (see Figure 12.1c). If the value
of Nn changes, a grid point will be added to or removed from the grid as will
be shown in Section 12.2.3.
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Boundary conditions

For the outer boundaries, Dirichlet boundary conditions are used (see Eq.
(2.48a)). The conditions for the inner boundaries are slightly more involved,
and play a large part in the working of the method. In order for the system
to exhibit the same behaviour as the original system in Eq. (12.1), the inner
boundaries must have an identical displacement if they are perfectly overlap-
ping, i.e.,

unMn = wn0 , if α = 0, (12.10)

and acts like a rigid connection between the inner boundaries (see Section
11.3). It is shown in paper [G], that in the perfectly overlapping case, identical
behaviour to the original system can be obtained if: 1) the virtual grid points
unMn+1 and wn−1 are defined by the (centred) Neumann boundary condition
(Eq. (2.48b)), and 2) the rigid connection in Eq. (12.10) is imposed on unMn and
wn0 .

If parameters are varied, and the inner boundaries are no longer overlap-
ping, the rigid connection will not be imposed anymore, and other definitions
for the virtual grid points must be found. Using quadratic Lagrange inter-
polation to calculate the virtual grid points, shows excellent behaviour when
parameters are varied, and continues to satisfy the requirement in Eq. (12.10)
for perfectly overlapping boundaries (see Section 12.3 for experiments with
other interpolators). At the inner boundaries, a definition of the virtual grid
points is given as

unMn+1 =
α− 1

α+ 1
unMn + wn0 −

α− 1

α+ 1
wn1 , (12.11a)

wn−1 = −α− 1

α+ 1
unMn−1 + unMn +

α− 1

α+ 1
wn0 . (12.11b)

How these coefficients are obtained will be shown below.

Lagrange interpolation

The coefficients in Eq. (12.11) were obtained using the Lagrange interpolation
formula, where the coefficient at the ith interpolation index is calculated as

Ii(x) =

o∏

j=0,j 6=i

x− xj
xi − xj

, (12.12)

with interpolation order o, which, in this case, is 2. As uMn is the leftmost grid
point used for the interpolation, its location is set to 0 and the values used are
normalised by hn for simplicity. To calculate the coefficients in Eq. (12.11a),
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the following locations were used in Eq. (12.12) (refer to Figure 12.1c):

x0 = xuMn = 0,

x1 = xw0
= α,

x2 = xw1 = α+ 1.

(12.13)

The virtual grid point is the point calculated by the interpolation and will be
at

x = xuMn+1 = 1. (12.14)

Writing out the interpolation coefficient for index i = 0, yields

I0(x) =

(
1− α
0− α

)(
1− (α+ 1)

0− (α+ 1)

)
,

=
α− 1

α+ 1
.

This process can be repeated to obtain the other coefficients.
To obtain the coefficients for Eq. (12.11b), one can alter the locations in Eq.

(12.13), or simply reverse the interpolator and apply it to the appropriate grid
points.

12.2.3 Adding and removing grid points
Before continuing, it is useful to write the state of the system in vectors:

un = [un1 , . . . , u
n
Mn ]T, and wn = [wn0 , . . . , w

n
Mn
w−1]T , (12.15)

and have Mn and Mn
w entries respectively. Notice that un0 and wnMn

w
are not

included, as Dirichlet boundary conditions are used.
If cn and – through Eq. (12.2) – hn are decreased, it might happen that the

inner boundaries surpass the virtual grid points andNn > Nn−1. In this case,
a grid point must be added to the system, which will be done according to the
following:

if Nn > Nn−1

{
un = [(un)T , I3v

n]T if Nn is odd,
wn = [I←3 vn, (wn)T ]T if Nn is even.

(12.16)

Here,

vn = [unMn−1, u
n
Mn , wn0 , w

n
1 ]T
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and cubic Lagrangian interpolator (see Eq. (12.12))

I3 =
[
− α(α+1)

(α+2)(α+3)
2α
α+2

2
α+2 − 2α

(α+3)(α+2)

]
, (12.17)

where I←3 is a flipped version of (12.17).
If the opposite happens: cn and hn increase, and Nn < Nn−1, a grid point

can be removed from the system according to the following:

if Nn < Nn−1

{
un = [un0 , u

n
1 ..., u

n
Mn−1]T if Nn is even,

wn = [wn1 , w
n
2 ..., w

n
Mn
w

]T if Nn is odd.
(12.18)

As mentioned in [G], the split of the original system does not have to be at
the center (as presented here), but can be anywhere along the system, the limit
being one point from the boundary. Thus, ifMn andMn

w are calculated using

Mn = Nn − 1, and Mn
w = 1, (12.19)

the method is still valid. Notice that if this definition is used, grid points will
only be added and removed from un, and Eqs. (12.16) and (12.18) reduce to

un = [(un)T , I3v
n]T , if Nn > Nn−1 (12.20)

and
un = [un0 , u

n
1 ..., u

n
Mn−1]T , if Nn < Nn−1, (12.21)

respectively.

12.2.4 Displacement correction
An issue that arises when increasing cn, is that unMn 6≈ wn0 at the time of
removal. As α ≈ 0 at this moment, this violates the rigid connection in Eq.
(12.10). Paper [G] proposes to ‘correct’ the state of the grid points at the inner
boundaries, which is referred to as displacement correction, and will be detailed
here.2

Using 0th-order spreading interpolators Jlu(xnuMn ) = Jlu,0(xnuMn ) and
Jlw(xnw0

) = Jlw,0(xnw0
) as defined in Section 8.2, system (12.4) can be extended

to contain an artificial spring connection at the inner boundaries as3

δttu
n
lu = (cn)2δxxu

n
lu + Jlu(xnuMn )Fnc , (12.22a)

δttw
n
lw = (cn)2δxxw

n
lw − Jlw(xnw0

)Fnc , (12.22b)

2The term state correction (as used in paper [H]) might be more appropriate here, as the state of
a system described by a FD scheme might not refer to a ‘displacement’.

3Paper [G] uses subscripts u and w rather than lu and lw for the spreading operators, but this
has been changed here, for coherency with the rest of this thesis.
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where the correction effect is determined by a linear damped spring (see Chap-
ter 11)

Fnc = β (µt·η
n + σ0δt·η

n) . (12.23)

Here, σ0 is a damping coefficient and the difference between the states of the
system at the inner boundaries is defined as

ηn , wn0 − unMn . (12.24)

Notice that, as the spreading operators are of 0th-order, one can simplify the
notation as done in Section 11.3.1 and use subscripts rather than interpolation
operators.

Furthermore, β = βn = β(αn) scales the correction effect depending on
the value of α. This function has to be defined such that when α = 0, β → ∞
and the correction effect acts like a rigid connection. If, on the other hand
α→ 1, the correction effect should vanish, according to β → 0. The following
function that satisfies these conditions was proposed in paper [G]:

β =
1− α
α+ ε

, (12.25)

where 0 ≤ ε � 1 prevents a division by 0. Paper [G] states that it can be
shown that when implementing the correction effect, a division by 0 can be
prevented, and ε = 0 will still yield a defined solution. As an extension to
paper [G], details on this implementation will be given here.

Implementation

Following a similar process to Section 11.4.1, one can expand the temporal FD
operators of system (12.22) at the connection location to get

un+1
Mn = 2unMn − un−1

Mn + (cn)2k2δxxu
n
Mn +

k2

hn
Fnc , (12.26a)

wn+1
0 = 2wn0 − wn−1

0 + (cn)2k2δxxw
n
lw −

k2

hn
Fnc , (12.26b)

and substituting this into Eq. (12.24) evaluated at n+ 1, yields

ηn+1 = w? − k2

hn
Fnc −

(
u? +

k2

hn
Fnc

)
, (12.27)

where
u? = 2unMn − un−1

Mn + (cn)2k2δxxu
n
Mn ,

and
w? = 2wn0 − wn−1

0 + (cn)2k2δxxw
n
0 ,
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are the update equations of the schemes without the connection force.
Another definition of ηn+1 can be obtained by expanding Eq. (12.23) and

solving for ηn+1 according to

Fnc = β

(
1

2

(
ηn+1 + ηn−1

)
+
σ0

2k

(
ηn+1 − ηn−1

))
,

Fnc =

(
β(1 + σ0/k)

2

)
ηn+1 +

(
β(1− σ0/k)

2

)
ηn−1,

Eq. (12.25)
⇐======⇒ ηn+1 =

(
2(α+ ε)

(1 + σ0/k)(1− α)

)
Fnc −

1− σ0/k

1 + σ0/k︸ ︷︷ ︸
r

ηn−1. (12.28)

This definition can be substituted into Eq. (12.27) and solved for Fnc according
to

(
2(α+ ε)

(1 + σ0/k)(1− α)

)
Fnc − rηn−1 = w? − u? − 2k2

hn
F,

(
2hn(α+ ε) + 2k2(1 + σ0/k)(1− α)

hn(1 + σ0/k)(1− α)

)
Fnc = w? − u? + rηn−1,

and finally

Fnc =
(
w? − u? + rηn−1

)( hn(1 + σ0/k)(1− α)

2hn(α+ ε) + 2k2(1 + σ0/k)(1− α)

)
.

It is clear now that, even if ε = 0, no division by 0 will occur no matter the
value of α. In other words, if α = ε = 0 in Eq. (12.25), this will still yield a
defined solution. The final equation for Fnc can thus be written as

Fnc =
(
w? − u? + rηn−1

)( hn(1 + σ0/k)(1− α)

2hnα+ 2k2(1 + σ0/k)(1− α)

)
. (12.29)

This can then be substituted into system (12.22) and used to calculate un+1
Mn and

wn+1
0 respectively.

12.2.5 Matrix form
The vectors in Eq. (12.15) can be concatenated to one larger state vector as4

Un =

[
un

wn

]
, (12.30)

4Note that, although Un is not a matrix, it is capitalised for coherency with paper [G].
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and hasMn = Mn + Mn
w elements. UsingMn ×Mn identity matrix IMn ,

system (12.22) can then be written in matrix form as

IMnUn+1 =BnUn − IMnUn−1

+ (jη)
βk2

2

(
(1 + σ0/k)Un+1 + (1− σ0/k)Un−1

) (12.31)

whereMn × 1 column vector

j = jn = [0Mn−1, 1/h
n,−1/hn,0Mn

w−1]T

contains the effect of the spreading operators with P × 1 row vector 0P . Fur-
thermore, 1×Mn row vector

η = ηn = [0Mn−1,−1, 1,0Mn
w−1]

vectorises the effect that ηn in Eq. (12.24) has on U . Note that as j is a column
vector and η a row vector, the multiplication of the two yields anMn ×Mn

diagonal matrix. Finally, Bn contains the usual Dxx matrices for both schemes
in its top-left and bottom-right quadrants, as well as the definitions for the
virtual grid points given in Eqs. (12.11):

Bn = 2IMn

+ λ2




. . . . . . . . . 0

1 −2 1

1
(
α−1
α+1 − 2

)
1 −α−1

α+1

−α−1
α+1 1

(
α−1
α+1 − 2

)
1

1 −2 1

0
. . . . . . . . .




which, as the method allows λ = 1 at all times, can be simplified to

Bn =




. . . . . . . . . 0

1 0 1

1 α−1
α+1 1 −α−1

α+1

−α−1
α+1 1 α−1

α+1 1

1 0 1

0
. . . . . . . . .




. (12.32)
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Equation (12.31) can then be rewritten to

AnUn+1 = BnUn + CnUn−1, (12.33)

with

An = IMn−βk
2(1 + σ0/k)

2
jη, and Cn = −

(
IMn − βk2(1− σ0/k)

2
jη

)
.

Notice that if points are added and removed at the boundary, and Eq. (12.19)
is used, the Bn matrix can be written as

Bn =




. . . . . . . . .
1 0 1

1 α−1
α+1 1

−α−1
α+1 1 α−1

α+1


 , (12.34)

due to the Dirichlet boundary condition.

Fig. 12.2: Results of a modal analysis performed on the one-step form of the dynamic grid system
in (12.35). Thinner and bluer lines indicate a higher amount of damping.

12.2.6 Modal analysis and results
Although the modal analysis techniques presented in Section 3.5 are only
accurate for LTI systems, they can still be applied in the case of slow (sub-
audio rate) parameter variations to obtain useful information about the scheme
behaviour. In the process of creating the proposed dynamic grid method,
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(a) Nn = 15 → 20, without displacement
correction.
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(b) Nn = 20 → 15, with displacement cor-
rection.

Fig. 12.3: Output spectra of an implementation of the dynamic grid.

modal analysis was indeed a key component in determining whether the
method yielded satisfactory results.

One can perform a modal analysis on the scheme by writing Eq. (12.33) in
a one-step form (see Section 3.5.1),

[Un+1

Un

]
=

[
(An)−1Bn (An)−1Cn

IMn 0

]

︸ ︷︷ ︸
Qn

[ Un

Un−1

]
, (12.35)

where 0 is aMn ×Mn matrix of zeros. 5

Figure 12.2 shows the result of a modal analysis performed on the one-
step form shown in Eq. (12.35) according to Section 3.5.1. The split of the
original system is done as close to the right boundary as possible, such that
the number of intervals Mn and Mn

w are calculated using Eq. (12.19). For
a simulation lasting nend samples, the wave speed is varied linearly between
c0 = 2940, corresponding to N 0 = 15, and cnend = 2205, corresponding to
Nnend = 20.

Figure 12.3 shows the output spectra of an implementation of the dynamic
grid with the same parameter variation as used for the modal analysis. Figure
12.3a presents the spectral output of an implementation, where N = 20 →
15 without displacement correction, and shows that the modes follow the
pattern predicted by the analysis. Figure 12.3b presents the spectral output
where N = 15 → 20 with displacement correction activated. Although high-
frequency modes get damped by the displacement correction, no artefacts are
visible when changing grid configurations. Furthermore, the modes follow
the pattern predicted by the modal analysis in reverse (as expected).

5Notice that, in the definitions for An and Cn, β can go to infinity, when α = ε = 0 through
Eq. (12.25). In this case, ε is set to a tiny non-zero value to avoid undefined results.
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12.2.7 Discussion and conclusion
Overall, the method satisfies the requirements detailed in the paper. The
fundamental frequency of the system follows Eq. (2.40) with only very small
deviations, as desired. Although larger deviations occur for higher frequency
modes, these are not substantial. Looking at Figure 12.3b, the displacement
correction seems to successfully prevent artefacts, but proper listening tests
will need to be carried out to confirm this.

The results show that drawbacks of the method, such as frequency devi-
ations and damping due to the displacement correction, mainly happen in
higher frequency regions. As these are less relevant than lower frequencies
due to the reasons presented in [G], the method can be concluded to work
satisfactory. A more detailed discussion of the results can be found in the
paper.

One important aspect that is still missing from the presented method, is
under what conditions it is stable. As stated in [21], stability for time-varying
schemes are difficult to show using the current energy analysis framework
(presented in Section 3.4). The first step would be to perform a frozen coefficient
analysis [59]. In the case of this method, this means to fix cn at different values
and prove stability in those cases. Finding these conditions has been left
for future work, but would be a logical next step in the development of the
dynamic grid method.

Other future work includes to extend the method to other systems, such
as stiff strings (Chapter 4) or even 2D systems such as membranes and plates
(Chapter 6). An interesting use case for this method is that of nonlinear
systems, such as the Kirchhoff-Carrier string model [111] where parameters
are varied based on the state of the system.

12.3 Interpolation experiments
This section presents the results of experiments using different orders of in-
terpolation to calculate the virtual grid points at the inner boundaries of the
system, and aims to provide insight as towhy quadratic interpolation has been
chosen in the end.

Four different Lagrangian interpolators are presented, ranging from lin-
ear to quartic (fourth order), and are made using the Lagrange interpolation
formula in Eq. (12.12). Different orders of interpolation are included in the
method by changing the definitions of the virtual grid points given in Eq.
(12.11), and thereby the definition of the Bn matrix in Eq. (12.32). As the effect
of the displacement correction on the modal frequencies is negligible, this is
excluded for clarity. Equation (12.33) can then be rewritten to

Un+1 = BnUn − Un−1 (12.36)
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and, using a test solution Un = znφ (following Section 3.5), the eigenfrequen-
cies can be calculated according to (using trigonometric identity (3.21b))

fnp =
1

2πk
cos−1

(
1

2
eigp(B

n)

)
. (12.37)

In the following, results will be shown for a varying wave speed corre-
sponding Nn = 15→ 20, as was done in Section 12.2.6, but using Eq. (12.37).
For each interpolator, the case where the original system is split in the mid-
dle using Eq. (12.16), and where the split is at the right boundary using Eq.
(12.20), are considered. The black and red colours used in the figures do not
carry extra meaning, and are only used for clarity of the plots. The results will
be discussed at the end of this section.

Linear interpolation

One can implement linear interpolation by changing the definitions in Eq.
(12.11) to

unMn+1 = αwn0 + (1− α)wn1 , (12.38a)
wn−1 = (1− α)unMn−1 + αunMn , (12.38b)

such that the value of the virtual grid points of one system are fully defined
by values of the other.

The B matrix in Eq. (12.32) can be changed to

Bn =




. . . . . . 0

1 0 1

1 0 α (1− α)

(1− α) α 0 1

1 0 1

0
. . . . . .




(12.39)

and results are shown in Figure 12.4.

Quadratic interpolation

As quadratic interpolation is what the dynamic grid method is based on, no
new definitions for Eqs. (12.11) and (12.32) have to be given. Results of the
modal analysis using Eq. (12.37) are shown in Figure 12.5.
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(a) Split is in middle. (b) Split is close to the boundary.

Fig. 12.4: Results of modal analysis for linear interpolation.

(a) Split is in middle. (b) Split is close to the boundary.

Fig. 12.5: Results of modal analysis for quadratic interpolation.

Cubic interpolation

A cubic interpolator, using two points at either side of the virtual grid point,
can be created using the Lagrangian interpolation formula in Eq. (12.12). The
locations to calculate uMn+1 will be set to

x0 = xuMn = 0,

x1 = xw0 = α,

x2 = xw1
= α+ 1,

x3 = xw2
= α+ 2,

(12.40)

and the virtual grid point is at

x = xuMn+1 = 1. (12.41)
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The definitions for the virtual grid points can then be shown to be

unMn+1 =
α− 1

α+ 2
unMn +

α+ 1

2
wn0 + (1− α)wn1 +

α(α− 1)

2(α+ 2)
wn2 , (12.42a)

wn−1 =
α(α− 1)

2(α+ 2)
unMn−2 + (1− α)unMn−1 +

α+ 1

2
unMn +

α− 1

α+ 2
wn0 , (12.42b)

and the Bn matrix can be set accordingly.
If Eq. (12.19) is used, and the split is placed close to the right boundary,

the Dirichlet condition at this boundary needs to be extended to be simply
supported, such that wn2 = −wn0 . As the value at the boundary remains 0, i.e.,
w1 = 0, this alters Eqs. (12.42) to be

unMn+1 =
α− 1

α+ 2
unMn +

(
α+ 1

2
− α(α− 1)

2(α+ 2)

)
wn0

wn−1 =
α(α− 1)

2(α+ 2)
unMn−2 + (1− α)unMn−1 +

α+ 1

2
unMn .

The results are shown in Figure 12.6.

(a) Split is in middle. (b) Split is close to the boundary.

Fig. 12.6: Results of modal analysis for cubic interpolation.

Quartic interpolation

Finally, a quartic interpolator can be created fromEq. (12.12). At the boundary,
it can be implemented similar to the cubic interpolator. Results of a quartic
interpolator can be found in Figure 12.7.
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(a) Split is in middle. (b) Split is close to the boundary.

Fig. 12.7: Results of modal analysis for quartic (fourth-order) interpolation.

12.3.1 Discussion
The results show a large behavioural difference between odd-ordered (linear,
cubic) interpolators and even-ordered (quadratic, quartic) interpolators.

Figure 12.4 shows that for linear interpolation, modes with frequencies
below fs/4 Hz (1/2 the Nyquist frequency) move downwards asNn increases,
as expected, but modes above this frequency generally move upwards. If
the split is in the middle, ‘modal crossings’ appear for even values of bNnc,
but they do not occur when the split is close the boundary. Similar behaviour
occurs for cubic interpolation in Figure 12.6, but the split happens around 3/8fs
Hz (3/4 the Nyquist frequency). Again, adding points close to the boundary
resolves the modal crossings.

The modal patterns created by even-ordered interpolators, exhibit be-
haviour closer to what is desired (see Figures 12.5 and 12.7). All modal
frequencies move down and nomodal crossings occur. Interestingly, the even-
ordered interpolators show no differences in their modal behaviour when the
split is in the middle of the original system versus close to the boundary (the
differences are within machine precision).

Frequency deviations happen to a lesser degree for the quartic interpolator
than for the quadratic interpolator, and continue todecrease for higher-ordered
(even) interpolators. The differences have been found negligible and as flex-
ibility of the method decreases as the interpolation order increases (as more
grid points are required for the virtual grid point calculation), the quadratic
interpolator has been chosen in the eventual method.
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12.4 Examples of use cases
This section provides several examples of instruments using dynamic param-
eter variations and can be used as inspiration for future work. As mentioned
in paper [G], the interest lies in dynamic changes in the defining parameters of
the resonator, as opposed to a pitch change using a fretting finger, for example.

1D systems

A defining property that can physically be changed in strings is the tension.
There are various ways to smoothly change the pitch by changing the tension
in the string. A straightforward way to do this would be to move the fretting
finger perpendicular to the string while pressing down to create a pitch bend.
Other, less commonways are tomodulate the tension by pressing down on the
small length of string between the tuning peg and the nut6, or turn the tuning
pegs directly while playing.7, 8

The hammered dulcimer is another example where the strings are placed
over a bridge, where one can play the string at one side of the bridge, while
pushing down on the same string on the other side.9

Apart from strings, acoustic tubes also lend themselves to applications of
the dynamic grid. The main example is the trombone as published in [H],
where the method presented in this chapter is used. The slide whistle falls in
the same category.

2D systems

One could potentially extend the dynamic grid method presented here to 2D,
and model physical tension changes in membranes. The membrane tension
in timpani, for example, can be changed using a footpedal. The Bodhrán
is a membranophone where the player hits the membrane on one side and
can change the pitch by pressing on the other side.10 The pitch of a talking
drum (hourglass drum) can be changed be squeezing the laces attached to the
membrane.11 An example of a pitch-modulated thin plate is the musical saw,
where the curvature of the saw is changed to create different pitches.12

6John Mayer - Gravity (Live in L.A.): https://youtu.be/dBFW8OvciIU?t=284
7Jon Gomm - Passionflower: https://youtu.be/nY7GnAq6Znw?t=49
8gr4yhound - servo bender: https://youtu.be/fSQ9Dg65EFo
9Amazing Hammered Dulcimer Musician - Joshua Messick: https://youtu.be/

veuGTnzgNRU?t=215
10John Joe Kelly Bodhran Solo - Christ church Dublin 2012: https://youtu.be/

b9HyB5yNS1A?t=146
11Ayan Bisi Adeleke - Master talking drummer - drum talks: https://youtu.be/

B4oQJZ2TEVI?t=9
12Musical Saw performance by Sakita Hajime: https://youtu.be/-6nv0iDrAis
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Chapter 13

Real-Time Implementation
and Control

“The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature

optimization is the root of all evil (or at least most of it) in programming.”
- Donald E. Knuth

A large contribution of this PhD project has been to implement novel combi-
nations of existing FD schemes in real time. As opposed to many FDTD-based
musical instruments found in the literature, those presented in this work allow
for real-time control such that the virtual instrument can be played. Here, an
interactive application is considered real-time when control of the application
generates or manipulates audio with no noticeable latency.

For human-computer interaction, the task at hand greatly determines how
much latency is acceptable. Wessel and Wright [112] place the upper limit
of latency when interacting with computers for musical purposes at 10 ms.
Moreover, they place the limit on the jitter, the variation of the latency, at 1 ms.
It is thus important to keep the CPU usage at a fixed level as much as possible,
and different ways of controlling and interacting with the application should
not influence the number of computations much.

Until now, this thesis has made several references to implementations of
FD schemes in the MATLAB programming language. Although MATLAB is a
great tool for prototyping, it is a high-level programming language (i.e., has
a high level of abstraction). Generally, higher-level programming languages
are easier to program, but more control – and speed – is gained by using a
lower-level programming language such as C++.

A great tool for real-time audio programming, which has extensively been
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used in this project, is the JUCE Framework.1 This framework, written in C++,
is specifically developed for programming audio applications and plug-ins.
The framework provides the back end of an audio application that handles the
audio andgraphics threads, and ensures that they can run simultaneouslywith
minimal interference. All real-time physical models that were made over the
course of this PhD project have been implemented using the JUCE framework.

This chapter can be considered as a general contribution that can be applied
to all papers in Part VII (except paper [G]). Firstly, details on the structure
of a class implementing a FD scheme will be provided, using the damped
stiff string as an example. Secondly, an overall code structure is given that
can be applied to many of the applications created during this PhD project.
Finally, this chapter will present the Sensel Morph and the PHANTOMOmni,
two hardware devices which have been used to control the physical models
presented in papers [A], [B], [C], [D] and [E]. Some additional considerations
on programming real-time FD schemes can be found in Appendix E.

13.1 Real-time FD schemes
Until now, this thesis has presented many resonators in matrix form (see e.g.
Eqs. (4.19) and (6.46)) for a compact implementation in MATLAB. Although
libraries for handling matrices in C++ exist (see e.g. Eigen [113]), the highest
algorithm speed is obtained by calculating the update equations directly.

In any of the real-time applications created during this project, the update
equation implementing a FD scheme is always the most computationally ex-
pensive part (given a low refresh-rate for the graphics). This algorithm needs
to run at a rate of 44100 Hz, whereas the rest of the implementation can run
at a much lower rate. This section provides details and considerations on
the real-time implementation of FD schemes in C++ during this project. The
damped stiff string presented in Chapter 4 will be used an example. The full
implementation can be found online and parts will be presented here to aid
the explanation.2 The FD scheme is implemented in a separate class called
SimpleString, and will be used in the following.

13.1.1 System states and pointer switches
In any FD scheme implementation, at the end of every iteration, the system
states must be updated, i.e., the following operations must be performed:

un−1 := un and un := un+1.

1https://juce.com/
2https://github.com/SilvinWillemsen/SimpleStringApp/ (using JUCE v6.0.8)
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In MATLAB, one would simply perform these operations according to

for n = 1:lengthSound
...
uPrev = u;
u = uNext;

end

In C++, however, one has the ability to perform a pointer switch to update the
system states. For a 1D FD schemewithN+1 grid points, the number of copy-
operations it takes to update the system states manually would be 2(N + 1), as
shown in Figure 13.1a. A pointer switch, as shown in Figure 13.1b, only needs
4 copy-operations per iteration and can be carried out in C++ as follows:

double SimpleString::updateStates()
{

double* uTmp = u[2];
u[2] = u[1];
u[1] = u[0];
u[0] = uTmp;

}

Here, u is a vector containing 3 pointers, each of which points a state vector at
a certain time step:

u[0]→ un+1, u[1]→ un, and u[2]→ un−1.

A temporary pointer is assigned to the memory location that u[2] points at,
to be able to assign that location in memory to u[0] in the end. The values
of that vector will be overwritten by the update equation in the next iteration
(see Section 13.1.3 and Figure 13.1).

The state vectors themselves are stored in a matrix (which is a ‘vector of
vectors’ in C++). This matrix will have 3 columns related to the 3 time steps
required to calculate the FD scheme, and N + 1 rows, which corresponds to
the number of grid points.3 The matrix is initialised as follows

//// In the constructor of SimpleString ////

// initialise vectors
uStates = std::vector<std::vector<double>> (3,

std::vector<double>(N+1, 0));

Next, the aforementioned pointers are initialised such that they contain the
memory addresses of the start of the three state vectors in the matrix.

3These are not actual rows and columns as in a matrix, but these terms are used here for ease
of explanation.
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(a) Copying values: 2(N + 1) operations per iteration.

(b) Pointer switch: 4 operations per iteration.

Fig. 13.1: Updating the state vectors by (a) copying all values individually, or (b) performing a
pointer switch. Non-zero values are highlighted in green for clarity. The values of the red vector
will be overwritten by the update of the scheme in the next iteration.

//// In the constructor of SimpleString ////

// Initialise pointer vector
u.resize (3, nullptr);

// Make set memory addresses to first index of the state vectors.
for (int i = 0; i < 3; ++i)

u[i] = &uStates[i][0];

One will then be able to work with the pointers directly in the eventual update
equation (see Section 13.1.3).

13.1.2 Pre-calculation of coefficients
To prevent extra computations in the FD scheme, it is useful to calculate as
many of the coefficients as possible beforehand (provided that these do not

250



13.1. Real-time FD schemes

vary over time). Recalling the update equation for a stiff string in Eq. (4.10),
one can write this as

Adivu
n+1
l = B1u

n
l +B2(unl+1 + unl−1) +B3(unl+2 + unl−2)

+ C1u
n−1
l + C2(un−1

l+1 + un−1
l−1 ),

(13.1)

where

Adiv = 1 + σ0k, B0 = 2− 2λ2 − 6µ2 − 4σ1k

h2
, B1 = λ2 + 4µ2 +

2σ1k

h2
,

B2 = −µ2, C0 = −1 + σ0k +
4σ1k

h2
, and C1 = −2σ1k

h2
.

All of these coefficients can be calculated in the constructor of the stiff string
class. One can also already divide the B and C coefficients by Adiv as done in
the code below.

//// In the constructor of SimpleString ////

// Coefficients used for damping
S0 = sigma0 * k;
S1 = (2.0 * sigma1 * k) / (h * h);

// Scheme coefficients
B0 = 2.0 - 2.0 * lambdaSq - 6.0 * muSq - 2.0 * S1; // u_l^n
B1 = lambdaSq + 4.0 * muSq + S1; // u_{l+-1}^n
B2 = -muSq; // u_{l+-2}^n
C0 = -1.0 + S1 + 2.0 * S2; // u_l^{n-1}
C1 = -S1; // u_{l+-1}^{n-1}

Adiv = 1.0 / (1.0 + S0); // u_l^{n+1}

// Divide by u_l^{n+1} term
B0 *= Adiv;
B1 *= Adiv;
B2 *= Adiv;
C0 *= Adiv;
C1 *= Adiv;
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13.1.3 Update equation
With all the above set up, the update equation can be implemented as follows:

void SimpleString::calculateScheme()
{

for (int l = 2; l < N-1; ++l) // clamped boundaries
u[0][l] = B1 * u[1][l] + B2 * (u[1][l + 1] + u[1][l - 1])

+ B3 * (u[1][l + 2] + u[1][l - 2])
+ C1 * u[2][l] + C2 * (u[2][l + 1] + u[2][l - 1]);

}

This function and the pointer switch in Section 13.1.1 (in that order) will then
have to be called once per sample.

13.1.4 Acceleration strategies
Apart from implementing the physical models in C++ rather than MATLAB,
additional acceleration strategies can be used for even faster algorithms. FD
schemes, especially explicit schemes, are highly parallelisable, i.e., many of the
operations done are identical and can run simultaneously. A great overview
is given in [43] and provides advantages and disadvantages of using the GPU,
multicoreprocessingandvector instructions (SIMD,AVX).An in-depth evalua-
tion of FD schemes (both 1D and 2D), implemented usingmulticore processing
and AVX instructions, has been carried out in [64].

For this project, none of these acceleration strategies have been used, but
could be investigated in the future. Occasionally, the quality of 2D systems
has been lowered to allow for a real-time implementation (see papers [A] and
[D]). However, as strings were used as the main resonators of many of the
implementations, these decreases in quality were deemed unimportant for the
eventual output sound of the simulation.

13.2 Code structure
This section presents the general code structure used for the real-time appli-
cations created in this project. As an example, consider a simple instrument
consisting of one string and one plate, and a connection between them as
presented in Section 11.5. The string is excited using the Sensel Morph (see
Section 13.3.1). This is a simplified case of the contribution made in papers [A]
and [B].

The structure of the code is visualised in Figure 13.2. The white boxes de-
note various classes or components of the application, which will be described
in detail shortly. The black arrows indicate instructions, and hollow arrows
indicate data flows. All arrows are accompanied by a box denoting the type

252



13.2. Code structure

Instrument GUI

 redraw15 Hz44100 Hz update

 u & o 

output

redraw
 u & o 

String Plate

set
parameters

Inter.

check
150 Hz

state

Sensel

audio graphics

Main
Application

Fig. 13.2: The structure of a real-time implementation of a physical model. Boxes with ‘u & o’ refer
to ‘update and output’ and ‘Inter.’ is short for ‘Interaction’. A detailed description of the figure is
given in Section 13.2.

of instruction / dataflow and the colour of the box denotes at what rate this
happens.

Threads

The application contains three different threads, all handled by the JUCE back
end. The highest priority thread is the audio thread, which is denoted by
orange blocks. It runs at 44100 Hz and handles the calculations of the FD
schemes. Denoted by blue, is the control thread, which runs at 150 Hz. The
input from the Sensel will be applied to the application at this rate. This rate
corresponds to a maximum control latency of ~7 ms, which is below the upper
limit for latency in musical applications proposed in [112]. Finally, the thread
updating the graphical user interface (GUI) is set to run at 15 Hz, which is a
value that was heuristically found to be a good balance between good visuals
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and a fast application. Papers [A], [C], and [H], contain a comparison between
the speed of the application with and without the graphics. In all cases,
results showed that the graphics take up a large part of the computational
power available.

String and Plate

The String and Plate classes implement the FD schemes of the stiff string
and thin plate resonators respectively.4 See Section 13.1 for an example of an
implementation of the stiff string; a similar code structure can be used for the
Plate class. As this section follows Section 11.5, the states of the string and the
plate will be denoted by u and w, respectively.

For the resonators to work in isolation, both classes require a function
that calculates the scheme, and a function that updates their system states (see
Section 13.1). The interactions between the classes is handledby the Instrument
class (see below). Therefore, both classes require additional functions that
return u? and w?, as well as a function that adds the interaction force fn to the
schemes. A final function returns the output of the resonators.

Lastly, the classes contain a paint function which is used to draw the state
of the system on the screen. This function is called by the JUCE back end at
the rate that the graphics thread is set to.

Instrument

The Instrument class contains instances of the individual String and Plate
resonators. Rather than performing the calculations of the FD schemes, the
Instrument class handles all interactions between the individual resonators. In
Figure 13.2, this is denoted by the ‘Inter.’ block and it follows a similar process
to Section 11.5.4 (albeit not in matrix-vector form):

1. The Instrument class instructs the resonators to calculate their respective
schemes without the connection force (Eq. (11.52)).

2. The intermediate states at the connection location, u? and w?, are re-
trieved (Eq. (11.53)).

3. The connection force fn is calculated using Eq. (11.51).

4. The force is added to the scheme (Eq. (11.54)).
4Note that the class can not actually be called ‘String’ as this is already an existing variable

type.
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Main Application and Control

The Main Application (also called MainComponent in JUCE), is the top-level
class of the application that handles control input and audio and graphics
output.5 The Main Application contains an instance of the Instrument class
and instructs it to calculate the schemes and their interactions once per sample.
Furthermore, it retrieves the output from the Instrument and sends this to the
audio device at the same rate.

Finally, the application is controlled by the Sensel Morph. The Main Ap-
plication checks the state of the Sensel at a rate of 150 Hz and maps this to
control parameters used by the scheme.

13.3 Hardware devices
Throughout this project, two hardware devices to expressively control the
simulated instruments have been investigated. These are the Sensel Morph
and the PHANTOM Omni, both of which will be briefly described here. The
mapping of these controllers to the various instrument simulations can be
found in the respective papers described below.

13.3.1 Sensel Morph
The Sensel Morph, or Sensel for short, is a high-accuracy pressure sensitive
touch controller, containing ~20,000 pressure-sensitive sensors that allow for
high-fidelity control (see Figure 13.3) [47]. Above the touch-sensitive area, the
controller contains an array of 24 LEDs that can be programmed and used to
provide information to the user.

Papers [A] and [B]were the first scientific papers to use the Sensel to control
amusical instrument simulation. Afterwards, the controllerwas used for other
applications in the Sound and Music Computing field [114, 115, 116].

For this project, the Sensel hasmainly been used to control the bow to excite
stiff strings in papers [A], [B], [C] and [D]. Additionally, it is used to excite
strings using simple pluck and hammer excitations as described in Section 7.2.
Details on the mapping of the Sensel to the various implementations can be
found in the respective papers.

13.3.2 PHANTOMOmni
The PHANTOM Omni, or Omni for short, by SenseAble Technologies (now
3D Systems), is a six-degrees-of-freedom (6-DoF) device that provides force
and vibrotactile feedback (see Figure 13.4) [117]. Moreover, it allows for highly

5This section assumes that the JUCE Audio Application template has been chosen – not the
Audio Plug-in template.
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Fig. 13.3: The Sensel Morph.

accurate tracking in a 3D application, and has been used in paper [E] to control
the bow of the tromba marina.

Other work using the Omni in a musical context, specifically for plucking
a virtual guitar string, was done by Passalenti et al. in [118, 119] and Fontana
et al. in [120].

Fig. 13.4: The PHANTOM Omni haptic device. The device has six axes of rotation (6-DoF), three
of which provide force feedback (A1-3), and three that only track position (B1-3). (Adapted from
paper [E].)
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Large Scale Modular Physical
Models

This chapter provides an extended summary for the work presented in the
papers “Real-Time Control of Large-Scale Modular Physical Models using the
Sensel Morph” [A] and “Physical Models and Real-Time Control with the
Sensel Morph” [B]. Paper [A] presents the work done on various physical
models connected by nonlinear springs using three instruments as case stud-
ies: the esraj (bowed sitar), the hammered dulcimer and the hurdy gurdy.
The implementations and a video showcasing the hurdy gurdy can be found
online.1, 2 Paper [A] follows [21] and [54] and uses ‘scaling’ (see Section 2.4.1).
To relate the paper to the theory presented in this thesis, this chapter presents
the models in a non-scaled, dimensional form. The eventual implementation
of the models is equivalent. Then, a summary of the remaining parts of the
paper is provided, including descriptions of the instruments.

14.1 Physical models
All instruments use multiple instances of the stiff string presented in Chapter
4 and one instance of the thin plate presented in Section 6.3. The latter was
used as a simplified instrument body for the resulting simulations (see Section
14.2.1). Theory on connections can be found in Chapter 11, and information
on the string-plate connection specifically, is presented in Section 11.5.

Consider a set of strings, where the transverse displacement of string s is
described by us = us(χs, t) (in m) defined for t ≥ 0 and χs ∈ Ds for domain
Ds = [0, Ls] and length Ls (in m). Notice that every string is defined for a

1https://github.com/SMC-AAU-CPH/ConnectedElements/releases/tag/v5.0
2https://youtu.be/BkxLji2ap1w
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separate coordinate system χs. In the following, spatial derivatives ∂χs are
the same as those described in Section 2.2.2, but with respect to coordinate χs
(similar to Chapter 11). The PDE of string s with an external connection force
is defined as

∂2
t us = c2s∂

2
χsus−κ2

s∂
4
χsus−2σ0,s∂tus+ 2σ1,s∂

2
χsus− δ(χs−χs,c)

fs
ρsAs

, (14.1)

where spatial Dirac delta function δ(χs−χs,c) (inm−1) localises the connection
force between the string s and the plate to connection location χs,c. Other
parameters are as defined in Eq. (4.3) but have a subscript s to denote that they
can be different for each string.

As all connections in the implementation are between an individual string
and the plate, the PDE of the thin plate in Eq. (6.37) can be extended to

∂2
tw = −κ2

p∆∆w−2σ0,p∂tw+2σ1,p∂t∂
2
xw +

∑

s

δ(x−xc,s, y−yc,s)
fs
ρpH

, (14.2)

where 2D spatial Dirac delta function δ(xs − xs,c, ys − ys,c) (in m−2) localises
the connection force of between the plate and string s to coordinate (xs, ys) on
the plate. Other parameters are as defined in Eq. (6.37).

Finally, the connection force between the plate and string s is defined as a
nonlinear damped spring (see Eq. (11.41))

fs = K1ηs +K3η
3
s +Rη̇s, (14.3)

where
ηs = us(χc,s, t)− w(xc,s, yc,s, t) (14.4)

is the relative displacement between string s and the plate at their respective
connection locations. Notice that the plate is placed below the strings such
that the sign of the force term is negative for the strings and positive for the
plate.

14.1.1 Implementation
Here, some considerations for implementing the above models are provided.
Details on discretisation of the models and how to solve for the connection
forces fs, are presented in Section 11.5 and are not given here.

The spatial Dirac delta functions are discretised using 0th-order spread-
ing operators for simplicity (see Section 8.2 (1D) and Section 11.1 (2D)). Fur-
thermore, the connection locations on the plate are implemented to be non-
overlapping. Overlaps would require to solve a system of linear equations
to obtain the connection forces (see e.g. [54]). Looking towards real-time
implementation, an explicit solution for each connection is desired.
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14.2 Summary
This section provides a summary of the instrument simulations presented in
paper [A]. All instruments were implemented in real-time in C++ using the
JUCE framework (see Chapter 13). Finally, a summary of the results and the
conclusion will be given.

14.2.1 Instruments
Using the setup presented in Section 14.1, various configurations inspired by
real instrumentsweremade. The choices of simulated instrumentswere aimed
at those containing many (sympathetic) strings.3 Another condition was that
no FDTD-based physical models of these instruments existed in the literature
at the time of writing the papers.

Three implementations inspired by real-life instruments were created and
their setups are presented here. The implementations were controlled by a
pair of Sensel Morph controllers (see Section 13.3.1). The mapping between
the controllers and the instruments is explained in papers [A] and [B].

Esraj: bowed sitar

The first instrument simulation was inspired by the esraj: the bowed sitar.
This instrument uses many strings, some of which are bowed and others are
sympathetic strings that resonate when the instrument is played. As one can
also interact with the latter, several strings in the implementation could be
plucked as well.

In total, 20 stringswere implemented, all connected to a thin plate: 2 strings
could be bowed, 5 strings could be plucked, and 13 strings are sympathetic.
The bowwas implemented using the static friction model presented in Section
8.4 and thepluckwasmodelled as a time-varying raised cosine found in Section
7.2.1.

Hammered dulcimer

The hammered dulcimer, or santur, can be seen as an ‘open piano’ where the
player hammers several strings at once. In the implementation, 20 pairs of
strings were implemented, and one in each pair was connected to the plate.
This caused a slight detuning between the strings, resulting in a characteristic
‘chorus’ effect exhibited by the instrument. To excite the strings, the time-
varying strike presented in Section 7.2.1 was used.

3Sympathetic strings – apart from being friendly – are strings that add resonances to the
instrument without being excited directly.

259



Chapter 14. Large Scale Modular Physical Models

Hurdy gurdy

The hurdy gurdy is a bowed string instrument, that also uses sympathetic
strings. Rather than a bow, the instrument uses a rosined wheel attached to a
crank that bows the strings as it is turned. As for the esraj, the static friction
model presented in Section 8.4 was used to implement the wheel.

The instrument simulation consisted of 5 bowed strings and 13 sympathetic
strings, all connected to a plate.

14.2.2 Results and conclusion
All instrument simulations were able to run in real time on a MacBook Pro
with a 2.2 GHz Intel i7 processor. Interaction with the implementations shows
that when exciting one string, the connections with the plate cause other
(sympathetic) strings to vibrate as well. Specifically, strings tuned to one of
the harmonic partials of the excited string were found to resonate to a high
degree. This phenomenon is consistent to real-world processes.

Finally, informal evaluations of the instruments were carried out on ex-
perts in the sound and music computing field, and showed that the mapping
between the Sensels and the instruments, specifically the bowing interaction,
was considered to be intuitive.
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The Tromba Marina

This chapter provides an extended summary for the paper “Real-time Im-
plementation of a Physical Model of the Tromba Marina” [D] and the paper
“Resurrecting the Tromba Marina: A Bowed Virtual Reality Instrument us-
ing Haptic Feedback and Accurate Physical Modelling” [E]. After a general
summary of these papers, the physical model will be summarised, with refer-
ence to the theory explained in the previous parts of this thesis. Finally, this
chapter extends the contents of paper [D] by providing more details on the
implementation and provides an energy analysis.

15.1 Summary
The tromba marina is a bowed monochord instrument from medieval Europe
(see Figure 1 in paper [D]). It has a long quasi-trapezoidal body and is unique
due to its oddly-shapedbridge that the string rests on. Thebridge is often called
a ‘shoe’ due to its shape and is free to rattle against the body in sympathy with
the movement of the vibrating string (see Figure 2 in paper [D]). This rattling
causes a sound with brass or trumpet-like qualities, hence the name tromba
which stems from the Italian word trumpet. The rarity of the instrument as
well as its interesting physics makes it an ideal case for a physical modelling
implementation.

Real-time implementation and control

Paper [D] presents a physical model of the tromba marina and its real-time
implementation in C++ using the JUCE framework (see Chapter 13). The
application and a video showcasing it can be found online.1, 2 The paper uses

1https://github.com/SilvinWillemsen/TrombaMarina/releases/tag/2.0
2https://youtu.be/x72Xh-nUoVc
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the Sensel morph for control of the algorithm. See Section 13.3.1 for more
information on this controller. To approach the interaction paradigm of the
real-life instrument, a virtual reality (VR) application was made from where
the algorithm could be controlled. To this end, the PHANTOM Omni haptic
device was used to control the implementation and presented in paper [E]. See
Section 13.3.2 for more details on this device. A demo of the VR application
can be found online.3 The VR implementation has been evaluated and the
results will be summarised below.

Evaluation and results

TheVR implementationof the trombamarinawas evaluatedon14participants.
The goals of the evaluation was to determine the general experience of bowing
in a VR environment, and to evaluate the playability of a VR monochord
instrument. The data was collected using a combination of qualitative and
quantitative methods as detailed in paper [E]. The questions asked in the
quantitative part of the evaluation were divided into haptics, visuals, audio,
and overall experience of the application.

The results show that the various modalities (visuals, audio and haptics)
seemed to reinforce each other and that the haptic feedback provided by the
PHANTOM Omni was deemed “realistic” and “natural”. Many considered
the instrument “hard to play”, but this is what could be expected when one
starts. The overall playability of the instrument was thus concluded to be
satisfactory, though improvements could be made.

15.2 Physical model
This section presents the physical model of the tromba marina with reference
to the theory presented in Parts II, III and IV. Asmuch as possible, this chapter
follows the notation of paper [D], as long as it is coherentwithwhat has already
been presented in this thesis. Any discrepancies between this chapter and the
paper will be clearly highlighted.

15.2.1 Continuous time
The full musical instrument has been divided into three parts: the string,
the bridge and the body, each of which will briefly be presented here. Each
resonator in isolation is of the form

Lq = 0 (15.1)

3https://www.youtube.com/watch?v=SlHqvaaPCyU
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where L is a linear (partial) differential operator and q(x, t) describes the state
of the component in isolation. q is defined for time t ≥ 0 and spatial coordinate
x ∈ D where the dimensions of domain D depend on the dimensions of the
system at hand. Using the form in Eq. (15.1) allows for a much more compact
notation later on. In the following, subscripts ‘s’, ‘m’ and ‘p’ will be used to
denote the ‘string’, ‘bridge’ (mass), and ‘body’ (plate) respectively.

String

The string of the tromba marina is modelled as a damped stiff string of length
L (in m) (see Chapter 4). With reference to the form in (15.1), its transverse
displacement is described by q = u(χ, t) (in m) and is defined for χ ∈ Ds
where domain Ds = [0, L].4 Using partial differential operator L = Ls, the
PDE describing its motion is defined as

Lsu = 0, (15.2)

where (see Eq. (4.3))

Ls = ρsA∂
2
t − T∂2

χ + EsI∂
4
χ + 2ρsAσ0,s∂t − 2ρsAσ1,s∂t∂

2
χ .

The parameters are as defined for Eq. (4.3) with the possible addition of
the ‘s’ subscript. Compared to the schemes presented in previous chapters,
using a partial differential operator to combine all operators like this, is solely
different from a notational point of view, and does not change the behaviour
of the system. If Eq. (15.2) is expanded and all terms except for ρsA∂2

t u are
moved to the right-hand side, one arrives at the damped stiff string PDE in Eq.
(4.3) again.

As the string is bowed, one can extend the PDE in (15.2) to

Lsu = −δ(χ− χB)FBΦ(vrel), (15.3)

with bow position χB = χB(t) ∈ Ds (in m), bow force FB = FB(t) and relative
velocity between the bow and the string vrel = vrel(t). The static friction model
in Eq. (8.16) has been chosen for simplicity. For more details on this bow
model, see Section 8.4.

Bridge

The bridge is modelled using a mass-spring-damper system (see Section 9.1).
With reference to Eq. (15.1), the transverse displacement of the mass is de-
scribed by q = w(t) (in m) and using differential operator L = Lm, its PDE

4Notice that χ rather than x is used here. As xwill be used as a spatial coordinate for the body
later on, a different symbol is used for the string to differentiate between two coordinate-systems.
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is
Lmw = 0, (15.4)

where (see Eq. (9.1))

Lm = M
d2

dt2
+Mω2

0 +Mσm
d

dt
.

Here, ω0 =
√
K/M (in s−1) and σm = R/M (in s−1) and other parameters are

as in Eq. (9.1).5
Notice thatwhenusing adifferential operator for anODE, thedots todenote

a temporal derivative (as e.g. Eq. (9.1)) need to be written in an operator form.
Here, Leibniz’s notation is chosen (see Section 2.1).

Body

The body of the instrument is simplified to a damped rectangular thin plate
of side lengths Lx and Ly (in m) (see Section 6.3). Again, with reference to
Eq. (15.1), its transverse displacement is described by q = z(x, y, t) (in m) and
is defined for (x, y) ∈ Dp where domain Dp = [0, Lx] × [0, Ly]. Using partial
differential operator L = Lp, the PDE describing the motion of the body is

Lpz = 0, (15.5)

where (see Eq. (6.37))

Lp = ρpH∂
2
t +D∆∆ + 2ρpHσ0,p∂t − 2ρpHσ1,p∂t∆,

with D = EpH
3/12(1− ν2). Again, parameters are as defined in Eq. (6.37).

Interactions

The three components interact using the non-iterative collision methods pre-
sented in Chapter 10. Recalling the importance of the relative location of the
various objects (see Section 10.1), the string is placed above the bridge, which
is placed above the body. This arrangement will, in turn, determine the def-
initions of η and the directions of the forces in the eventual system. In the
following, subscripts ‘sm’ and ‘mp’ are used to denote a ‘string-mass’ and
‘mass-plate’ interaction respectively.

The bridge-body interaction ismodelled using the collision-potential in Eq.
(10.1):

φ(η) =
Kmp

αmp + 1
[ηmp]

αmp+1
+ , (15.6)

5In paper [D], the symbolR is used for the damping coefficient, but for coherence in this work,
σm is used instead.
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where ηmp = ηmp(t) = w(t)−z(xmp, ymp, t) and the location on the plate where
the bridge collides is (xmp, ymp) ∈ Dp.

The string interacts with the bridge using the two-sided collision potential
presented in Eq. (10.34):

φ(ηsm) =
Ksm

αsm + 1
|ηsm|αsm+1, (15.7)

which acts as a connection. Here, ηsm = ηsm(t) = u(χsm, t) − w(t) (in m) and
the location of where the bridge is connected along the string is χsm ∈ Ds.

Recalling the process of writing the collision potential in quadratic form in
Eq. (10.4)

φ′(η) = ψψ′ where ψ =
√

2φ and ψ′ =
ψ̇

η̇
, (15.8)

the complete system can be written next.

Complete system

Looking towards discretisation, the separate variables gsm = ψ′sm and gmp =

ψ′mp are used and the full system can be written as

Lsu = −δ(χ− χB)FB + δ(χ− χsm)ψsmgsm, (15.9a)
Lmw = −ψsmgsm + ψmpgmp, (15.9b)
Lpz = −δ(x− xmp, y − ymp)ψmpgmp, (15.9c)
ψ̇sm = gsmη̇sm, (15.9d)
ψ̇mp = gmpη̇mp, (15.9e)

ηsm(t) = w(t)− u(χsm, t), (15.9f)
ηmp(t) = z(xmp, ymp, t)− w(t). (15.9g)

See Figure 15.1 for a visual overview of system (15.9). Notice that when
compared to the system presented in paper [D], Eqs. (15.9d) and (15.9e) have
been added for coherence with the theory presented in Chapter 10, as well as
the introduction of gsm and gmp already in the continuous system.

15.2.2 Discrete time
Using the process explained in Section 10.1.2 for discretising the collision terms
and introducing6

ξn =
k

2
gnδt·η

n + ψn−1/2, (15.10)

6The definition for ξn was wrong in paper [D], where ψn−1/2 was subtracted rather than
added. It has been corrected here and included in Appendix A.
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Fig. 15.1: A visualisation of system (15.9) with various important coordinates highlighted. The
figure includes the offset and the damping finger described in paper [D]. Note that ηsm (Eq. (15.9f))
is not shown as it is close to 0 at all times. (Figure taken from [D].)

for brevity, system (15.9) can be discretised as follows:7

`su
n
l = −Jl,3(χB)FB + Jl,0(χsm)ξnsmg

n
sm, (15.11a)

`mw
n = −ξnsmgnsm + ξnmpg

n
mp, (15.11b)

`pz
n
l,m = −J(l,m),0(xmp, ymp)ξnmpg

n
mp, (15.11c)

δt+ψ
n−1/2
sm = gnsmδt·η

n
sm, (15.11d)

δt+ψ
n−1/2
mp = gnmpδt·η

n
mp, (15.11e)

ηnsm = wn − unbr, (15.11f)
ηnmp = znbr − wn, (15.11g)

where the discrete linear (partial) differential operators ` are the discrete coun-
terparts of L in system (15.9) and are discretised as shown in their respective
chapters as

`s = ρsAδtt − Tδχχ + EIδχχχχ + 2ρsAσ0,sδt· − 2ρsAσ1,sδt−δχχ, (15.12a)
`b = Mδtt +Mω2

0 +Mσmδt·, (15.12b)
`p = ρpHδtt +Dδ∆δ∆ + 2ρpHσ0,pδt· − 2ρpHσ1,pδt−δ∆. (15.12c)

Furthermore, the definitions for gnsm and gnmp can be found in Eq. (10.15)8
and Jl,0(χsm) and Jl,3(χB) are the 0th-order and cubic spreading operators
respectively, as defined in Section 8.2 and J(l,m),0(xmp, ymp) is a 0th-order 2D

7Notice that subscript l is used as a spatial index for both the string and the plate for coherency
with the paper, but are used as an index for different coordinate systems.

8Paper [D] still uses the old definition of gn in Eq. (10.13).
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spreading operator as defined in Section 11.1.
As 0th-order spreading operators are used for the collision terms in the

string and body FD schemes, the definitions of Eqs. (15.11f) and (15.11g) do not
use interpolation operators to obtain the string and plate values. Instead, for
brevity, unbr = unlsm with lsm = bχsm/hsc and znbr = zn(lmp,mmp) with (lmp,mmp) =

(
⌊
xmp/hp

⌋
,
⌊
ymp/hp

⌋
) are introduced for the string and the plate respectively.

Here hs is the grid spacing for the string and hp that for the plate.
There are a few components presented in paper [D] that the system does

not include here. These are the offset woff between the mass and the plate
as well as the damping finger that interacts with the string to play different
pitches. As the focus of this chapter is on the process of solving the system at
the bridge for which these two components are not important, these will be
ignored to avoid additional complexity. Further details on these components
are provided in the paper.

15.3 Implementation details
This section extends paper [D] by providing more details on the solution of
the string-bridge-body interaction.

Following Section 10.2 one could expandEqs. (15.11a), (15.11b) and (15.11c)
and treat these as a system of linear equations (see Section B.3). This would
require an inversion of a 3×3 matrix each iteration. To simplify things slightly,
and looking towards real-time implementation, one could instead solve for
δt·ηnsm and δt·ηnmp directly, which would require a 2 × 2 matrix inversion each
iteration and requires much fewer operations (at best, less than half).

As it is assumed that one will not bow the bridge, i.e. χB 6= χsm, the
bowing termwill be disregarded when calculating the interaction between the
components.

Recalling (15.11f) and (15.11g), one can write the following:

δt·η
n
sm = δt·(w

n − unbr) and δt·η
n
mp = δt·(z

n
br − wn),

and expanding the right-hand sides yields

δt·η
n
sm =

wn+1 − wn−1 − un+1
br + un−1

br
2k

and

δt·η
n
mp =

zn+1
br − zn−1

br − wn+1 + wn−1

2k
.

(15.13)

To solve the system, inner product of Eqs. (15.11a) and (15.11c) are taken with
Jl,0(χsm) and J(l,m),0(xmp, ymp) respectively. As 0th-order spreading operators
are used, their norms over discrete string domain ds and discrete plate domain
dp, respectively, reduce as follows (also see Eq. (11.16)): ‖Jl,0(χsm)‖2ds = 1/hs
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and ‖J(l,m),0(xmp, ymp)‖2dp = 1/h2
p. This yields the following updates for Eqs.

(15.11a), (15.11b) and (15.11c) at the locations of interaction

un+1
br = u?br +

k2

hsρsA(1 + σ0,sk)

(
(gnsm)2k

2
δt·η

n
sm + ψ

n−1/2
sm gnsm

)
, (15.14a)

wn+1 = w? − k2

M
(
1 + σmk

2

)
(

(gnsm)2k

2
δt·η

n
sm + ψ

n−1/2
sm gnsm

)
(15.14b)

+
k2

M
(
1 + σmk

2

)
(

(gnmp)2k

2
δt·η

n
mp + ψ

n−1/2
mp gnmp

)
,

zn+1
br = z?br −

k2

h2
pρpH(1 + σ0,pk)

(
(gnmp)2k

2
δt·η

n
mp + ψ

n−1/2
mp gnmp

)
, (15.14c)

where the update equations of the components in isolation (without the colli-
sion terms) at their respective interaction locations are

u?br =
2unbr−un−1

br +c2k2δχχu
n
br−κ2

sk
2δχχχχu

n
br+σ0,sku

n−1
br +2σ1,sk

2δt−δχχunbr
1 + σ0,sk

,

w? =
2wn − wn−1 − k2ω2

0w
n + σmk

2 wn−1

1 + σmk
2

,

z?br =
2znbr − zn−1

br − κ2
pk

2δ∆δ∆z
n
br + σ0,pkz

n−1
br + 2σ1,pk

2δt−δ∆znbr
1 + σ0,pk

,

with c =
√
T/ρsA, κs =

√
EsI/ρsA and κp =

√
D/ρpH .

The definitions in Eqs. (15.14) can then be inserted into Eqs. (15.13) and
solved for δt·ηnsm and δt·ηnmp. This can be treated as a system of linear equations
and be solved according to

[
δt·ηnsm
δt·ηnmp

]
= A−1v, (15.15)

where

A =


1 +

(gnsm)2k2

2M(2+σmk) +
(gnsm)2k2

4ρsAhs(1+σ0,sk) − (gnmp)2k2

2M(2+σmk)

− (gnsm)2k2

2M(2+σmk) 1 +
(gnmp)2k2

2M(2+σmk) +
(gnmp)2k2

4h2
pρpH(1+σ0,pk)


 ,

v =



w?−wn−1−u?br+un−1

br
2k − k(ψn−1/2

sm gnsm−ψn−1/2
mp gnmp)

M(2+σmk) − ψn−1/2
sm gnsmk

2ρsAhs(1+σ0,sk)

z?br−zn−1
br −w?+wn−1

2k +
k(ψn−1/2

sm gnsm−ψn−1/2
mp gnmp)

M(2+σmk) − ψn−1/2
mp gnmpk

2h2
pρpH(1+σ0,pk)


 .

The solutions obtained for δt·ηnsm and δt·ηnmp, can then be used directly in ξnsm
and ξnmp in Eqs. (15.11a), (15.11b) and (15.11c) to calculate un+1

l ,wn+1 and zn+1
(l,m)
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respectively. They can also be used directly to calculate ψn+1/2
sm and ψn+1/2

mp in
Eqs. (15.11d) and (15.11e) respectively.

Figure 15.2 shows three consecutive plots of the systemexcitedwith a raised
cosine. The bow is not used here, to highlight the collision behaviour. One can
observe that the string pulls the mass downwards through their connection,
causing the latter to collide with the plate.

D
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m

en
t 

(m
)

Fig. 15.2: The string of the tromba marina (red) excited using a raised cosine. The string-mass
interaction forces the mass (blue) downwards, which collides with the plate (green).

15.3.1 Energy analysis
Using the energy analysis techniques presented in Section 3.4, the total energy
of the system can be shown to be of the following form:

δt+
(
hs + hm + hp + hsm + hmp

)
= −qs − qm − qp − qB − pB. (15.16)

Here, the total energy of the string is (Eq. (4.29)),

hs =
ρsA

2
‖δt−unl ‖2ds +

T

2
〈δχ+u

n
l , et−δχ+u

n
l 〉ds +

EsI

2
〈δχχunl , et−δχχunl 〉ds ,

the total energy of the mass is (Eq. (9.5))

hm =
M

2
(δt−w

n)2 +
K

2
wnet−w

n,

and the total energy of the plate is (Eq. (6.51))

hp =
ρpH

2

∥∥δt−znl,m
∥∥2

dp
+
D

2
〈δ∆znl,m, et−δ∆znl,m〉dp .

The energy of the string-mass connection and the mass-plate collision are (Eq.
(10.23))

hsm =
(ψ

n−1/2
sm )2

2
, and hmp =

(ψ
n−1/2
mp )2

2
,

respectively.
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The damping terms are defined for the string as (Eq. (4.28))

qs = 2σ0,sρsA‖δt·unl ‖2ds − 2σ1,sρsA〈δt·unl , δt−δχχunl 〉ds ,

for the mass as (Eq. (9.6))
qm = R (δt·w

n)
2

and for the plate as (Eq. (6.50))

qp = 2σ0ρpH‖δt·znl,m‖2dp − 2σ1ρpH〈δt·znl,m, δt−δ∆znl,m〉dp .

Finally, the power dissipated and supplied by the bow are defined as (Eq.
(8.27))

qB = fnB Φ(vnrel)v
n
rel and pB = fnB Φ(vnrel)v

n
B ,

respectively.
Figure 15.3 shows the plots of the energy for an implementation of the

tromba marina presented in this chapter without losses. The system is excited
with a raised cosine for clarity of the figures and plots correspond to the system
states shown in Figure 15.2.

htot

hs

hm

hp

hmp

hsm

he

Fig. 15.3: The energy of the tromba marina excited with a raised cosine (see Figure 15.2). The left
panel shows the total energy (black) present in the system as well as the energy of the string (red),
mass (blue) and plate (green) respectively. The second panel shows the energy of the mass-plate
(magenta) and string-mass (orange) interactions and the right panel shows the normalised energy
(according to Eq. (3.37)) and shows that the deviation of the energy is within machine precision.
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Chapter 16

The Trombone

This chapter provides an extended summary for the paper “A Physical Model
of the Trombone using Dynamic Grids for Finite-Difference Schemes” [H].

The trombone is an extremely interesting instrument from a simulation
perspective, due to the time-varying length of the acoustic tube. In FDTD-
based simulations, the trombone poses a challenge due to issues regarding
adding and removing points to the grid, or simulation quality, as also pointed
out by Harrison in [62]. As the dynamic grid method presented in paper
[G] (also see Chapter 12) attempts to resolve these issues, the trombone is an
excellent use case for this method to be applied to.

The air propagation in the trombone has been modelled using a coupled
system of two first-order PDEs, presented in Section 5.2. Although Webster’s
equation presented in Section 5.1) could have been used, the state-of-the-
art models for brass instruments using FDTD methods use first-order PDEs
[73, 62]. Some extensions, such as the Levine and Schwinger radiation model
presented in 5.2.5 and used in [62] and viscothermal losses in [73], could then
easily be added, although the latter has been left for future work.

This chapter first presents a short summary of paper [H] that relates its
contents to the rest of this thesis. Then, as the process of applying the dynamic
grid method to the trombone is not straightforward, several considerations
made during this process will be given. Finally, the collision method from
Chapter 10 is applied to the lip reed presented in Chapter 9, and details on the
implementation will be given.

16.1 Summary
The paper presents a real-time implementation of the trombone based on
FDTD methods, and using the dynamic grid method presented in Chapter
12. The acoustic tube has been modelled using a system of coupled first-order
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equations as described in Section 5.2. The lip reed has been modelled using
the 1-DoF mass spring system presented in Chapter 9, and has been extended
using the collision method described in Chapter 10, details of which will be
given in Section 16.3.

The physical model of the trombone was implemented in real time in C++
using the JUCE framework (see Chapter 13). The application can be found
online, as well as a demo showcasing it.1, 2

The implementation allowed for the total range of the tube length (2.593-
3.653 m) to be traversed in 0.06 s (corresponding to 20 samples between grid
configurations). An informal evaluation by the authors showed that no no-
ticeable artefacts were observed, but naturally, proper listening tests need to
confirm this. It must be noted that to ensure stability, especially at fast changes
between grid configurations, the Courant number has been set slightly lower
than the stability condition (λ = 0.999). This decrease in λ does cause a small,
but negligible decrease in simulation quality andbandwidth (see Section 2.4.4).

Future work includes to add viscothermal losses [73] and nonlinear effects
[121], as well as investigating intuitive mapping to control the simulation.

16.2 Dynamic grid considerations
The main contribution of the paper is the use of the dynamic grid method to
implement the time-varying acoustic tube. As paper [H] provides extensive
details on the implementation of the dynamic grid method applied to the case
of the trombone, these will not be given here. Instead, this section presents
several considerations that needed to be taken into account in order to use the
dynamic grid method in the case of the acoustic tube.

First-order system

The dynamic grid method presented in paper [G] uses the 1D wave equation
as a test case. Although this is not used tomodel the trombone, the underlying
behaviour is the same for a cylindrical tube. Section 5.2.1 shows that the first-
order system in Eq. (5.37) can be reduced to Webster’s equation, which – for a
cylindrical tube – reduces to the 1Dwave equation. It was therefore concluded,
that the dynamic grid method could be applied to the acoustic tube, under the
condition that its cross-section does not vary at the location where the method
is applied. In other words, as long as the system locally reduces to the 1Dwave
equation (at the location of the split) the method can be applied in a similar
fashion.

1https://github.com/SilvinWillemsen/cppBrass/releases/
2https://youtu.be/Ht5gVNrshYo
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16.3. Lip-reed with collision

As the state of the pressure variable in Eq. (5.37a) is discretised to the
non-interleaved grid, it was chosen to apply the dynamic grid method to
the pressure grid, rather than that of the particle velocity. That said, if the
aforementioned constraint regarding a constant cross-section is kept, applying
the method to the velocity grid should work just as well.

Location of split

It was chosen to split the system in the middle of the slide crook of the trom-
bone, i.e., at the far end of the trombone slide. First of all, it could be reasonable
to assume that the air in the tube would “go away from” or “go towards” that
point, while the slide extends or contracts. Secondly, the cross-sectional area
is constant at this location, and satisfies the aforementioned condition.

Time-varying length

In paper [G], the time-varying parameter is the wave speed c, whereas the
trombone has a time-varying length L. As stated in paper [G], c and L are
linked by the fundamental frequency in Eq. (2.40) and a change in one yields
identical behaviour as an inverse change in the other. The length could thus be
made time-varying in a straightforward manner, and the resulting equations
could consequently be applied to the acoustic tube.

16.3 Lip-reed with collision
To excite the trombone, the lip reed model presented in Chapter 9 was used,
and extended using the collisionmethod presented in Chapter 10. This section
provides details on this combination and the implementation and follows the
notation of the thesis for consistency.

16.3.1 Continuous time
In continuous time, a collision can be added to Eq. (9.7) in the same way as for
the mass-barrier collision presented in Section 10.1 as

Mÿ = −Ky −Rẏ + Sr∆p+ ψg (16.1)

where g = ψ′ andψ andψ′ are as defined in Eq. (10.4).3 In the implementation,
the frequency of the lip reed is made to be time varying and causesK = K(t)

to be time-dependent. Other parameters are the same as in Eq. (9.7).

3Notice that, as y is the displacement of the upper lip, the ‘barrier’ modelling the lower lip is
placed below, resulting in a positive collision force on y.
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16.3.2 Discrete time
The discretisation follows Section 10.1 for the collision and Section 9.3 for the
lip reed.

As the lip reed is discretised on the interleaved (temporal) grid, the collision
term needs to be as well. Dividing all terms byM , and using ω0 = ω

n+1/2
0 =√

Kn+1/2/M and σr = R/M , yields4

δtty
n+1/2 = −ω2

0µt·y
n+1/2−σrδt·yn+1/2 +

Sr

M
∆pn+1/2 +

ψn+1/2gn+1/2

M
. (16.2)

Here,
gn+1/2 =

δt+ψ
n

δt·ηn+1/2
, (16.3)

and the distance between the lips

ηn+1/2 = −H0 − yn+1/2 (16.4)

with static equilibrium separation H0. Here −H0 can be interpreted as the
location of the lower lip. Using µt+ψn = ψn+1/2 (which is Eq. (10.7) shifted to
the interleaved grid), Eq. (16.2) can be rewritten to

δtty
n+1/2 = −ω2

0µt·y
n+1/2 − σrδt·yn+1/2 +

Sr

M
∆pn+1/2 +

(µt+ψ
n)gn+1/2

M
.

In the following, the superscript n + 1/2 is suppressed for y, ∆p, g and η for
brevity. Rewriting Eq. (16.3) to

δt+ψ
n = gδt·η (16.5)

and using identity (2.27c), one arrives at

δtty = −ω2
0µt·y − σrδt·y +

Sr

M
∆p +

(
k

2
gδt·η + ψn

)
g

M
. (16.6)

As the barrier is static and placed below y, this implies that

δt·η = −δt·y, (16.7)

and a solution for yn+3/2 can be obtained:

αry
n+3/2 = 4yn+1/2 + βry

n−1/2 + ξr∆p+ 4ψnγr, (16.8)

4Note that the paper uses ωr andMr instead of ω0 andM .
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with

αr = 2 + ω2
0k

2 + σrk + gγr, βr = σrk − 2− ω2
0k

2 + gγr,

ξr =
2Srk

2

M
, and γr =

gk2

2M
.

To be able to calculate yn+3/2, definitions for gn+1/2 and ∆pn+1/2 need to be
found.

Calculating gn+1/2

Following Chapter 10, g can be calculated using (Eq. (10.15) shifted to the
interleaved grid)

gn+1/2 =





κ

√
Kc(αc + 1)

2
· (ηn+1/2)

αc−1
2 , if ηn+1/2 ≥ 0,

−2
ψn

η? − ηn−1/2
, if ηn+1/2 < 0 and η? 6= ηn−1/2,

0, if ηn+1/2 < 0 and η? = ηn−1/2,

where parameters are as in Eq. (10.15). Furthermore, η? = −H0 − y? where

y? =
4

α?r
yn+1/2 +

β?r
α?r
yn−1/2 +

ξr
α?r

∆p?, (16.10)

is the update equation of the system without the effect of the collision and

α?r = 2 + ω2
0k

2 + σrk, and β?r = σrk − 2− ω2
0k

2,

are the coefficients in Eq. (16.8) without the collision terms (as found in Eq.
(9.15)).5 Finally, ∆p? is the pressure difference calculated using Eq. (9.27), i.e.,
without the effect of the collision. Once gn+1/2 is calculated, ∆pn+1/2 can be
obtained.

Calculating ∆pn+1/2

Following Section 9.3.1, to calculate ∆pn+1/2, one starts by rewriting the
scheme in Eq. (16.6) to

2

k
(δt· − δt−)y = −ω2

0(kδt· + et−)y − σrδt·y +
Sr

M
∆p +

(
−k

2
gδt·y + ψn

)
g

M
,

a
n+1/2
1 δt·y − a2∆p − an+1/2

3 = 0,

5Notice that ξr is unchanged.
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with
a
n+1/2
1 =

2

k
+ ω2

0k + σr +
g2k

2M
≥ 0, a2 =

Sr

M
≥ 0 ,

and a
n+1/2
3 =

(
2

k
δt− − ω2

0et−

)
y +

g

M
ψn .

Note that an+1/2
1 is now time-dependent through g and ω0 but remains non-

negative. The rest of the variables and process in Section 9.3.1 are unchanged.
Notice that the calculation for ∆pn+1/2 has to be performed twice: once to
obtain the pressure difference without the collision effect ∆p?, and once to
obtain the final pressure difference ∆pn+1/2.

Last steps

After the definitions for g and ∆p are found using the steps above, and yn+3/2

is calculated using Eq. (16.8), ψn+1 can be calculated by expanding Eq. (16.5)
and substituting Eq. (16.7) according to

ψn+1 = ψn − g

2

(
yn+3/2 − yn−1/2

)
. (16.11)

16.3.3 Energy analysis
The energy analysis for the lip reed shown in Section 9.4 can be extended to
contain the collision. Equation (9.31) can be extended to

δt+(ht + hr) = −qr − pr + (µt+ψ
n)

δt+ψ
n

δt·ηn+1/2
(δt·y

n+1/2)

which, using Eq. (16.7), yields

δt+(ht + hr) = −qr − pr − (µt+ψ
n)(δt+ψ

n),

with
hc =

(ψn)2

2
.
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Chapter 17

Conclusions and Perspectives

This chapter concludes this work by providing a summary of the thesis. Fur-
thermore, perspectives for the future and possible continuations of this project
will be given.

17.1 Summary
This thesis presents the result of a PhDproject onphysicalmodelling ofmusical
instruments using FDTDmethods. Part I provided an introduction to the field
of physical modelling, after which the basics of FDTD methods and analysis
techniques were described in a tutorial-like fashion. Part II provided detailed
information about the resonators used for the contributions in this PhDproject,
and Part III did the same for the exciters. Part IV presented collisions and
connections as various ways in which the resonators could interact. Part V
summarised most papers included in Part VII and related the contributions to
the theory presented in the parts before. Part V is summarised below.

Contributions

Chapter 12 summarised paper [G], which presents a novel method to dynami-
cally vary grid configurations in FDTD-basedmusical instrument simulations.
The chapter extended the paper by providing information on experiments
done, which substantiate choices made in the paper. Chapter 13 presented
considerations on the real-time implementation of FD schemes as well as their
control. Chapter 14 summarised papers [A] and [B], which present the real-
time implementation and control of a large-scale modular environment using
the esraj, the hammered dulcimer and the hurdy gurdy as instrument test-
cases. Chapter 15 summarised papers [D] and [E], which present the real-
time implementation of the tromba marina using the Sensel Morph and the
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PHANTOM Omni as controllers respectively. The chapter extended on the
papers by providing more details on the implementation. Finally, Chapter
16 summarised paper [H], which presents a real-time implementation of the
trombone using the dynamic grid method, and provided additional design
considerations and implementation details.

17.2 Perspectives and future work
Both an advantage and a disadvantage of the field of physical modellingmusi-
cal instruments, is that one is never done. There are always more instruments
to model or existing models to improve. This section contains several possi-
bilities for continuations of this work and some perspectives on how to move
forward.

17.2.1 Parameter design
One could argue that the sound produced by musical instrument simulations
depends in equal parts on themodel describing the system and the parameters
used. Parameter design and tuning is therefore an extremely important aspect
in creating physical models that sound good.

Some models might contain many parameters that are nonlinearly inter-
connected, such as the elasto-plastic friction model presented in paper [C],
causing the tuning of the parameters to become extremely time-consuming. A
possible solution for this, could be to tune the parameters based on a recording
of the physical system one tries to model. One could automate this process
using machine learning methods and a ‘gray-box’ approach where the model
is known, but the parameters are fitted to the input. This was done for virtual
analog models in e.g. [122, 123].

For parameters controlling the exciter, such as force, velocity, and posi-
tion of a bow, a real-time implementation can be extremely helpful to judge
the sound qualities of the simulation. Several times during this project, the
simulation did not sound good, due to the use of static control parameters in
MATLAB. The real-time implementation, where the control parameters were
varied using human control, sounded much better and more natural. Param-
eters of the resonator could also be exposed and tuned in real-time, but this
causes stability concerns in FDTD-based instrument simulations.1

1One could always set the states of the system to 0 when a parameter is changed, and re-
initialise the system based on the new parameter. Alternatively, one could use the dynamic grid
method from paper [G], but this might be a slightly overkill to implement only for parameter
tuning.
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17.2.2 Realism
The focus of this project was to create real-time simulations of musical instru-
ments. Although a natural or realistic sound was, of course, desired, this was
not the main focus, and more work could be done to achieve this.

If the goal is to create an extremely realistic musical instrument simulation,
one would have to spendmuch time tuning the model parameters (see Section
17.2.1) and use more accurate and complex models. It is safe to say, that at
the time of writing, accurately simulating the complete physics of a musical
instrument in 3D, including nonlinear effects, is not something that personal
computers will be able to do any time soon.

That said, simulations using simplifiedmodels, which are able to run in real
time (such as those presented in this work), can already sound quite realistic.
From a perceptual point of view, using more complex models might thus be
unnecessary. Furthermore, various components, such as the instrument body
or the room it is played in, could be included as an impulse response, either
obtained froma recording or generated using a highly-accurate (non-real-time)
physical model. Comparisons to real instruments and perceptual evaluations
could then be used to verify the realism of the sound produced by the physical
model.

It must be said that realistic-sounding implementations do not have to be
the goal of physical modelling. Another angle, rather than trying to recreate
traditional musical instruments, is to make completely new instruments. As
mentioned several times throughout this thesis (see Section 1.4.3 and Chapter
12), one could even create physically impossible instruments, where realism is
the opposite of what one aims for.

17.2.3 Control
Much work could still be done on investigating natural and intuitive control
of the physical models. This PhD project explored two ways of controlling the
musical instrument simulations.

Firstly, the Sensel Morph (see Section 13.3.1) was used for bowing, striking
and plucking strings. Even though, bowing strings using this controller does
not resemble the act of bowing a string in the physical world, the interaction
could be deemed intuitive, as shown in paper [A].

Secondly, the PHANTOMOmni (see Section 13.3.2) was used to control the
bow in a way that more closely resembled physical bowing. The evaluation in
paper [E] shows that the interaction with the instrument, especially the haptic
feedback, was “realistic” and “natural”. Other aspects of the instrument, such
as pitch control were deemed less natural, as one did not physically interact
with a string.

Future work includes exploring other hardware to control musical instru-
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ment simulations, or even building new ones. Custom controllers could be
made to control physical models of traditional musical instruments. These
could either be inspired by their real-life counterpart, similar to what a digital
keyboard is to a piano, or be made completely different, as the sound of the
instrument is no longer coupled to its shape or form.

17.2.4 Evaluation
There are various ways to evaluate real-time implementations of musical in-
strument simulations. Throughout the PhD project, the main focus was on
technical evaluations and revolved around the analysis techniques presented
in Chapter 3 and the computational speed of the algorithm. Together with
informal evaluations (by the authors of the respective paper) about the sound
quality and the interactionmapping, these formed the success criteria formost
of the published work.

Although user-evaluation of the real-time instrument simulations was not
a large part of this project, it is an important aspect in all of the aforementioned
future work. Evaluations can, for example, be used as a part of an iterative
design process, and aimed at parameter tuning (either for realism or not) or
intuitive instrument control.

The most elaborate user evaluation performed during this project is pre-
sented in paper [E] and tested the playability of the tromba marina using
the PHANTOM Omni device. As this instrument was also controlled by the
Sensel Morph in paper [D], an evaluation that compares the two controllers
could be made in the future. Apart from evaluating the differences in natural
or intuitive control, one could investigate cross-modal effects between control
(haptics) and audio, where one could investigate whether the way that the
simulation is controlled has an influence on sound perception.

One interesting observation, shown in paper [E], was that players found
the virtual tromba marina hard to play. This could indeed be expected, as
no participant ever played the instrument before, neither the virtual one, nor
the physical one. For other unknown instruments, including completely novel
ones, this shows that their evaluation is challenging. Like a real instrument,
it might take months, or even years of practice to produce well-sounding
auditory results, or to determine whether the chosen mapping is satisfactory.

17.2.5 Dynamic grid
Finally, where the author personally sees most potential for continuations of
this work, is the further development of the dynamic grid method presented
in paper [G]. During this project, only the cases of the 1D wave equation and
the acoustic tube have been explored. Section 12.4 provides many real-world
examples that the method could be applied to. These consist 1D systems, such
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as stiff strings, but also 2D systems, such as the musical saw and the talking
drum. Furthermore, finding conditions under which the method is stable will
allow the method to be safely integrated into other applications.
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Abstract
In this paper, implementation, instrument design and control issues surrounding a
modular physical modelling synthesis environment are described. The environment
is constructed as a network of stiff strings and a resonant plate, accompanied by
user-defined connections and excitation models. The bow, in particular, is a novel
feature in this setting. The system as a whole is simulated using finite difference (FD)
methods. The mathematical formulation of these models is presented, alongside several
new instrument designs, together with a real-time implementation in JUCE using FD
methods. Control is through the Sensel Morph.

1 Introduction
Physical models for sound synthesis have been researched for several decades
to mathematically simulate the sonic behaviour of musical instruments and
everyday sounds. Various techniques and methodologies have developed,
ranging from mass-spring models [1, 2, 3] to modal synthesis [4] and waveg-
uide based models [5]. The latter two techniques may be viewed as numerical
simulation techniques applied to the systems of partial differential equations
(PDEs). These equations define the dynamics of a musical instrument, either
real or imagined.

Mainstream time-domain simulation techniques, such as finite difference
(FD) methods, were first applied to the case of string vibration by Ruiz [6]
and Hiller and Ruiz [7, 8], and then later by other authors [9] including, most
notably Chaigne [10] andChaigne andAskenfelt [11]. The general use of finite-
difference schemes (FDSs) in sound synthesis is described in [12]. Modularized
physical modelling sound synthesis, whereby the user may construct a virtual
instrument using basic canonical components dates back to the work of Cadoz
and collaborators [1, 2, 3]. It has been also used as a design principle in the
context of FD methods [13, 14, 15], where the canonical elements are strings
and plates, with a non-linear connection mechanism. Though computational
cost of such methods is high, standard computing power is now approaching
a level suitable for real-time performance for simpler systems.

We are interested in bridging the gap between large-scalemodular physical
modelling synthesis and sonic interaction design [16], to be able to play with
such simulations in real-time. Specifically, we are interested in using the
expressivity of the Sensel Morph [17] to control our simulations, using both
percussive and bowing excitations. Our ultimate goal is to create models that
are both mathematically accurate and efficient. This goal is nowadays possible
thanks to improvements in hardware and software technologies for sound
synthesis, yet it has rarely been achieved. The ultimate goal is to provide
a modular efficient synthesizer based on accurate simulations, where real-
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time expressivity can also be achieved. This synthesizer has already been
informally evaluated by composers and sound designers, who appreciated the
current sonic palette.

This paper is structured as follows: Section 2 describes the physical models
used in the implementation and Section 3 shows a general description of the
FD methods used to digitally implement these models. Furthermore, Section
4 elaborates on the real-time implementation, Section 5 shows several different
configurations of the physical models inspired by real musical instruments,
Section 6 will present the results on CPU usage and evaluation and discuss
this and finally, in Section 7, some concluding remarks appear.

2 Models
In this section, the PDEs for the damped stiff string and plate will be pre-
sented. The notation used will be the one found in [12] where the subscript
for state variable u denotes a single derivative with respect to time t or space
x respectively. Furthermore, to simplify the presented physical models, non-
dimensionalization (or scaling) will be used [12].

2.1 Stiff string
A basic model of the linear transverse motion of a string of circular cross
section may be described in terms of several parameters: the total length L (in
m), the material density ρ (in kg·m−3), string radius r (in m), Young’s modulus
E (in Pa), tension T (in N), and two loss parameters σ0 and σ1. The PDE for a
damped stiff string may be written as [12]

utt = γ2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx. (1)

In this representation, spatial scaling has been employed using a length L, so
the solution u = u(x, t) is defined for t ≥ 0 and for dimensionless coordinate
x ∈ [0, 1]. Furthermore, parameters γ =

√
T/ρπr2L2 and κ =

√
Er2/4ρL4

and have units s−1.
In this work, the string is assumed clamped at both ends, so that

u = ux = 0 where x = {0, 1}. (2)

A model of a bowed string [12] may be incorporated into (1) as

utt = . . .− δ(x− xB)FBφ(vrel), with (3a)
vrel = ut|(x=xB) − vB, (3b)

whereFB = fB/Ms is the excitation function (inm/s2)with externally-supplied
bowing force fB = fB(t) (in N) and total string mass Ms = ρπr2L (in kg).
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The relative velocity vrel is defined as the difference between the velocity of
the string at bowing point xB and the externally-supplied bowing velocity
vB = vB(t) (in m/s) and φ is a dimensionless friction characteristic, chosen here
as [12]

φ(vrel) =
√

2avrele
−av2rel+1/2. (4)

Furthermore, δ(x − xB) is a spatial Dirac delta function selecting the bowing
location x = xB. The single bowing point can be extended to a bowing area
[12]. More detailedmodels of string dynamics, again in a bowed string context,
have been proposed by Desvages [18].

Another, andmore simple way to excite the string is by extending Equation
(1) to

utt = . . .+ EeFe (5)

using an externally-supplied distribution function Ee = Ee(x) and excitation
function Fe = Fe(t). In this case, the excitation region is allowed to be of finite
width.

2.2 Plate
Under linear conditions, a rectangular plate of dimensions Lx and Ly may be
parameterized in terms of density ρ (in kg·m−3), thickness H (in m), Young’s
modulus E (in Pa) and a dimensionless Poisson’s ratio ν, as well as two loss
parameters σ0 and σ1.

In terms of dimensionless spatial coordinates x and y scaled by
√
LxLy ,

the equation of motion of a damped plate is a variant of the Kirchhoff model
[19]

utt = −κ2∆∆u− 2σ0ut + 2σ1∆ut. (6)

Here, u(x, y, t) is the transverse displacement of the plate as a function of
dimensionless coordinates x ∈ [0,

√
a ], y ∈ [0, 1/

√
a ], where a = Lx/Ly is

the plate aspect ratio, as well as time t. Furthermore, ∆ represents the 2D
Laplacian [12]:

∆ =
∂2

∂x2
+

∂2

∂y2
. (7)

The stiffnessparameterκ, withdimensionsof s−1, is definedbyκ =
√
D/ρHL2

xL
2
y

whereD = EH3/12
(
1− ν2

)
. As in the case of the stiff string, we chose to use

clamped boundary conditions:

u = n · ∇u = 0 (8)

over any plate edge with outward normal direction n and where ∇u is the
gradient of u.
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2.3 Connections
Adding connections between different physical models, further referred to
as elements, adds another term to Equation (3a), (5) or (6). Assuming that
element α is a stiff string and β is a plate, the following terms are added to the
aforementioned equations:

utt = ...+ Ec,αFα, (9a)
utt = ...+ Ec,βFβ , (9b)

with force-functions Fα = Fα(t) and Fβ = Fβ(t) (in m/s2) and distribution
functions Ec,α and Ec,β which have chosen to be highly localised in our appli-
cation and reduce to δ(x−xc,α) and δ(x−xc,β , y−yc,β) respectively, but can be
extended to be connection areas [13]. We use the implementation as presented
in [13] where the connection between two elements is a non-linear spring. The
forces it imposes on the elements it connects are defined as

Fα = −ω2
0η − ω4

1η
3 − 2σ×η̇, (10a)

Fβ = −MFα, (10b)

whereω0 andω1 are the linear (in s−1) andnon-linear (in (m·s)−1/2) frequencies
of oscillation respectively, σ× is a damping factor (in s−1),M is the mass ratio
between the two elements and η is the relative displacement between the
connected elements at the point of connection (in m). Lastly, the dot above η
denotes a derivative with respect to time.

3 Finite-Difference Schemes
To be able to digitally implement the continuous equations shown in the previ-
ous section, they need to be approximated. In this section, a high-level review
of a finite difference approximation to a connected system of strings and plates
is presented. For more technical details, see [13].

In the case of the stiff string, state variable u(x, t) can be discretised at times
t = nk, where n ∈ N and k = 1/fs is the time step (at sample-rate fs) and
locations x = lh, with l ∈ [0, . . . , N ] where the total number of points is N + 1

and grid spacing h. We can now write the discretised state variable as unl ,
representing an approximation to u(x, t).

In the case of the plate, u(x, y, t) is discretised to un(l,m) using x = lhwhere
l ∈ [0, . . . , Nx] with Nx + 1 being the total horizontal number of points and
y = mh where m ∈ [0, . . . , Ny] with Ny + 1 being the total vertical number of
points.

In a general sense, when discretising PDEs as presented in Equations (1)
and (6), we will need to solve for un+1, i.e., u at the next time step, where u is a
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vector of sizeN − 1 containing values of ul ∀l for a string and (Nx− 1)(Ny− 1)

containing values of u(l,m) ∀(l,m) for a plate. Note that the vector sizes are
smaller than the total number of grid points as we do not include the values
at the boundaries (which are always 0). For a PDE expressed as a function of
utt, its FDS will be of the form

un+1 = 2un − un−1 +KFn, (11)

where
K =

k2

1 + σ0k
, (12)

and Fn is a combination of the discretised PDE (excluding terms containing
un+1) together with connection and excitation terms.

3.1 Stiff String
In the case of the stiff string, Fn in Equation (11) is a combination of the
discretised PDE (1) fnα , connection term (9a) and bowing (3a)

Fn = fnα + Ec,αF
n
α − J(xnB)FnB φ(vrel), (13a)

or excitation (5) term

Fn = fnα + Ec,αF
n
α + EeF

n
e , (13b)

where Ec,α contains the discretised distribution function for the connection
(1/h at connection index lc,α, rest 0’s [12]), Ee contains the discretised distri-
bution function for the excitation (which will be presented in Equation (25)
in the next section) and J(xnB) is a spreading operator containing the discre-
tised bowing distribution (1/h at time-varying bowing position xB). If xB is
between grid points, cubic interpolation is used to spread the bow-force over
neighbouring grid points [12]. All vectors are columns of size N − 1.

It can be useful to talk about the region of operation of a FDS in terms of a
‘stencil’. A stencil describes the number of grid points needed to calculate a
single point at the next time step. The stiff string FDS has a stencil of 5 grid
points. In other words, two grid points at either side of l – and l itself – are
necessary to calculate un+1

l . See Figure 1 for a visualisation of this.
In order for the scheme to be stable, the grid spacing needs to abide the

following condition [12]

h ≥

√
γ2k2 + 4σ1k +

√
(γ2k2 + 4σ1k)2 + 16κ2k2

2
. (14)

The closer h is to this limit, the higher the quality of the implementation. The
number of points N can then be calculated using

N = floor
(

1

h

)
. (15)
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Fig. 1: Stencil for a stiff string FDS with grid spacing h and time step k. The point l at the next
time step (yellow) is calculated using 5 points at the current time step (blue) and 3 at the previous
time step (dark blue).

3.2 Plate
In the case of the plate, u is a column vector of concatenated vertical ‘strips’ of
the plate state as in [13] of size (Nx − 1)(Ny − 1) and Fn in Equation (11) is a
combination of the discretised PDE (6) fnβ and connection term (9b)

Fn = fnβ + Ec,βF
n
β . (16)

Here, Ec,β contains the discretised distribution function for the connection
(1/h2 at connection index (lc,β , mc,β), rest 0’s [13]) and is a column vector of
size (Nx− 1)(Ny − 1). For the plate, the stencil will consist of 13 grid points as
can be seen in Figure 2.
The grid spacing needs to abide the following condition [13]

h ≥ 2

√
k

(
σ2
1 +

√
κ2 + σ2

1

)
, (17)

(again, the closer h is to this limit the better) from which Nx and Ny can be
derived using

Nx = floor
(√

a

h

)
and Ny = floor

(
1

h
√
a

)
. (18)
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Fig. 2: Stencil for a plate FDS. The point (l,m) at the next time step (yellow) is calculated using 13
points at the current time step (blue) and 5 at the previous time step (dark blue).

3.3 Connections
In the following, we discretise the equations in (10) as shown in [13]. However,
as these equations are not expressed as a function of utt, their FDS counterpart
will be different. Moreover, instead of solving for un+1, we need to solve for
ηn+1, i.e., the relative displacement at the next time step, which will be in the
form of

ηn+1 = pnFnα + rnηn−1, (19)

where pn = p(ηn) and rn = r(ηn) are functions of the relative displacement
η if ω1 6= 0 and constants if ω1 = 0. Again, assuming that element α is a stiff
string and β is a plate, η can be calculated using

ηn = hαu
n
α,lc,α − h2βunβ,(lc,β ,mc,β)

. (20)

In other words, this is the difference between the state of element α at lc,α
and the state of element β at (lc,β ,mc,β) scaled by their respective (for plates,
squared) grid spacings hα and hβ . The next step is to obtain Fnα , which can
be used to easily calculate Fnβ . We first obtain values for un+1 by solving (11)
using (13a), (13b) or (16) (without the connection term!) for a string or plate
respectively. As, at this point, no connection forces have been added yet, this
state will be referred to as an intermediate state uI. This intermediate state can
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be used to obtain ηn+1 using (20)

ηn+1 = hα(uIα,lc,α +KαF
n
α )−

[
h2β(uIβ,(lc,β ,mc,β)

+KβF
n
β )
]
, (21)

whereKα andKβ are as described in (12) using the damping coefficient σ0 of
their respective element. This can then be set equal to (19). Using Equation
(10b), solving for Fα yields

Fnα =
rnηn−1 − (hαu

I
α,lc,α

− h2βuIβ,(lc,β ,mc,β)
)

hαKα +Mh2βKβ − pn
. (22)

4 Implementation
In this section, we elaborate more on the chosen values for the parameters
described in the previous two sections and present the system architecture of
the real-time application. The values formost parameters have been arbitrarily
chosen and can – as long as they satisfy the conditions in Equations (14) and
(17) – be changed. We used C++ along with the JUCE framework [20] for
implementing the physical models and connections in real-time. The main
hardware used was a MacBook Pro with a 2.2 GHz Intel Core i7 processor.

4.1 Stiff String
As many string properties stay constant, we chose to set the following pa-
rameters directly, rather than calculating them from their physical properties:
κ = 2, σ0 = 1, σ1 = 0.005. An interesting parameter to make dynamic is
the fundamental frequency f0 (in s−1) of the string. According to [12], the
fundamental frequency can be approximately calculated using

f0 ≈
γ

2
. (23)

However, as the grid spacing h is dependent on the wave speed γ according to
the condition found in (14), we must put a lower limit on the number of points
N if we plan to dynamically increase γ.

Anotherway to change frequency is to adddamping to themodel at specific
points acting as a (simplified) fretting finger. The advantage of this is that the
condition (14) will never be violated. On top of this, a tapping sound will
be introduced when fretting the string making it more realistic than changing
the wave speed. If the string is fretted at single location xf ∈ [0, 1] and lf =

floor(xf/h) we use

unl =





0, l = lf − 1 ∨ l = lf

(1− αεf )unl , l = lf + 1

unl , otherwise
(24)
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where αf = xf/h − lf describes the fractional location of xf between two grid
points. Note that the grid point at the finger location and the grid point before
are set to 0 to (recalling the stencil) prevent the states at either side of the finger
to influence each other. The disadvantage of using this technique over regular
linear interpolation, is that the effect of damping between grid points does
not linearly scale to pitch. We thus added ε = 7 as a heuristic value to more
properly map finger position to pitch.

In some cases, N is fixed to a certain value (as opposed to calculating it
from Equations (14) and (15)) for multiple strings of different pitches. Even
though some bandwidth will be lost (in the higher frequency range), this will
allow the strings to be perfectly tuned to each other.

4.1.1 Bowed String

Parameters for the bowed strings abide the following conditions: |vB| ≤ 1 m/s
and 0 ≤ FB ≤ 100N. Itwas chosen to discretise Equation (3b) implicitlymaking
it necessary to use an iterative root-finding method such as Newton-Raphson
[21].

4.1.2 Excited string

If simply excited, we set the distribution function to a raised cosine with width
we (in grid points)

Ee(l) =





1−cos( 2π(l−(le−we/2))
we )

2 , le − we
2 < l < le + we

2

0, otherwise
(25)

scaled by the excitation function over time with excitation duration de (in
samples)

Fe(n) =





1−cos(π(n−ne)
de )

2 , ne ≤ n < ne + de

0, otherwise
(26)

A visualisation of this can be found in Figure 3.

4.2 Plate
For the plate, the damping coefficients have been decided to be σ0 = 0.1 and
σ1 = 0.005 and the aspect ratio is set to a = 2. The plate stiffness κ has been
left as a user parameter to be changed dynamically and will be between the
following bounds: 0.1 ≤ κ ≤ 50 s−1. In Equation (17), the grid spacing is
calculated using the maximum value of κ to prevent stability issues. Using
a sample rate of 44,100 Hz results in a plate with dimensions Nx = 20 and
Ny = 10 (in grid points).
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Fig. 3: A visualisation of the excitation used in our implementation presented in Equation (5). The
location of excitation xe is shown in green, excitation width we in red and excitation duration de
in blue (also see Equations (25) and (26)).

4.3 Connections

Increasing ω1 & 100, 000 (m·s)−1/2 while keeping 0 < ω0 . 100 s−1 will
cause audible non-linear behaviour, such as pitch-glides and rattling sounds.
These effects will be more dominant when the plate stiffness is higher. In
our implementation we set ω0 = 100 s−1 and ω1 = 100, 000 (m·s)−1/2. The
spring-damping σ× = 1 s−1 is kept to a minimum (0 ≤ σ× ≤ 10 s−1).

4.4 System Architecture
The system architecture can be seen in Figure 4. The top box denotes the
Sensel Morph (described in more detail in the next section) controlling the
application, and the white boxes show the different classes or components of
the application. The black arrows indicate instructions that one class can give
to another and the hollow arrows show data flows between classes. All arrows
are accompanied by a coloured box indicating which thread the instruction /
dataflow is associated with and at what rate this thread runs.

The lowest priority thread, the graphics-thread, is shown by green boxes
and runs at 15 Hz. This draws the states of the strings, connections and the
plate on the screen.

Checking and retrieving the Sensel state happens at a rate of 150 Hz and
is denoted by blue boxes. The parameters that the user controls by means of
the Sensel, such as bowing position, force and velocity, will be updated in the
models at this rate as well.

The highest priority thread is the audio-thread and runs at commonly-used
sample rate 44,100 Hz. The main application gives an ‘update’ (u) instruction
to the instrument, which in turn updates the FDSs in its strings and plate.
After the FDS update is done, the intermediate state at the connection points
uIxc

(where xc = lc,α for the string or xc = (lc,β ,mc,β) for the plate) are sent to
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Fig. 4: System architecture flowchart. See Section 4.4 for a thorough explanation.

the connection (Conn) class which calculates the force-functions Fα and Fβ .
These values are then sent back to the string and plate classes and added to
their respective states after which their outputs (o) (at arbitrary points) are sent
back to the main application. See Algorithm 1 for this ‘order of calculation’.

5 Instruments and User Interaction
In this section, the Sensel Morph (or simply Sensel) and user interface will be
described inmore detail. Furthermore, several configurations of strings, plates
and connections that are inspired by real-life instruments will be presented. A
demonstration of one of the instruments can be found in [22].

5.1 Sensel Morph
The SenselMorph is a highly accurate touch controller that senses position and
force of objects [17] (see Figure 5). We use the Sensel as an expressive interface
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while application runs do
for all elements do

calculate intermediate state uI using previous state values (as in
Equation (11))

uI
s = 2un − un−1 +KF

end
if element is excited/bowed then

calculate excitation term E and add to intermediate state of the
element

uI
s+e = uI

s + E
end
for all connections do

calculate connection forces andadd connection termC to elements
to obtain the state at the next time step

un+1
s+e+c = uI

s+e + C
end
update state vectors

un−1 = un

un = un+1
s+e+c

increment time step
n++

end

Algorithm 1: Pseudocode showing the correct order of calculation. The
subscripts for state vector u shows what it consists of (‘s’ for previous state,
‘e’ for excitation and ‘c’ for connection).

for interacting with the instrument configurations. Right above the touch-
sensitive area, the Sensel contains an array of 24 LEDs that can be controlled
from the application.

5.2 User interface
Strings are shown as coloured paths (see Figure 6 for a descriptive visualisa-
tion). The state un of the string is visualised using the vertical displacement
of the paths. Bowed strings are shown in cyan on the top left. The bow is
shown as a yellow rectangle and moves on interaction. The fretting position is
shown as a yellow circle. Plucked strings are shown in purple in the top right,
underneath which the sympathetic strings are shown in light green. The plate
is shown in the bottom using a grid of rectangles (clamped grid points are not
shown). Its state is visualised using a grey-scale. Furthermore, connections are
shown using orange circles/squares for the points of connection and dotted
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Fig. 5: Player using the Sensel Morphs to interact with one of the instruments.

lines between these points. Lastly, all parameters that are controlled by the
mouse such as output-level and plate-stiffness are located in a column on the
right side of the application.

5.3 Instruments
We subdivide string-elements into three types: bowed, plucked and sympa-
thetic strings. All stringswill be connected to one plate acting as an instrument
body of which the user can control the plate-stiffness. Furthermore, the user
can change the output-level of each element type. Apart from these parame-
ters, which are controlled by the mouse, the instruments are fully controlled
by two Sensels. The instruments we have chosen as our inspiration are the
sitar, the hammered dulcimer and the hurdy gurdy.

5.3.1 Bowed Sitar

The sitar is originally an Indian string instrument that has both fretted strings
and sympathetic strings. Instead of plucking the fretted strings, we extended
themodel to bow them. Our implementation consists of 2 bowed strings (tuned
to A3 and E4), 13 sympathetic strings (tuned according to [23]) and 5 plucked
strings (tuned A3-E4 following an A-major scale) as it is also possible to strum
the sympathetic strings. See Figure 6 for a visual of the implementation. One
Sensel is vertically subdivided into two sections; one for each bowed string.
The first finger registered by the Sensel is mapped to a bow and the second
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is mapped to a fretting finger controlling pitch. The horizontal position of
both fingers is visualised using the Sensel’s LED array. The frets are not
implemented as such (the pitch is continuous), but they are visualised for
reference. The horizontal position of the first finger is mapped to the bowing
position on the string, the vertical velocity to the bow velocity vB and the finger
force is linked to the excitation function FB (both in Equation (3a)). The other
Sensel is subdivided into 5 sections mapped to the plucked strings. These
sections are visualised by the LED array for reference.

The mass ratio for the bowed/plucked string to plate connections has been
set to M = 2 and ratio for the sympathetic string to plate connections has
been set toM = 0.5 to increase the effect that the playable strings have on the
sympathetic strings.

Fig. 6: The bowed sitar application. The descriptions of the different elements and other objects
are shown in the image, but will (naturally) not be visible in the application.

5.3.2 Hammered Dulcimer

The hammered dulcimer is an instrument that can be seen as an ‘open piano’
where the musician has the hammers in their hand. Just like the piano, the
strings are grouped in pairs or triplets that are played simultaneously. In
our implementation, we have 20 pairs of plucked strings. Even though most
hammered dulcimers have more strings, we decided that this configuration
has the highest number of strings while maintaining playability. One of each
pair is connected to the plate which slightly detunes it, creating a desired
‘chorusing’ effect. See Figure 7 for a visual of the implementation. In order for
the excitation to more resemble a strike of a hammer than a pluck, the contents
of the cosine in (26) will be multiplied by 2 for the excitation to have a less
abrupt ending, something desired for a hammered interaction. Moreover, the
excitation-length can be changed to simulate short and long hammer-times.
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The Sensels are placed vertically next to each other (see Figure 5). The
pair with the lowest frequency will then be located in the bottom right and
the highest in the top left, as in the real instrument. As with the plucked
strings of the bowed sitar, the LED array is used to visualise the way that the
Sensel is subdivided, which is especially useful here as one Sensel controls 10
string-pairs.

The mass ratio is set relatively high (M = 100) to amplify the non-linear
interaction between the strings and the detuning of the strings connected to
the plate.

Fig. 7: The hammered dulcimer application.

5.3.3 Hurdy Gurdy

The hurdy gurdy is an instrument that consists of bowed and sympathetic
strings. The bowing happens through a rosined wheel attached to a crank and
bows these strings as the crank is turned. It is possible to change the pitch of a
few bowed strings - the melody strings - using buttons that press tangent pins
on the strings at different positions. The other strings, referred to as drone
strings, are mostly tuned lower than the melody strings and provide the bass
frequencies of the instrument. The musician can place the bowed strings on
rests that keep the wheel from interacting with it.

Our implementation consists of 5 bowed strings subdivided into 2 drone
strings tuned to A2, E3 and 3 melody strings tuned to A3, E4 and A4 and 13
sympathetic strings tuned the same way as the sympathetic strings in bowed
sitar. Furthermore, the mass ratios have been set the same as in the bowed
sitar application. See Figure 8 for a visual of the implementation.

The Sensel is vertically subdivided into 5 rows that control whether the
strings are placed on the wheel. The bowing velocity is mapped to the average
pressure of the fingers. The fundamental frequency (in the model γ/2) of the
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melody-strings is changed by a Sensel with a piano-overlay acting as a midi
controller. A demonstration of this instrument can be found in [22]. It is
interesting to note here that the sympathetic strings that are in tune with the
harmonics of the bowed strings resonate most, which is expected to happen in
the real world as well.

Fig. 8: The hurdy gurdy application.

6 Results and Discussion
Table 1 shows theCPUusage (on the sameMacBookPro 2.2GHz i7 asdescribed
before) for the three instruments presented in the previous section. As the
Sensel thread contributes a negligible amount to the CPU usage, this is not
shown in the table.

Application No Sound No Graphics Total
Bowed Sitar 32 63 85
Dulcimer 30 66 85

Hurdy Gurdy 28 58 78

Table 1: CPU usage (in %) for the instruments found in Section 5. Values show usage of one
(virtual) thread and have been taken as an average (with a margin of ~5%) over a short period of
time. The two middle columns show usage when the sound or graphics thread has been turned
off.

As can be seen from the table, all instruments use about the same amount
of CPU and none of them have audible dropouts (CPU < 100%). It can be
observed that the graphics use about 20% of the CPU, indicating that there is
still much room to increase the complexity of the instrument-configurations
before dropouts will occur. On the other hand, should the instruments be used
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in parallel with other audio applications or plug-ins, the CPU usage has to be
greatly reduced. The first step towards this would be to vectorise the FDSs
using AVX instructions.

While our instruments have been not formally evaluated yet, we have per-
formed somequalitative evaluationswith soundandmusic computing experts.
The goals of the evaluations were to explore the playability of the instrument,
sonic quality and intuitiveness of control. These evaluations showed that es-
pecially the bowing interaction feels intuitive and creates a natural sound. The
overall sound of the instrumentswas generally judged to be interesting, but not
“sounding like a real-life instrument". This makes sense, as we did not seek to
perfectlymodel each instrument, but rather used them as an inspiration for the
configurations of the physical models. The next step for sound quality would
be to replace the thin plate with a more realistic element, such as a wooden
instrument body.

7 Conclusion
In this paper, a real-time modular physical modelling synthesis environment
structured as a network of connected strings and plates has been presented.
Several instruments have been created in the context of this environmentwhich
can be played by a pair of SenselMorphs allowing for highly expressive control
of these instruments. Informal evaluations with professional musicians have
confirmed that the interaction is found natural and the output sound interest-
ing. Further steps to improve this project are to optimise the algorithm and to
replace the plate with a more realistic instrument body.
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Abstract
In this demonstration we present novel physical models controlled by the Sensel Morph
interface.

1 Introduction
The Sensel Morph is a highly accurate touch controller that senses position
and force of objects [1]. Figure 1 shows one player interacting with two Sensel
Morph devices to interact with the developed physical models. We use the
Sensel as an expressive interface for interacting with different physical models
described in a companion paper accepted to SMC 2019. Right above the touch-
sensitive area, the Sensel contains an array of 24 LEDs that can be controlled
from the application.

Fig. 1: Player using the Sensel Morphs to interact with one of the instruments.

Strings are shown as coloured paths (see Figure 2 for a descriptive visuali-
sation). The state of the string is visualised using the vertical displacement of
the paths. Bowed strings are shown in cyan on the top left. The bow is shown
as a yellow rectangle and moves while interacting. The fretting position is
shown as a yellow circle. Plucked strings are shown in purple in the top right,
underneath which the sympathetic strings are shown in light green. The plate
is shown in the bottom using a grid of rectangles (clamped grid points are not
shown). Its state is visualised using a grey-scale. Furthermore, connections are
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shown using orange circles/squares for the points of connection and dotted
lines between these points. Lastly, all parameters that are controlled by the
mouse such as output-level and plate-stiffness are located in a column on the
right side of the application.

2 Implemented Instruments
We subdivide string-elements into three types: bowed, plucked and sympa-
thetic strings. All stringswill be connected to one plate acting as an instrument
body of which the user can control the plate-stiffness. Furthermore, the user
can change the output-level of each element type. Apart from these parame-
ters, which are controlled by the mouse, the instruments are fully controlled
by two Sensels. The instruments we have chosen as our inspiration are the
sitar, the hammered dulcimer and the hurdy gurdy.

2.1 Bowed Sitar
The sitar is originally an Indian string instrument that has both fretted strings
and sympathetic strings. Instead of plucking the fretted strings, we extended
the model to bow them. Our implementation consists of 2 bowed strings
(tuned to A3 and E4), 13 sympathetic strings (tuned according to [2]) and 5
plucked strings (tuned A3-E4 following an A-major scale) as it is also possible
to strum the sympathetic strings. Figure 2 shows the visual interface of the
implementation. One Sensel is vertically subdivided into two sections; one for
each bowed string. The first finger registered by the Sensel is mapped to a bow
and the second is mapped to a fretting finger controlling pitch. The horizontal
position of both fingers is visualised using the Sensel’s LED array. The frets
are not implemented as such (the pitch is continuous), but they are visualised
for reference.

2.2 Hammered Dulcimer
The hammered dulcimer is an instrument that can be seen as an ‘open piano’
where the musician has the hammers in their hand. Just like the piano, the
strings are grouped in pairs or triplets that are played simultaneously. The
interface for the hammered dulcimer can be seen in Figure 3. In our imple-
mentation, we have 20 pairs of plucked strings. Even though most hammered
dulcimers havemore strings, wedecided that this configuration has the highest
number of strings while maintaining playability. One of each pair is connected
to a plate which slightly detunes it, creating a desired ‘chorusing’ effect. Two
Sensel boards are placed vertically next to each other (see Figure 1). The pair
with the lowest frequency is located in the bottom right and the highest in the
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Fig. 2: The bowed sitar application. The descriptions of the different elements and other objects
are shown in the image, but will (naturally) not be visible in the application.

top left, as in the real instrument. As with the plucked strings of the bowed
sitar, the LED array is used to visualise the way that the Sensel is subdivided,
which is especially useful here as one Sensel controls 10 string-pairs.

The mass ratio is set relatively high (M = 100) to amplify the non-linear
interaction between the strings and the detuning of the strings connected to
the plate.

Fig. 3: The hammered dulcimer application.

2.3 Hurdy Gurdy
The hurdy gurdy is an instrument that consists of bowed and sympathetic
strings. The bowing happens through a rosined wheel attached to a crank and
bows these strings as the crank is turned. It is possible to change the pitch of a
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few bowed strings - the melody strings - using buttons that press tangent pins
on the strings at different positions. The other strings, referred to as drone
strings, are mostly tuned lower than the melody strings and provide the bass
frequencies of the instrument. The musician can place the bowed strings on
rests that keep the wheel from interacting with it. The visual interface can be
seen in Figure 4. Our implementation consists of 5 bowed strings subdivided
into 2 drone strings tuned to A2, E3 and 3 melody strings tuned to A3, E4 and
A4 and 13 sympathetic strings tuned the same way as the sympathetic strings
in bowed sitar. Furthermore, the mass ratios have been set the same as in the
bowed sitar application.

The Sensel is vertically subdivided into 5 rows that control whether the
strings are placed on the wheel.

Fig. 4: The hurdy gurdy application.

3 References
[1] Sensel Inc. (2018) Sensel morph. [Online]. Available: https://sensel.com/
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Abstract
The simulation of a bowed string is challenging due to the strongly non-linear rela-
tionship between the bow and the string. This relationship can be described through
a model of friction. Several friction models in the literature have been proposed, from
simple velocity dependent to more accurate ones. Similarly, a highly accurate technique
to simulate a stiff string is the use of finite-difference time-domain (FDTD) methods.
As these models are generally computationally heavy, implementation in real-time is
challenging. This paper presents a real-time implementation of the combination of
a complex friction model, namely the elasto-plastic friction model, and a stiff string
simulated using FDTD methods. We show that it is possible to keep the CPU usage
of a single bowed string below 6 percent. For real-time control of the bowed string, the
Sensel Morph is used.

1 Introduction
In physical modelling sound synthesis applications, the simulation of a bowed
string is a challenging endeavour. This is mainly due to the strongly non-linear
relationship between the bow and the string, through amodel of friction. Such
friction models can be categorised as static or dynamic; models of the latter
type have only recently seen a major effort. As opposed to static friction
models, where friction depends only on the relative velocity of the two bodies
in contact, dynamic models describe the friction force through a differential
equation.

A recently popular dynamic model is the elasto-plastic model, first pro-
posed in [1]. The model assumes that the friction between the two objects in
contact is caused by a large ensemble of bristles, each of which contributes
to the total friction force. The average bristle deflection is used as an extra
independent variable for calculating the friction force. As shown in [2], the
elasto-plasticmodel can be applied to a bowed string simulation and it exhibits
a hysteresis loop in the force versus velocity plane due to this multivariable
dependency. This is consistent with measurements performed using a bowing
machine in [3]. The elasto-plastic model has been thoroughly investigated in
a musical context by Serafin et al. in [2, 4, 5].

Regarding bowed string simulations, the first musical non-linear systems,
including bowed strings, were presented by McIntyre, et al. in [6]. Smith
published the first real-time implementation of the bowed string using a digital
waveguide (DW) for the string and a look-up table for the friction model in [7].
Simultaneously, Florens, et al. published a real-time implementation using
mass-spring systems for the string and a static friction model for the bow in
[8].

The dynamics of musical instruments are generally described by systems
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of partial differential equations (PDEs). Specialised synthesis methods such as
DWs [9] andmodal synthesis [10] are derived from particular solutions. Main-
stream time-stepping methods such as finite-difference time-domain (FDTD)
methods were first proposed in [11, 12, 13], and developed subsequently
[14, 15]. In [16] the authors adapted the thermal model proposed by Wood-
house in [3] for real-time applicationsusing aDWfor the string implementation
and a combination of the DW and FDTD methods for the bowing interaction.
In [17, 18], Desvages used FDTDmethods for the implementation of the string
in two polarizations and a static double exponential friction model introduced
in [19]. This was, however, not implemented in real-time. To the best of the
authors’ knowledge, the only known real-time implementation of any bow
model applied to complete FDTD strings was presented in [20] where the soft
exponential friction function presented in [14] was used. The current work can
be considered an extension of this work.

We are interested in bridging the gap between highly accurate physical
models and efficient implementations so that these models can be played in
real-time. In this work, we present an implementation of the elasto-plastic
friction model in conjunction with a finite-difference implementation of the
damped stiff string. Furthermore, we show that it is possible to play the string
in real-time using the Sensel Morph controller [21].

This paper is structured as follows. In Section 2, the elasto-plastic bow
model in conjunction with a PDEmodel for a stiff string is described. Discreti-
sation is covered in Section 3, and implementation details appear in Section 4.
In Section 5, simulated results are presented and discussed. Some concluding
remarks appear in Section 6.

2 Elasto-Plastic Bow Model
Consider a linear model of transverse string vibration in a single polarization,
where u(x, t) represents string displacement as a function of time t ≥ 0, in
s, and coordinate x ∈ [0, L] (in m) for some string length L (in m). Using
the subscripts t and x to denote differentiation with respect to time and space
respectively, a partial differential equation describing the dynamics of the
damped stiff string is [14]

utt = c2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx. (1)

Here, c =
√
T/ρA is the wave speed (in m/s) with tension T (in N), material

density ρ (in kg·m−3) and cross-sectional area A (in m2). Furthermore, κ =√
EI/ρA is the stiffness coefficient (in m2/s) with Young’s Modulus E (in Pa)

and area moment of inertia I (in m4). For a string of circular cross section we
have radius r (in m), cross-sectional area A = πr2 and area moment of inertia
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I = πr4/4. Lastly, σ0 ≥ 0 (in s−1) and σ1 ≥ 0 (inm2/s) are coefficients allowing
for frequency-independent and frequency-dependent damping respectively.

In our implementation we assume simply supported boundary conditions,
which are defined as

u = uxx = 0 where x = 0, L . (2)

a)

b)

c)

d)

vB

z

string

bow
z = 0

0 < |z| ≤ zba

zba < |z| < |zss|

|z| ≥ |zss|

Fig. 1: Microscopic displacements of the bristles between the bow and the string. The bow moves right with
a velocity of vB. a) The initial state is where the average bristle displacement z = 0. b) The bow has moved
right relative to the string. The purely elastic, or presliding regime is entered (stick). c) After the break-away
displacement zba, more and more bristles start to ‘break’. This is defined as the elasto-plastic regime. d)
After all bristles have ‘broken’, the steady state (slip) is reached and the purely plastic regime is entered.

As mentioned in the introduction, the elasto-plastic bow model assumes
that the friction between the bow and the string is due to a large ensemble of
bristles, each of which contributes to the total friction force. See Figure 1 for a
graphical representation of this. The bristles are assumed to be damped stiff
springs and can ‘break’ after a given break-away displacement threshold. An
extra term can be added to (1) to include the bowing interaction

utt = . . .− δ(x− xB)f(v, z)/ρA. (3)

Here, the spatialDirac delta function δ(x−xB) (inm−1) allows for the pointwise
application of the force f (in N) at externally supplied bowing position xB(t)
(in m).

In the following we will use the definitions found in [1]. The force f is
defined in terms of the relative velocity v (in m/s) and average bristle displace-
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ment z (in m) (see Figure 1) as

f(v, z) = s0z + s1ż + s2v + s3w, (4)

where
v = ut(xB)− vB, (5)

where vB(t) is an externally supplied bow velocity, s0 is the bristle stiffness (in
N/m), s1 is the damping coefficient (in kg/s), s2 is the viscous friction (in kg/s)
and s3 is a dimensionless noise coefficient multiplied onto pseudorandom
function w(t) (in N) as done in [4] and adds noise to the friction force. Here, ż
indicates a time derivative of z, and is related to v through

ż = r(v, z) = v

[
1− α(v, z) z

zss(v)

]
, (6)

where zss is the steady-state function

zss(v) =
sgn(v)

s0

[
fC + (fS − fC)e−(v/vS)

2
]
, (7)

with Stribeck velocity vS (in m/s), Coulomb force fC = fNµC and stiction force
fS = fNµS (both in N). Here µC and µS are the dynamic and static friction
coefficient respectively and fN(t) is the normal force (in N) which is, like vB(t),
externally supplied. See Figure 2 for a plot of (7).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-2

-1

0

1

2

10
-4 Steady-state function

Fig. 2: A plot of the steady-state function zss(v) with a force of 5 N.

Furthermore, the adhesion map between the bow and the string is defined
as

α(v, z) =





0 |z| ≤ zba
αm(v, z) zba < |z| < |zss(v)|
1 |z| ≥ |zss(v)|



 if sgn(v) = sgn(z)

0 if sgn(v) 6= sgn(z),

(8)
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where the transition between the elastic and plastic behaviour is defined as

αm =
1

2

[
1 + sgn(z) sin

(
π
z − sgn(z) 12 (|zss(v)|+ zba)

|zss(v)| − zba

)]
, (9)

with break-away displacement zba, i.e., where the bristles start to break (see
Figure 1 c)). A plot of the adhesion map can be found in Figure 3.1

One of the difficulties in working with this model is that, due to the many
approximations, the notion of an energy balance, relating the rate of stored
energy in the system to power input and loss is not readily available. Such
energy methods are used frequently in the context of physical modeling syn-
thesis and virtual analogmodeling as ameans of arriving at numerical stability
conditions for strongly nonlinear systems, as is the present case. See, e.g., [14].
This means that we do not have a means of ensuring numerical stability in the
algorithm development that follows. This does not mean, however, that an
energy balance is not available.

Fig. 3: A plot of the adhesion map α(v, z) plotted against z when the signs of v and z are the same. The
different regions of the map are shown with the coloured areas and correspond to Figure 1 according to:
yellow - a) & b), orange - c) and red - d).

3 Discretisation
Finite-difference schemes for the stiff string in isolation are covered by various
authors [13, 14].

Equation (1) can be discretised at times t = nk, with sample n ∈ N and
time-step k = 1/fs (in s) with sample-rate fs (in Hz) and locations x = lh,

1It is interesting to note is that in the literature on this topic such as [1, 2, 4, 5], a few inaccuracies
can be found in the definition of α(v, z): 1) all uses of zss in (8) and (9) lack the absolute value
operator, 2) themultiplicationswith sgn(z) in (9) are excluded, 3)α(v, z) is undefined for |z| = zba
and |z| = |zss(v)| (correct in the original paper by Dupont et al. [1]). It can be shown that only
with the definitions presented here, is it possible to obtain the curve shown in Figure 3.
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where grid spacing h (in m) needs to abide the following condition [14]

h ≥ hmin =

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
(10)

and grid points l ∈ [0, ..., N ], where N = floor(L/h) and N + 1 is the total
number of grid points. It is important to note that the closer h is to hmin, the
more accurate the scheme will be. Approximations for the derivatives found
in (1) are described in the following way [14]:

ut ≈ δt·unl =
1

2k

(
un+1
l − un−1l

)
, (11a)

utt ≈ δttunl =
1

k2
(
un+1
l − 2unl + un−1l

)
, (11b)

uxx ≈ δxxunl =
1

h2
(
unl+1 − 2unl + unl−1

)
, (11c)

utxx ≈ δt−δxxunl =
1

hk2
(
unl+1 − 2unl + unl−1 − un−1l+1 + 2un−1l − un−1l−1

)
, (11d)

uxxxx ≈ δxxxxunl =
1

h4
(
unl+2 − 4unl+1 + 6unl − 4unl−1 + unl−2

)
, (11e)

with grid function unl denoting a discretised version of u(x, t) at the nth time
step and the lth point on the string. Note that in (11d), the backwards time dif-
ference operator is used to keep (12) explicit and thus computationally cheaper
to update. Using the approximations shown in (11), (3) can be discretised to

δttu
n
l = c2δxxu

n
l − κ2δxxxxunl − 2σ0δt·u

n
l

+ 2σ1δt−δxxu
n
l − J(xnB)f(vn, zn)/ρA,

(12)

where the relative velocity described in (5) can be discretised as

vn = I(xnB)δt·u
n
l − vnB . (13)

Here, I(xnB) and J(xnB) are weighting functions where the former interpolates
the string displacement and velocity and the latter distributes the bowing term
around time-varying bowing position xnB (see Figure 4 and [14] formore details
on this). Furthermore,

f(vn, zn) = s0z
n + s1r

n + s2v
n + s3w

n (14)

is the discrete counterpart of (4) where

rn = r(vn, zn) = vn
[
1− α(vn, zn) zn

zss(vn)

]
(15)
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is the discrete counterpart of (6).

J3(xB)f(v, z)

ulB−1 ulB ulB+1 ulB+2

NR

I3(xB)ul

×

×

xB

Fig. 4: Cubic interpolation at bowing point xB. The interpolator I retrieves the values of four grid points
which are then used in the Newton-Raphson (NR) solver. This outputs the force function f(v, z) that the
spreading function J in turn distributes over the same four grid points. This process happens every single
sample.

At the bowing pointwe need to iteratively solve for two unknownvariables:
the relative velocity between the bow and the string vn and the mean bristle
displacement zn of the bow at sample n. We can solve (12) at xnB using (13) and
identity [14]

δttu
n
l =

2

k

(
δt·u

n
l − δt−unl

)
(16)

resulting in

I(xnB)J(x
n
B)f(v

n, zn)/ρA+
(2
k
+ 2σ0

)
vn + bn = 0, (17)

where

bn =
2

k
vnB −

2

k
I(xnB)δt−u

n
l − c2I(xnB)δxxunl + κ2I(xnB)δxxxxu

n
l

+ 2σ0v
n
B − 2σ1I(x

n
B)δt−δxxu

n
l

(18)

and can be pre-computed as its terms are not dependent on vn or zn. Recalling
(4), this can be rewritten to

I(xnB)J(x
n
B)

(
s0z

n + s1r
n + s2v

n + s3w
n

ρA

)
+
(2
k
+ 2σ0

)
vn + bn = 0. (19)

To obtain the values of vn and zn, multivariate Newton-Raphson (NR) is

332



used. If (19) is defined to be g1 = g1(v
n, zn) and

g2(v
n, zn) = rn − an = 0, (20)

with
an = (µt−)

−1δt−z
n (21)

(where the operators applied to zn denote the trapezoid rule [14]) we obtain
the following iteration

[
vn(i+1)

zn(i+1)

]
=

[
vn(i)
zn(i)

]
−
[∂g1
∂v

∂g1
∂z

∂g2
∂v

∂g2
∂z

]−1 [
g1
g2

]
, (22)

where i is the iteration number capped by 50 iterations, and the convergence
threshold is set to 10−7.

4 Implementation
In this section, we will elaborate on the implementation; the parameters used
and the system architecture. The real-time implementation of the discrete-
time model shown in the previous section has been done using C++ together
with the JUCE framework [22]. The application is shown in Figure 5. The
parameters we used can be found in Table 1, most of which are based on
implementations by Serafin in [4]. These parameters will be static, i.e., are
not user-controlled (except for zba and s3 which rely on fN). A demonstrative
video can be found in [23]. We use the passivity condition proposed by

Fig. 5: The elasto-plastic bowed string application. The bow is shown as a yellow rectangle, moves on
interaction and its opacity depends on the finger force. The state un is visualised using the cyan curve
and stopping-finger position is shown as a yellow circle. The grey lines show the ‘frets’ corresponding to
semi-tones as a visual reference for the stopping position and do not influence the model.

[24] for our choices of different parameter-values. As this condition applies to
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Table 1: Parameter values. Values for the fundamental frequency f0 can be found in Section 5.

Parameter Symb. (unit) Value (notes)
Material Density ρ (kg·m−3) 7850

Radius r (m) 5 · 10−4
String length L (m) 1
Wave speed c (m/s) 2f0/L

Young’s modulus E (Pa) 2 · 1011
Freq. indep. damping σ0 (s−1) 1
Freq. dep. damping σ1 (m2/s) 5 · 10−3
Coulomb friction µC (-) 0.3 (< µS)
Static friction µS (-) 0.8 (> µC)
Normal force fN (N) 10
Bow velocity vB (m/s) 0.1
Bow position xB (m) 0.25

Stribeck velocity vS (m/s) 0.1
Bristle stiffness s0 (N/m) 104

Bristle damping s1 (kg/s) 0.001
√
s0

Viscous friction s2 (kg/s) 0.4
Noise coefficient s3 (-) 0.02fN

Pseudorandom func. w (N) −1 < w < 1
Break-away disp. zba (m) 0.7fC/s0 (< fC/s0)

Sample rate fs (Hz) 44,100
Time step k (s) 1/fs

the LuGre model first proposed in [25, 26] fromwhich the elasto-plastic model
evolved, further investigation is required to concludewhether these conditions
are identical for the elasto-plastic model.

4.1 Sensel Morph
As mentioned in Section 1, the Sensel Morph (or Sensel for short) is used as
an interface to control the bowed string (see Figure 6). The Sensel is a highly
sensitive touch controller containing ca. 20,000 pressure sensitive sensors that
allow for expressive control of the implementation [21].

4.2 Interaction
The first finger the Sensel registers is linked to the following parameters: the
normal force of the bow fN (finger pressure), the bowing velocity vB (vertical
finger velocity) and bowing position xB (horizontal finger position). The pa-
rameters are limited by the following conditions: 0 ≤ fN ≤ 10,−0.3 ≤ vB ≤ 0.3

and 0 < xB < L. The second finger acts as a stopping finger on the string. As
done in [20], for a string stopped at location xf ∈ [0, L] and lf = floor(xf/h)we
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Fig. 6: The Sensel Morph: an expressive touch sensitive controller used for controlling the real-time
elasto-plastic bowed string implementation.

use

unl =





0, l = lf − 1 ∨ l = lf

(1− αεf )unl , l = lf + 1

unl , otherwise
(23)

where αf = xf/h− lf and ε = 7 is a heuristic value that has been found to most
linearly alter pitch between grid points.

4.3 System Architecture
Implementation of the scheme shown in (12) starts by expanding the operators
shown in (11) and solving for the state at the next sample un+1 where u is a
vector containing the values for all grid points l ∈ [0, ..., N ].

An overview of the system architecture can be found in Figure 7. The three
main components of the application are the Sensel controlling the application,
the violin string class that performs the simulation and the main application
class that moderates between these and the auditory and visual outputs. The
black arrows indicate instructions that one of these components can give to
another and the hollow arrows indicate data flows. Moreover, the arrows are
accompanied by coloured boxes, depicting what thread the instruction or data
flow is associated with and at what rate this runs.

The graphics thread has the lowest priority, is denoted by the green boxes
and runs at 15 Hz. The redraw instruction merely retrieves the current string
state un and bow and finger position and visualises this as shown in Figure 5.
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Fig. 7: The system architecture. See Section 4.3 for a thorough explanation.

The thread checking and receiving data from the Sensel runs at 150 Hz
and is denoted by the blue boxes. The parameters that the user interacts with
(bowing force, velocity and position) are also updated at this rate.

The highest priority thread is the audio thread denoted by the orange boxes
and runs at 44,100 Hz. The violin string class gets updated at this rate and
performs operations in the order shown in Algorithm 1.

5 Results and Discussion
Figure 8 shows the output waveforms for a string with f0 = 440Hz at different
points along the string. The bowing parameters are fN = 5N and vB = 0.1m/s.
The figure shows the traditional Helmholtz motion, which is the characteristic
motion of a bowed string.

To test whether the implementation exhibits a hysteresis loop, the force vs.
relative velocity plane was visualised. In Figure 9, this plot can be found for
which the same parameters have been used. The figure shows values for 500
samples around t = 0.5fs. As can be seen from the figure, the hysteresis loop
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for t = 1:lengthSound do
calculate computable part bn (Eq. (18))
ε = 1

i = 0

while ε < tol ∧ i < 50 ∧ fC > 0 do
calculate..
1. zss(vn(i))
2. α(vn(i), zn(i))
3. r(vn(i), zn(i))
4. g1, g2

(Eq. (7) in discrete-time)
(Eq. (8) in discrete-time)
(Eq. (15))
(Eqs. (19) and (20))

5.–9. Compute derivatives of 1.–4. in the same order.
10. Perform vector NR to obtain vn(i+1) and zn(i+1)

11. Calculate ε: ε =

∥∥∥∥∥

[
vn(i+1)

zn(i+1)

]
−
[
vn(i)
zn(i)

]∥∥∥∥∥
12. Increment i: i = i+ 1

end
Repeat 1.–3. using the values for vn and zn from the NR iteration.
Calculate f(vn, zn)
Calculate un+1

(Eq. (14))
(Eq. (12) expanded)

un−1 = un

un = un+1

end

Algorithm 1: Pseudocode showing the order of calculations.

is achieved and is similar to the one observed in [19]. The group of values
around v = 0 are due to the sticking behaviour, and the others (the loop on the
left) to the slipping behaviour.

For testing the speed of the algorithm, a MacBook Pro with a 2.2 GHz
Intel Core i7 processor was used. The algorithm was tested using different
frequencies according to the violin tuning of empty strings: f0 = 196.0 (G3),
293.66 (D4), 440.0 (A4) and 659.26 (E5) Hz corresponding to N = 95, 71, 49,
and 33 grid points respectively. The results can be seen in Table 2. When the
total number of strings is smaller than 4, always the lowest frequency strings
are used.

From Table 2 it can be observed that for one string, the CPU usage is < 6%

with the graphics thread disabled. This is a great result, given the fact that
both the bow and the string model are computationally complex. Empirical
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Fig. 8: Output waveforms of the simulation at different positions along the string where N denotes the
number of points of the string (f0 = 440 Hz, fN = 5 N and vB = 0.1 m/s).
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Fig. 9: Hysteresis loop showing 500 values. The values around v = 0 are due to sticking behaviour and the
loop on the left is due to slipping behaviour.

investigation shows that the NR algorithm converges after ca. 3-4 iterations
and the capping of 50 iterations never has to be used. A single string (but
also more) could thus safely be used as an audio plugin in parallel to others
without the user having to worry about auditory dropouts.

6 Conclusions
In this paper, we presented a real-time implementation of an elasto-plastic
friction model with applications to a bow exciting a string, discretised using a
finite-difference approach.

With a single string we are able to keep the CPU usage down to < 6%

making for an efficient implementation that could be used in parallel with
other virtual instruments or plugins.

Future work includes parameter design and including an instrument body
for more realistic sounding results, as well as listening tests to verify the per-
ceivable differences between simpler friction models versus the elasto-plastic
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Table 2: CPU usage for different amounts of strings. The values are averages over a 10 s period both for the
enabled and disabled graphics thread. All strings are bowed simultaneously (polyphonically).

Amount of strings Graphics (%) No graphics (%)
1 44.8 5.95
2 47.7 9.54
3 52.8 12.1
4 60.9 17.9

model.
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Abstract
The tromba marina is a medieval bowed monochord instrument. The string of the
instrument rests on a rattling bridge that, due to the collision with the body, creates
a trumpet-like sound. This paper presents a real-time implementation of a physical
model of the tromba marina. The goal of the simulation is to make the instrument
accessible to a larger audience. The physical model is implemented using finite-
difference time-domain (FDTD) methods and non-iterative collision methods. A real-
time implementation of the instrument is also presented. The simulation exhibits
brass-like qualities and sounds similar to a real tromba marina, but requires further
testing to validate the realism.

1 Introduction
The tromba marina (see Figure 1) is a medieval bowed monochord instrument
with a long quasi-trapezoidal body and a uniquely fashioned bridge (often
called a shoe, because of its shape – see Figure 2). The name of the instrument
derives from the fact that trombameans trumpet in Italian. A peculiarity of the
instrument is that a foot of the bridge is free to rattle against the soundboard
in sympathy with the vibrating string. This unusual bridge creates a trumpet-
like sound. The frequency produced by the instrument is varied by placing
the side of the knuckle of the non-dominant hand, lightly, at specific nodal
points on the string, in order to select various harmonics of the open string.
The dominant hand controls the bow, which is drawn across the string above
the non-dominant hand [1].

In this paper, we present a real-time implementation of a physical model of
the trombamarina. One of the ultimate goals is the emulation of an instrument
that, due to its rarity, is not accessible to a large audience.

Physical modelling for sound synthesis has a long history. Various tech-
niques have been developed to simulate real-world instruments, including
mass-spring systems [2], digital waveguides [3] and modal synthesis [4].
Finite-difference time-domain (FDTD) methods were first used for sound syn-
thesis by Hiller and Ruiz in [5, 6, 7], later by Chaigne et al. in [8, 9] and
elaborated upon by Bilbao and colleagues in [10, 11]. Compared with other
techniques, FDTD methods are more computationally expensive, but easily
generalisable and flexible—no assumptions of linearity of travelling wave so-
lutions are employed. Our goal is to implement these techniques in real time
and thereby make the simulations playable for the users. For this purpose,
we use the expressive Sensel Morph controller [12]. Other work in real-time
control of FDTD methods using this controller includes [13].

The emulation of nonlinear collision interactions in musical instruments
normally requires the use of iterative solvers (such as the Newton-Raphson
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Fig. 1: The tromba marina from the Danish Music Museum in Copenhagen.

Fig. 2: The bridge of the tromba marina from the Danish Music Museum in Copenhagen. The
right side is pressed against the body by the string while the left side is free and can rattle against
the body.
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algorithm) [14]. For the nonlinear collisions present in the instrument, a
method recently proposed in the field of audio by Lopes and Falaize in [15, 16,
17] and later by Ducceschi and Bilbao in [18] allows such iterative methods to
be sidestepped. It is thus suited to creating a real-time implementation of the
tromba marina.

This paper is structured as follows: Section 2 presents the models used
and Section 3 shows the discretisation of these. Section 4 provides informa-
tion about implementation, parameter choices, the graphical user interface
and control and mapping. Section 5 shows the results and discusses these.
Concluding remarks and future work are presented in Section 6.

2 Models
The trombamarina can be subdivided into three main components: the string,
the bridge and the body. In this section, the partial differential equations
(PDEs) of the different components in isolation, under zero-input conditions,
will be of the form

Lq = 0. (1)

Here, q = q(x, t) represents the state of the component at time t and spatial
coordinate x ∈ D, where the dimensions of domain D depend on the com-
ponent at hand. Furthermore, L is a partial differential operator. (Subscripts
‘s’, ‘m’ and ‘p’ used subsequently indicate that (1) applies to the string, bridge
(mass) or body (plate), respectively.)

2.1 Bowed Stiff String
Consider a damped stiff string of length L (m), with domain D = Ds = [0, L]

and state variable q = u(χ, t). With reference to (1), we define the operator
L = Ls as [10]

Ls = ρsA∂
2
t − T∂2χ + EsI∂

4
χ + 2ρsAσ0,s∂t − 2ρsAσ1,s∂t∂

2
χ. (2)

Here, ∂t and ∂χ indicate partial differentiation with respect to t and χ. The
various parameters appear as: material density ρs (kg·m−3), cross-sectional
area A = πr2 (m2), radius r (m), tension T = (2f0,sL)2ρsA (N),1 fundamental
frequency f0,s (s−1), Young’s modulus Es (Pa), area moment of inertia I =

πr4/4 (m4), and loss coefficients σ0,s (s−1) and σ1,s (m2/s). We set the boundary

1Even though this definition for T from the fundamental frequency f0,s is only valid for a
simply supported string without stiffness, the effect of the stiffness eventually chosen for f0,s is
negligible.

346



conditions to be simply supported so that

u = ∂2χu = 0 for χ = 0, L. (3)

As the string is excited using a bow, Equation (1) may be augmented as [10]

Lsu = −δ(χ− χb)FbΦ(vrel), (4)

with externally supplied downward bow force Fb = Fb(t) (N), spatial Dirac
delta function δ(χ − χb) (m) selecting the bow position χb = χb(t) ∈ Ds (m)
and dimensionless friction characteristic

Φ(vrel) =
√

2avrele
−av2rel+1/2, (5)

with free parameter a. The relative velocity between the string at bow location
χb and the externally supplied bow velocity vb = vb(t) (m/s) is defined as

vrel = ∂tu(χb, t)− vb. (6)

2.2 Bridge
Thebridge ismodelled as a simplemass-spring-damper system. As this system
is point-like, or zero-dimensional, the state variable q = w(t) and the definition
of domain D is unnecessary. The operator L = Lm is defined as

Lm = M
d2

dt2
+Mω2

0 +MR
d

dt
, (7)

with massM (kg), linear angular frequency of oscillation ω0 = 2πf0,m, (s−1),
fundamental frequency f0,m (s−1) and damping coefficient R (s−1).

2.3 Body
The body is simplified to a two-dimensional plate with side-lengths Lx and
Ly , domain D = Dp = [0, Lx] × [0, Ly] and state variable q = z(x, y, t). Using
the 2D Laplacian

∆ , ∂2x + ∂2y , (8)

the operator L = Lp can be defined as [10]

Lp = ρpH∂
2
t +D∆∆ + 2ρpHσ0,p∂t − 2ρpHσ1,p∂t∆, (9)

with material density ρp (kg·m−3), plate thickness H (m), stiffness coefficient
D = EpH

3/12(1−ν2), Young’smodulusEp (Pa), dimensionless Poisson’s ratio
ν, and loss coefficients σ0,p (s−1) and σ1,p (m2/s). The boundary conditions of
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the plate are set to be clamped so that

z = n · ∇z = 0. (10)

where∇z is the gradient of z, and where n indicates a normal to the plate area
at the boundary.

2.4 Collisions
It can be argued that the greatest contributor to the characteristic sound of the
tromba marina is the rattling bridge colliding with the body. A diagram of the
bridge with important parts highlighted can be found in Figure 3. A collision
can be modelled by including a term to the PDEs mentioned above describing
the potential energy of the system (further referred to as the potential) [18]. For
the bridge-body (mass-plate) interaction this potential is defined as follows

φmp(ηmp) =
Kmp

αmp + 1
[ηmp]

αmp+1
+ , (11)

Kmp > 0, αmp ≥ 1, ηmp , z(xmp, ymp, t)− w(t)

whereKmp is the collision stiffness (N/m if αmp = 1), αmp is the dimensionless
nonlinear collision coefficient, and ηmp = ηmp(t) is the distance between the
rattling part of the bridge and the body at the point of collision (m). Further-
more, [ηmp]+ = 0.5(ηmp + |ηmp|) is the positive part of ηmp. Note that penalty
methods are employed here, where a positive ηmp, i.e., interpenetration of the
colliding objects, is intended [19]. The term which can then be included in
the PDEs is φ′mp = dφmp/dηmp. As described in [15, 16, 17, 18], using this
form of the potential requires using iterative methods for solving its discrete

body
a) b)

c)

Fig. 3: Diagram of the bridge while rattling (view from top of the tromba marina). Indicated are:
a) the pivoting point always in contact with the body, b) the rattling point colliding with the body
(currently not colliding), and c) the string cavity straight above the middle of the pivoting point.

348



counterpart. In [18], the authors propose to rewrite the potential to

ψ =
√

2φ, (12)

and the term included in the PDEs to

φ′ = ψψ′ = ψ
dψ

dη

chain rule−−−−−→ ψ
ψ̇

η̇
, (13)

where the dot aboveψ and φ denotes a single time derivative. Equation (13), as
can be seen in Section 3, leads to guaranteed stable and explicitly computable
simulation algorithms without the need for iterative solvers.

As the string rests on the bridge, the interaction between these components
needs to be modelled as well. Even though the bridge-body interaction is
perpendicular to the string-bridge interaction, we can model them as being
parallel, assuming that a “horizontal" movement of the string causes a “ver-
tical" movement of the rattling part of the bridge. We can use an alternative
version of the potential in Equation (11) described in [20] to make the collision
two-sided acting as a connection:

φsm(ηsm) =
Ksm

αsm + 1
|ηsm|αsm+1, (14)

Ksm > 0, αsm ≥ 1, ηsm , w(t)− u(χsm, t)

where ηsm = ηsm(t) is the distance between the string at the location of the
bridge and the bridge itself.

2.5 Complete System
A complete system for the tromba marina may be written, in continuous-time
as:





Lsu = −δ(χ− χb)FbΦ(vrel) (15a)
+ δ(χ− χsm)ψsmψ

′
sm

Lmw = −ψsmψ
′
sm + ψmpψ

′
mp, (15b)

Lpz = −δ(x− xmp, y − ymp)ψmpψ
′
mp, (15c)

ηsm = w(t)− u(χsm, t), (15d)
ηmp = z(xmp, ymp, t)− w(t), (15e)

where χsm ∈ Ds is the location of the bridge along the string and (xmp, ymp) ∈
Dp is the location on the body with which the bridge collides.
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3 Discretisation
System (15) is discretised using FDTDmethods. These methods subdivide the
continuous system in grid points in space and samples in time. Before going
into the discretisation of the models, and collision and connection terms in the
system described in (15), some finite difference operators are introduced.

3.1 Operators
The identity and temporal shift operators are defined as

1ηn = ηn, et+η
n = ηn+1, et−η

n = ηn−1. (16)

Using these, the operators for the forward, backward and centered time dif-
ferences can be defined as

δt+ =
et+ − 1

k
, δt− =

1− et−
k

, δt· =
et+ − et−

2k
, (17)

and are all approximations to a first-order time derivative. Furthermore, for-
wards and backwards averaging operators are defined as

µt+ =
et+ + 1

2
, µt− =

1 + et−
2

. (18)

and can be used to describe interleaved grid points n + 1/2 and n − 1/2

respectively.

3.2 Discrete Models
To approximate the state of a system in isolation we use

q(x, t) ≈ qnl , (19)

where grid function qnl is a discrete approximation to q(x, t) at t = nk with
time step k (s), time index n ≥ 0 and grid location l that depends on domain
D of the system at hand. In the case of the string, we use χ = lhs with grid
spacing hs (m), l = l ∈ [0, . . . , N ] and total number of grid points N = L/hs to
yield u(χ, t) ≈ unl .

In the case of the body, we use x = lhp and y = mhp to get z(x, y, t) ≈
zn(l,m) where l = (l,m) with l ∈ [0, . . . , Nx] and m ∈ [0, . . . , Ny]. Here, Nx =

Lx/hp and Ny = Ly/hp are the horizontal and vertical number of grid points
respectively with grid spacing hp (m).

The discretisation of and expansion of operator L ≈ ` in the case of stiff
strings, mass-spring systems and plates using FDTDmethods are well covered
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in the literature [10] and will not be described in detail in this paper. To obtain
the highest accuracy possible while keeping the system explicit (except for
the bow), centered differences – which are second-order accurate – have been
chosen where possible.

For stability, grid spacings hs and hp should satisfy the conditions below.
In the case of the damped stiff string,

hs ≥

√
c2k2 + 4σ1,sk +

√
(c2k2 + 4σ1,sk)2 + 16κ2sk

2

2
, (20)

with wave speed c =
√
T/ρsA and stiffness coefficient κs =

√
EsI/ρsA and in

the case of the plate,

hp ≥ 2

√
k
(
σ1,s +

√
κ2p + σ2

1,s

)
, (21)

with stiffness coefficient κp =
√
D/ρpH . The closer the grid spacings are to

these conditions, the higher the accuracy of the approximation.
In order to discretise the Dirac delta functions found in system (15) we

introduce a spreading operator J(xc) that applies a force to coordinate xc,
which, in the simplest case, is defined as [10]

J(xc) =

{
1
hd
, l = lc = round(xc/h)

0, otherwise
(22)

Here, d is the number of dimensions of domain D that x is defined for, i.e.,
d = 0 for the bridge, d = 1 for the string, and d = 2 for the plate. For finer
control, a cubic spreading operator J3 can be introduced [10]. This is used for
the bowing term in Equation (4), which is discretised as follows

`su
n
l = −J3(χb)Fnb φ(vnrel) (23)

where, using the centered difference operator from Equation (17),

vnrel = δt·u
n
lb
− vnb , (24)

with coordinate lb = χb/hs. Equation (24) needs to be calculated using iterative
methods.
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3.3 Collisions using Non-Iterative Methods
For the discrete-time definitions of the potential in (13) we can use

ψ ≈ µt+ψn−1/2 and ψ′ ≈ δt+ψ
n−1/2

δt·ηn
, (25)

where ψ at interleaved grid point n− 1/2 is defined as

ψn−1/2 = µt−ψ
n. (26)

Note that applying a forward or backward difference operator to an interleaved
grid – such as δt+ψn−1/2 in Equation (25) – is second-order accurate.

For a system that has a single (upward) collision we get

`qnl = J(xc)
(
µt+ψ

n−1/2
) δt+ψn−1/2

δt·ηn
. (27)

Here, we use the identity

µt+ψ
n−1/2 =

k

2
δt+ψ

n−1/2 − ψn−1/2 (28)

and define
gn =

δt+ψ
n−1/2

δt·ηn
, (29)

which can be rewritten to

δt+ψ
n−1/2 = gnδt·η

n. (30)

Then, inserting (30) into (28) and this together with (29) into (27) we get

`qnl = J(xc)

(
k

2
gnδt·η

n − ψn−1/2
)
gn (31)

where gn may be explicitly calculated using the analytic expressions for ψ and
φ [18]:

gn = ψ′
∣∣∣∣
η=ηn

=
φ′√
2φ

∣∣∣∣
η=ηn

. (32)

Numerical stability of this scheme is shown in [18]. When writing out (32) we
can obtain definitions for gnsm using (14)

gnsm = sgn(ηnsm)

√
Ksm(αsm + 1)

2
|ηnsm|

αsm−1
2 , (33)
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and gnmp using (11)

gnmp =

√
Kmp(αmp + 1)

2
[ηnmp]

αmp−1

2
+ . (34)

3.4 Complete Discrete System
Introducing for brevity,

ξn =
k

2
gnδt·η

n − ψn−1/2, (35)

the discrete counterpart of the complete system described in (15) will be




`su
n
l = −J3(χnb )FbΦ(vnrel) + J(χsm)ξnsmg

n
sm, (36a)

`mw
n = −ξnsmgnsm + ξnmpg

n
mp, (36b)

`pz
n
(l,m) = −J(xmp, ymp)ξnmpg

n
mp, (36c)

ηnsm = wn − unlsm , (36d)
ηnmp = zn(lmp,mmp)

− wn, (36e)

where discrete counterparts of connection and collision locations in Equations
(36d) and (36e) aredescribedas lsm = χsm/hs and (lmp,mmp) = (xmp/hp, ymp/hp).
This leaves us with two different types of update equations, one where qn+1

l is
calculated and one where ψn+1/2 is calculated.

One might think that due to the centered differences δt·ηn still present in
Equation (35), our system remains implicit, but as we can insert the definitions
for Equations (36d) and (36e) evaluated at the next time index n + 1, which
are already present in `sunl , `mwn and `pzn(l,m), the Equations in (36) reduce to
a system of linear equations that can be solved by a single division.

4 Implementation
The real-time implementation of the system has been done in C++ using the
JUCE framework [21] andwill be controlled using the SenselMorph (or simply
Sensel) – an expressive touch controller. A demo of the application can be
found in [22]. This section will first elaborate some important considerations
regarding the setup of the system. Then, the algorithm together with the
parameter design will be presented. Finally, the graphical user interface (GUI)
will be detailed together with the Sensel and its mapping to the application.
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4.1 Introducing an Offset
Firstly, for more realistic and expressive sounds, we model the bridge – and
with that, the string – to rest slightly above the body. Expanding `mwn in (36b)
and including the offset yields

`mw
n ⇒Mδttw

n +Mω2
0(wn − woff) +MRδt·w

n (37)

where woff ≥ 0 is a predefined offset between the body and the bridge. Fur-
thermore, the second-order time derivative can be defined from the definitions
in (17) as

δtt = δt+δt− . (38)

The boundary condition of the string defined in Equation (3) will also change
depending on the bridge offset:

u = woff and ∂2χu = 0. (39)

4.2 Pitch Control
Secondly, as briefly mentioned in Section 1, the way that different pitches
are played on the tromba marina, is to slightly rest a knuckle or finger on
nodal points along the string to induce harmonics. Thus, a damping finger is
implemented. Using the cubic interpolation operator I3 [10], Equation (36a)
can be extended to

`su
n
l = . . .− J3(χf)I3(χf)σf(u

n
l − woff), where 0 ≤ σf ≤ 1, (40)

which essentially subtracts its own state at location χf ∈ [0, 0.5χsm] according
to the damping coefficient σf (kg· s−2) applied. As done in [13], the fractional
part used in the spreading operator (αi = χf/h − floor(χf/h)) is raised to the
7th power as it has been found to scale finger position to pitch more properly
in the context of FDTD. As the string is bowed above the damping finger (at
the other side of the rattling bridge) it is essential that the energy from the
bow reaches the rattling bridge, which is still the case for lower values of σf. A
more realistic approach that could be investigated is to model the finger as a
mass colliding with the string, rather than imposing the damping directly to
the state of the string as presented here.

A schematic plot of the full system, including the offset described in Equa-
tions (37) and (39) and the damping finger from Equation (40) can be found in
Figure 4.
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Fig. 4: The virtual system in (36) including the offset in Equation (37) and the damping finger in
Equation (40), with different important coordinates highlighted. Note that ηsm (Equation (36d)) is
not shown as it is close to 0 at all times.

4.3 Other Considerations
Realistic initialisation of both ηsm and ηmp is essential. In this case (at n = 0)
η0sm = 0 and η0mp ≤ 0 so that no collision is present at initialisation.

After hp is calculated in Equation (21), we check whether it is smaller than
a set value hp,min = 0.01. This reduces the quality of the model, but increases
the speed, ultimately allowing for real-time implementation.

4.4 Order of Calculation
The order of calculation is shown in the pseudocode in Algorithm 1. In theory,
in order to iteratively calculate the bow force, the collision and connection
forces should be included in this. However, as the string is practically never
bowed at the bridge position χsm, these can be calculated independently.

4.5 Parameter Design
The list of parameters used in the implementation can be found in Table 1.
As the authors had a real (recreated) tromba marina (presented in [23]) at
their disposal, some parameters have been measured in accordance to the real
instrument. The others have been tuned by ear by one of the authors.

Regarding the output of the system, through informal testing itwasdecided
to retrieve the output from the state of the plate right at the point of collision
zout = (lmp,mmp) combined with the sound of the string at uout = L − χsm
at a lower volume. It can be argued that the loudest sound comes from the
collision between the bridge and the body making it logical to select this point
as the main sound source.
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while application is running do
1. calculate schemes

2. apply bow to string

3. apply damping finger

4. calculate gnsm and gnmp

5. calculate collision and connec-
tion forces and add to schemes

6. Update states

(`q in Eqs. (36a-c))

(Eq. (36a))

(Eq. (40))

(Eqs. (33) and (34))

(Eqs. (36a-c))

qn−1 = qn

qn = qn+1

ψn−1/2 = ψn+1/2

end

Algorithm 1: Pseudocode showing the order of calculation after initialisa-
tion. Bold symbols denote the collection of states of the entire system (q)
and potentials (ψ).

4.6 Graphical User Interface
A screenshot of the GUI is shown in Figure 5. The GUI is divided in four
sections, three showing the states of the string, bridge and body respectively
and one control section.

Firstly, the string section shows the state of the string u as a cyan-coloured
path and the bow as a yellow rectangle with bow position χb and its opacity
depending on the bow force Fb. Furthermore, the bridge state wn is shown
as a green circle at location (of the bridge along the string) χsm. Finally, the
position of the damping finger χf is displayed as a yellow circle, the size of
which depends on damping coefficient σf. The position of the finger triggers
lines showing the locations of the closest nodes along the string according to
the following equation

χinode =
i · χsm

n
for i = [1, . . . , n− 1], (41)

where n = round(χsm/χf) is an integer closest to the ratio between the string
length until the bridge location and the damping finger position. These lines
are drawn to help the user place the damping finger at nodes along the string.

Secondly, the bridge section shows the displacement of the bridge w as
a green circle, the state of the body at the collision location z(lsm,msm), both
moving vertically according to their respective displacements and finally, a
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Name Symbol (unit) Value
String
Length L (m) 1.90*
Material density ρs (kg·m−3) 7850
Radius r (m) 0.0005
Fundamental freq. f0 (s−1) 32*
Young’s modulus Es (Pa) 2 · 1011
Freq. indep. loss σ0,s (s−1) 0.1
Freq. dep. loss σ1,s (m2/s) 0.05

Bow
Bow force Fb (N) 0 ≤ Fb ≤ 0.1
Bow velocity vb (m/s) −0.5 ≤ vb ≤ 0.5
Free parameter a (-) 100

Bridge
Mass M (kg) 0.001
Fundamental freq. f0,m (s−1) 500
Damping R (s−1) 0.05

Body
Length Lx (m) 1.35*
Width Ly (m) 0.18*
Material density ρp (kg·m−3) 50
Thickness H (m) 0.01
Young’s modulus Ep (Pa) 2 · 105
Poisson’s ratio ν (-) 0.3
Freq. indep. loss σ0,p (s−1) 2
Freq. dep. loss σ1,p (m2/s) 0.05
Min. grid spacing hp,min (m) 0.01

String-bridge connection
Stiffness coefficient Ksm (N/m) 5 · 106
Nonlin. col. coeff. αsm (-) 1
Bridge location χsm (m) 1.65*
Bridge-body collision
Stiffness coefficient Kmp (N/m) 5 · 108
Nonlin. col. coeff. αmp (-) 1
Bridge location (xmp, ymp) (m,m) (1.08, 0.135)*
Other
Offset woff (m) 5 · 10−6

Damp. finger coeff. σf (kg·s−2) 0 ≤ σf ≤ 1
Output loc. string uout (m) L− χsm
Output loc. body zout (m, m) (xmp, ymp)

Table 1: List of parameter values used for the simulation. *These values have been taken from a
real (recreated) tromba marina [23].

static grey horizontal line denoting the offset woff, i.e., the resting position of
the bridge.

Thirdly, the body section shows the state of the body z as a grid of rectangles
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Bowed String

Bridge
bow

Body

node locations

volume:

Fig. 5: The GUI showing the excited system with components highlighted. A more detailed
description can be found in Section 4.6.

changing (grey-scale) colour according to their displacement.
Finally, the control section contains three sliders that control the volume-

levels of the string (s), bridge (m) and body (p) respectively (for experimenta-
tionof volume ratios between the components) anda reset button to re-initialise
the system.

4.7 Sensel Morph and Mapping
The Sensel is an expressive touch controller using ~20,000 pressure-sensitive
sensors laid out in an hexagonal grid [12]. It retrieves x and y-positions and
pressure at a rate of 150 Hz from which velocities and accelerations can be
obtained.

The first finger registered by the Sensel is mapped to the bow: x-position is
mapped to bow position χb, y-velocity to bow velocity vb (y-position is shown
in the GUI but does not influence the model directly) and pressure to bow
force Fb. The second finger is mapped to the damping finger: x-position is
mapped to finger location xf and pressure to damping coefficient σf.

5 Results and Discussion
Informal listening by the authors has confirmed that the sound has brass-like
qualities and comparison with the recreated tromba marina showed that the
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sound exhibited similar qualities. Naturally, formal listening tests need to be
conducted to verify this.

Disabling the graphics of the application, its CPU usage is 68.9% on a
MacBook Pro with a 2.2 GHz Intel i7 processor, easily allowing it to work in
real-time. As the heaviest part of the algorithm is the calculation of the body,
the minimum grid spacing hp,min could be set to a higher value to decrease
the CPU usage. However, as mentioned, this will decrease the quality of the
output sound.

Through using the application, the authors found some odd behaviour,
where the bridge ‘gets stuck’ behind the plate, i.e., values for ψmp would be
negative for a short period of time (one to several samples). The explicit
technique used in this work allows for this to happen (and can be proven to
still be stable in this case [18]), but it is ‘unphysical’ to have a negative potential
as this implies a ‘pulling’ collision. As can be seen from Table 1, the nonlinear
collision coefficients αsm and αmp are set to 1. When increasing these values,
this behaviour would arise much more often, and even occur for a prolonged
period of time (several seconds to indefinitely). This is also the reason why the
reset button presented in Section 4.6 has been implemented. As mentioned in
[18], oversampling increases the accuracy of the explicit collision method, and
could be a solution to this issue. However, in order for the application to run
in real time, this solution can not be afforded without decreasing the quality
of the implementation, e.g. increasing hp,min. Further investigation will be
necessary to solve this issue without oversampling.

Lastly, it has been found that when |zn(l,m)| / 10−306 (but non-zero) for any
coordinate (l,m) (which happens when the body has not been collided with
for a prolonged period of time), the CPU usage increases considerably. This
could be explained by the fact that calculations with extremely small values
are handled differently by the application. This is solved by implementing a
limit to how small a value for zn(l,m) can be. If the value of zn(lsm,msm)

is lower
than this limit, the total plate state is set to 0.

6 Conclusion and Future Work
In this paper, a real-time implementation of a simulation of the trombamarina
has been presented. The output sound has been found natural and brass-
like by the authors and exhibited similar qualities when compared to a real
(recreated) tromba marina.

Future work includes a comparison between the non-iterative methods
used in this paper and iterative methods (such as and Newton-Raphson) both
regarding algorithm speed and sound quality.

Lastly, for a more physical implementation of the damping finger, it would
be good to model it as another mass colliding with the string rather than
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directly imposing damping onto the string state.

Acknowledgments
The authors would like to thank Peter Williams for his valuable feedback on
our application.

This work is supported by NordForsk’s Nordic University Hub Nordic
Sound and Music Computing Network NordicSMC, project number 86892.
Ducceschi’s work was supported by an Early Career Fellowship from the Lev-
erhulme Trust.

7 References
[1] D. Munrow, Instruments of the Middle Ages and Renaissance. Oxford Uni-

versity Press, USA, 1976.

[2] C. Cadoz, “Synthèse sonore par simulation de mécanismes vibratoires,”
Ph.D. dissertation, Grenoble INP, 1979.

[3] J. O. Smith, “Physical modeling using digital waveguides,” Computer mu-
sic journal, vol. 16, no. 4, pp. 74–91, 1992.

[4] J. D. Morrison and J.-M. Adrien, “Mosaic: A framework for modal syn-
thesis,” Computer Music Journal, vol. 17, no. 1, pp. 45–56, 1993.

[5] P. Ruiz, “A technique for simulating the vibrations of stringswith a digital
computer,” Master’s thesis, University of Illinois, 1969.

[6] L. Hiller and P. Ruiz, “Synthesizing musical sounds by solving the wave
equation for vibrating objects: Part I,” Journal of the Audio Engineering
Society, vol. 19, no. 6, pp. 462–470, 1971.

[7] ——, “Synthesizing musical sounds by solving the wave equation for
vibrating objects: Part II,” Journal of the Audio Engineering Society, vol. 19,
no. 7, pp. 542–550, 1971.

[8] A. Chaigne, “On the use of finite differences for musical synthesis. Appli-
cation to plucked stringed instruments,” Journal d’Acoustique, vol. 5, no. 2,
pp. 181–211, 1992.

[9] A. Chaigne and A. Askenfelt, “Numerical simulations of struck strings.
I. A physical model for a struck string using finite difference methods,”
Journal of Acoustical Society of America, vol. 95, no. 2, pp. 1112–1118, 1994.

[10] S. Bilbao, Numerical sound synthesis: finite difference schemes and simulation
in musical acoustics. John Wiley & Sons, 2009.

360



[11] S. Bilbao, B. Hamilton, R. Harrison, and A. Torin, “Finite-difference
schemes in musical acoustics: A tutorial.” Springer handbook of system-
atic musicology, 2018.

[12] Sensel Inc. (2020) Senselmorph. [Online]. Available: https://sensel.com/

[13] S. Willemsen, N. Andersson, S. Serafin, and S. Bilbao, “Real-time control
of large-scale modular physical models using the sensel morph,” Proc. of
the 16th Sound and Music Computing (SMC) Conference, pp. 275–280, 2019.

[14] S. Bilbao, A. Torin, and V. Chatziioannou, “Numerical modeling of colli-
sions in musical instruments,” Acta Acustica united with Acustica, vol. 101,
no. 1, pp. 155–173, 2015.

[15] N. Lopes, T.Hélie, andA. Falaize, “Explicit second-order accuratemethod
for the passive guaranteed simulation of port-hamiltonian systems,” Proc.
5th IFAC, 2015.

[16] A. Falaize and T. Hélie, “Passive guaranteed simulation of analog audio
circuits: A port-hamiltonian approach,” Applied Sciences, vol. 6, pp. 273–
273, 2016.

[17] A. Falaize, “Modélisation, simulation, génération de code et correction de
systèmesmulti-physiques audios: Approche par réseau de composants et
formulation hamiltonienne à ports,” Ph.D. dissertation, Université Pierre
et Marie Curie, Paris, 2016.

[18] M.Ducceschi andS. Bilbao, “Non-iterative solvers for nonlinear problems:
The case of collisions,” Proc. of the 22th Int. Conf. on Digital Audio Effects
(DAFx-19), 2019.

[19] S. Bilbao, A. Torin, and V. Chatziioannou, “Numerical modeling of colli-
sions in musical instruments,” Acta Acustica united with Acustica, vol. 101,
no. 1, pp. 155–173, 2014.

[20] S. Bilbao andM.Ducceschi, “Large-scale real-timemodular physicalmod-
eling sound synthesis,” Proc. of the 22th Int. Conf. on Digital Audio Effects
(DAFx-19), 2019.

[21] JUCE ROLI. (2020) JUCE. [Online]. Available: https://juce.com/

[22] S. Willemsen. (2020) Virtual tromba marina - sensel morph. [Online].
Available: https://www.youtube.com/watch?v=x72Xh-nUoVc

[23] A. Baldwin, T. Hammer, E. Peciulis, P. Williams, D. Overholt, and S. Ser-
afin, “Tromba moderna: A digitally augmented medieval instrument,”
Proceedings of the International Conference on New Interfaces for Musical Ex-
pression (NIME), vol. 16, pp. 14–19, 2016.

361



362



Paper E

Resurrecting the Tromba Marina: A Bowed Virtual
Reality Instrument using Haptic Feedback and

Accurate Physical Modelling

Silvin Willemsen, Razvan Paisa and Stefania Serafin

The paper has been published in the
Proceedings of the 17th Sound and Music Computing (SMC) Conference, pp.

300–307, 2020.

©2020 Silvin Willemsen et al. This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited. The layout has been revised.



Abstract
This paper proposes a multisensory simulation of a tromba marina – a bowed string
instrument in virtual reality. The auditory feedback is generated by an accurate phys-
ical model, the haptic feedback is provided by the PHANTOM Omni, and the visual
feedback is rendered through an Oculus Rift CV1 head-mounted display (HMD).
Moreover, a user study exploring the experience of interacting with a virtual bowed
string instrument is presented, as well as evaluating the playability of the system.
The study comprises of both qualitative (observations, think aloud and interviews) and
quantitative (survey) data collection methods. The results indicate that the implemen-
tation was successful, offering participants realistic feedback, as well as a satisfactory
multisensory experience, allowing them to use the system as a musical instrument.

1 Introduction

Fig. 1: A tromba marina owned by Nationalmuseet in Copenhagen, Denmark.

The tromba marina is a bowed monochord from medieval Europe [1] (see
Figure 1). The string rests on a loose bridge that rattles against the body.
This rattling mechanism creates a sound with brass- or trumpet-like qualities.
Unlike other bowed string instruments, different frequencies are created by
slightly damping the string with a finger of the non-bowing hand as opposed
to pressing the string fully against the neck. This interaction at different
locations along the string triggers the different harmonics of the open string.
Furthermore, the tromba marina is bowed closer to the nut, and the finger
determining the frequency is closer to the bridge (below the bow). As the
tromba marina is a rare instrument which can be merely found in museums,
very few have the opportunity to play it and discover its interesting timbral
possibilities. We wish to recreate the feeling of playing this instrument by
using physics based multisensory simulations [2].

In the context of musical applications, physics based multisensory simula-
tions have shown some interest in the sound andmusic computing community.
As stated in [3], the combination of haptics and audio visual content has its
own specific challenges worth investigating. Sile O’Modhrain is one of the pi-
oneers that noticed the tight connection between auditory and haptic feedback
and investigated how haptic feedback can improve the playability of virtual
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instruments [4]. At the same time, Charles Nichols developed the vBow, a hap-
tic human computer interface for bowing [5]. For several years, researchers
from ACROE in Grenoble have developed multisensory instruments based
on the mass-spring-system paradigm, with custom-made bowing interfaces
[6, 7]. Such multisensory simulations have recently been made open source
[8]. Haptic feedback has also been combined with digital waveguide models
for simulating bowed string interactions [9].

Simulating the feeling of string-instrument vibrations is particularly impor-
tant since it has been shown how vibrations’ level can be strongly perceived
[10]. We use democratized VR technologies controlled by a commercial device
called the PHANTOM Omni (or simply Omni) by SenseAble Technologies
(now 3D Systems) [11]. The Omni is a six-degrees-of-freedom system provid-
ing the tracking and haptic feedback (up to 3.3 N) in our application. Using the
same device, Avanzini and Crosato tested the influence of haptic and auditory
cues on perception of material stiffness [12]. Auditory stimuli were obtained
using a physically-based audio model of impact, in which the colliding objects
are described as modal resonators that interact through a non-linear impact
force [13]. Auditory stiffness was varied while haptic stiffness was kept con-
stant. Results show a significant interaction between auditory stiffness and
haptic stiffness, the first affecting the perception of the second. Passalenti et.
al’s also used the Omni to simulate the act of plucking a virtual guitar string
[14, 15, 16].

The goal of this project is to explore the experience of interacting with
virtual bowed instrument by using physics based simulations and haptic feed-
back, together with a visual virtual reality (VR) experience. This effectively
makes the implementation a virtual reality musical instrument (VRMI) [17].
The trombamarina is used solely as inspiration because it affords itself to being
a solid starting point by having only one string. Besides that, the rarity of the
instrument ensures that the participants do not have prior experience playing
a tromba marina, nullifying possible comparisons between a real instrument
and the virtual one. At no point the system was evaluated as an alterna-
tive to the real tromba marina. The system (and its evaluation) is targeted
towards musicians in order to avoid discouragement frequently encountered
when non-musicians interactwithmusical instruments. It is assumed thatmu-
sicians acknowledge that mastering any instrument require extended study,
therefore it is expected that theywill not evaluate this system exclusively based
on its difficulty to play.

We start by describing the implementation of the system, both from the
hardware and software perspective in Section 2, followed by presenting a
study that evaluates the setup in Section 3. Section 4 shows the results of the
evaluation and Section 5 discusses these. Finally, concluding remarks appear
in 6.
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2 Implementation
The virtual trombamarina consists of threemain components: auditory, visual
and haptic feedback, all of which will be elaborated on in this section. For
visuals, the Oculus Rift CV1 setupwas used [18]. The setup consists of a head-
mounted display (HMD) and a pair of of wireless controllers that provide
tracking information and user input through several buttons and a joystick. A
diagram showing the full setup of the system can be found in Figure 2. The
controls, their mapping to the system and the final setup of the system will
also be presented. A video showing the implementation can be found in [19].

2.1 Auditory Feedback
The audio is generated by a physical model of the tromba marina presented in
a companion paper [20]. Some parameters of the model are exposed and can
be controlled by the user. These are the velocity, force and position of the bow
and the position of the finger inducing the harmonics. The algorithm will not
be discussed in detail here, but the mapping to the various parameters of the
model will be described in Section 2.4.

Fig. 2: Diagram showing the system layout of the application. The user interacts with the system
using theOmni –which in turn provides haptic feedback – and theOculus Touch controller. These
trigger the physical model of the tromba marina. Auditory feedback then comes from speakers
and visual feedback from the Oculus Rift headset. A detailed explanation can be found in Section
2.5.
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2.2 Visual Feedback
The application was built using the cross-platform game engine Unity3D (or
simply Unity) [21] which can be used to build VR applications. Even though
the visual feedback is not the focus of the implementation and eventual evalua-
tion, it was used to guide the users’ movements and give them a sense ofwhere
the virtual instrument was located. Figure 3 shows a screenshot of the view
from the HMD, depicting the virtual instrument, the bow and the damping
finger indicator. A 3D model of the tromba marina was made inspired by a
real-life instrument (presented in [22]) available to the authors. The overall en-
vironment resembled a medieval room, providing context to tromba marina’s
historical nature.

Fig. 3: The view from the head-mounted display (HMD). The damping finger is highlighted and
shown as a transparent white sphere.

2.3 Haptic Feedback
The PHANTOM Omni (or simply Omni) is a six-degrees-of-freedom tracking
and haptic system developed by SensAble Technologies (see Figure 4). The
device has a pen-shaped arm that a user interacts with.

The raw data provided by the Omni are 1) the absolute position of pivot
point B2 (three degrees of freedom), 2) the rotation (three degrees of freedom),
and 3) the pressure (touching depth). The latter is calculated from the absolute
euclidean distance between the virtual collision point of the object (in our case
the bow) and the virtual position of the pen.

The axes are labelled as follows in relation to the virtual tromba marina
(also see global coordinate system in Figure 5): x-axis (width): horizontally
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Fig. 4: The PHANTOMOmni has six axes of rotation, three of which provide force feedback (A1-
3), and three only tracking position (B1-3). Together, these axes provide six degrees of freedom:
x, y and z positions of B2 (according to the shown coordinate system) and rotations of the pen.

across the soundboard (the common interaction direction), y-axis (height):
floor to ceiling, and z-axis (depth): perpendicular to the soundboard. The
orientation of the Omni with respect to the aforementioned axis can be seen
from the coordinate system in Figure 4.

The fact that pivot points B1-3 do not provide force feedback gives rise to
an issue in our application. The virtual bow’s frog (where it is held by the
player) has been placed at the pivot point B2, whereas the interaction between
the virtual bow and string happens at an offset as seen in Figure 5. To solve
this issue, we created a separate game object with which the bow (pivot point
B2 to be exact) will interact with in the virtual world Figure 5. This ‘(hidden)
collision block’ lives in a local coordinate system and its x and y-position
exactly follow that of the Omni-pen. The y-rotation will change the rotation of
the local coordinate system and uses the virtual string as the center point. If,
for any reason, the bow ends up behind the string, the collision block will be
offset to the left along the (local) x-axis so that no collision occurs when trying
to return the bow to the normal playing area.

Through a list of pseudophysical parameters, the collision forces computed
by Unity’s physics engine are mapped to the haptic feedback produced by the
Omni. Through empirical testing, the following pseudophysical parameters
have been found: Stiffness: 0.003, Damping: 0.0071, Static Friction: 0, Dynamic
Friction: 0.109, and Pop-through: 0. For more information, please refer to [23].

Throughout implementation, it was considered to actuate the Omni’s pen
with the output of the physical model used for the auditory feedback, in order
to replicate the stick-slip interaction encountered in a real bowing scenario.
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Fig. 5: Top-down view of the global and local coordinate system (x-z–plane). The rotation of the
local coordinate system around the (global) y-axis is determined by the y-rotation of the bow. The
(normally hidden) collision block lives in the local coordinate system. Its (local) x and y-position
follows the (local) x and y-position of B2.

This was deemed unnecessary, as the Omni’s internal gearing systems provide
a similar, though uncorrelated, haptic feedback, which satisfied the authors.

2.4 Controls and Mapping
As most people are right-handed, it was chosen to also have the bow in the
right hand in the application. The (now-local) x-velocity of theOmni ismapped
to the bow velocity, pressure to bow force and y-position (including rotation
around the local z-axis) to bow position. The left hand is used to control the
pitch by changing the position of the damping finger along the string. This
position is defined as

xf = L · n−1, (1)

where L is the length of the string and n ∈ [2, 8]. If n is an integer, it is the
number of the harmonic we want to induce. The lowest harmonic has been
set at half the string length L/2, meaning that the string is never completely
open. The highest harmonic (8 in this case) has been chosen to be the one
that can still be (comfortably) reached. The location of the damping finger xf
is controlled using the ‘X’ and ‘Y’ buttons and the joystick on the left Oculus
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Touch controller. The buttons are used for “discrete harmonic" control of the
damping finger, i.e. integer values of n in Equation (1), where ‘Y’ increases
n and ‘X’ decreases it. The joystick allows for fine pitch control, i.e., decimal
values of n, and moves the damping finger up and down the string. The latter
could potentially create pitch glides in the output sound of the application, but
make it harder to ‘hit’ a perfect harmonic according to Equation (1). If a button
is pressed while the current finger position is between two discrete points, the
position will move to the next or previous discrete position, depending on the
button pressed.

2.5 Physical Setup
The physical setup is shown in Figure 6. The Omni is mounted on a stand at
~125 cm to match the approximate bowing height of the real instrument. As
can be seen in Figure 6, the right Oculus Touch controller is mounted right
underneath the Omni. This is used to align the physical setup with the virtual
tromba marina, both in the x-z–plane but also the height of the bow in the
application. After the scene is initialised the controller is used for a tilting
interaction so that the instrument can rest on the user’s body, as is done with
the real instrument. The aforementioned alignment came with a drawback
– as the center of the x-axis range of the Omni was aligned with the tromba
marina and B2 was aligned with one end of the bow, only half of the range of
the Omni could be used for bowing.

The setup shown inFigure 2 is implementedas follows: theuser controls the
application using the Omni (for tracking) and the left Oculus Touch controller
which sendsdata to the computer running the application. TheOmniproduces
haptic feedback based on Unity’s physics engine calculating the interaction
force between the ‘(hidden) collision block’ and the virtual bow as shown in
Figure 5. This data simultaneously triggers the physical model which sends
its output to a pair of speakers. The user wears a HMD that gives visual
information about the location of the tromba marina (and medieval scene).
The user’s position in the VR environment is controlled by the HMD, but
this dataflow is not visualised in the diagram. Lastly, the right Oculus Touch
controller is attached to the stand the Omni is attached to, and sends position
and tilting data to the application.

3 Evaluation
The goal of the study was to (1) evaluate the general experience of bowing in
a VR environment using haptic feedback and accurate physical modelling and
(2) to evaluate the playability of a VR monochord instrument. This was done
by exploring the quality of the software, the acoustic model, the interface and
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Fig. 6: User interactingwith the physical setup. The Omni is mounted on a ~125cm stand together
with the right Oculus Touch controller used for location and tilting information.

the mapping, as proposed by [24] and implemented previously in a similar
study [25]. To meet this aim, an investigative study was performed through
which feedback on the virtual instrument was collected. In order to ensure
a high level of validity and reliability, a triangulation of methods has been
used: think aloud protocol [26] throughout the interaction, observation and
post-study self report through amodifiedUsabilityMetric for User Experience
survey [27]. The study concluded with an semi-structured interview based on
the observed actions, noted comments and questions loosely revolving around
goals, operators, methods and selection method [28].

3.1 Participants
A total of 14 people (12 male, 2 female), 23-48 years old (M=29.5, SD=7.65)
participated in the study. All participants were students or staff at Aalborg
University Copenhagen. The selection of participants was based on the single
criterion that one had to have experience playing a musical instrument. Over
70% of the participants have been playing an instrument for more than 5 years,
guitar being the most common occurrence (25%). There was only one partici-
pant experienced in playing bowed instruments (violin). The same participant
mentioned playing the tromba marina briefly before, but the majority of the
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other participants had never heard (of) it. All but one participant have had
tried VR experiences before joining the study.

3.2 Procedure and Task
The experiment started with the participant reading an introduction about
the experiment and completing a questionnaire covering several demographic
questions (age, gender, musical experience, familiaritywith the trombamarina
and VR experience). They were then introduced to the setup and task, and
controls were explained. The participants were informed that the study is
exploring the experience of bowing in a VR environment. It was emphasised
that the most important part of the experiment was for the participant to talk
aloud with the phrase: “anything positive, negative, basically anything that
comes to mind, please speak out loud". Furthermore, the user was instructed
to bow above the damping finger (visualised as a white sphere) at all times, as
this is also the interaction with the real instrument.

The interaction part was divided into two phases. Firstly, the participants
were asked to freely explore the instrument on their own. Then, when they felt
they are ready to move on, an audio recording made by the authors using the
applicationwas played, showcasing the system’s capabilities, aiming to inspire
the second phase of free exploration. It was stressed that the participants did
not have to recreate what they heard, but to merely use it as inspiration. The
experiment concluded with participants completing a questionnaire covering
usability and playability of the system. Finally, a semi-structured interview
was held which lasted 5 minutes on average.

Throughout the interaction phase, the participants’ actions were observed
and noted by the authors, and their comments written down. Most partici-
pants were encouraged again to think aloud during their exploration. The full
experiment lasted ~30 minutes for all participants.

3.3 Measurements
Because the goal of the study was to investigate the overall experience of bow-
ing in VR, as well as evaluate the playability of the instrument, self-reporting
measurements were used in combinationwith the observations, interview and
think aloud notations. Specifically, after exposed to the instrument, the partici-
pants were asked to fill out a questionnaire containing 20 items related to the
experience of interacting with the VRMI. The items can be broadly segmented
into four categories: overall experience, haptic feedback, auditory feedback
and visual feedback. Table 1 presents the questions.
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Questionnaire items:
Overall experience:
(1) It was easy to understand how to play the instrument.
(2) I felt the instrument was hard to play.
(3) I felt the instrument was expressive.
(4) The instrument’s capabilities did not match my expectations.
(5) I felt I could easily achieve my goals.
(6) I made many errors playing the instrument.
(7) I am satisfied with the instrument.
(8) I felt the instrument was boring.
(9) Interacting with the instrument was frustrating.
Haptic feedback:
(10) I felt the haptic feedback was realistic.
(11) I felt the haptic feedback was too strong.
(12) I felt the haptic feedback was natural.
Auditory feedback:
(13) I felt I was in control of the sound.
(14) I felt the audio was matching my actions.
(15) I felt the sound was matching the haptic feedback.
(16) I felt the sound was matching the visuals.
(17) I felt the sound was static.
Visual feedback:
(18) I felt the visual feedback was helping me play.
(19) I felt the visuals were confusing.
(20) I felt the visuals were matching my actions.

Table 1: The questionnaire items and corresponding anchors of the 5 point (1 – 5) rating scales
(Strongly disagree – Strongly agree).

4 Results
This section presents the results obtained from the self-reported measure re-
garding the participants’ experience as well as the qualitative findings from
interview, observations and think aloud.

4.1 Quantitative Data
The data obtained for the questionnaire items was treated as ordinal and anal-
ysed in terms of central tendency (medians and mode), interquartile ranges,
minimum and maximum ratings. Figure 7 visualises the collected data. The
mode was considered only when different from the median, specifically ques-
tion 8, 13 and 14. It is worth noting that most of the items show a skewed
normal distribution.

Question 1-9 paint a picture of how the instrument was perceived by the
users. Questions 1, 2, 4, 5, 6 and 9 cover the perceived difficulty of using the
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Fig. 7: Boxplots visualizing the results related to the 20 questionnaire items (shown in Table 1)
in terms of medians (red lines), interquartile ranges (blue rectangles), minimum and maximum
ratings (dashed lines), and outliers (red crosses). The y-axis maps "Strongly disagree – Strongly
agree" to a 1 – 5 interval.

system as a musical instrument. The answers to these questions show that
even though participants generally found the instrument easy to understand,
they had difficulty playing it and reaching their goals. Questions 3, 7 and 8
cover their general opinion about the instrument. Participants generally felt
satisfied and not boredwith the instrument. Questions 10-12 cover exclusively
the impressions about haptic feedback. It can be seen that most participants
found the haptic feedback to be realistic and generally natural and the force
to be not too strong. The questions 13-17 approach the auditory aspect of
the instrument, focusing on its perceived characteristics. As can be seen from
questions 13, 14 and 17, the participants felt a high level of command over
the sound, and were satisfied with mapping between the haptic and auditory
feedback. The same thing can be said about the visual mapping, as indicated
by question 16. Items 18-20 investigate the perceived visual quality. It can be
seen that the visuals helped the participants play and were implemented well,
i.e., not confusing and matching their actions.

4.2 Qualitative Data
In order to present an accurate representation of the findings, this section will
be split into two categories: actions – covering the observed activities during
the interaction phase, and oral feedback – presenting the findings from the
think aloud protocol and interviews.

4.2.1 Observed Actions

Since there were no tasks given to the participants, all actions were noted and
analysed. That said, most users performed similar actions in their interaction
phase. All participants experimented with bowing at different heights, but
only a few of them tried to explore bowing heights for all discrete pitches.
Most of them were satisfied with trying different heights on whatever pitch

374



they found themselves at that time. In a similar fashion, all participants
experimentedwith playing different pitches, both using the discrete buttons as
well as the joystick. It is worth mentioning that many users tried to investigate
the limits of the pitches they could play. Higher pitches usually resulted in
little or no sound which was commented on by most. This behaviour is true
to a real tromba marina, where higher harmonics are harder to excite than
lower ones. The majority tried to perform some form of glissando, as well as
bowing with different velocities, usually commenting on the findings. Due
to the non-intrusive nature of observation, it was impossible to notice the
pressure applied with the bow, but some participants explicitly mentioned
that they tried to experiment with different forces. This was especially true
in the second phase of interaction, when they experimented with a higher
dynamic range of sounds. Another common occurrence was the attempt to
play some sort of melody or riff. Simple melodies likeMary had a little lamb, or
Twinkle twinkle little starwere attempted, with various degrees of success. One
participant tried to play a Mozart segment. The last commonality was found
in the attempt to perform a sustained tone, with a constant bowing speed and
a back-and-forth motion.

When it comes to seldom or individual actions, a great variance in exper-
imentation was observed. Participants tried to hit the string with the bow,
rotate the bow upwards to the point of it being parallel to the string, move the
bow in an up-down (y-axis) motion, bow on the damping finger indicator and
underneath it or play some form of vibrato or staccato. No one tried to tilt the
stand supporting the Omni.

4.2.2 Oral Feedback

Generally the overall impressionof the instrumentwaspositive, describedwith
words like: cool, fun, interesting, weird, as well as hard or difficult to play. One
participant’s answer encapsulates this very well by saying: “I got to express
my ideas, but not perfect them".

Just as described in the previous section, there was a general consensus
on several reported characteristics. All participants that attempted to play the
highest harmonic said it is hard to play, and that it felt frustrating. At the other
end, several participants expressed their preference towards lower pitches,
where some said that they prefer the sound produced when bowing under the
damping finger (essentially playing the lower-pitched open string). Besides
that, many reported that is was hard to maintain a sustained tone, regardless
of the pitch. Another sound-related report was the inability to re-create the
buzzing sound heard in the recording; one of the participants familiar with
the tromba marina’s mechanism even mentioned specifically that he “couldn’t
get the bridge to rattle". When it comes to the pitch selection interface, the
reports are very polarised between the joystick and the buttons. On one hand
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some describe the buttons as being more, fun, musical, melodic, useful or easier,
while describing the joystick as useless, unrealistic, too hard or meaningless. On
the other hand some participants clearly preferred the joystick describing it as
natural, intuitive, interesting, expressive or humane, but everyone mentioned that
the sensitivity of the joystick is too high, making it hard to land on the desired
pitches. Due to the incremental nature of the damping fingers’ position, it was
impossible to skip over notes, a fact that was mentioned in different forms by
several participants. Some noted that the control of the damping finger (‘Y’ for
up the string and ‘X’ for down) should have been inverted. Furthermore, some
would have liked a more physical interaction for the damping finger, such as
moving the controller up and down rather than using buttons.

When it comes to the haptic feedback, the majority was satisfied with it,
mentioning that “it feels nice", “it feels good", “is great", “impressive - it felt
natural", or “it feels real", while one participant found it to be “wild and a bit
too powerful". A special case related to the haptic feedback was the bounce
obtained by hitting the virtual string with the bow. Most subjects found it
pleasing and were intrigued by its realistic feel, but the violin player repeat-
edly mentioned that it is “unrealistic and way to powerful". One participant
explicitly mentioned that the haptic feedback matches the auditory one, and
his expectations.

Several participants noticed that the bow could rotate along its axis and
asked whether it made a sonic difference or not, to which they were answered
negatively. Besides that, there were very few comments regarding the visual
aspect of the system, but most of these were positive. One participant men-
tioned that sometimes there’s a gap between the string and the bow, and that
it would be nice to observe one’s hands. No one mentioned anything related
to the visual indication or the damping finger seen in Figure 3.

The overall interaction was described offering a high degree of freedom on
the bowing hand, but the pitch selecting hand was either not mentioned, or
described as disconnected several times. Some agreed that the instrument is
hard to play, mentioning that it is frustrating. However, most people estimated
that they can perform better after practising more.

5 Discussion
In this section, both the evaluation procedure itself and the results fromSection
4 will be discussed.

5.1 Procedure
It is acknowledged that the cognitive load of speech and playing an instrument
are overlapping [29], therefore the think aloud protocolmight have not generated
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in themost abundantdatapossible. Most participants alternatedbetweenplay-
ing and speaking. This resulted in occasionally long breaks in either activities,
and required participants to be encouraged to think aloud. Retrospectively,
a structured activity schedule allocating time for playing and feedback could
have been more productive. Similarly, using self report through Likert scales
require large sample sizes to achieve a high level of accuracy[29]. Therefore
the interpretation of results rooted into the qualitative data, and then validated
using the quantitative data.

Furthermore, as the data we obtained was purely through non-intrusive
methods, it would have been useful to log the raw data provided by the Omni
(such as the bowing pressure). This could then have been analysed to obtain a
better understanding of the user’s feedback.

Lastly, the audio did not fullymatch the sounds that were possible to create
with the application. As the recording was quite distorted, the volume of the
audio plugin was turned down during the test, but the recording was not
remade. This will be elaborated on below.

5.2 User Feedback
The generally positive oral feedback about the overall experience is backed up
by the quantitative data which showed that participants were satisfied and not
bored with the instrument. They attempted to perform fundamental tasks as
producing a sustained tone or playing simplemelodieswith various degrees of
success, andwhen exposed to the example recording, some tried to recreate the
sounds heard from the audio clip. Several participants mentioned that it was
difficult to achieve this particular goal, a problem that finds its explanation in
the difference in volume between the recording and the experiment scenario as
mentioned above. This would be a point of improvement for future testing, as
it could have impacted the answers for question 5 – the lowest scoring question
regarding the overall experience. Another reason for this question’s answers
could be linked to the inability to play the higher notes, or the limited pitch
range, as presented in Section 4, but these characteristics are inherited from
the physical characteristics of the real instrument, so could be expected.

Interestingly, many participants believed that it was easy to understand
how to play the instrument, but that they could become better after some
more practice. This indicates that the setup has a low “entry-level", with an
envisioned high virtuosity ceiling. This is believed something desirable when
creating computer based instruments [30]. Even though the implementation
was inspired by a real instrument with a possibly different learning curve, as
mentioned, it was not our goal to recreate it.

The haptic feedback was considered positive and generally having an ap-
propriate level of resistance to movements. The answers to questions 10 (re-
alistic haptic feedback) and 12 (natural haptic feedback) correlate positively
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and question 15 (soundmatching the haptic feedback) was also answered pos-
itively, giving a strong indication that the participants considered the haptic
feedback real and according to their expectations. It can be understood that
the realism of the haptic feedback is estimated considering the multisensory
experience and this result reassures that bowing in VR with our setup is pos-
sible.

Furthermore, many participants noticed that they could ‘bounce’ the bow
onto the string. Even though this behaviour was a byproduct of the implemen-
tation, participants generally liked this interaction and found it to be realistic
and exciting.

Many users noted that the full range of the bow could not be used. As
mentioned in Section 2.5, the virtual tromba marina was aligned with the
physical position of the Omni and as the bow is held at one end, about half of
the range could not be used for bowing. This was a commonly reported issue,
and it could have impacted the answers for questions 4, 5, and 9. The reason
for aligning the physical setup with the virtual tromba marina was the tilting
interaction, so that if peoplewanted to interact with the entire instrument, they
would be able to grab the physical setup. As none of the participants used
this, we could discard the aforementioned alignment to be able to account for
the entire range of the bow.

The polarisation of the participants’ opinion on the pitch control – joystick
versus buttons – was backed up by the answers individuals gave on question
9 (interaction was frustrating). It could be argued that users preferring the
joystick over the buttons had a harder time interacting with the instrument
than the people preferring the buttons. As mentioned, all participants who
mentioned the joystick interaction said it was too fast, explaining the above.

6 Conclusions
This paper presents a virtual reality implementation of the trombamarina and
its evaluation. Our goal was to evaluate the general experience of bowing in
VR and to evaluate the playability of our implementation. The results show
that the implementation was successful with participants finding the haptic
feedback realistic and the general experience enjoyable and interesting on one
hand, and difficult and frequently frustrating on the other hand. Nevertheless,
all sensory modalities we focused on (auditory, haptic and visual) seemed
to reinforce each other, inspiring participants to attempt to play melodies
with the instrument. This was considered to be an important achievement.
Improvements on our application include the pitch control, which should
either be more physical, i.e., moving the pitch hand physically up and down
the virtual string, or simply slower continuous control. Besides that, a better
physical setup, allowing the users to utilise the entire bow is desired. The
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findings of this paper prove that it is possible to create a satisfactory bowed
VRMI using off-the-shelf hardware and accurate physical modelling.
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Abstract
This paper presents DigiDrum – a novel virtual reality musical instrument (VRMI)
which consists of a physical drum augmented by virtual reality (VR) to produce
enhanced auditory and haptic feedback. The physical drum membrane is driven by a
simulated membrane of which the parameters can be changed on the fly. The design
and implementation of the instrument setup are detailed together with the preliminary
results of a user study which investigates users’ haptic perception of the material
stiffness of the drum membrane. The study tests whether the tension in the membrane
simulation and the sound damping (how fast the sound dies out) changes users’
perception of drum membrane stiffness. Preliminary results show that higher values
for both tension and damping give the illusion of higher material stiffness in the drum
membrane, where the damping appears to be the more important factor. The goal and
contribution of this work is twofold: on the one hand it introduces amusical instrument
which allows for enhanced musical expression possibilities through VR. On the other
hand, it presents an early investigation on how haptics influence users’ interaction in
VRMIs by presenting a preliminary study.

1 Introduction
Virtual Reality (VR) is described as an immersive environment provided by
technology and experienced through sensory stimuli [1]. Different types of
technologies are available for creating VR experiences, and head-mounted
displays (HMDs) are among the most popular. VR has been used as a plat-
form for the creation of perceptual illusions, and much research has gone into
producing realistic or otherwise compelling visual and auditory experiences.
By comparison, the sense of touch has been neglected in spite of its obvious
potential to increase a sense of presence in a simulated world [1].

Virtual musical instruments (VMIs) are defined as software simulations or
extensions of existing musical instruments with a focus on sonic emulation.
Virtual reality musical instruments (VRMIs), are those which also include a
simulated visual component [2].

The design and evaluation of DigiDrum – a novel VRMI where a physical
darbuka (a djembe-like drum) is enhanced by VR is presented. The user wears
a HMDwhich puts them in a recording studio where a virtual drum is aligned
with the physical drum, so that both drums can be played at the same time.
Interaction with the (physical + virtual) drum triggers a virtually simulated
sound of a drum membrane. This sound is sent to the user through sound-
isolating headphones for auditory feedback, and a vibrationmotor (haptuator)
attached to the inside of the physical drum’s membrane creating a vibrotactile
response in the physical drum – similar to the haptic response a realmembrane
would produce. As the drum’s sound is being simulated, its properties can be
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changed on the fly, something which is impossible to do in the physical world.
An initial user study was conducted on DigiDrum with a twofold goal.

On the one hand, in order to study how users interact with the installation
and use this feedback to improve the drum, and on the other hand, for try-
ing to understand whether there is a correlation between material stiffness
perception and the way users interact with the drum. More specifically, the
study investigated which parameters influence the perception of the material
stiffness of the drum membrane. Different combinations of values for: (1)
tension in the virtual membrane and (2) damping, or how quickly the sound
dies out were used. The initial hypothesis was that higher values for both
tension and damping would influence the perception of stiffness positively. In
other words, higher tension and higher damping (sound dying out faster) will
result in users perceiving the drum membrane as being more stiff. It was sus-
pected that tension would be the most important parameter in the perception
of stiffness. In the test, the auditory and haptic cues were linked, or matching.

The research question which guides this work is:

Can a user’s perception of
material stiffness in an enhanced drum membrane change

by using auditory and haptic cues?

The ultimate goal of the paper is to (1) present an installation which helps
to enhance musical expression possibilities through a novel VRMI, and (2)
investigate users’ interaction with a VRMI focused not only on the visual and
auditory experience, but also on haptics.

The paper is structured as follows: Section 2 presents a selection of related
work. Section 3 is an introduction to haptic perception. Section 4 describes
the design criteria used in for DigiDrum. In Section 5 we describe the system
overview and Section 6 details the implementation of the visual virtual envi-
ronment. In Section 7, the physical model sound algorithm is described. In
Section 8 a user study looking at the interaction with the setup is presented
and preliminary results are shown and discussed in Section 9. Conclusive
remarks and future development are made in Section 10.

2 Related Work
Several investigations on the connection between haptic and auditory cues
and perception of material stiffness have been done. Some look specifically
at playing percussion musical instruments as the music community has long
had a strong interest in haptic technology [3], where others investigate haptics,
visuals and sound in relation to human computer interaction.

In [4], Sile O’Mohrain describes a series of studies where experienced mu-
sicians played VMIs with both haptic and auditory feedback with the aim of
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finding out whether adding haptic feedback to these instruments would im-
prove their playability. The results indicate that the presence of haptic feedback
can improve a player’s ability to learn the behavior of a VMI.

In [5], Dahl gives a detailed analysis of four experienced drummers per-
forming the same musical sequence using drumsticks on drums with three
striking surfaces (soft, medium and hard). The study finds that the main pa-
rameter influencing the preparatory movement and the striking velocity was
the dynamic level and, to a lesser extent, the striking surface.

The work of Avanzini and Crosato’s [6], that of Passalenti et al. [7], and
that of Liu et. al. use the haptic device PHANTOM® OmniTM (now Touch)
[8]. Avanzini and Crosato test the influence of haptic and auditory cues on
perception of material stiffness separately, in an experiment where subjects
had to tap on virtual surfaces, andwere presentedwith audio-haptic feedback.
In each condition the haptic stiffness had the same value while the acoustic
stiffness was varied. The study indicates that subjects consistently ranked
surfaces according to the auditory stimuli. Passalenti et al.’s experiment focuses
on haptics and guitar strings. In [9], a multimodal interface that synchronizes
visual, haptic and auditory stimuli to give users a feeling of presence of virtual
objects is presented and thoroughly detailed. The study notices that although
the stiffness parameters of different materials were set to be the same, the
sound effects biased user’s judgment of the hardness of surfaces.

The preliminary experiment conducted in relation to DigiDrum takes in-
spiration from theseworks, but looks at the specificity of a VR-enhanced drum.

In [10], the design of a physically intuitive haptic drumstick is presented.
The paper suggests that physically intuitive newmusical instrumentsmayhelp
performers transfermotor skills from familiar, traditionalmusical instruments.

3 Haptics
The sense of touch is the first to develop in humans – a sense we cannot shut
down. Vision is the last sense to develop, a sense we are able to “turn off"
[11] by closing our eyes. Despite this, tactile awareness generally receives
less attention than other sensory modalities when it comes to technological
development [12]. We live in a world over-saturated by visuals, and VR is a
technologywhere this has been the case notably. In this section, we describe in
further detail haptic perception and how it works from a neurophysiological
point of view as well as the basis for subjective decision making on tactile
sensation.
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3.1 Haptic Perception
The peripheral nervous system gathers environmental stimuli in form of vi-
sual, audible, tactile, olfactory (smell) andgustatory (taste) inputs and transfers
them to the central nervous system for further elaboration and integration. Tac-
tile information is collected in the skin, muscles, and joints and sent to an area
in the brain called the primary somato-sensory cortex[13]. This cortical area is
the first stage for the tactile awareness occurring across the surface of the body.
Several other structures of the central nervous system take part in the genera-
tion of tactile feedback, as generally, a single brain area is never responsible for
information awareness [14]. Light touch and tactile attention are processed in
the secondary somato-sensory cortex – an area directly connectedwith the pri-
mary somato-sensory cortex [15]. Literature reports that people undergoing
tactile training improve their perception but also strengthen the connections
and cortical representations of the stimulated body area [16]. There is a direct
relationship between size of cortical region and haptic performance.

A specific area of the central parietal lobe, placed in the back of the primary
somato-sensory cortex, integrates the information from the visual and haptic
regions to help locate objects in space.

The sense of hearing is connected to the sense of touch and touching objects
in different ways produce abundant sounds which convey information about
the object and the interaction, such as material, shape, roughness, stiffness,
the gesture, rate and strength of our actions. In VR systems, users may im-
mediately notice the unnaturalness if the interface has no sound or provides
mismatched sound [9].

As Cao et al. explain in [17], skilled interactions with sounding objects,
such as drumming, rely on resolving the uncertainty in the acoustical and
tactual feedback signals generated by vibrating objects.

3.2 Notes on Experiments Involving Haptics
Conducting experiments on haptics can prove difficult because there are no
proper technological devices for delivering controlled and reliable tactile stim-
uli [12]. When users interact with a physical object, uncertaintymay arise from
mis-estimation of the objects’ geometry-independent mechanical properties,
such as surface stiffness. How multisensory information feeds back into the
fine-tuning of sound-generating actions remains unexplored [17].

In virtual environments (as used in VR) and using hand tracking devices
such as Leap Motion [18] (see Section 5), subjects are able to move their hands
freely, which could confound somato-sensory processing with activations re-
lated to motor planning and movement [19]. These uncontrolled motor ac-
tivities result in uncontrolled somatic stimulation. There is an anatomical
explanation of this close somato-motor functional relationship: areas involved
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in the perception of touch on the hands in the primary somato-sensory cortex
are located mostly in front of the areas responsible for hand movements [20].
Another problem with haptics is the subjective quantification of the stimuli.
Contents of tactile consciousness vary between individuals and a common lex-
icon to evaluate haptic sensation through surveys still seems far to be conceived
[21].

3.3 Interaction between Visual Information and Tactile Feed-
back

In a famous experiment, Pavani et al. [22], asked a group of participants to
detect the position of vibro-tactile stimuli on their arm. The participant’s
own arm was placed under a table (out of sight) while a fake rubber hand
was laid in front of them. The rubber hand was laid out in a position that
was anatomically compatible with participant’s real hand. When seeing the
mannequin hand being touched, all participants reported that their own hand
was being touched, even though that was not the case. In short, the perception
of tactile stimulationwas simulated throughvisuals. A similar experimentwas
conducted by [23] asking subjects to watch a video of a hand being touched
on the first finger while their own hand was stimulated synchronously. Brain
activity during synchronous stimulation showed an improved tactile acuity.
Taking into accountprevious literaturefindings,we can conclude that invirtual
environments hand manipulations and interactions are important factors that
enhance realism and user experience.

4 Design Criteria for DigiDrum
As explained by [10], a new musical instrument is physically intuitive if the
physics of haptic interaction are similar to those supported by a traditional
musical instrument. Physically intuitive new musical instruments may help
performers transfermotor skills from familiar, traditionalmusical instruments.
This is why we choose to augment an existing drum, instead of suggesting a
completely new musical instrument – seeing a physical drum will invite users
to play the new instrument in an intuitive way and as a regular drum. The
mechanics of a musical instrument’s interface – what the instrument feels like
– determines much of its playability [24].

In creating DigiDrum, the design criteria for VRMIs suggested by Serafin
et al. were used as guidelines [2]. The setup integrates visuals, audio and
haptics and extends an existing musical instrument using VR seeking to create
a “magical interaction". Creating a sense of presence is attempted by mapping
the virtual drum’s location to that of the physical one, and by representing
the user’s hands in the simulated world. DigiDrum was designed to create
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Fig. 1: The physical setup of the system. The Leap Motion is mounted to the front of the HMD.

three types of illusions: (1) a place illusion – users should feel like they are in a
music production studio, (2) a plausibility illusion – users should feel like the
experience is really happening, and (3) virtual body ownership – users should
see their own body in the virtual world and feel ownership of their virtual
body.

5 System Overview
Figure 1 shows the overall design of DigiDrum and its setup and Figure 2
shows a user interacting with the setup. For hand-tracking, the Leap Motion
[18], which is an infrared-sensor-based camera that allows for accurate hand
tracking is used. It is mounted to the front of an Oculus Rift HMD so that
the user’s hands are in the field of view when they look at the virtual drum.
The drum is fixed in-place and played like a djembe. In the application, the
virtual drum was placed slightly higher than the physical drum to make sure
the physical model was triggered when the physical drum was hit.

A detailed overview of the system is given in Figure 3. The handmovement
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Fig. 2: A user interacting with the setup.

data is retrieved by a PC which runs the cross-platform game engine Unity
[25]. The Unity ‘scene’ contains the virtual environment (see Section 6) that
the user will see through the HMD and the physical model used for the
sound and haptics (see Section 7). The HMD also sends data back to the
PC regarding location and head rotation. Once the tracked hand touches
(or collides with) the virtual drum, the physical model is triggered and its
output sound is sent to a haptuator which is attached to the inside of the drum
membrane. This effectively causes the physical membrane to be actuated by a
virtual membrane. To accommodate for the plausability illusion mentioned in
Section 4, the chosen haptuator has a very high fidelity, i.e. can play realistic
audio signals as opposed to non-realistic ‘buzzes’. Other forms of haptic
feedback have been considered, but – according to the authors – the use of
this actuator attached to the drum membrane had the highest potential of
resembling realistic drum membrane vibration in the end.

Finally, the same sound that is sent to the haptuator is also sent to sound-
isolating headphones. Sound-isolation is important as the sound coming from
the physical drum should not interfere with the audio coming from the simu-
lated drum.

6 Unity Implementation
The virtual environment was created using Unity. All the hardware drivers
and software components were linked together using this platform. Here, a
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Fig. 3: Detailed system layout. The user interacts with the system using their hands and gets
haptic feedback from the haptuator attached to the drum membrane, auditory feedback from
closed headphones and visual feedback from the Oculus Rift headset. A detailed explanation can
be found in Section 5.

virtual drum playable with hand motion using Leap Motion was created. The
user enters the VR environment (rendered as a recording studio) and Leap
Motion reconstructs (in VR) the subject’s own hands. In the virtual recording
studio a drum was placed at the center and programmed to detect collision
with the reconstructed hands. When a collision was detected, a C# script, in
which a physical model of a drummembrane was programmed, was activated
to reproduce the beating sound of the drum through an actuator placed inside
the drum skin.

7 Physical Model
The behaviour of musical instruments can be well described by partial differ-
ential equations (PDEs) [26]. In this section, the continuous-time PDE for a
drum-membrane is given and explained. This is followed by an explanation
of the discretisation method used. Finally, the parameter values used for the
implementation are given.

7.1 Continuous Time
A rectangular (stiff) membrane with dimensions Lx (m) and Ly (m) can be
described by the following equation [27]:
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ρH
∂2u

∂t2
= T∆u−D∆∆u− 2σ0

∂u

∂t
+ 2σ1∆

∂u

∂t
. (1)

Here, state variable, u = u(x, y, t) is a function of horizontal coordinate x ∈
[0, Lx], vertical coordinate y ∈ [0, Ly] and time t ≥ 0 and is parameterised in
terms of material density ρ (kg/m3), membrane thickness H (m), tension T
(N) and frequency independent and dependent damping coefficients σ0 (s−1)
and σ1 (m2/s). Furthermore, D = EH3/12(1 − ν2) with Young’s modulus E
(Pa) and Poisson’s ratio ν. Lastly, ∆ represents the 2D Laplacian [27]:

∆ =
∂2

∂x2
+

∂2

∂y2
. (2)

Furthermore, clamped boundary conditions – i.e., the state u at all plate edges
and their gradients are 0 – have been chosen for simplicity:

u = ∇u = 0 with ∇ =
∂

∂x
+

∂

∂y
. (3)

7.2 Discretisation
For implementing the physical model, finite-difference time-domain (FDTD)
methods were used [27]. These methods were chosen over others, such as
the 2D waveguide mesh [28], as they allow parameters and real-time changes
of these to be better controlled. FDTD methods discretise u(x, y, t) shown in
Equation (1) to un(l,m) using t = nk with sample n and time step k (s), x = lh

where l ∈ [0, ..., Nx − 1] and y = mh where m ∈ [0, ..., Ny − 1] where Nx
and Ny are the number of horizontal and vertical grid points respectively.
Furthermore, grid spacing h (m) can be calculated using

h ≥ hmin = 2

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 4κ2k2

2
, (4)

where c =
√
T/ρH and κ =

√
D/ρH . The closer h is to hmin, the higher the

accuracy of the implementation.

7.3 Parameters
Most parameters used in the simulation were chosen empirically and can be
found in Table 1. With these parameters a small (30×30 cm) membrane with a
low density and stiffness is simulated. For the purpose of getting the model to
work in real time, the minimum grid spacing hmin in Equation (4) is multiplied
by 4 (hmin in (4) is calculated based on the highest value of T and σ1 = 0.005).
The values for T and σ0 correspond to the cases used in the experiment. The
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Parameter Symbol (unit) Value
Membrane width Lx (m) 0.3
Membrane length Ly (m) 0.3
Material density ρ (kg/m3) 10

Thickness H (m) 0.001
Tension T (N) {15, 40, 80}

Young’s modulus E (Pa) 2 · 103

Poisson’s ratio ν (-) 0.3
Freq. indep. damping σ0 (s−1) {0.5, 2, 5}
Freq. dep. damping σ1 (m2/s) [0, 0.005]

Time step k (s) 1/44100
Grid spacing h (m) 4hmin

Table 1: Table showing parameter values.

frequency dependent damping σ1 follows an exponentially decaying curve,

σ1(t) = 0.005e−0.01t, (5)

where t = 0 at the time of excitation. This allows for very low damping,
i.e., very long sound, while taking away some of the high frequency content
present immediately after excitation. This ultimately results in a more natural
drum sound, even when σ0 is set low.

8 User study
This work hopes to add to the corpus of design guidelines for VRMIs, more
specifically those VRMIs which involve a touch based stroking movement.
In [2], Serafin et al. describe three layers of evaluation for VRMIs, namely:
(1) investigating modalities of interaction, (2) evaluating VR specific aspects,
with engagement being the most interesting from a VRMI perspective, and (3)
looking at quality and goals of interaction.

An initial user study was conducted with a towfold goal: on the one
hand - to study how users interact with DigiDrum and create guidelines for
improving the setup, and on the other hand to investigate the relationship
between tension and frequency independent damping coefficient (T and σ0
respectively in Section 7) and user’s perception of material stiffness.

As shown in Section 7, there are 3 different cases for both tension T and
frequency independent damping σ0. All combinations were tested, resulting
in 9 different cases. Sound examples of each individual case can be found in
[29]. Participants’ experiences were evaluated through both qualitative and
quantitative methods, namely by: (1) asking them during the test how they
rate the stiffness of the material in each of the 9 cases, (2) a questionnaire
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including questions about their relationship and experience with playing a
musical instrument, virtual body ownership and whether they thought their
interaction patterns changed between the different cases and (3) observation
while the participants interactedwith the setup to retrieve data on engagement
and stroke patterns which possibly correlate to the haptics and sound.

8.1 Process for the User Study
Before the experiment, participants were told that they would be “drumming
inVR", that their perceptionof the stiffness of thematerial theywere interacting
with was tested and that their performances did not need to be musical in any
way. Furthermore, participants were told they would hear 9 different cases in
between which the “parameters of the experience" would be changed and that
for each of these cases they would have to rate the stiffness of the material they
were interacting with on a scale of 1 to 7, 1 being “extremely soft or loose", 7
being “extremely stiff or hard". The order in which the cases were presented
was randomised to reduce bias. Between cases, the participants did not take
off the headset or headphones, and the authors noted their answers. After the
test, the participants filled out a questionnaire with the following questions
(the last two taken from [6]):

• I felt like the hands in the simulation were my own. (1-7 rating)

• In order to express your judgements to the questions during the simula-
tion, you relied mainly on... (multiple answers possible: visuals|audio|
haptics)

• In your opinion what was varying between each condition? (multiple
answers possible: visuals|audio| haptics)

From participant-observation during the experiment and the the final two
questions of the questionnaire, “Did your behaviour change between different
cases, and if so what did you do differently?" and “Anything you would like
to add?", information on the user interaction and the quality of the setup was
collected.

The experiment was done on 16 participants, 9 of which were experienced
musicians (> 5 years of instrument practice). Three participants were drum-
mers.

9 Results and Discussion
This section will give the results of the user study and discuss these. Due to
the small sample size and some issues regarding interaction described at the
end of this section, the presented results should be considered preliminary.
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Fig. 4: Relation between stiffness perception and subjective ratings.

9.1 Statistical Analysis
The results of the stiffness ratings can be found in Figure 4. Intriguingly, there
was a significant correlation between the cases sorted by damping first and
then by tension (both sorted from low to high) and the subjective ratings (ρ
= 0.9372, p < 0.01) using Spearman correlation. The Spearman methodology
was used because the low number of values did not allowmodelling a normal
distribution [30]. A quasi-linear relationship between subjective stiffness per-
ception and the values for tension and damping used by the simulation can be
observed.

Figure 5 shows the average participant scores for each level of damping and
tension both grouped in levels (low,medium and high). As previously hypoth-
esised, the ratings of material stiffness increases with tension and damping.

A statistical analysis was run on each single level based on non-parametric
Mann-Whitney U-test with the results reported in Table 2. This test helps to
identify significant differences between groups in presence of small samples
made by ordinal variables. Abbreviations are T for “tension" andD for “damp-
ing" while letters L, M and H mean the levels “low", “medium" and “high".
It is important to take into account the multi-comparison problem and in this
case the threshold level for significance should be equal to 0.0056 following
the Bonferroni correction.

As we can observe from Table 2, there isn’t a significant difference between
“high tension – low damping" and “low tension – medium damping" (p =
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Fig. 5: Subjective ratings grouped by different tension and damping levels.

Mann-Whitney U-test [p-values]
LT
LD

MT
LD

HT
LD

LT
MD

MT
MD

HT
MD

LT
HD

MT
HD

HT
HD

LT LD .0642 .0163 .1268 .0049 .0041 .0034 .0004 .0002
MT LD .0642 .6463 .3465 .6582 .1802 .1584 .034 .0091
HT LD .0163 .6463 .2123 .8933 .5413 .4455 .1737 .0915
LT MD .1268 .3465 .2123 .0791 .0254 .0283 .0012 .0009
MT MD .0049 .6582 .8933 .0791 .3191 .3114 .0449 .0174
HT MD .0041 .1802 .5413 .0254 .3191 .7732 .5214 .1383
LT HD .0034 .1584 .4455 .0283 .3114 .7732 .7725 .3424
MT HD .0004 .034 .1737 .0012 .0449 .5214 .7725 .2991
HT HD .0002 .0091 .0915 .0009 .0174 .1383 .3424 .2991

Note: Bonferroni adjusted significance threshold for multi-comparison p<0.0056

Table 2: Mann-Whitney U-test (p-values).

0.2123) suggesting that the linear relation shown in Figure 5 holds despite the
discontinuity between points as seen on the scatterplot. However, we should
consider it similar to a monotonically increasing function rather than a pure
linear trend.

Lastly, Table 3 shows group comparisons between the three different val-
ues of damping and tension. A significant difference in participant’s ratings
between medium-high damping and low-high damping levels can be noticed
while tension shows significance only between low to high tension. It can
be deducted from the results that damping is a more important factor than
tension in material stiffness perception. This result was unexpected, as it was
hypothesised that tension would be the most dominant factor in stiffness per-
ception. Additionally, it appears difficult for participants to evaluate low to
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Different levels of tension/damping p-values
Low Damping Medium Damping 0.2560

Medium Damping High Damping 0.0078
Low Damping High Damping 6.5071e-04
Low Tension Medium Tension 0.0950

Medium Tension High Tension 0.4268
Low Tension High Tension 0.0297

Table 3: Comparison between different levels of tension and damping.

medium levels of both damping and tension. In a future test, the values could
be chosen differently, or more alternatives for the parameter values could be
investigated to better see the perceptual differences between these values.

9.2 Statistical Analysis: Reliability
Individual ratings were initially analysed with Cronbach’s alpha [31] to test
the internal consistency of the responses. This measure is generally known as
a metric to validate a questionnaire with higher values of alpha as those more
desirable. The non-standardised Cronbach’s alpha value was 0.6348 while the
standardised value reached 0.6589. According to [32], a value between 0.6 to
0.7 is questionable (questionnaire scale is not fully reliable) with 0.7 as the
threshold for an acceptable test. Despite the outcomes being slightly below
threshold (probably caused by subjective difficulties in evaluating stiffness),
it appears that in future a good reliability can be reached by increasing the
sample size. Moreover, if we don’t consider all factors loadings as evenly
distributed, we could assume that the Cronbach’s alpha underestimates the
true reliability.

9.3 Questionnaire
The questionnaire results in Table 4 show that the participants generally found
that the hands in the simulation were their own. This proves that the Leap
Motion is a goodway to track the hands and that it waswell implemented. The
visuals had no influence on participants’ judgement, probably because they
were unchanged. The audio seemed to be the most predominant feature the
participants focused on when expressing their judgements (93.8%). Haptics
for expressing judgements was only chosen by 5 participants (31.3%). In the
future, removing the audio, only leaving the haptics might be a better way to
force the participants to use their sense of touch and test the influence of this
modality on perception.
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Question Result

I felt like the hands in the simulation were my µ = 5.44,
own. (1-7 rating) σ = 1.26

In order to express your judgements to the ques- visuals: 0,
tions during the simulation, you relied mainly audio: 15,
on... (visuals|audio|haptics) haptics: 5

In your opinion what was varying between each visuals: 0,
condition? (visuals|audio|haptics) audio: 14,

haptics: 10

Table 4: Questionnaire results. The last two questions were taken from [6].

9.4 Qualitative Observations
From participant observation during the experiment, comments they gave
during and after the test, and the two last (open) questions of the questionnaire
(see Section 8) additional findings were compiled.

Due to the fact that the virtual drum was placed slightly higher than the
physical drum (see Section 5), many participants interacted with the air above
the drum rather than finishing their stroke to actually hit the drum. This was
an issue, as the haptic sensation would not be felt in that case. This might also
explain the result of the second question in Table 4. Either before or during the
test, the participantswere instructed to finish their stroke to actually physically
interact with the drum.

The interaction was programmed in such a way, that when a tracked hand
collides with the virtual drum, this hand would not be able to trigger the
physical model until it was completely out of the “collision zone". Due to the
misalignment mentioned above, many interactions were not captured. Again,
either before or during the experiment, the participants were instructed to
make longer movements to ensure that their hands were completely outside
of this “collision zone" before interacting with the drum again.

Another technical issue was that sometimes participants would look for-
ward rather than down to the hands. This caused the hands not to be tracked
anymore as the Leap Motion was mounted on the HMD. A solution for this
would be to mount it at a lower angle rather than straight forward (as is the
current case).

The experiment could be improved by addressing the above interaction
issues to yield stronger data. The issues could potentially be solved by adding
a more precise and reliable sensor to the setup, such as a contact microphone
placed on the drummembrane. Even though a feedback loop could occur due
to the haptuator being present on the same membrane, there is a potential to
filter out its vibrations and only use the transients due to the interaction with
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the membrane for control.
Some participants commented that theywould have liked to have reference

points for “the stiffest" and “the softest" cases before testing as they said they
would have judged the first few cases differently if they had known these
references in advance. This could, however, bias the participants’ answers.

The movements of participants were observed during the test and sporadi-
cally noted. Therewas a small tendency towards slower and longermovements
in the case of lower tension and faster and shorter movements in the opposite
case, but as these observations were not done systematically, to be able to say
anything about this, this should be properly tested, possibly using raw data
from the hand tracking.

10 Conclusion
In this paper, we presented and evaluated a novel VRMI where a physical
drumwas enhanced by VR. The physical drumwas augmented by a vibration
motor and the sound was simulated using a physical model of a drum mem-
brane. In an experiment run during the study, preliminary results show that
higher values for both tension and damping increase the perception of mate-
rial stiffness of the drum membrane, as hypothesised. However, the damping
appeared to be a more important factor in this perception than the tension,
which was contrary to expectations.

In futurework, improving the experiment by, for example, adding a contact
microphone to the membrane for more accurate control and re-conducting the
experiment with a larger sample size will be necessary to validate or improve
the results presented in this paper.

Other futurework includes decoupling the audio and the haptics, to test the
perceptual influence of each individualmodality separately. More alternatives
of the parameter values could be presented in a future test to more deeply
investigate the connection between parameter values and stiffness perception.

Additionally, the tracking of the user’s hands should be improved by
mounting the Leap Motion more downwards on the HMD. Furthermore, the
virtual and physical drum should be better aligned in space as to make the
interaction less confusing and more intuitive. Lastly, in order to test whether
the interaction patterns change depending on the changes in parameters, the
raw data from the hand tracking should be analysed.
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Abstract
For physical modelling sound synthesis, many techniques are available; time-stepping
methods (e.g., finite-difference time-domain (FDTD) methods) have an advantage of
flexibility and generality in terms of the type of systems they can model. These
methods do, however, lack the capability of easily handling smooth parameter changes
while retaining optimal simulation quality and stability, something other techniques
are better suited for. In this paper, we propose an efficient method to smoothly add
and remove grid points from a FDTD simulation under sub-audio rate parameter
variations. This allows for dynamic parameter changes in physical models of musical
instruments. An instrument such as the trombone can now be modelled using FDTD
methods, as well as physically impossible instruments where parameters such as e.g.
material density or its geometry can be made time-varying. Results show that the
method does not produce (visible) artifacts and stability analysis is ongoing.

1 Introduction
The operation of most musical instruments can be subdivided into excitation
and resonator components [1]. Examples of excitation-resonator combinations
are the bow and violin and the lips and trumpet. In most instruments, the
parameters describing the excitation are continuously varied by the performer
to play the instrument. As an example, the bow velocity, bow position and
bow force for stringed instruments, and lip pressure and frequency for brass
instruments. Naturally, the resonator is also altered by fingering the strings of
the violin or pressing valves on the trumpet to change the instrument pitch.
But, even under such variable playing conditions, physical properties of the
resonators do not change: the string length and tension stay the same and the
total tube length remains unchanged; it is only the portions that resonate that
are shortened or lengthened.

There are several examples where the parameters of the resonator are also
modified. A prime example of this is the trombone, where the tube length is
dynamically changed in order to generate different pitches. The slide whistle
is another example in this category. Guitar strings are another category where
the tension can be smoothly modulated during performance using the fretting
finger or a whammy bar to create smooth pitch glides. The same kind of ten-
sion modulation is used for the membranes of timpani or “hourglass drums"
to change the pitch. It is these direct parameter modifications of the resonators
that we are interested in simulating. In addition to simulating existing instru-
ments, one could potentially simulate instruments that can be manipulated in
physically impossible ways. Examples of this could be to dynamically change
material properties such as density or stiffness, or even the geometry and size
of the instrument where this is physically impossible.
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Finite-difference time-domain (FDTD) methods are flexible and generalis-
able techniques which have seen increased use in physical modelling sound
synthesis applications [2]. The normal approach, for a given system such as
a musical instrument, is to describe its motion by a set of partial differential
equations (PDEs). The instrument is then represented over a spatial grid, and
a time-stepping method is developed, yielding a fully discrete approximation
to the target PDE system.

In many cases, the system itself is static, so that the defining parameters do
not change over time. In others, such as the trombone and others mentioned
above, this is not the case, and various technical challenges arisewhen trying to
design a simulation using FDTDmethods; all relate to the choice of the spatial
grid. For example, the grid density is usually closely tied to the parameters
themselves through a stability condition. Also, adding and removing points
from the grid is nontrivial and can cause audible artifacts and new stability
concerns. The default approach of defining a grid globally, according to a
very conservative stability condition, as done in [3], is possible, but introduces
numerical dispersion and bandlimiting effects. Full-grid interpolation [2, Ch.
5] could be used to change between grid configurations, but extremely high
sample rates are necessary to avoid audible artifacts and low-passing effects,
rendering any implementation offline.

In this paper, a newmethod is proposed, allowing the efficient and smooth
insertion and deletion of grid points from 1D finite-difference grids to allow
for dynamic parameter changes. We are interested in varying parameters
‘slowly’ (i.e., at sub-audio rate corresponding to human gestural control). In
a companion paper we present a physical model of the trombone using the
method proposed in this paper [4]. Notice that other techniques do allow for
dynamic parameter changes but comewith their owndrawbacks [2]. Examples
of dynamic parameters usingmodal synthesis [5] are shown in [6, 7] anddigital
waveguides [8] are shown in [9].

Thispaper is structuredas follows: Section2presents the 1Dwaveequation,
to be used as an illustrative example for the proposed method. Section 3 gives
an introduction to numerical methods, stability and simulation quality. The
proposedmethod for dynamic grids is then presented in Section 4 and applied
to the 1D wave equation. Section 5 shows the results of an analysis performed
on the method, which are discussed in Section 6. Finally, concluding remarks
and future perspectives are given in 7.
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2 Continuous Systems
The wave equation is a useful starting point for investigations of time-varying
behaviour in musical instruments. In 1D, the wave equation may be written as

∂2q

∂t2
= c2

∂2q

∂x2
, (1)

and is defined over spatial domain x ∈ [0, L], for length L (in m) and time
t ≥ 0 (in s). c (in m/s) is the wave speed. The dependent variable q = q(x, t)

in Eq. (1) may be interpreted as the transverse displacement of an ideal string,
or the acoustic pressure in the case of a cylindrical tube. Two possible choices
of boundary conditions are

q(0, t) = q(L, t) = 0 (Dirichlet), (2a)
∂

∂x
q(0, t) =

∂

∂x
q(L, t) = 0 (Neumann), (2b)

and describe ‘fixed’ or ‘free’ boundary respectively in the case of an ideal
string, and ‘open’ or ‘closed’ conditions respectively in the case of a cylindrical
acoustic tube.

2.1 Dynamic parameters
In the case of the 1D wave equation, only the wave speed c and length L can
be altered (in the case of an acoustic tube, only L is variable, and for a string,
c could exhibit variations through changes in tension). If the same boundary
condition is used at both ends of the domain, and under static conditions, the
fundamental frequency f0 of vibration can be calculated according to

f0 =
c

2L
. (3)

In the dynamic case, and under slow (sub-audio rate) variations of c or L, Eq.
(3) still holds approximately. From Eq. (3), one can easily conclude that in
terms of fundamental frequency, halving the length in Eq. (1) is identical to
doubling the wave speed and vice versa. Looking at Eq. (1) in isolation, f0 is
the only behaviour that can be changed. One can thus leave L fixed and allow
time variation in c, so that c = c(t), which will prove easier to work with in
the following sections. This fact can more easily be seen if Eq. (1) is scaled or
non-dimensionalised as in [2], where scaled domain x′ = x/L ⇒ x′ ∈ [0, 1]

and γ = c/L such that f0 = γ/2. For clarity, however, we will employ a fully
dimensional representation here.
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3 Numerical methods
This section will provide a brief introduction to physical modelling using
FDTD methods, including details on stability and quality of the simulations
based on these methods. In this section, c is assumed constant.

3.1 Discretisation
In FDTDmethods, the first step is the definition of a grid. The spatial variable
can be discretised using xl = lh with integer l ∈ {0, . . . , N}. The grid spacing
h (in m) is the distance between adjacent grid points, and the total number of
points covering the domain, including endpoints, is N + 1. Here, integer N
describes the total number of intervals between the grid points, and thus the
total domain length is L = Nh. The temporal variable can be discretised using
tn = nk with positive integer n, time step k = 1/fs (in s) for sample rate fs (in
Hz). The state variable q can then be approximated using qnl u q(x = lh, t =

nk).
The following operators can then be applied to qnl to get the following

approximations to the derivatives in Eq. (1)

δttq
n
l =

1

k2
(
qn+1
l − 2qnl + qn−1l

)
≈ ∂2q

∂t2
, (4a)

δxxq
n
l =

1

h2
(
qnl+1 − 2qnl + qnl−1

)
≈ ∂2q

∂x2
. (4b)

Substituting these definitions into Eq. (1) yields the following finite-difference
(FD) scheme

δttq
n
l = c2δxxq

n
l . (5)

Expanding the operators as in (4) and solving for qn+1
l yields the following

update equation

qn+1
l = 2qnl − qn−1l + λ2

(
qnl+1 − 2qnl + qnl−1

)
, (6)

which is suitable for direct software implementation. Here,

λ =
ck

h
(7)

is referred to as the Courant number, constrained by numerical stability condi-
tions, and also has an impact on the quality and behaviour of the simulation.
This will be described in detail in Sections 3.2 and 3.3.

In the FD scheme described in Eq. (5), the boundary locations are at l = 0

and l = N . Substituting these locations into Eq. (6) seemingly introduces
the need of grid points outside of the defined domain, namely qn−1 and qnN+1.
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These can be referred to as virtual grid points and can be accounted for using
the boundary conditions in Eq. (2). Discretising these yields

qn0 = qnN = 0, (Dirichlet) (8a)
δx·q

n
0 = δx·q

n
N = 0, (Neumann) (8b)

where
δx·q

n
l =

1

2h

(
qnl+1 − qnl−1

)
≈ ∂q

∂x
(9)

is a second-order accurate approximation of the first-order spatial derivative.
The Dirichlet condition in (8a) says that the displacements of q at the boundary
locations are always 0. In practice, this means that these grid points do not
need to be updated and the spatial range of calculation for Eq. (6) then becomes
l ∈ {1, . . . , N − 1}. If the Neumann condition is used, the boundary points do
need to be updated as these are not necessarily 0; rather, their ‘slope’ is 0. Eq.
(8b) can then be expanded to yield defnitions for these virtual grid points

qn−1 = qn1 and qnN+1 = qnN−1 . (10)

Now that the full system is described, audio output at sample rate fs can
be drawn from the state qnl in Eq. (6) at 0 < l < N (when using Dirichlet
boundary conditions).

3.2 Stability
Explicit FDTD methods for hyperbolic systems such as the 1D wave equation
must necessarily satisfy a stability condition. In the case of the update in Eq.
(6) it can be shown – using von Neumann analysis [10] – that the system is
stable if

λ ≤ 1, (11)

which is referred to as the Courant-Friedrichs-Lewy (CFL) condition. The
more closely λ approaches this condition with equality, the higher the quality
of the simulation (see Section 3.3) and if λ = 1, Eq. (6) yields an exact solution
to Eq. (1). If λ > 1 the system will become unstable. Recalling (7), Eq. (11) can
be rewritten in terms of grid spacing h to get

h ≥ ck. (12)

This shows that the CFL condition in (11) puts a lower bound on the grid
spacing, determinedby the sample rate andwave speed. Usually, the following
steps are taken to calculate λ:

h := ck, N :=

⌊
L

h

⌋
, h :=

L

N
, λ :=

ck

h
, (13)
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where b·c denotes the flooring operation. In other words, condition (12) is first
satisfiedwith equality and used to calculate number of intervalsN . Thereafter,
h is recalculated based on integer N and used to calculate λ. The calculation
of λ in Eq. (13) can be compactly rewritten as

λ =
ck

L
·
⌊
L

ck

⌋
. (14)

The flooring operation causes the CFL condition in (11) to not always be satis-
fied with equality and results in a reduced simulation quality described in the
following section.

3.3 Simulation Quality
Choosing λ < 1 in Eq. (6) will decrease the simulation quality in two ways.
Firstly, it will decrease the maximum frequency that the simulation is able to
produce, i.e., it will decrease the bandwidth of the output sound of the system.

By analysing the scheme in Eq. (6), it can be shown that the maximum
frequencyproducedby the systemcanbe calculatedusing fmax = fs sin

−1(λ)/π
[2, Chap. 6]. Note that only a small deviation of λ from condition (11) leads
to a large reduction in output bandwidth. Secondly, choosing λ < 1 causes
numerical dispersion. Harmonic partials become unnaturally closely spaced
at higher frequencies (i.e. spurious inharmonicity increases) as λ decreases,
which is generally undesirable.

4 The Dynamic Grid
The time variation of the wave speed c leads to various complications in the
simulation framework presented above. First of all, a change in c causes
a change in λ according to Eq. (14), affecting the simulation quality and
bandwidth. Secondly, and more importantly, a change in c could result in a
change in N through Eq. (13). As N directly relates to the number of grid
points, this raises questions as to where and especially how one would add and
remove points to the grid according to the now-dynamic wave speed.

We propose a method that allows for a non-integer number of intervals to
smoothly change between grid configurations, i.e, the number of grid points
used. This removes the necessity of the flooring operation in Eqs. (13) and
(14), and consequently satisfies the CFL condition in (11) with equality at all
times. Introducing fractional number of intervals N , where N = bNc, Eq. (3)
can be rewritten in terms of N by substituting the calculation of N from (13)
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into Eq. (3) (using h = ck) yielding

f0 =
1

2Nk with N = L/h. (15)

This shows that if λ = 1, N solely determines the fundamental frequency of
the simulation.

Ideally, a method that dynamically changes the grid size of a FD scheme
should

r1. generate an output with a fundamental frequency f0 which is propor-
tional to the wave speed c (f0 ∝ c),

r2. allow for a fractional number of intervalsN to smoothly (without audible
artifacts) transition between different grid configurations,

r3. generate an output containing N − 1modes which are integer multiples
of the fundamental (fp = f0pwith integer p),

r4. work in real time to have a playable simulation.

These requirements will be used in Section 6 to evaluate the proposedmethod.

4.1 Proposed Method
In the following, the location of a grid point (in m from the left boundary) ql
at time index n is denoted by xnql . Furthermore, some variables are now time
dependent as indicated by superscript n. These are cn, hn, Nn, Nn and fn0 .

4.1.1 System Setup

Consider two grid functions, unlu and wnlw defined over discrete domains lu ∈
{0, . . . ,Mn} and lw ∈ {0, . . . ,Mn

w} respectively with integers Mn = d0.5Nne
with d·edenoting the ceilingoperation andMn

w = b0.5Nnc, i.e., half thenumber
of points allowed by the stability condition, plus one for overlap. The two grid
functions are assumed to lie adjacent to each other on the same domain x. For
now, the grid locations lu = Mn and lw = 0 are assumed to overlap so that
xnuMn = xnw0

= Mnhn, and are referred to as the inner boundaries. The grid
locations lu = 0 and lw = Mn

w are placed at xnu0
= 0 and xnwMn

w
= L and will

be referred to as the outer boundaries. See Figure 1a. The following boundary
conditions are then imposed:

un0 = wnMn
w
= 0, (Dirichlet) (16a)

δx·u
n
Mn = δx·w

n
0 = 0. (Neumann) (16b)
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In other words, grid points at the outer boundaries are fixed, according to
the usual Dirichlet condition, and those at the inner boundaries are free. It is
important to note that the Neumann condition is just used as a starting point
for the method here, but will be modified in Section 4.1.2. The systems can
then be connected at the inner boundaries using a rigid connection

unMn = wn0 , if xnuMn = xnw0
. (17)

Notice that this condition only needs to be satisfiedwhen the inner boundaries
perfectly overlap, which is not always the case when cn is varied (see Section
4.1.2).

To sum up, a grid function with N intervals as per Eq. (13) is divided into
two separate subsystems connected at their respective inner boundaries.

With the above boundary conditions imposed, the following state vectors
can be defined:

un = [un1 , . . . , u
n
Mn ]T, and wn = [wn0 , . . . , w

n
Mn

w−1]
T , (18)

with T denoting the transpose operation, and haveMn andMn
w points respec-

tively. Note that the grid points at the outer boundaries are excluded as they
are 0 at all times due to the Dirichlet boundary condition in (8a). A vector
concatenating (18) is then defined as

Un =

[
un

wn

]
. (19)

Even though the new system has an extra (overlapping) grid point, the
behaviour of the new system should be identical to that of the original system
in Eq. (5) with (static) Nn = Nn. That this holds will be shown below.

Using unlu and wnlw in the context of the 1D wave equation, a system of FD
schemes can be defined as

{
δttu

n
lu

= (cn)2δxxu
n
lu
+ Ju(x

n
uMn )F

n,

δttw
n
lw

= (cn)2δxxw
n
lw
− Jw(xnw0

)Fn,
(20)

with spreading operators

Ju(x
n
i ) =

{
1
hn , lu = bxni /hnc
0, otherwise

and

Jw(x
n
i ) =

{
1
hn , lw = bxni /hnc −Mn

0, otherwise

(21)

applying the effect of the connection Fn (in m2/s2) to grid points unMn and
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wn0 respectively. Expanding the spatial operators in system (20) at the inner
boundaries, recalling the Neumann condition in (16b) and the definition for
the virtual grid points needed for this condition in Eq. (10) yields

{
δttu

n
Mn = λ2

k2 (2u
n
Mn−1 − 2unMn) + 1

hnF
n,

δttw
n
0 = λ2

k2 (2w
n
1 − 2wn0 )− 1

hnF
n.

(22)

It is important to note that the time index n in Mn will not be affected by
the δtt operator and all obtained terms after expansion (Eq. (4a)) will use the
same value forMn. Because of the rigid connection in (17), it is also true that
δttu

n
Mn = δttw

n
0 (if xnuMn = xnw0

), and Fn can be calculated by setting the right
side of the equations in (22) equal to each other:

λ2

k2
(2unMn−1 − 2unMn) +

1

hn
Fn =

λ2

k2
(2wn1 − 2wn0 )−

1

hn
Fn,

Fn = hn
λ2

k2
(wn1 − unMn−1).

Substituting this into system (22) after expansion of the second-time derivative
yields the update of the inner boundaries

{
un+1
Mn = 2unMn − un−1Mn + λ2(unMn−1 − 2unMn + wn1 ), (23a)
wn+1

0 = 2wn0 − wn−10 + λ2(unMn−1 − 2wn0 + wn1 ), (23b)

which, (again, recalling Eq. (17)) are indeed equivalent expressions for the
connected point which is necessary to satisfy the rigid connection. System (20)
can be shown to exhibit behaviour identical to that of the original scheme in
Eq. (5) using (static) Nn = Nn. In (23), wn1 in Eq. (23a) acts as virtual grid
point unMn+1, and unMn−1 in (23b) as virtual grid point wn−1. This important
fact is what the proposed method relies on and will be extensively used in the
following.

4.1.2 Changing the Grid

The previous section describes the case in which Nn is an integer. We now
continue by varying cn such that this is not the case.

The locations of the outer boundaries xnu0
and xnwMw

are fixed:

xnu0
= x0u0

= 0 and xnwMn
w
= x0wMn

w
= L ∀n.

If the wave speed cn is then decreased, and consequently the grid spacing
hn according to Eq. (12) (with equality), all other points move towards their
respective outer boundary (see Figure 1b). Calculating hn this way allows this
method to always satisfy the CFL condition in Eq. (11) with equality, solving
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(a)

(b)

(c)
Fig. 1: Illustration of the proposed method. In all figures, the x-axis shows the location of the respective grid
points, but ‘xn’ is omitted for brevity. (a) Locations of the states of two (1D wave) systems connected at the
inner boundaries (Nn = 30, xnuMn = xnw0

). (b) When cn – and consequently hn – are decreased and
the positions of the grid points change (Nn = 30.5, xnuMn 6= xnw0

). (c) Figure 1b zoomed-in around the
inner boundaries. The virtual grid points unMn+1 and wn

−1 are shown together with the distance between
them expressed using α in Eq. (24).

issues regarding simulation quality and numerical dispersion described in
Section 3.3.

As mentioned in Section 4.1.1, the state of the virtual grid points at the
inner boundaries are defined as unMn+1 = wn1 and wn−1 = unMn−1 when the
inner boundaries perfectly overlap (i.e., xnuMn = xnw0

). If this is not the case
(xnuMn 6= xnw0

) a Lagrangian interpolator I(xni ) at location xni (in m from the
left boundary) can be used to calculate the value of these virtual grid points
(also see Figure 1c for reference). The interpolator I is a row-vector with the
same length as Un (from Eq. (19)) and its values depend on the interpolation
order. In the following, the fractional part of Nn is defined as

α = αn = Nn −Nn, (24)
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and for clarity, I and Un are indexed by m. Now, consider the following
quadratic interpolator

I2(x
n
i ) =





−(α− 1)/(α+ 1), m = mn
i − 1

1, m = mn
i

(α− 1)/(α+ 1), m = mn
i + 1

0, otherwise

(25a)

and its flipped version

I←2 (xni ) =





(α− 1)/(α+ 1), m = (m←i )n − 1

1, m = (m←i )n

−(α− 1)/(α+ 1), m = (m←i )n + 1

0, otherwise

(25b)

with mn
i = bxni /hnc and (m←i )n = bxni /hn + (1 − α)c, where the shift in the

latter is necessary to transform the location xni to the correct indices of Un.
When applied to Eq. (19) this yields the definitions for the virtual grid points

unMn+1 = I←2 (xnuMn+1
)Un =

α− 1

α+ 1
unMn + wn0 −

α− 1

α+ 1
wn1 , (26a)

wn−1 = I2(x
n
w−1

)Un = −α− 1

α+ 1
unMn−1 + unMn +

α− 1

α+ 1
wn0 . (26b)

These definitions for the virtual grid points at the inner boundarieswill replace
theNeumann condition in Eq. (16b). One can show thatwhenNn is an integer,
and thus α = 0, Eqs. (26a) and (26b) can be substituted as wn1 and unMn−1 into
Eqs. (23a) and (23b) respectively (as these acted as virtual grid points unMn+1

and wn−1). Then recalling Eq. (17) it can be seen that the system reduces to (23)
and exhibits the same exact behaviour as the usual case in Eq. (5).

Now that the virtual grid points at the inner boundaries are not determined
by the Neumann boundary condition in (16b), but rather by the definitions in
Eqs. (26), system (20) can simply be re-written to

{
δttu

n
lu

= (cn)2δxxu
n
lu
,

δttw
n
lw

= (cn)2δxxw
n
lw
,

(27)

where the Dirichlet condition in (16a) is (still) used for the outer boundaries
and the Neumann condition at the inner boundaries in (16b) is replaced by the
definitions in (26):

unMn+1 = I←2 (xnuMn+1
)Un and wn−1 = I2(x

n
w−1

)Un. (28)
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Fig. 2: The moment when a point is added to u at location xnuMn+1
in Eq. (29). This figure shows an

extreme case where this location is far from xnw0
, i.e., α 6≈ 0 in Eq. (30).

4.1.3 Adding and Removing Grid Points

When cn, and consequently hn, are decreased and the inner boundary points
surpass the virtual points (i.e. xnuMn ≤ xnw−1

and xnw0
≥ xnuMn+1

), this means
thatNn > Nn−1. A point is then added to the right boundary of u and the left
boundary of w (for both time indices n and n− 1) in an alternating fashion:

{
un = [(un)T , I3v

n]T if Nn is odd,
wn = [I←3 vn, (wn)T ]T if Nn is even.

(29)

Here,

vn = [unMn−1, u
n
Mn , wn0 , w

n
1 ]
T ,

and cubic Lagrangian interpolator

I3 =
[
− α(α+1)

(α+2)(α+3)
2α
α+2

2
α+2 − 2α

(α+3)(α+2)

]
, (30)

with I←3 being a flipped, not shifted (as I←2 in Eq. (25b)) version of (30). See
Figure 2. Notice that Nn is only going to be slightly bigger than an integer at
the moment that a point is added and Eq. (24) will return α & 0. This means
that that I3 ≈ [0, 0, 1, 0] and the displacement of the newly added point is
nearly fully based on the grid point at the inner boundary of the other system.

Removing grid points happens when cn, and consequently hn, are in-
creased and xnuMn > xnw0

(or Nn < Nn−1). Grid points are simply removed
from u andw (again for both n and n− 1) in an alternating fashion according
to {

un = [un0 , u
n
1 ..., u

n
Mn−1]

T if Nn is even,
wn = [wn1 , w

n
2 ..., w

n
Mn

w
]T if Nn is odd.

(31)

In Eqs. (29) and (31), the even and odd conditions can be inverted. To keep
the difference between u and w a maximum of one grid point, the ceiling and
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flooring operations when calculatingMn andMn
w will need to be inverted as

well.
Until now, only adding and removing points in the center of the original

system has been considered. This location could be moved anywhere along
the grid, the limit being one point from the boundary. In other words, both unlu
and wnlw need to have at least one point (excluding the grid points at the outer
boundaries). Furthermore, one does not have to add and remove points from
u and w in an alternating fashion as in (29), but can just add to and remove
from, for example, u leaving w the same size throughout the simulation. In
the extreme case whereMn = Nn − 1 andMn

w = 1 (leaving wnlw with only one
moving grid point, wn0 ) the method still works.

4.1.4 Displacement correction

A problem that arises when increasing cn, is that it is possible that the dis-
placements unMn 6≈ wn0 at the time when a grid point needs to be removed. As
the grid locations xnuMn ≈ xnw0

at the time of removal, this violates the rigid
connection in (17) and causes audible artifacts. A method is proposed that
decreases the relative displacement of the inner boundaries the closer their
grid-locations are together, i.e., the closer α in (24) is to 0. We thus extend
system (27) with an artificial spring force as

{
δttu

n
lu

= (cn)2δxxu
n
lu
+ Ju(x

n
uMn )F

n
c ,

δttw
n
lw

= (cn)2δxxw
n
lw
− Jw(xnw0

)Fnc .
(32)

Using centred temporal averaging and difference operators

µt·q
n
l =

1

2

(
qn+1
l + qn−1l

)
, (33a)

δt·q
n
l =

1

2k

(
qn+1
l − qn−1l

)
, (33b)

the correction effect is defined as

Fnc = β (µt·η
n + σ0δt·η

n) , (34)

with the difference in displacement between the inner boundaries

ηn , wn0 − unMn , (35)

and damping coefficient σ0. Furthermore, β scales the effect of the displace-
ment correction and is defined as

β = β(α) =
1− α
α+ ε

, (36)
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where ε� 1 prevents a division by 0. Despite the operators in (33) introducing
states at n + 1, it is possible to calculate the force explicitly (such as in [2] or
[11]). Furthermore, it can be shown that even when ε = 0 this calculation is
always defined. In that case, as α→ 0, β →∞which acts as a rigid connection
such as Eq. (17). Essentially, the displacement correction attempts to have
ηn → 0 in Eq. (35) as α → 0 to satisfy the rigid connection in Eq. (17).
Although the correction presented here is not based on some physical process,
it can be justified by the fact that large differences in displacement between
two spatially adjacent points is not physical.

Notice that when cn is decreased, the rigid connection will not be violated
as unMn ≈ wn0 when a point is added. This is due to the fact that I3 ≈ [0, 0, 1, 0]

and either unMn or wn0 is the newly added point which almost solely based on
the other.

4.2 Summary
Here, Section 4.1 is summarised anddescribes the final version of the proposed
method.

The proposed method subdivides a grid function qnl with N intervals into
two grid functions unlu and wnlw with Mn and Mn

w intervals respectively for a
total of Nn + 2 grid points. Knowing that λ = 1 ∀n, Eq. (6), written for both
grid functions, becomes

un+1
lu

= unlu+1 + unlu−1 − un−1lu
, (37a)

wn+1
lw

= wnlw+1 + wnlw−1 − wn−1lw
. (37b)

Due to the Dirichlet boundary condition in (16a) imposed at the outer bound-
aries of the system, un0 and wnMw

are 0 at all times and do not have to be
included in the calculation. The ranges of calculation for Eq. (37a) and (37b)
then become lu ∈ {1, . . . ,Mn} and lw ∈ {0, . . . ,Mn

w − 1} respectively.
The grid points at the inner boundaries are calculated by expanding (27)

(ignoring the displacement correction for now)

un+1
Mn = unMn+1 + unMn−1 − un−1Mn , (38a)

wn+1
0 = wn−1 + wn1 − wn−10 , (38b)

where virtual grid points unMn+1 and wn−1 can be calculated using Eq. (26).
Then, whenNn > Nn−1, a point is added to un and un−1 (orwn andwn−1)

usingEq. (29), andwhenNn < Nn−1, a point is removed from the samevectors
using Eq. (31). In order to prevent audible artifacts when increasing cn (and
thus decreasingNn) due to a violation of the rigid connection in (17), amethod
is proposed in Eq. (32) to ensure that the grid points at the inner boundaries
have a similar displacement when one of them is removed.
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4.3 Implementation
A MATLAB implementation of the proposed method and audio examples
can be found online1 and Algorithm 1 shows the order of calculation of this
implementation. Especially important to take into account, is to only retrieve
a change in cn at time index n once before all other calculations. This is to
ensure that unlu and wnlw are calculated with the same α and β for all lu and lw.

while application is running do
Retrieve new cn

Calc. hn (Eq. (12) with equality)
Calc. Nn and Nn (Eqs. (15) and (13))
Calc. α (Eq. (24))
if Nn 6= Nn−1 then

Add or remove point (Eq. (29) or (31))
UpdateMn andMn

w

end
Calc. virtual grid points (Eqs. (26))
Calc. un+1

lu
and wn+1

lw
(Eqs. (37) and (38))

Calc. and apply displacement corr. (Eq. (34))
Retrieve output
Update states (Un−1 = Un, Un = Un+1)
Update Nn−1 (Nn−1 = Nn)
Increment n

end

Algorithm 1: Pseudocode showing the order of calculations.

5 Analysis and Results

5.1 Modes
Writing system (32) in matrix form, one can perform a modal analysis while
changing cn to obtain the frequencies and damping coefficients for each mode
over time. As a test case, the wave speed of a system running at fs = 44100

Hz is linearly varied from c0 = 2940 (N 0 = 15) to cnend = 2205 (Nnend = 20)
where nend = tdurfs is the simulation length in samples and tdur = 10 s. Grid
points are added and removed as close to the right boundary as possible, i.e.,
Mn = Nn − 1 and Mn

w = 1 (similar behaviour can be observed if Mn = 1

and Mn
w = Nn − 1). The result of the analysis is shown in Figure 3a where

1https://github.com/SilvinWillemsen/DAFx21DynamicGridFiles/
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higher damping (induced by the displacement correction) is indicated using
thinner and bluer lines. Figure 3b shows the resulting spectrogram, with the
displacement correction deactivated, of the system excitedwith u01 = 1 and the
output retrieved at un1 , and Figure 3c shows a system with the same excitation
but the change in cn inverted (Nn = 20 → 15) and displacement correction
activated. In the following, the lowest mode generated by the analysis is
referred to as fn1 and should ideally be equal to fn0 calculated using Eq. (3).
The first thing one can observe from Figure 3a is that the frequencies of the
modes decrease as cn decreases (as desired). The lower the mode, the more
linear this decrease happens. Between Nn = 15 and Nn = 16, fn1 maximally
deviates by −0.15 cents. In this same interval fn15 maximally deviates by −67
cents. This deviation gets less asNn increases. Experiments with higher even-
ordered Lagrange interpolators show that these frequency deviations become
smaller, but not by a substantial amount. The quadratic interpolator has thus
been chosen for being simpler and more flexible while not being substantially
worse than higher order interpolators.

Another observation from Figure 3a is that there are always Nn modes
present, corresponding to the number of moving points of the system. As can
be seen in Figure 3b the highest mode is not excited. If the system is excited
when Nn is not an integer, the highest mode will also be excited. Comparing
the implementation of the system using this methodwith integerNn (without
changing cn) to a normal implementation of the 1D wave equation (shown in
Section 3) with (static)Nn = Nn, identical outputs are observed, even though
the latter has Nn − 1 moving points.

5.2 Displacement Correction
In the experiments, σ0 = 1 in Eq. (34). The displacement correction has a low-
pass-comb-filtering effect on the system, where the position and amount of
damped regions directly relates to the position of where grid points are added
and removed. The best behaviour, i.e., least affecting lower frequencies, is
when grid points are added and removed as close to the boundary as possible,
i.e., Mn = Nn − 1, and only has one damped region as shown in Figures 3a
and 3c.

5.3 Limit on Rate of Change of c
The current implementation of the proposed method can only add or remove
a maximum one point per sample using Eqs. (29) and (31). The rate of change
of fn0 according to (15) is thus limited by |Nn − Nn−1| ≤ 1. Though this is
the maximum limitation on speed, a much lower limitation needs to be placed
to keep the system well-behaved. The usual stability and energy analyses
performed on FD schemes are not valid anymore in the time-varying case.
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Fig. 3: Experiments showing (linearly) varying wave speed between c0 = 2940 (N 0 = 15) and cnend =
2205 (Nnend = 20)withMn = Nn−1 andMn

w = 1 running at fs = 44100Hz for 10 s (nend = 10fs).
(a) Modal analysis of system (32). Thinner and bluer lines indicate a higher amount of damping. (b) Output
of the systemwhile decreasing cn (Nn = 15→ 20) without displacement correction, excited using u01 = 1
and retrieved at un1 . The sound output follows the same pattern as predicted by the analysis shown in Figure
3a. (c) Output of the system while increasing cn (Nn = 20→ 15) with displacement correction activated
(essentially flipping the analysis in Figure 3a along the x-axis and applying this to a 10 s simulation).
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Frozen coefficient analysis as in [10] could be applied here and hold for slowly
varying coefficients, but is left for future work.

6 Discussion
To decide whether the proposed method is satisfactory, the results presented
in the previous section are compared to the method requirements listed in
Section 4.

It can be argued that the frequency deviations of fn1 from fn0 are sufficiently
small to say that r1 is satisfied. As for r2, a fractional number of intervals
Nn has been introduced and smooth transitions are indeed observed from
Figure 3b, in the case when cn is decreased and Nn is increased. When cn is
increased instead, the displacement correction prevents (visible) artifactswhen
grid points are removed as seen in Figure 3c. Despite this, the filtering effect
that the displacement correction has on the system (mentioned in Section 5.2)
is not ideal as it creates damped regions in the spectrum of the output sound.
The least intrusive filtering happens when points are added and removed as
close to the boundary as possible, i.e., when Mn = 1 or Mn

w = 1 where the
damping only occurs in the higher end of the spectrum. Although artifacts
do not show in Figure 3c, to confirm the absence of audible artifacts, formal
listening tests have to be carried out. Furthermore, higher speeds of parameter
variation might cause artifacts anyway. The value of σ0 could therefore also be
made dynamic anddepending on the rate of change of cn to have a higher effect
when cn is increased faster and vice versa. Either way, as this is still not ideal,
another method for reducing artifacts that less affects the frequency content of
the system should be devised, if possible. Furthermore, higher modes will be
lost after decreasingN and will not return after increasingN again. They can,
however, be activated again by re-exciting the system.

The modal analysis in Figure 3a shows that the method generates Nn

rather than Nn − 1 modes as set by r3. However, the output does contain the
correct number of modes as shown in Figure 3b due to the highest mode not
being excited. This is a result of the rigid connection imposed on the inner
boundaries, forcing them to have the same displacement and act as one point.
The latter part of r3, however, is not satisfied. The modes deviate from integer
multiples of fn0 , moreso for higher modes. Other interpolation techniques
could be investigated to improve the behaviour and decrease this deviation.

Finally, the method only adds a few extra calculations for the inner bound-
aries so r4 is also easily satisfied.

Although the results bring forward some drawbacks of the proposed
method, such as modal frequency deviations, and filtering effects, most of
these affect the higher frequencies of the output. First of all, human frequency
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sensitivity becomes very limited above 3000 Hz [12] making high-frequency
deviations much less important perceptually. Secondly, the physical systems
oneusually tries tomodel containhigh-frequency losses, causinghighermodes
to usually not have very high amplitudes to begin with. Finally, Nn is usually
much bigger in the systems one models, where frequency deviations happen
to a much smaller degree.

As of now, some aspects of the proposedmethod still lack physical justifica-
tion (such as the displacement correction), but are shown to yield the desired
behaviour and fulfil the requirements to a satisfactory degree. Despite this,
further work needs to be done to physically justify the choices made in this
paper.

7 Conclusions and Perspectives
This paper presents amethod to change grid configurations of finite-difference
schemes to allow for dynamic parameter changes. The method allows the
stability condition that these schemes rely on can be satisfied with equality
at all times, minimising numerical dispersion and bandlimiting issues. Grid
points are shown to be added and removed smoothly and do not cause artifacts
when switching between grid configurations. Listening tests will need to be
performed to carried out to confirm the lack of audible artifacts.

The proposed method might not provide an exact solution to the problem
of time-varying systems, and not all choices are physically justified, but it does
circumvent the need for upsampling and higher orders of computations nec-
essary to approximate this solution with, for example, full-grid interpolation.

Although this method has only been applied to the 1D wave equation
it could be applied to many other 1D systems. Other parameters, such as
material density or stiffness could also be made dynamic, going beyond what
is physically possible. An application of the method that could be investigated
is that of non-linear systems, such as the Kirchhoff-Carrier string model [13]
where the tension is modulated based on the state of the system.

Other future work includes creating an adaptive version of the displace-
ment correction that changes its effect depending on the speed at which the
grid is changed. Finally, stability and energy analyses will have to be per-
formed to show the limits on changes in parameters and grid configurations.
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Abstract
In this paper, a complete simulation of a trombone using finite-difference time-domain
(FDTD) methods is proposed. In particular, we propose the use of a novel method
to dynamically vary the number of grid points associated to the FDTD method, to
simulate the fact that the physical dimension of the trombone’s resonator dynamically
varies over time. We describe the different elements of the model and present the results
of a real-time simulation.

1 Introduction
The trombone is a musical instrument that presents distinct challenges from
the perspective of physical modelling synthesis. In particular, the excitation
mechanism between the lips and the player has been extensively studied, and
simulated mostly using a simple mass-spring damper system [1]. Because the
majority of the bore is cylindrical, nonlinear effects can appear at high blowing
pressures [2], leading to changes in timbre, or brassiness; such effects have
been investigated and simulated [1, 3, 4]. However, the defining characteristic
of the trombone is that the physical dimensions of the resonator vary during
playing. Synthesis techniques such as digital waveguides allow an approach
to dynamic resonator changes in a simple and computationally efficient way,
simply by varying the length of the corresponding delay line. This feature has
been used in real-time sound synthesis [5], for simplified bore profiles suitable
for modelling in terms of travelling waves.

However, when attempting more fine-grained modelling of the trombone
resonator using finite-difference time-domain (FDTD) methods, the issue of
the change in the tube length is not trivial. Previous implementations of brass
instruments using these methods focus on the trumpet [6] and various brass
instruments (including the trombone bore) under static conditions [7]. To our
knowledge, the simulation of a trombone varying the shape of the resonator
in real time using FDTDmethods has not been approached. We can tackle this
problem by having a grid that dynamically changes while the simulation is
running as presented in a companion paper [8]. Briefly described, we modify
the grid configurations of the FDTD method by adding and removing grid
points based on parameters describing the system.

In this paper, we propose a full simulation of a trombone, describing all its
elements in detailwith a specific focus on the dynamic grid simulation. Section
2 presents the models for the tube and lip reed interaction in continuous
time. Section 3 briefly introduces FDTD methods and the discretisation of
the aforementioned continuous equations. Section 4 presents the dynamic
grid used to simulate the trombone slide and details on the implementation
are provided in Section 5. Section 6 presents simulation results, and some
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concluding remarks appear in Section 7.

2 Continuous System
Wavepropagation in anacoustic tube canbeapproximatedusinga1-dimensional
(1D) model, for wavelengths that are long relative to the largest lateral dimen-
sion of the tube. Consider a tube of time-varying length L = L(t) (in m)
defined over spatial domain x ∈ [0, L] and time t ≥ 0. Using operators ∂t
and ∂x denoting partial derivatives with respect to time t and spatial coordi-
nate x, respectively, a system of first-order partial differential equations (PDEs)
describing the wave propagation in an acoustic tube can then be written as:

S

ρ0c2
∂tp = −∂x(Sv), (1a)

ρ0∂tv = −∂xp, (1b)

with acoustic pressure p = p(x, t) (in N/m2), particle velocity v = v(x, t) (in
m/s) and (circular) cross-sectional area S(x) (in m2). Furthermore, ρ0 is the
density of air (in kg/m3) and c is the speed of sound in air (in m/s). System (1)
can be condensed into a second-order equation in p alone, often referred to as
Webster’s equation [9]. For simplicity, effects of viscothermal losses have been
neglected in (1). For a full time domain model of such effects in an acoustic
tube, see, e.g. [10].

System (1) requires two boundary conditions, one at either end of the
domain. The left boundary condition, at x = 0, will be set according to an
excitation model to be described in Section 2.1. The right boundary, at x = L,
is set according to a radiation condition. The radiation model used here, is the
one for the unflanged cylindrical pipe proposed by Levine and Schwinger in
[11] and discretised by Silva et al. in [12]. As this model is not important for
the contribution of this work it will not be detailed here in full. The interested
reader is instead referred to [7, 13] for a comprehensive explanation.

2.1 Coupling to a Lip Reed
To excite the system, a lip reed can be modelled as a mass-spring-damper
system including two nonlinearities due to flow, and the collision of the lip
against the mouthpiece. In the following, y can be seen as the moving upper
lip where the lower lip is left static and rigid. A diagram of the full lip-reed
model is shown in Figure 1. Using dots to indicate time-derivatives, the lip
reed is modelled as

Mrÿ = −Mrω
2
r y −Mrσrẏ + ψ(ψ̇/η̇) + Sr∆p, (2)
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with displacement from the equilibrium y = y(t), lip mass Mr (in kg), exter-
nally supplied (angular) frequency of oscillation ωr = ωr(t) =

√
Kr/Mr (in

rad/s) and stiffnessKr = Kr(t) (in N/m).
We extend the existing models of lip reeds [1] by introducing a nonlinear

collision between the lips based on potential quadratisation proposed by [14].
The collision potential is defined as

ψ(η) =

(
2Kc

αc + 1
[η]αc+1

+

)1/2

, (3)

with collision stiffnessKc > 0 anddimensionless nonlinear collision coefficient
αc ≥ 1, The inverted distance between the lips η = η(t) , −y − H0 (in m),
for static equilibrium separation H0 (in m). [η]+ = 0.5(η + |η|) indicates the
“positive part of η”. Notice, that if η ≥ 0, the lips are closed and the collision
potential will be non-zero. This quadratic form of a collision potential allows
for a non-iterative implementation [14]. This will be explained further in
Section 3.

Finally, Sr (in m2) is the effective surface area and

∆p = Pm − p(0, t) (4)

is the difference between the externally supplied pressure in the mouth Pm =

Pm(t) and the pressure in the mouthpiece p(0, t) (all in Pa). This pressure
difference causes a volume flow velocity following the Bernoulli equation

UB = wr[−η]+sgn(∆p)

√
2|∆p|
ρ0

, (5)

(in m3/s) with effective lip-reed width wr (m). Another volume flow is gener-
ated by the lip reed itself according to

Ur = Sr
dy

dt
(6)

(in m3/s). Assuming that the volume flow velocity is conserved, the total air
volume entering the system is defined as

S(0)v(0, t) = UB(t) + Ur(t). (7)

This condition serves as a boundary condition at x = 0 for system (1).
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Fig. 1: Diagram of the lip-reed system with the equilibrium at 0 and the distance from the lower lip H0.
The various symbols relate to those used in Eq. (2).

3 Discretisation
The continuous system described in the previous section is discretised using
FDTD methods, through an approximation over a grid in space and time.
Before presenting this discretisation, we briefly summarize the operation of
FDTD methods.

3.1 Numerical Methods
Consider a 1D system of (static) lengthL described by state variable u = u(x, t)

with spatial domain x ∈ [0, L] and time t ≥ 0. The spatial domain can be
disctretised according to x = lh with spatial index l ∈ {0, . . . , N}, number of
intervals between the grid points N , grid spacing h (in m) and time as t = nk

with temporal index n ∈ Z0+ and time step k (in s). The grid function unl
represents an approximation to u(x, t) at x = lh and t = nk.

Shift operators can then be applied to grid function unl . Temporal and
spatial shift operators are

et+u
n
l = un+1

l , et−u
n
l = un−1l ,

ex+u
n
l = unl+1 , ex−u

n
l = unl−1,

(8)

fromwhichmore complex operators canbederived. First-orderderivatives can
be approximated using forward, backward and centred difference operators
in time

δt+ =
et+ − 1

k
, δt− =

1− et−
k

, δt· =
et+ − et−

2k
, (9)
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(all approximating ∂t) and space

δx+ =
ex+ − 1

h
, δx− =

1− ex−
h

, δx· =
ex+ − ex−

2h
, (10)

(all approximating ∂x) where 1 is the identity operator.
Furthermore, forward, backward and centred averaging operators can be

defined in time

µt+ =
et+ + 1

2
, µt− =

1 + et−
2

, µt· =
et+ + et−

2
, (11)

and space

µx+ =
ex+ + 1

2
, µx− =

1 + ex−
2

, µx· =
ex+ + ex−

2
. (12)

Finally, an approximation δtt to a second time derivative may be defined as

δtt = δt+δt− =
1

k2
(et+ − 2 + et−) . (13)

3.2 Discrete Tube
As a first step, the domain x ∈ [0, L] can be subdivided intoN equal segments
of length h (the grid spacing). Interleaved grid functions approximating p and
v may then be defined. Grid function pnl with l ∈ {0, . . . , N} approximates
p(x, t) at coordinates x = lh, t = nk and v

n+1/2
l+1/2 with l ∈ {0 . . . , N − 1}

approximates v(x, t) at coordinates x = (l+ 1/2)h, t = (n+ 1/2)k. In addition,
a discrete cross-sectional area Sl ≈ S(x = lh) with l ∈ {0, . . . , N} is assumed
known. System (1) can then be discretised as

S̄l
ρ0c2

δt+p
n
l = −δx−(Sl+1/2v

n+1/2
l+1/2 ), (14a)

ρ0δt−v
n+1/2
l+1/2 = −δx+pnl , (14b)

where Sl+1/2 = µx+Sl and S̄l = µx−Sl+1/2 are approximations to the continu-
ous cross-sectional area S(x). The values for S̄l at the boundaries, i.e., S̄0 and
S̄N , are set equal to S(0) and S(L).

Expanding the operators, we obtain the following recursion

pn+1
l = pnl −

ρ0cλ

S̄l
(Sl+1/2v

n+1/2
l+1/2 − Sl−1/2v

n+1/2
l−1/2 ), (15a)

v
n+1/2
l+1/2 = v

n−1/2
l+1/2 −

λ

ρ0c
(pnl+1 − pnl ), (15b)
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where λ = ck/h is referred to as the Courant number and

λ ≤ 1 =⇒ h ≥ ck (16)

in order for the scheme to be stable [15]. In implementation, the following
steps are taken to calculate λ:

h := ck, N :=

⌊
L

h

⌋
, h :=

L

N
, λ :=

ck

h
, (17)

where b·c denotes the flooring operation and is necessary because N is an
integer. This causes (16) to not be satisfied with equality for all choices of L.

Equations (15a) and (15b) hold for l ∈ {0, . . . , N} and l ∈ {0, . . . , N − 1}
respectively, and thus, in analogy with the continuous case, two numerical
boundary conditions are required in order to update pn+1

0 and pn+1
N . These are

provided by numerical equivalents of the excitation condition (see Section 3.3
below) and the radiation condition (in [13]).

3.3 Lip reed
As the lip reed interacts with the particle velocity of the tube via Eq. (7), it is
discretised to the interleaved temporal grid, but to the regular spatial grid as
it interacts with the boundary at x = 0. Equations (2) - (7) are then discretised
as follows:

Mrδtty
n+1/2 =−Mr(ω

n+1/2
r )2µt·y

n+1/2

−Mrσrδt·y
n+1/2 + (µt+ψ

n) gn+1/2 + Sr∆p
n+1/2,

(18a)

∆pn+1/2 = P
n+1/2
m − µt+pn0 , (18b)

U
n+1/2
B = wr[−ηn+1/2]+sgn(∆pn+1/2) ·

√
2|∆pn+1/2|/ρ0, (18c)

U
n+1/2
r = Srδt·y

n+1/2, (18d)

µx−(S1/2v
n+1/2
1/2 ) = U

n+1/2
B + U

n+1/2
r . (18e)

Here, following [14],

gn+1/2 =





κ

√
Kc(αc + 1)

2
· (ηn+1/2)

αc−1
2 if ηn+1/2 ≥ 0 (19a)

−2
ψn

η? − ηn−1/2 if ηn+1/2 < 0 (19b)

0,
if ηn+1/2 < 0

and η? = ηn−1/2
(19c)
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Fig. 2: Schematic showing data flow of how different grid points at time index n + 1 are calculated with
α = 0.25 in Eq. (25). To prevent cluttering, arrows going straight up (indicating that the state of a grid
point at time step n is needed to calculate the state of that grid point at n+1) are suppressed. As an example
of the usual case (refer to Eq. (15)), the points required to calculate pn+1

2 are shown. Furthermore, the
points needed to calculate pn+1

Mn and qn+1
0 are shown. The most important difference with the usual case is

that the virtual grid points pnMn+1 and qn−1 are the result of the interpolation of known pressure values at
n using Eq. (27).

where κ = 1 if ψn ≥ 0, otherwise κ = −1. It should be noted that condition
(19c) has been added to the definition of g from [14] to prevent a division by
0 in (19b). Finally, η? = −y? − H0 where y? is the value of yn+3/2 calculated
using system (18) (after expansion) without the collision potential. This means
that system (18) needs to be calculated twice every iteration, once without the
collision termandoncewith. The process of calculating the pressure difference
∆pn+1/2 in (18) will not be given here, but the interested reader is referred to
[13, Ch. 5] for a derivation.

4 Dynamic grid
Thedefining feature of the trombone is its slide that alters the lengthof the tube,
changing the resonant frequencies. In a companion paper [8], we present a
method to dynamically change grid configurations of FD schemes by inserting
and deleting grid points based on an instantaneous value of the time-varying
wave speed c(t). Although here, the tube lengthL(t) is varied, themethod still
applies. Note that this method only works for slow (sub-audio rate) parameter
changes.

We can split a tube with time-varying length Ln into two smaller sections
with lengths Lnp and Lnq (in m) such that Ln = Lnp + Lnq . Splitting the schemes
in (14) in this way yields two sets of first-order systems. The pressure and
particle velocity of the first (left) system pnlp and vn+1/2

lp+1/2 are both defined over
discrete domain lp ∈ {0, . . . ,Mn}, and those of the second (right) system qnlq
and wn+1/2

lq−1/2 are defined over discrete domain lq ∈ {0, . . . ,Mn
q }, with

Mn = dLnp/he, and Mn
q = bLnq /hc (20)
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where d·e denotes the ceiling operation. Note, that the domains for v and w
have an extra grid point when compared to the regular case in (14) and that
w is indexed with lq − 1/2 rather than lq + 1/2. The resulting system of FD
schemes then becomes

S̄l
ρ0c2

δt+p
n
lp = −δx−(Sl+1/2v

n+1/2
lp+1/2), (21a)

ρ0δt−v
n+1/2
lp+1/2 = −δx+pnlp , (21b)

S̄l
ρ0c2

δt+q
n
lq = −δx+(Sl−1/2w

n+1/2
lq−1/2), (21c)

ρ0δt−w
n+1/2
lq−1/2 = −δx−qnlq . (21d)

Here, due to the different indexing for w, the spatial derivatives for the right
system are flipped (δx+ became δx− and vice versa). Also note, that l is still
used for the spatial indices of S̄ and S which now approximate S(x) according
to

Sl ≈
{
S(x = lh) for x ∈ [0, Lnp ],

S(x = Ln − (Mn
q − l)h) for x ∈ [Lnp , L

n].
(22)

The conditions for the outer boundaries of this system, i.e., at lp = 0 and
lq = Mn

q , are the same as for the full system. The inner boundaries, lp = Mn

and lq = 0 are connected according to the method described in [8] to be
explained shortly. To be able to calculate pn+1

Mn and qn+1
0 , the domains of v and

w have been extended at the inner boundaries to include vn+1/2
Mn+1/2 and w

n+1/2
−1/2 .

These, however, require points outside of the domains of pnlp and q
n
lq
, i.e., pnMn+1

and qn−1. In [8] we propose to calculate these virtual grid points based on known
values of the system. Despite the fact that [8] presents the method using a
second-order system, it can still be applied here. The process of how pn+1

Mn and
qn+1
0 are calculated is visualised in in Figure 2. Notice that all time steps use
the same value ofMn andMn

q . In other words, the expansion of the temporal
operators in (9) do not affect the temporal indices n inMn andMn

q .

4.1 Changing the Tube Length
In the following, the location of a grid point ul along the grid (in m from the
left boundary) at time index n is denoted as xnul .

The two pairs of first order systems in (21) are placed on the same domain
xwith

xnplp = lph, and xnqlq = Ln − (Mn
q − lq)h, (23)

describing the locations of the left system and right system respectively. Here,
it can be observed that as the tube length Ln changes, the locations of the grid
points of the right systemwill change. More specifically, as the trombone-slide
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is extended and Ln increases, all grid points of the right system move to the
right, and to the left for a contracting slide. If Ln is changed in a smooth
fashion, the continuous domain x ∈ [0, Ln] will not necessarily be subdivided
into an integer amount of intervalsNn (of sizeh = ck). This iswhere a fractional
number of intervals is introduced and is defined as

Nn = Ln/h, (24)

which is essentially the calculation of N in Eq. (17) without the flooring
operation, and Nn = bNnc. The fractional part of Nn can then be calculated
using

α = αn = Nn −Nn, (25)

which describes the distance between the inner boundaries along the grid in
terms of how many times h would fit in-between (which is always less than
once). If Nn = Nn and α = 0, the inner boundary locations perfectly overlap,
and xnpMn = xnq0 . This also means that the domain x can be exactly divided
into Nn equal intervals of size h = ck. As the virtual grid points pnMn+1

and qn−1 perfectly overlap with qn1 and pnMn−1 respectively, these values can
be used directly to calculate the grid points at the inner boundaries. This
situation effectively acts as a rigid connection between the grid points at the
inner boundaries defined as

pnMn = qn0 , if α = 0. (26)

If α 6= 0, some other definition for pnMn+1 and qn−1 needs to be found. We use
quadratic Lagrangian interpolation according to

pnMn+1 =
α− 1

α+ 1
pnMn + qn0 −

α− 1

α+ 1
qn1 , (27a)

qn−1 = −α− 1

α+ 1
pnMn−1 + pnMn +

α− 1

α+ 1
qn0 , (27b)

which can then be used to calculate vn+1/2
Mn+1/2 and w

n+1/2
−1/2 and consequently

pn+1
Mn and qn+1

0 (see Figure 2). This process is repeated every sample. It can
be shown through the rigid connection in (26), that if α = 0, the definitions in
(27) reduce to pnMn+1 = qn1 and qn−1 = pnMn−1 as stated before.

4.2 Adding and removing grid points
As the tube length Ln changes, Lnp and Lnq also change according to

Lnp = Ln−1p + 0.5Lndiff, Lnq = Ln−1q + 0.5Lndiff, (28)
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where
Lndiff = Ln − Ln−1, (29)

which causes the number of intervals between grid points Mn and Mn
q to

change as well, according to Eq. (20).
The following state vectors are introduced for the pressure, defined forn+1

and n
pn = [pn0 , p

n
1 , ..., p

n
Mn ]T , qn = [qn0 , q

n
1 , ..., q

n
Mn
q

]T , (30)

and for the velocity, defined for n+ 1/2 and n− 1/2

vn−1/2 = [v
n−1/2
1/2 , v

n−1/2
3/2 , ..., v

n−1/2
Mn+1/2]T ,

wn−1/2 = [w
n−1/2
−1/2 , w

n−1/2
1/2 , ..., w

n−1/2
Mn
q −1/2]T ,

(31)

and contain the different states over the discrete domains defined at the begin-
ning of this section. Here, T denotes the transpose operation.

IfNn > Nn−1, points are added to the left and right system in an alternating
fashion: {

pn = [(pn)T , I3r
n]T

vn−1/2 = [(vn−1/2)T , I3z
n−1/2
v ]T

if Nn is odd,
{

qn = [I←3 rn, (qn)T ]T

wn−1/2 = [I←3 z
n−1/2
w , (wn−1/2)T ]T

if Nn is even,
(32)

where
rn = [pnMn−1, p

n
Mn , qn0 , q

n
1 ]T ,

zn−1/2v = [v
n−1/2
Mn−1/2, v

n−1/2
Mn+1/2, w

n−1/2
1/2 , w

n−1/2
3/2 ]T − η,

zn−1/2w = [v
n−1/2
Mn−3/2, v

n−1/2
Mn−1/2, w

n−1/2
−1/2 , w

n−1/2
1/2 ]T + η←,

(33)

and cubic Lagrangian interpolator

I3 =
[
− α(α+1)

(α+2)(α+3)
2α
α+2

2
α+2 − 2α

(α+3)(α+2)

]
. (34)

Here,
η = ηn−1/2 =

(
w
n−1/2
−1/2 − v

n−1/2
Mn+1/2

)
· [0, 0, 1, 1]T (35)

adds an offset to half of the elements in the z vectors depending on the dif-
ference between vn−1/2Mn+1/2 and w

n−1/2
−1/2 . Why this is necessary will be further

explained in Section 4.3. Finally, I←3 and η← are flipped versions of (34) and
(35) respectively.
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If Nn < Nn−1, points are simply removed from the vectors according to
{

pn = [pn0 , . . . , p
n
Mn−1]T

vn−1/2 = [v
n−1/2
1/2 , . . . , v

n−1/2
Mn−1/2]T

if Nn is even,

{
qn = [qn1 , . . . , q

n
Mn
q

]T

wn−1/2 = [w
n−1/2
1/2 , . . . , w

n−1/2
Mn
q −1/2]T

if Nn is odd.

(36)

Notice that the even and odd conditions in Eqs. (32) and (36) can be swapped.
To stay as close to the desired location of adding and removing grid points as
possible, this requires the ceiling and flooring operations in (20) to be swapped
as well.

4.3 Drift of w
The inner boundaries of the pressure states p and q are connected by (27), but
no such connection exists for the velocity states v and w. As the radiating
boundary is implemented on the pressure grid, this leaves w without any
boundary condition; it is only “held in place” by the pressure values of q, or
more specifically, by derivatives (both spatial and temporal). As FD schemes
are an approximation, it does not give a perfect solution and w tends to ‘drift’
during the simulation, especially when Ln is changed.

Luckily, as the pressure values are also calculated from derivatives of the
velocity, the absolute state of w does not matter. The difference in values at
the connection point is also irrelevant as there is no spatial derivative taken
between v and w (refer to Figure 2). Finally, the pressure values are used for
the output audio of the simulation, so the drift does not affect the audio.

The absolute states of the velocity vectors do, however, need to be accounted
for when adding points to the v and w using (32). The current drift can be
approximated by observing the difference between w

n−1/2
−1/2 and v

n−1/2
Mn+1/2, as

these have approximately the same x location (xnw−1/2
≈ xnvMn+1/2

) when a grid
point is added. This is then used in a drift-correction vector ηn−1/2 presented
in (35). When a point is added to v, the values of w in zv are offset by the
aforementioned difference and when a point is added to w the same happens
(inverted) for the values of v in zw. This way, the drift is allowed, but does not
affect the state of the newly added grid points. Notice that the drift does not
affect the operations of point removal in (36).

4.4 State Correction
As Ln, and consequently the number of grid points, is decreased, it might
occur that the grid points at the inner boundaries pnMn and qn0 have a very
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different value when α & 0, i.e., right before a point is removed. This violates
the rigid connection in Eq. (26).

We propose in [8] to add an artificial spring-like connection between the
grid points at the inner boundaries that “corrects” the state of these points.
Applying this to system (21) extends Eqs. (21a) and (21c) according to

S̄l
ρ0c2

δt+p
n
lp = −δx−(Sl+1/2v

n+1/2
lp+1/2) + Jp(x

n
pMn

)Fnsc, (37a)

S̄l
ρ0c2

δt+q
n
lq = −δx+(Sl−1/2w

n+1/2
lq−1/2)− Jq(xnq0)Fnsc, (37b)

where the spreading operators are defined as

Jp(x
n
i ) =

{
1
h , lp = bxni /hc
0, otherwise,

and

Jq(x
n
i ) =

{
1
h , lq = bxni /hc −Mn

0, otherwise.

(38)

Furthermore, the correction effect is defined as

Fnsc = β (µt·η
n
sc + σscδt·η

n
sc) , (39)

with spring damping σsc, pressure difference

ηnsc , qn0 − pnMn , (40)

and scaling coefficient
β = β(α) =

1− α
α+ ε

. (41)

Here, ε � 1 to prevent division by 0. Just like in [8], the implementation of
the correction effect allows for an infinite β when α = ε = 0 acting like a rigid
connection between Eqs. (37a) and (37b).

5 Implementation
The implementation has been done in C++ using the JUCE framework 1, and
is available online2 as well as a demo showcasing it.3 The audio output of
the system can be retrieved by selecting a grid point on the pressure grid and
listening to this at the given sample rate fs. Here, the radiating boundary
qnMn

q
is chosen, as this is where the sound enters the listening space in the real

1https://juce.com/
2https://github.com/SilvinWillemsen/cppBrass/releases/
3https://youtu.be/Ht5gVNrshYo
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Table 1: Geometry of a measured trombone taken from [16]. Numbers correspond to Figure 3.

Part of tube Length (cm) Radius (cm)
Inner slide (1) 70.8 0.69
Outer slide (extended) (2) 53 0.72
Slide crook (3) 17.7 0.74
Outer slide (extended) (4) 53 0.72
Inner slide (5) 71.1 0.69
Gooseneck (6) 24.1 0.71
Tuning slide (7) 25.4 0.75, 1.07
Bell flare (8) 50.2 1, 10.8

(8)

(7)

(6) (5) (4)

(3)

(2)(1)

Fig. 3: Diagram showing the trombone geometry (not to scale). Numbers correspond to the parts of the tube
found in Table 1 and dashed lines highlight where the different parts are separated. The tube is split in the
middle of the slide crook with the colours corresponding to those in Figure 2.

world. To mimic low-pass filtering happening due to a distributed radiating
area, a 4th-order low-passing Butterworth filter with a cutoff frequency of
fc =

√
c2π/S(L) ≈ 3245 Hz is used. This equation is retrieved by choosing

the listening point to be at the bell surface and integrating over the bell area.

5.1 Parameters
For the most part, the parameters used in the simulation have been obtained
from [13, 16, 17]. The lengths and radii of different parts of the tube can be
found in Table 1 and a diagram showing this geometry is shown in Figure 3.
The system is split in the middle of the slide crook such that the ranges for the
lengths of the two tubes are Lnp ∈ [0.797, 1.327] and Lnq ∈ [1.796, 2.326].

Other parameters used in the simulation can be found in Table 2. Not
included here isλ, which has been set slightly lower than the stability condition
in (16), i.e., λ = 0.999. Although the implementation works when λ = 1, this
is done to tolerate (much) higher speeds of change in Ln before instability
occurs (see Section 5.2). Not satisfying condition (16) causes bandlimiting and
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Table 2: List of parameter values used for the simulation. Taken from ?[16], *[13] or **[17] with temperature
T = 26.85◦C.

Name Symbol (unit) Value
Tube
Length L (m) 2.593 ≤ L ≤ 3.653?

Air density ρ0 (kg/m3) 1.1769**
Wave speed c (m/s) 347.23**
Geometry S (m2) See Table 1.
Lip reed
Mass Mr (kg) 5.37 · 10−5*
Frequency ωr (rad/s) 20 ≤ ωr/2π ≤ 1000
Mouth pressure Pm (Pa) 0 ≤ Pm ≤ 6000
Damping σr (s−1) 5*
Eff. surface area Sr (m2) 1.46 · 10−5*
Width wr (m) 0.01*
Equilibrium sep. H0 (m) 2.9 · 10−4*
Coll. stiffness Kc (N/m) 104

Nonlin. coll. coeff. αc (-) 3
Other
State corr. damping σsc 1
Sample rate fs (Hz) 44100

dispersive effects [15], but such a small deviation from the condition has no
perceptual influence on the output sound and outweighs the problems caused
by instability.

As the tube acts mainly as an amplifier for specific resonant frequencies it
is important to match the frequency of the lip reed to a resonating mode of the
tube. This frequency depends on Ln in the following way

ω
n+1/2
r = F 2πc

ρ0Ln+1/2
, (42)

where Ln+1/2 = Ln and scalar multiplier F = 2.4 was heuristically found to
best match the 4th resonating mode of the tube and generates a recognisable
brass sound.

5.2 Limit on speed of change
To reduce audible artifacts and instability issues from adding and removing
points, and to stay in the sub-audio rate regime, a limit can be placed on (29)
as

Lndiff ≤ Nmaxdiffh, (43)
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Fig. 4: Screenshot of the graphical user interface (GUI). The geometry (in orange) as well as the states of the
pressure (in blue) and velocity scaled by S (in green) are shown. For clarity, the start and end of the outer
slide are denoted by dashed lines. The drift of w as explained in Section 4.3 is visible from the “kink” in the
green line exactly in the middle of the outer slide.

where Nmaxdiff is the maximum change in N per sample and has been set to
Nmaxdiff = 1/20. This means that a grid point can be added or removed every
20 samples and allows the entire range of L to be traversed in ca. 0.06 s at a
sample rate of fs = 44100 Hz.

5.3 State correction
The introduction of system states at n+ 1 through the centred operators in Eq.
(39) seem to make the scheme implicit. It is, however, possible to calculate Fsc
explicitly [15, 18]. The same operators also introduce the need for values at
n − 1, i.e., pn−1Mn and qn−10 . Therefore, the vectors pn−1 and qn−1 will need to
be stored, and the operations to add and remove grid points as described in
4.2 need to be applied to these as well. One could argue that only two points
at the inner boundaries are needed for the calculation and to create r in (33)
at n − 1. For generality, we continue with the entire vectors defined over the
same domains as pn and qn respectively.

5.4 Graphical User Interface and Control Mapping
A screenshot of the graphical user interface (GUI) is shown in Figure 4. The
geometry of the tube is plotted along with paths showing the pressure states
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while application is running do
Retrieve new parameters
Update Lnp and Lnq
Calc. Nn and Nn

Calc. αn
if Nn 6= Nn−1 then

Add or remove point
UpdateMn andMn

q

end
Calc. pnMn+1 and qn−1
Calc. vn+1/2 and wn+1/2

Calc. yn+3/2 w/o collision
Calc gn+1/2

Calc. yn+3/2 with collision
Calc. Un+1/2

B and Un+1/2
r

Calc. pn+1 and qn+1

Retrieve output

(Ln, ωnr and Pnm)
(Eqs. (29), (43) & (28))
(Eqs. (24) and (17))
(Eq. (25))

(Eq. (32) or (36))
(Eq. (20))

(Eqs. (27))
(Eqs. (21b) and (21d))
(Eqs. (18))
(Eq. (19))
(Eqs. (18))
(Eqs. (18c) and (18d))
(Eqs. (37))

Update system states

Update Nn−1

Increment n

(pn−1 = pn, pn = pn+1) (same for
vn−1/2 = . . .,
yn−1/2, yn+1/2, and ψn)
(Nn−1 = Nn)

end

Algorithm 1: Pseudocode showing the order of calculations of the algorithm
implementing the trombone.

in blue and the velocity (scaled by the geometry S) in green. The audio thread
of the application runs at 44100 Hz whereas the graphics are updated at a rate
of 15 Hz.

The real-time application is controlled by interactingwith the bottompanel
using themouse. The x-axis ismapped to tube-lengthLn and alsomodifies the
lip-reed frequency ωr according to Eq. (42). The y-axis changes the multiplier
F in Eq. (42) and the black line in the vertical middle of the control panel is
mapped to F = 2.4. The pressure is modulated by a slider at the bottom of
the control panel. As of now, no focus has been put on intuitive parameter
mapping; it has only been implemented for simple parameter exploration.
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5.5 Order of Calculation
Algorithm 1 shows the order in which the different parts of the system pre-
sented in this paper are calculated.

6 Results and Discussion
The real-time implementation has been tested on a MacBook Pro with a 2.2
GHz Intel i7 processor and was informally evaluated by the authors. The
speed of the algorithm was tested with and without the graphics-thread and
using three different styles of interaction: static excitation at the shortest and
longest length, and rapidly (and continuously) changing L and ωr between
their minimum and maximum values given in Table 2. The pressure was kept
at Pm = 3000 Pa at all times. The results are shown in Table 3. Differences in
CPU usage between a short and long tube length are because more grid points
need to be calculated in the long case. The recalculation of the geometry
maximally once every 20 samples in the rapidly moving case explains the
increase in CPU usage there. These results show that the implementation can
easily be used as an audio plugin, with or without graphics.

Table 3: Average CPU usage (in %) for different graphics settings and various interactions with the
application.

Tube length Graphics (%) No graphics (%)
Short (Ln = 2.593m) 12.1 4.3
Long (Ln = 3.653m) 14.4 5.2
Rapidly changing 17.7 10.1

Informal listening tests by the authors confirm that the audio output of the
simulation exhibits brass-like qualities. However, the implementation requires
some further refinements to be considered as a complete trombone. Possible
extensions to improve the realism of the simulation sound could be to add
viscothermal losses [19] or nonlinear effects [3]. Furthermore, for lower values
of the lip frequency ωr, the sound exhibits extra oscillatory behaviour making
the output “non-smooth”. This might be due a higher average displacement
of y for lower ωr and the nonlinear collision present in the lip model will have
a greater effect on its displacement. Variable collision stiffness might solve this
issue but is left for future work.

Informal listening by the authors shows that themethod used to implement
the dynamic grid does not introduce perceivable audible artifacts, even when
Ln is changed very rapidly. Naturally, this needs to be confirmed by formal
listening tests. Despite the limit placed on the speed of change of Ln in (43)
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the control of the application does not exhibit a noticeable delay and changes
in Ln feel immediate.

The main difference between the method in [8] and the version used here,
is that the method is applied to a system of first-order equations rather than
the second-order 1Dwave equation. Because the connection between the inner
boundaries is only applied to the grid functions describing pressure, a drift
occurs in w as it is left without boundary conditions. Although this drift does
not have an effect on the output sound, as discussed in Section 4.3, too high or
low values might cause rounding errors in the simulation. As it is expected
that this only happens at extremely high or low values after a long simulation
length, the drift is not considered an issue at this point.

7 Conclusion
In this paper, we have presented a full implementation of the trombone in-
cluding a lip reed, radiation and a tube, discretised using FDTDmethods on a
dynamic grid. Informal evaluation by the authors shows that the implemen-
tation exhibits no audible artifacts when grid points are added and removed,
even under relatively fast variation in tube length. Naturally, this needs to be
confirmed by formal listening tests. Moreover, the simulation easily runs in
real-time allowing it to be used as an audio plugin.

Futureworkwill include extending the tubemodel to includemore realistic
viscothermal and nonlinear effects and variable collision stiffness in the lip
model. Furthermore, the investigation of more intuitive control parameter
mappings is a necessary step towards a real-time instrument.
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Appendix A

Paper Errata

This appendix presents a few errors that appeared in the papers [D] and [F].

Real-time Implementation of a Physical Model of the Tromba Marina [D]

• The minus sign in Eq. (28) (and thus Eqs. (31) and (35)) should be a plus
sign.

• σ1,s in Eq. (21) should be σ1,p.

• The unit of the spatial Dirac delta function δ should be m−1.

DigiDrum: A Haptic-based Virtual Reality Musical Instrument and a Case
Study [F]

• σ0 and σ1 in Eq. (1) should be multiplied by ρH in order for the stability
condition to hold.

• The stability condition is wrong. It should be:

h ≥
√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2. (A.1)

• The unit for membrane tension is N/m.
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Appendix B

Matrices

This appendix aims to provide some fundamental knowledge on matrices and
linear algebra used throughout this thesis.

Amatrix is a rectangular arraywith numerical elements and its dimensions
are denoted using “row × column”. A 3 × 5 matrix, for example, thus has 3

rows and 5 columns (see Figure B.1a). Along those lines, a row vector is a
matrix with 1 row andmore than 1 column and a column vector is a matrix with
1 column and more than 1 row.

In this document, matrices and vectors are written using bold symbols.
A matrix is denoted by a capital letter – such as A – whereas vectors are
decapitalised – such as u. An element in a matrix is denoted with a non-bold,
decapitalised variable, where the subscripts indicate the indices of the row
and column. For example, the element in the 2nd row and the 4th column of
a matrix A is denoted as a24. An element in a vector only has one subscript,
regardless of whether it is a row or a column vector.

B.1 Operations
Multiplying and dividing a matrix by a scalar (a single number) is valid and
happens on an element-by-element basis. For a 2× 2 matrix A and scalar p the
following operations hold

pA = Ap =

[
p · a11 p · a12

p · a21 p · a22

]
, and A/p =

[
a11/p a12/p

a21/p a22/p

]
.

Notice that although a matrix can be divided by a scalar, a scalar can not
necessarily be divided by a matrix. See Section B.2 for more information.

451



Appendix B. Matrices

Matrix transpose

A matrix or vector can be transposed, which is indicated by the T operator.
Transposing a matrix A is denoted by AT . This means that the elements in the
ith row and the jth column of the original matrix become the elements in the
jth row and the ith column of the transposed matrix. Essentially the row and
column indices of the elements inside the matrix get switched according to

aij = aji. (B.1)

Also see Figure B.1. For a row vector, the transpose operation simply changes
it to a column vector and vice versa. Another way of seeing a transpose is that
all the elements get flipped over the main diagonal of the matrix. The main
diagonal comprises the elements aij where i = j and a transpose does not
affect the location of these elements.

(a) A 3× 5 matrix A. (b) A transposed matrix AT of size 5× 3.

Fig. B.1: A matrix A and its transpose AT . The elements get flipped along the main diagonal of
the matrix according to Eq. (B.1).

Matrix multiplication

Matrix multiplication (this includes matrix-vector multiplication) is different
from regular multiplication in that it needs to abide several extra rules. The
multiplication of two matrices A and B to a resulting matrix C is defined as

cij =

K∑

k=1

aikbkj , (B.2)

where K is both the number columns of matrix A and the number of rows in
matrix B. It thus follows that, in order for a matrix multiplication to be valid,
the number of columns of the first matrix needs to be equal to the number of
rows in the second matrix. The result will then be a matrix with a number of
rows equal to that of the first matrix and a number of columns equal to that of
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B.2. Matrix inverse

the second matrix. See Figure B.2 for reference.
As an example, consider the L×M matrix A and aM ×N matrix B with

L 6= N . The multiplication AB is defined as the number of columns of matrix
A (M ) is equal to the number of rows of matrix B (alsoM ). The result, C, is a
L×N matrix. The multiplication BA is undefined as the number of columns
of the first matrix does not match the number of rows in the second matrix. A
valid multiplication of two matrices written in their dimensions is

A︷ ︸︸ ︷
(L×M) ·

B︷ ︸︸ ︷
(M ×N) =

C︷ ︸︸ ︷
(L×N) . (B.3)

(a) (c)

(d)(b)

Fig. B.2: Visualisation of valid matrix multiplications (see Eq. (B.2)). The “inner” dimensions
(columns of the left matrix and rows of the right) must match and result in a matrix with a size of
“outer” dimensions (rows of the left matrix and columns of the right).

B.2 Matrix inverse
If a matrix has the same number of rows as columns, it is called a square matrix.
Square matrices have special properties, one of which is that it (usually) can
be inverted. A square matrix A is invertible if there exists a matrix B such that

AB = BA = I. (B.4)

This matrix B is then called the inverse of A and can be written as A−1. Not
all square matrices have an inverse, in which case it is called singular. Rather
than going through manually inverting a matrix, or determining whether it is
singular, the following function in MATLABwill provide the inverse of a matrix
A:

A_inverted = inv(A);
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The inverse of a diagonalmatrix (amatrixwith non-zero elements on itsmain
diagonal and the rest zeros) is obtained by replacing the diagonal elements by
their reciprocal. So for a diagonal 3× 3 matrix, the following holds:




0

0

a11

0

a12

0

a33

0

0



−1

=




0

0

1
a11

0

1
a12

0

1
a33

0

0

 .

B.3 Systems of linear equations
Matrices can be conveniently used to solve systems of linear equations, a set of
linear equations containing the same set of variables.

For example, take the system of linear equations

x+ z = 6,

z − 3y = 7,

2x+ y + 3z = 15,

with independent variables x, y and z. The goal is to find a solution for these
variables that satisfy all three equations. This system could be solved by hand
using algebraic methods, but alternatively, the system can be written in matrix
form:

Au = w. (B.5)

Here, column vector u contains the independent variables x, y, and z, matrix
A contains the coefficients multiplied onto these variables and w contains the
right-hand side, i.e., the coefficients not multiplied onto any of the variables:




2

0

1

1

−3

0

3

1

1



︸ ︷︷ ︸
A



z

y

x



︸ ︷︷ ︸
u

=




15

7

6



︸ ︷︷ ︸
w

This can be solved for u by taking the inverse of A (see Section B.2) and
multiplying this onto w

u = A−1w. (B.6)

Generally, if X unknowns are described by X equations, the unknowns can be
solved for, by using this method.

Solving a system of linear equations can be implemented in MATLAB by
using the code given in Section B.2 and multiplying this onto a vector w

u = inv(A) * w;

454



B.4. Eigenvalue problems

or more compactly, by using the ‘\’ operator:

u = A\w;

B.4 Eigenvalue problems
A square matrix A is characterised by its eigenvalues and corresponding eigen-
vectors. In a FDTD context, these are usually associated with the modes of a
system, where the eigenvalues relate to the modal frequencies and the eigen-
vectors to the modal shapes. Section 3.5 provides more information on this.

To find these characteristic values for a p × p matrix A, an equation of the
following form must be solved

Aφ = λφ. (B.7)

This is called is an eigenvalue problem and has p solutions (corresponding to
the dimensions of A). These are the pth eigenvector φp and the corresponding
eigenvalue λp which is calculated using

λp = eigp(A), (B.8)

where eigp(·) denotes the ‘pth eigenvalue of’. Instead of delving too deep into
eigenvalue problems and the process of how to solve them, an easy way to
obtain the solutions using MATLAB is provided here:

[phi, lambda] = eig(A, ’vector’);

The pth eigenvector appears in the pth column of p × p matrix phi and the
corresponding eigenvalues are given in a p× 1 column vector lambda.
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Appendix C

Code Examples

C.1 Mass-spring system (Section 2.3)

%% Initialise variables
fs = 44100; % sample rate [Hz]
k = 1 / fs; % time step [s]
lengthSound = fs; % length of the simulation (1 second) [samples]

f0 = 440; % fundamental frequency [Hz]
omega0 = 2 * pi * f0; % angular (fundamental) frequency [Hz]
M = 1; % mass [kg]
K = omega0^2 * M; % spring constant [N/m]

%% initial conditions (u0 = 1, d/dt u0 = 0)
u = 1;
uPrev = 1;

% initialise output vector
out = zeros(lengthSound, 1);

%% Simulation loop
for n = 1:lengthSound

% Update equation Eq. (2.35)
uNext = (2 - K * k^2 / M) * u - uPrev;

out(n) = u;

% Update system states
uPrev = u;
u = uNext;

end
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C.2 1D wave equation (Section 2.4)

%% Initialise variables
fs = 44100; % Sample rate [Hz]
k = 1 / fs; % Time step [s]
lengthSound = fs; % Length of the simulation (1 second) [samples]

c = 300; % Wave speed [m/s]
L = 1; % Length [m]
h = c * k; % Grid spacing [m] (from CFL condition)
N = floor(L/h); % Number of intervals between grid points
h = L / N; % Recalculation of grid spacing based on integer N

lambdaSq = c^2 * k^2 / h^2; % Courant number squared

% Boundary conditions ([D]irichlet or [N]eumann)
bcLeft = "D";
bcRight = "D";

%% Initialise state vectors (one more grid point than the number of
intervals)

uNext = zeros(N+1, 1);
u = zeros(N+1, 1);

%% Initial conditions (raised cosine)
loc = round(0.8 * N); % Center location
halfWidth = round(N/10); % Half-width of raised cosine
width = 2 * halfWidth; % Full width
rcX = 0:width; % x-locations for raised cosine

rc = 0.5 - 0.5 * cos(2 * pi * rcX / width); % raised cosine
u(loc-halfWidth : loc+halfWidth) = rc; % initialise current state

% Set initial velocity to zero
uPrev = u;

% Range of calculation
range = 2:N;

% Output location
outLoc = round(0.3 * N);

%% Simulation loop
for n = 1:lengthSound

% Update equation Eq. (2.44)
uNext(range) = (2 - 2 * lambdaSq) * u(range) ...

+ lambdaSq * (u(range+1) + u(range-1)) - uPrev(range);

% boundary updates Eq. (2.49)
if bcLeft == "N"

uNext(1) = (2 - 2 * lambdaSq) * u(1) - uPrev(1) ...
+ 2 * lambdaSq * u(2);
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C.3. 2D wave equation (Section 6.2)

end

% Eq. (2.50)
if bcRight == "N"

uNext(N+1) = (2 - 2 * lambdaSq) * u(N+1) - uPrev(N+1) ...
+ 2 * lambdaSq * u(N);

end

out(n) = u(outLoc);

% Update system states
uPrev = u;
u = uNext;

end

C.3 2D wave equation (Section 6.2)

%% Initialise variables
fs = 44100; % Sample rate [Hz]
k = 1 / fs; % Time step [s]
lengthSound = fs; % Length of the simulation (1 second) [samples]

rho = 7850; % Material density [kg/m^3]
H = 0.0005; % Thickness [m]
T = 1000000; % Tension per unit length [N/m]
c = sqrt(T / (rho * H)); % Wave speed [m/s]

Lx = 1; % Length in x direction [m]
Ly = 2; % Length in y direction [m]

h = sqrt(2) * c * k; % Grid spacing [m]
Nx = floor(Lx/h); % Number of intervals in x direction
Ny = floor(Ly/h); % Number of intervals in y direction
h = min(Lx/Nx, Ly/Ny); % Recalculation of grid spacing

lambdaSq = c^2 * k^2 / h^2; % Courant number squared
h = max(Lx/Nx, Ly/Ny); % Recalculation of grid spacing

%% Create scheme matrices with Dirichlet boundary conditions
Nxu = Nx - 1;
Nyu = Ny - 1;
Dxx = toeplitz([-2, 1, zeros(1, Nxu-2)]);
Dyy = toeplitz([-2, 1, zeros(1, Nyu-2)]);

% Kronecker sum
D = kron(speye(Nxu), Dyy) + kron(Dxx, speye(Nyu));
D = D / h^2;
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% Total number of grid points
Nu = Nxu * Nyu;

%% Initialise state vectors (one more grid point than the number of
intervals)

uNext = zeros(Nu, 1);
u = zeros(Nu, 1);

%% Initial conditions (2D raised cosine)
halfWidth = floor(min(Nx, Ny) / 5);
width = 2 * halfWidth + 1;
xLoc = floor(0.3 * Nx);
yLoc = floor(0.6 * Ny);
xRange = xLoc-halfWidth : xLoc+halfWidth;
yRange = yLoc-halfWidth : yLoc+halfWidth;

rcMat = zeros(Nyu, Nxu);
rcMat(yRange, xRange) = hann(width) * hann(width)’;

% initialise current state
u = reshape(rcMat, Nu, 1);

% Set initial velocity to zero
uPrev = u;

% Output location
xOut = 0.45;
yOut = 0.25;
outLoc = round((xOut + yOut * Nyu) * Nxu);
out = zeros(lengthSound, 1);

%% Simulation loop
for n = 1:lengthSound

%% Update equation Eq. (6.21)
uNext = (2 * eye(Nu) + c^2 * k^2 * D) * u - uPrev;

% Update system states
uPrev = u;
u = uNext;

end
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Appendix D

Intuition for the Damping
Terms in the Stiff String PDE

This appendix will delve deeper into the damping terms in the PDE of the stiff
string presented in Chapter 4, especially the frequency-dependent damping
term 2σ1∂t∂

2
xu. Recalling the compact version of the PDE of the stiff string in

Eq. (4.4):
∂2
t u = c2∂2

xu− κ2∂4
xu− 2σ0∂tu+ 2σ1∂t∂

2
xu, (D.1)

consider first the frequency-independent damping term −2σ0∂tu. The more
positive the velocity ∂tu is, i.e., the string is moving upwards, the more this
term applies a negative, or downwards force (/effect) on the string. Vice versa,
a more negative velocity will make this term apply a more positive force on
the string.

As for the frequency-dependent damping term, apart from the obvious
σ1, the effect of the term increases with an increase of ∂t∂2

xu, which literally
describes the ‘rate of change of the curvature’ of the string.

First, consider the meaning behind positive and negative curvature, i.e.,
when ∂2

xu > 0 or ∂2
xu < 0. Counter-intuitively, in the positive case, the curve

points downwards. Think about the function f(x) = x2. It has a positive
curvature (at any point), but has a minimum. This can be proven by taking
x = 0 and setting grid spacing h = 1.

δxxf(x) =
1

h2
(f(−1)− 2f(0) + f(1)) ,

=
1

12

(
(−1)2 − 2 · 02 + 12

)
,

= (1− 0 + 1) = 2.

(D.2)

In other words, the second derivative of the function f(x) = x2 around x = 0
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is positive.
As the term does not only include a second-order spatial derivative but

also a first-order time derivative, this is referred to as a positive or negative rate
of change of the curvature, i.e., when ∂t∂2

xu > 0 or ∂t∂2
xu < 0. A positive rate of

change of the curvature means that the string either has a positive curvature
and is getting more positive, i.e., the string gets more curved over time, or that
the string has a negative curvature and is getting less negative, i.e., the string
gets less curved or ’loosens up’ over time. In the same way, a negative rate
of change of curvature means that the string either has a negative curvature
and is getting more negative, or that the string has a positive curvature and is
getting less positive.

Let’s see some examples. Take the same function described before, but
now f changes over time, e.g. f(x, t) = tx2. When t increases over time, the
curvature gets bigger. Repeating the above with x = 0 and grid spacing h = 1,
but now with t = 2 and step size k = 1, and with a backwards time derivative
yields:

δt−δxxf(x, t) =
1

kh2

(
f(−1, 2)− 2f(0, 2) + f(1, 2)

−
(
f(−1, 1)− 2f(0, 1) + f(1, 1)

))
,

=
1

1 · 12

(
2 · (−1)2 − 2 · 2 · (0)2 + 2 · 12

−
(

1 · (−1)2 − 2 · 1 · (0) + 1 · (12)
))

,

= 2 + 2− (1 + 1) = 2.

So the rate of change of the curvature is positive, i.e., the already positively
curved function x2 gets more curved over time.

If the curvature around a point along a string gets more positive (or less
negative) over time, the force applied to that point will be positive, effectively
‘trying’ to reduce the curvature. Vice versa, if the curvature around a point
along a string gets more negative (or less positive) over time, the force applied
will be negative, again ‘trying’ to reduce the curvature.

From an auditory point of view, a higher curvature in space (generally) cor-
responds to a higher frequency in time. As the frequency-dependent damping
term aims to reduces the curvature along the string, it effectively damps higher
frequencies.
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Considerations in real-time
FD schemes

As an addition to what has been presented in Chapter 13, this appendix pro-
vides some considerations when working with FD schemes in real-time appli-
cations. Consider this some ‘tips and tricks’.

Prototyping in MATLAB

Before creating any real-time FD scheme, it is usually a good idea to prototype
a physical modelling application in MATLAB. Various reasons include, but are
not limited to:

1. The code is easier to write and debug.

2. Data is more easily visualised, allowing for better insight to, e.g., the
state of your system (one could use drawnow for real-time plotting).

3. There is no need for memory handling.

4. Programming errors causing unstable schemes do not happen in real
time.

Creating a limiter

Stability issues in FD schemes have beenmentioned several times in this work.
To protect speakers, headphones, or –most importantly – ears, it is thus impor-
tant to implement a limiter as one of the first things in any real-time application.
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Below is an example of a limiter that limits an input value between -1 and 1.
double limit (double val)
{

if (val < -1)
{

val = -1;
return val;

}
else if (val > 1)
{

val = 1;
return val;

}
return val;

}

Vector indexing

One of the most common sources of error when translating MATLAB code to
C++ (apart from the differences in syntax), is the fact that MATLAB is 1-based,
and C++ is 0-based, which refers to the indexing of a vector. If u is a vector
with 10 elements, the first element is retrieved as u(1) and the last as u(10).
In C++, on the other hand, retrieving the first and last element of a size-10
vector happens through u[0] and u[9] respectively.

Real-time control

For the real-time control of any application using FD schemes, whether it uses
the mouse or an external controller, the important thing is to not affect the
scheme while it is performing the update equation. If the system is excited
while the scheme is calculated, this might cause instability, or at the very least,
unpredictable behaviour. The best thing to do is to work with flags that get
triggered by outside control and get checked once per sample (or even only
once per buffer), before the calculation of the scheme.

Premature optimisation

As Donald E. Knuth states “premature optimization is the root of all evil [...]
in programming” [124] (see full quote at the start of Chapter 13). Often during
this project, much time was spent trying to find a variable mistake or a sign
error that could have easily been prevented if the code was not prematurely
optimised.

Most often it will take less time to write the code in a non-optimised, but
understandable way, followed by several iterations of optimisation. Onemight
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even find that the difference in speed is extremely small and might not even
need the optimisation at all.

Debug and Release modes

This might seem trivial for C++ developers, but whether one builds the ap-
plication in ‘Debug’ or ‘Release’ matters a lot for the eventual speed of the
algorithm. Depending on the mode, the compiler uses different optimisation
flags and could increase the speed of the application tremendously. TheDebug
mode is still useful, as – apart from being able to debug the code – building the
application takes (much) less time, depending on the size of the application.

Denormalised numbers

The damping present in FD schemes causes the state of the system to expo-
nentially decay. What this means for the values of the state vectors in imple-
mentation, is that they keep getting closer to 0 but never reach it. After a long
period of time, which depends on the value of the damping coefficients, state
values can get in the range of ~10−307! Numbers in this range are referred to
as denormalised numbers and operations performed with these are “extremely
slow” [125].

Although it rarely happens that numbers end up in this range, especially
when the application is continuously interacted with, it is good to account
for the possibility. For example, due to the strong damping in the body in
the tromba marina presented in Chapter 15, denormalised numbers appear
after only ~10 s of not interacting with the instrument, and the CPU usage
increases considerably. There are specific processor flags that can be activated
to truncate denormalised numbers to 0. To retain generality (cross-platform,
various processors), one could implement a simple check per buffer to see
whether values are closer to zero than e.g. 10−250, and truncate all values of
that system to 0, as was done in paper [D].

465



Appendix E. Considerations in real-time FD schemes

466



Appendix F

Derivations

This appendix contains derivations of several equations used in this thesis.

F.1 Summation by parts
To see why some of the summation by parts identities in Section 3.2.2 hold
true, it is useful to briefly go through a derivation. As an example, Eqs. (3.12a)
and (3.13a) are derived as they have the same inner product as a starting point,
but yield different results. In the following, d = {0, . . . , N} and N = 2 are
used.

Starting with Eq. (3.12a), suppressing the n superscript for brevity, and
using the definition for the discrete inner product in Eq. (3.8), yields

〈fl, δx−gl〉d =

2∑

l=0

hfl
1

h
(gl − gl−1) ,

= f0g0 − f0g−1 + f1g1 − f1g0 + f2g2 − f2g1,

= g0(f0 − f1)− f0g−1 + g1(f1 − f2) + g2(f2 − f3) + f3g2,

= −g0(f1 − f0)− g1(f2 − f1)− g2(f3 − f2) + f3g2 − f0g−1,

= −
2∑

l=0

hgl
1

h
(fl+1 − fl) + f3g2 − f0g−1,

= −〈δx+fl, gl〉d + f3g2 − f0g−1.

As N = 2, the result is identical to Eq. (3.12a).
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Similarly, identity (3.13a) can be proven to hold:

〈fl, δx−gl〉d =

2∑

l=0

hfl
1

h
(gl − gl−1) ,

= f0g0 − f0g−1 + f1g1 − f1g0 + f2g2 − f2g1,

= −f0g−1 + g0(f0 − f1) + g1(f1 − f2) + f2g2,

= −g0(f1 − f0)− g1(f2 − f1) + f2g2 − f0g−1,

=

1∑

l=0

hgl
1

h
(fl+1 − fl) + f2g2 − f0g−1,

= −〈δx+fl, gl〉d + f2g2 − f0g−1,

where the resulting inner product has a reduced domain of d = {0, . . . , N−1}.
Similar processes can be used to prove the other identities presented in Section
3.2.2.

F.2 von Neumann analysis damped stiff string
This section performs the von Neumann analysis presented in Section 4.3 in
greater detail and derives the stability condition for the damped stiff string.

Starting with the characteristic equation in Eq. (4.23):

(1 + σ0k)z +

(
16µ2 sin4(βh/2) +

(
4λ2 +

8σ1k

h2

)
sin2(βh/2)− 2

)

+

(
1− σ0k −

8σ1k

h2
sin2(βh/2)

)
z−1 = 0,

one can rewrite this to the form in Eq. (3.25), and using S = sin2(βh/2) for
brevity, yields

z2 +

(
16µ2S2 +

(
4λ2 + 8σ1k

h2

)
S − 2

1 + σ0k

)
z +

1− σ0k − 8σ1k
h2 S

1 + σ0k
= 0.

Stability of the system can then be proven using condition (3.26), and substi-
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tuting the coefficients into this condition yields
∣∣∣∣∣
16µ2S2 +

(
4λ2 + 8σ1k

h2

)
S − 2

1 + σ0k

∣∣∣∣∣− 1 ≤ 1− σ0k − 8σ1k
h2 S

1 + σ0k
≤ 1,

∣∣∣∣16µ2S2 +

(
4λ2 +

8σ1k

h2

)
S − 2

∣∣∣∣− (1 + σ0k) ≤ 1− σ0k −
8σ1k

h2
S ≤ 1 + σ0k,

∣∣∣∣16µ2S2 +

(
4λ2 +

8σ1k

h2

)
S − 2

∣∣∣∣ ≤ 2− 8σ1k

h2
S ≤ 2 + 2σ0k.

The second condition is always true due to the fact that σ0, σ1 ≥ 0. Continuing
with the first condition:

−2 +
8σ1k

h2
S ≤ 16µ2S2 +

(
4λ2 +

8σ1k

h2

)
S − 2 ≤ 2− 8σ1k

h2
S,

0 ≤ 16µ2S2 + 4λ2S ≤ 4− 16σ1k

h2
S.

As 16µ2S2 + 4λ2S is non-negative, the first condition is always satisfied. Con-
tinuing with the second condition:

16µ2S2 +

(
4λ2 +

16σ1k

h2

)
S ≤ 4,

4µ2S2 +

(
λ2 +

4σ1k

h2

)
S ≤ 1.

As the left-hand side takes its maximum value for S = 1, one can substitute
this and continue with the substituted definitions for λ and µ from Eq. (4.11)
to yield

4κ2k2

h4
+
c2k2 + 4σ1k

h2
≤ 1,

4κ2k2 + (c2k2 + 4σ1k)h2 ≤ h4,

h4 − (c2k2 + 4σ1k)h2 − 4κ2k2 ≥ 0,

which is a quadratic equation in h2. Using the quadratic formula, the grid
spacing h can then be shown to be bounded by

h ≥

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
, (F.1)

which is the stability condition for the damped stiff string also shown in Eq.
(4.12).
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F.3 von Neumann analysis implicit damped stiff
string

This section performs the von Neumann analysis presented in Section 4.6.1 in
greater detail and derives the stability condition for the damped stiff string,
using a centred difference operator for the frequency-dependent damping
term.

Recalling the characteristic equation in Eq. (4.36):
(

1 + σ0k +
4σ1k

h2
sin2(βh/2)

)
z +

(
16µ2 sin4(βh/2) + 4λ2 sin2(βh/2)− 2

)

+

(
1− σ0k −

4σ1k

h2
sin2(βh/2)

)
z−1 = 0.

one can rewrite this to the form in Eq. (3.25) and, using S = sin2(βh/2) for
brevity, yields:

z2 +
16µ2S2 + 4λ2S − 2

1 + σ0k + 4σ1k
h2 S

z +
1− σ0k − 4σ1k

h2 S
1 + σ0k + 4σ1k

h2 S
= 0.

Stability of the system can then be proven using condition (3.26), and after
substitution of the coefficients yields

∣∣∣∣∣
16µ2S2 + 4λ2S − 2

1 + σ0k + 4σ1k
h2 S

∣∣∣∣∣− 1 ≤ 1− σ0k − 4σ1k
h2 S

1 + σ0k + 4σ1k
h2 S

≤ 1,

∣∣16µ2S2 + 4λ2S − 2
∣∣−
(

1 + σ0k +
4σ1k

h2
S
)
≤ 1− σ0k −

4σ1k

h2
S

≤ 1 + σ0k +
4σ1k

h2
S,

∣∣16µ2S2 + 4λ2S − 2
∣∣ ≤ 2 ≤ 2 + 2σ0k +

8σ1k

h2
S.

Because σ0, σ1, k,S and h are all non-negative, the last condition is always
satisfied. Continuing with the first condition:

−2 ≤ 16µ2S2 + 4λ2S − 2 ≤ 2,

0 ≤ 16µ2S2 + 4λ2S ≤ 4.

Again, the first condition is always satisfied due to the non-negativity of all
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coefficients. Continuing with the second condition yields

4µ2S2 + λ2S ≤ 1,

and knowing that S is bounded by 1 for all β, the process can be finalised:

4µ2 + λ2 ≤ 1,

4κ2k2

h4
+
c2k2

h2
≤ 1,

h4 − c2k2h2 − 4κ2k2 ≥ 0,

and yields the following stability condition:

h ≥

√
c2k2 +

√
c4k4 + 16κ2k2

2
.

F.4 Webster’s update equation
This section derives the update equation for Webster’s equation in Eq. (5.9):

S̄

k2
(Ψn+1

l − 2Ψn
l + Ψn−1

l ) = c2
(

(δx−Sl+1/2)(µx−δx+Ψn
l )

+ (µx−Sl+1/2)(δx−δx+Ψn
l )

)
,

Ψn+1
l − 2Ψn

l + Ψn−1
l =

c2k2

S̄

(
1

h
(Sl+1/2 − Sl−1/2)

1

2h

µx+δx−Ψnl =δx·Ψ
n
l︷ ︸︸ ︷

(Ψn
l+1 −Ψn

l−1)

+
1

2
(Sl+1/2 + Sl−1/2)

1

h2
(Ψn

l+1 − 2Ψn
l + Ψn

l−1)

)
,

Ψn+1
l = 2Ψn

l −Ψn−1
l +

λ= ck
h︷︸︸︷

λ2

2S̄

(
Sl+1/2Ψn

l+1 − Sl+1/2Ψn
l−1

− Sl−1/2Ψn
l+1 + Sl−1/2Ψn

l−1 + Sl+1/2Ψn
l+1 + Sl+1/2Ψn

l−1

+ Sl−1/2Ψn
l+1 + Sl−1/2Ψn

l−1 − 2(Sl+1/2 + Sl−1/2)Ψn
l

)
,

Ψn+1
l = 2Ψn

l −Ψn−1
l +

λ2

2S̄

(
2Sl+1/2Ψn

l+1 + 2Sl−1/2Ψn
l−1 − 4S̄Ψn

l

)
,

Ψn+1
l = 2Ψn

l −Ψn−1
l +

λ2Sl+1/2

S̄
Ψn
l+1 +

λ2Sl−1/2

S̄
Ψn
l−1 − 2λ2Ψn

l ,

Ψn+1
l = 2(1− λ2)Ψn

l −Ψn−1
l +

λ2Sl+1/2

S̄
Ψn
l+1 +

λ2Sl−1/2

S̄
Ψn
l−1.
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F.5 Boundary terms Webster’s equation
This section derives the process of obtaining the values for εl and εr such that
the boundary terms in Webster’s equation are strictly dissipative. The result
is presented in Eq. (5.31) and will be derived here.

Starting with the second term in the energy balance in Eq. (5.27):

− c2〈δt·Ψn
l , δx−

(
Sl+1/2(δx+Ψn

l )
)
〉εl,εrd , (F.2)

and using identity (3.15a):

〈fnl , δx−gnl 〉εl,εrd = −〈δx+f
n
l , g

n
l 〉d + fnNg

n
N−1 − fn0 gn0

+
εr
2
fnN (gnN − gnN−1) +

εl
2
fn0 (gn0 − gn−1),

this can be rewritten to (with f = δt·Ψ and g = Sl+1/2(δx+Ψ))

−c2〈δt·Ψn
l , δx−

(
Sl+1/2(δx+Ψn

l )
)
〉εl,εrd = c2〈δt·δx+Ψn

l ,
(
Sl+1/2(δx+Ψn

l )
)
〉d − b,

where
b = br − bl, (F.3)

with

br = c2(δt·Ψ
n
N )
(
SN−1/2

(δx−ΨnN )︷ ︸︸ ︷
(δx+Ψn

N−1)
)

+
εr
2

(δt·Ψ
n
N )
(
SN+1/2(δx+Ψn

N )− SN−1/2 (δx+Ψn
N−1)︸ ︷︷ ︸

(δx−ΨnN )

)
,

and
bl = c2(δt·Ψ

n
0 )
(
S1/2(δx+Ψn

0 )
)

− εl
2

(δt·Ψ
n
0 )
(
S1/2(δx+Ψn

0 )− S−1/2 (δx+Ψn
−1)︸ ︷︷ ︸

(δx−Ψn0 )

)
.

This can be rewritten to

br = c2(δt·Ψ
n
N )
(εr

2
SN+1/2(δx+Ψn

N ) +
(

1− εr
2

)
SN−1/2(δx−Ψn

N )
)
, (F.4)

bl = c2(δt·Ψ
n
0 )
(εl

2
S−1/2(δx−Ψn

0 ) +
(

1− εl
2

)
S1/2(δx+Ψn

0 ))
)
. (F.5)

Then, for the centred radiating boundary condition in Eq. (5.17) to be
strictly dissipative, i.e., δx·Ψn

l = 0 ⇒ br = 0, the special choice for εr =
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SN−1/2/µxxSN needs to be made:

br = c2(δt·Ψ
n
N )

(
SN−1/2

2µxxSN
SN+1/2(δx+Ψn

N ) +

(
1− SN−1/2

2µxxSN

)
SN−1/2(δx−Ψn

N )

)
,

= c2(δt·Ψ
n
N )SN−1/2

(
SN+1/2

2µxxSN
(δx+Ψn

N ) +

(
1− SN−1/2

2µxxSN

)
(δx−Ψn

N )

)
,

= c2(δt·Ψ
n
N )SN−1/2

(
1− SN−1/2

2µxxSN

)


SN+1/2(δx+ΨnN )

2µxxSN(
1− SN−1/2

2µxxSN

) + δx−Ψn
N


 ,

= c2(δt·Ψ
n
N )SN−1/2

(
1− εr

2

)



SN+1/2(δx+ΨnN )

2µxxSN(
2µxxSN−SN−1/2

2µxxSN

) + δx−Ψn
N


 ,

= c2(δt·Ψ
n
N )SN−1/2

(
1− εr

2

)( SN+1/2(δx+Ψn
N )

2µxxSN − SN−1/2
+ δx−Ψn

N

)
,

= c2(δt·Ψ
n
N )SN−1/2

(
1− εr

2

)( SN+1/2(δx+Ψn
N )

SN+1/2 + SN−1/2 − SN−1/2
+ δx−Ψn

N

)
,

= c2(δt·Ψ
n
N )SN−1/2

(
1− εr

2

)
(δx+Ψn

N + δx−Ψn
N ) ,

= c2(δt·Ψ
n
N )SN−1/2

(
1− εr

2

)( 1

h

(
Ψn
N+1 −Ψn

N + Ψn
N −Ψn

N−1

))
,

= c2(δt·Ψ
n
N )SN−1/2

(
1− εr

2

)
2(δx·Ψ

n
N ),

= c2(δt·Ψ
n
N )SN−1/2 (2− εr) (δx·Ψ

n
N ).

(F.6)
The same can be done for bl with εl = S1/2/µxxS0 to get

bl = c2(δt·Ψ
n
0 )S1/2 (2− εl) (δx·Ψ

n
0 ). (F.7)

F.6 Levine and Schwinger radiation model update
equation

This section provides a derivation for the update equation in Eq. (5.58) and
follows [62, Sec. 4.1.3, pp. 109–111]. Recalling system (5.56)

v̄ = µt+v(1) +
1

R2
µt+p(1) + Crδt+p(1), (F.8a)

p̄ = Lrδt+v(1), (F.8b)

p̄ =

(
1 +

R1

R2

)
µt+p(1) +R1Crδt+p(1), (F.8c)
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where p̄n+1/2 and v̄n+1/2 are related to the tube by (see Eq. (5.57))

p̄ = µt+p
n
N , (F.9)

S̄N v̄ = µx−
(
SN+1/2v

n+1/2
N+1/2

)
, (F.10)

one can start the derivation.
The radiation can be applied to the right boundary of the tube by evaluating

the update equation of the pressure in Eq. (5.41a) at l = N

pn+1
N = pnN −

ρ0cλ

S̄N

(
SN+1/2v

n+1/2
N+1/2 − SN−1/2v

n+1/2
N−1/2

)
, (F.11)

rewriting this to

pn+1
N = pnN −

ρ0cλ

S̄N

(
2µx−

(
SN+1/2v

n+1/2
N+1/2

)
− 2SN−1/2v

n+1/2
N−1/2

)
,

and substituting Eq. (F.10) to get

pn+1
N = pnN −

2ρ0cλ

S̄N

(
S̄N v̄ − SN−1/2v

n+1/2
N−1/2

)
. (F.12)

A definition for v̄ can then be found by first expanding Eq. (F.8a) to

v̄ =
1

2

(
vn+1

(1) + vn(1)

)
+

(
1

2R2
+
Cr

k

)
pn+1

(1) +

(
1

2R2
− Cr

k

)
pn(1), (F.13)

after which it should be made solely dependent on the known values vn(1), pn(1)

and pnN and the unknown pn+1
N (as this can be obtained using Eq. (F.12)).

Equation (F.8b) can be expanded to

vn+1
(1) =

k

Lr
p̄+ vn(1), (F.14)

and Eq. (F.8c) to

p̄ =

(
1 +

R1

R2

)
µt+p(1) +R1Crδt+p(1),

p̄ =
1

2

(
1 +

R1

R2

)(
pn+1

(1) + pn(1)

)
+
R1Cr

k

(
pn+1

(1) − pn(1)

)
,

(
1

2
+

R1

2R2
+
R1Cr

k

)
pn+1

(1) = p̄+

(
R1Cr

k
− 1

2
− R1

2R2

)
pn(1),
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and finally solved for pn+1
(1) as

pn+1
(1) =

(
2R2k

2R1R2Cr + k(R1 +R2)

)

︸ ︷︷ ︸
ζ1

p̄+

(
2R1R2Cr − k(R1 +R2)

2R1R2Cr + k(R1 +R2)

)

︸ ︷︷ ︸
ζ2

pn(1). (F.15)

Equations (F.14) and (F.15) can then be substituted into Eq. (F.13) and, using
the definition of p̄ from Eq. (F.9), yields

v̄ =
1

2

(
k

Lr
(µt+p

n
N ) + 2vn(1)

)
+

(
1

2R2
+
Cr

k

)
ζ1µt+p

n
N

+

(
1

2R2
+
Cr

k

)
ζ2p

n
(1) +

(
1

2R2
− Cr

k

)
pn(1),

v̄ =

(
k

2Lr
+

ζ1
2R2

+
Crζ1
k

)

︸ ︷︷ ︸
ζ3

µt+p
n
N + vn(1) +

(
ζ2 + 1

2R2
+
Crζ2 − Cr

k

)

︸ ︷︷ ︸
ζ4

pn(1). (F.16)

Finally, substituting this definition for v̄ into Eq. (F.12), yields

pn+1
N = pnN−

2ρ0cλ

S̄N

(
S̄N

[
ζ3

(
pn+1
N + pnN

2

)
+ vn(1) + ζ4p

n
(1)

]
−SN−1/2v

n+1/2
N−1/2

)
,

pn+1
N = pnN − ρ0cλ


ζ3(pn+1

N + pnN ) + 2(vn(1) + ζ4p
n
(1))−

2SN−1/2v
n+1/2
N−1/2

S̄N


 ,

and yields a definition for pn+1
N based on known values of the system

pn+1
N =

1− ρ0cλζ3
1 + ρ0cλζ3

pnN −
2ρ0cλ

1 + ρ0cλζ3


vn(1) + ζ4p

n
(1) −

SN−1/2v
n+1/2
N−1/2

S̄N


 , (F.17)

which is Eq. (5.58). After pn+1
N is calculated, vn+1

(1) and pn+1
(1) can be updated

according to Eqs. (F.14) and (F.15), respectively.

F.7 Derivatives for Newton-Raphson for the elasto-
plastic friction model

This section provides the derivatives for the Newton-Raphson iteration for the
elasto-plastic friction model in Eq. (8.41).

Recalling the functions needed to compute the Newton-Raphson iteration
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for the elasto-plastic bow model in Section 8.5.1, being Eq. (8.38):

g1(vn, zn) =

(
2

k
+ 2σ0

)
vn + ‖Jl(xnB)‖2d

f(vn, zn)

ρA
+ bn = 0,

and Eq. (8.40)
g2(vn, zn) = rn − an = 0,

the derivatives needed to solve the Newton-Raphson iteration in Eq. (8.41)

[
vn

zn

]

i+1

=

[
vn

zn

]

i

−
[∂g1
∂v

∂g1
∂z

∂g2
∂v

∂g2
∂z

]−1 [
g1

g2

]
.

can be shown to be

∂g1

∂v
=

2

k
+ 2σ0 +

s1‖Jl(xnB)‖2d
ρA

∂r

∂v
+
s2‖Jl(xnB)‖2d

ρA
,

∂g1

∂z
=
s0‖Jl(xnB)‖2d

ρA
+
s1‖Jl(xnB)‖2d

ρA

∂r

∂z
,

∂g2

∂v
=
∂r

∂v
∂g2

∂z
=
∂r

∂z
− 2

k
.

Recalling from Eq. (8.36) that

rn = r(vn, zn) = vn
[
1− α(vn, zn)

zn

zss(vn)

]
,

its derivatives can be computed as

∂r

∂v
= 1− zn

(
(αn + ∂αn

∂v v
n)znss − ∂znss

∂v α
nvn

(znss)
2

)
,

∂r

∂z
= −v

n

znss

(
∂αn

∂z
zn + αn

)
,

with

∂αn

∂v
= sgn(znss)

∂znss
∂v

zba − |zn|
(|znss| − zba)2

π

2
cos
(
sgn(zn)Φ

)
,

∂αn

∂z
=

sgn(zn)π cos
(
sgn(zn)Φ

)

2(|znss| − zba)
,

∂znss
∂v

= −2|vn|
v2
Ss0

(fS − fC)e−(vn/vS)
2

.
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Digital versions of musical instruments have been created for several dec-
ades, and for good reasons! They are more compact, more easy to maintain, 
and less difficult to play than their real-life counterparts. One way to digit-
ise an instrument is to record it and play back the samples, but this does not 
capture the entire range of expression of the real instrument. Simulating an 
instrument based on its physics, including its geometry and material prop-
erties, is much more flexible to player control. Although it requires more 
computational power to generate the sound in real time, the simulation could 
possibly go beyond what is physically possible. A violin growing into a cello, 
bowing your trumpet, your imagination is the limit...
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