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Abstract: Aiming at reducing their emissions, wastewater treatment plants (WWTP) seek to reduce
their energy consumption, where a large amount is used for the aeration. The case plant, Grindsted
WWTP uses an alternating aeration strategy, with a common air supply system facilitating the
process in four aeration tanks and thus making optimisation challenging. In this work, a nonlinear
model of the air supply system is designed, in which multiple key parameters are estimated by data-
driven optimization. Subsequently, a model-based control strategy for scheduling of compressors
and desired airflow is proposed, to save energy without compromising the aeration performance.
The strategy is based upon partly static- partly dynamic models of the compressors, describing their
efficiency in terms of system head and volumetric airflow rate. The simulation study uses real plant
data and shows great potential for improvement of energy efficiency, regardless of the aeration
pattern in any of the four process tanks, and furthermore contributes to a reduction in compressor
restarts per day. The proposed method is applicable to other WWTP with multiple compressors in
the air supply system, as this study is conducted using first principle models validated on data from
the daily operation.

Keywords: WWTP; aeration control; alternating ASP; compressor efficiency; data validation; param-
eter identification; case study

1. Introduction

Since antiquity, urban populations have realized the importance of good quality drink-
ing water [1]. Yet, the significance of proper sanitation for the protection of the public health
in modern cities was not realized until the nineteenth century [1,2]. Wastewater was mostly
disposed of in the streets or near population centers, resulting in serious consequences
for the public health and the environment [3]. This is evident by the numerous epidemics
and waterborne diseases occurring throughout Europe until the nineteenth century [1,4,5].
Today, health problems associated with water pollution seem to have been almost solved
by industrialized countries [1], and the focus has shifted towards waste minimization to
reduce raw materials, energy and environmental releases, while simultaneously providing
significant cost savings [5].

From an engineering standpoint, wastewater effluents can be made as pure as desired.
However, from a practical perspective, the cost of achieving a given purity must be con-
sidered. Naturally, the most efficient way to reduce waste outputs is to reduce inputs and
to make treatment processes more efficient [5,6]. The latter has been a growing topic of
investigation since the late twentieth century, with the introduction of detailed simulation
models and control methods for various wastewater processes [7–9].

The most widely used treatment process is the activated sludge process (ASP), which consists
of two phases—aeration and sludge settlement [10,11]. The process was conceived in the
late nineteenth century and subsequently developed into a full-scale process in 1913 [11].
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Since then, the process has been widely adopted, undergone many variations and devel-
oped further, giving it a unique flexibility of operation [11].

When first modelled, the biological wastewater treatment system was passed through
a sequence of events; first for modelling the removal of organic matter only, then for nitrifi-
cation and lastly for nitrogen removal by biological nitrification [12]. In 1987, the activated
sludge model No. 1 (ASM1) was published by the IAWQ Task Group on Mathematical
Modelling for Design of Biological Wastewater Treatment [7]. Since then, the use of simula-
tions in wastewater technology has increased [9], and dynamic modelling of the ASP has
been the topic in various research [13–23]. Since the ASM1 was published, the IWAQ/IWA
Task Group has published several other models, that add complexity to the ASP models
by including additional dynamics. Namely the ASM2, ASM2d and ASM3, which all were
published in the Scientific and Technical Report series by IWA Publishing and all compiled
in [12]. However, the models are complex and nonlinear, difficult to fit in their parameters
and validate [24,25]. For example, the simplest model, ASM1, contains 13 state variables
and 19 parameters. An early attempt of improving the design and control of a continuously
aerated WWTP by dynamic modelling, was conducted by two case studies in [9], where the
ASM1 was calibrated and in addition; operational cost was optimized, a control strategy
proposed and the feasibility of a redesign was evaluated.

1.1. The Aeration Process

A conventional ASP is usually operated with no settlement in the aeration tank, and a
completely separate settlement tank with continuous sludge removal [11]. However, in an
alternating activated sludge process (AASP), the sludge is allowed to settle inside the
aeration tank during anoxic treatment periods. Then aerobic treatment is facilitated by
supplying compressed air, or sometimes pure oxygen, through diffusers and/or by surface
agitation [11]. These treatments are also referred to as the denitrification and nitrification
processes, which require anoxic and aerobic conditions, respectively. A sketch of the AASP
is shown in Figure 1.

Air

AerobicAnoxic Clarifier

Sludge

Pre-settling

Raw
Wastewater

Treated
Wastewater

Figure 1. Sketch of an activated sludge process. Note that the anoxic/aerobic treatment is executed
alternately in the same tank.

The key concept behind the AASP is that the anoxic and aerobic treatment alter-
nates in controlled cycles to secure good treatment [26], allowing the entire nitrifica-
tion/denitrification process to occur in a single tank. The aeration process is typically
accomplished in large tanks, with compressors specifically sized to the hydro-static head
and airflow required to facilitate aerobic treatment [18,20,27]. The compressors have to
deliver large amounts of air during the aerobic cycles, consequently, the aeration process
is an energy demanding process responsible for up to 75% of the total electric power
demand at a WWTP [27–30]. However, electricity consumption should not be considered
solely, as the discharge of nutrients is object to taxation, e.g., 30 DKK/kg discharged in
Denmark [26]. Therefore, cost-analysis suggests aeration should be minimized while en-
suring a satisfactory extent of nitrification [26,31]. The concept of aeration control was
first introduced in the 1960’s to save energy by avoiding over-aeration in lowly loaded
periods [31]. Today many WWTP’s in Denmark run the commercially available control
system STAR (Superior Tuning and Reporting) [26], that changes the aeration set-point
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according to a rule-based control strategy from newest ammonium and nitrate measure-
ments as described in [32,33]. The process is flexible and can adapt to different wastewater
compositions by controlling the dissolved oxygen set-point and duration of aeration [26,33].

1.2. State-of-the-Art

Dynamic modelling of the wastewater treatment processes has been the topic of vari-
ous research [9,13–23,34–37], and usually with the aim of incorporating control systems
leading to improvements in the performance, or with the purpose of designing (or redesign-
ing) WWTPs [9,36]. In [36,37], mathematical models are developed by applying material
and energy balances to a process tank, and similar methods are presented in [34,35] where
the aeration tank and settler are modelled in Matlab Simulink.

Especially models the dissolved oxygen (DO) dynamics has been of great interest
Refs. [16,20–22,24], since control of the ASP based on DO measurements has the advantage
of using reliable and relatively cheap sensors which are capable of measuring the DO
concentration in real-time [16,38,39]. An early attempt of improving the design and control
of a continuously aerated WWTP by dynamic modelling, was conducted by two case
studies in [9], where the ASM1 was calibrated and both; operational cost was optimized,
a control strategy proposed, and the feasibility of a redesign was evaluated.

Energy savings in the AASP have been investigated in various works [26,27,40,41]. An
economic approach is used in [26,27] where predictive control is used to prioritize aeration
in periods with low electricity prices. Similarly, in [41], advanced control of the aeration
cycles is implemented to improve the effluent water quality, and the study shows that the
optimization results in lower power consumption. In both studies, energy consumption
is reduced by modifying the aeration pattern i.e., the nitrification/denitrification cycle,
but the air supply system itself is disregarded. The air supply system is often glossed
over when discussing optimal control of nitrogen removal in WWTP research, under the
assumption that compressor dynamics are fast, and a local control loop regulates it to a
dissolved oxygen (DO) set-point [14].

The alternating nature of the nitrification/denitrification cycle implies varying load
conditions for the compressors; hence, the flexibility of the air supply system is crucial
for the performance of the aeration system [42,43]. This is particularly true for systems
where multiple aeration tanks are maintained by a single air supply unit, which will
be investigated in this work. Various control strategies have been established for con-
tinuously aerated reactors (DO set-point at 2–3 mg/L) [19,31,44]. In industrial practice,
the process controller usually consists of simple feedback loops, such as bang-bang control
ref. [45] or Proportional Integral (PI) controllers that regulates airflow and valve posi-
tion Refs. [18,24,29,44,46,47]. Commonly, the so-called “most opened valve” approach
is applied in systems with multiple shared aeration tanks [18,42,44]. With this method
pressure is controlled to maintain the most open valve almost completely open, to improve
compressed air efficiency by reducing head-loss in the supply pipeline [18,25,44,48]. How-
ever, in an AASP the valves travel further in comparison, as each tank is not continuously
aerated, but must track the aeration pattern in both DO concentration and aeration period
(meaning completely closed pipelines often are present). Consequently, the air supply
has to adapt to vastly changing flow demands and system pressure characteristics. This
problem is reminiscent of the problem with unknown system characteristics found in
Heating Ventilation and Air Conditioning (HVAC) [49–52], and optimization of compressor
networks [43,53].

1.3. Objectives & Contribution

This study aims to improve energy efficiency in AASP aeration systems, while still
prioritizing nutrient removal in the wastewater, and we set up a hypothesis to investigate
whether the energy efficiency of the compressed air supply in an AASP can be increased
without actually changing the aeration pattern and DO set-point generation and tracking.
As stated in Section 1.2, the given problem statement of decreasing energy consumption is



Water 2021, 13, 1037 4 of 30

commonly addressed by modelling the biochemical processes and using these models for
control and plant optimization. Contrary, we propose a novel approach where the difficul-
ties of defining first principle biological models are bypassed/circumvented, and energy
savings are obtained using data-driven models and well known methods where data from
the daily operation can be used to obtain and validate models. The method we propose is
hence more applicable than the commonly used approach where it is necessary to calibrate
the ASMs and the wastewater characteristics must be known. To test the hypothesis,
we propose a pressure controller that adapts to the changing system characteristics and an
efficiency improving scheduling algorithm which ensures the compressor system runs at
maximum total efficiency. The term scheduling is used throughout this work to describe the
strategy which determines how many and which compressors are running, and at what
load each compressor is running.

The relevant subsystems must first be modelled in order to utilize the models for con-
troller design and scheduling improvement. Figure 2 illustrates a typical WWTP aeration
system, where the input is compressor load percentage (χ) for all compressors and output
is the nutrient concentration in the wastewater. The subsystems considered in this work
are marked inside the grey dashed rectangle. Note that all signals presented in Figure 2
can be one-dimensional or multi-dimensional, depending on the specific WWTP layout.

Included in this work

Airflow distribution network

Compressors Pipelines Flow control
valves Diffusers Oxygen

uptake
Nutrient
removal

Figure 2. Block diagram of the aeration system. The notation presented in this figure is used
repeatedly throughout this work and is described in Table 1.

As shown in Figure 2, this work presents models for the compressors, pipelines,
flow control valves and bubble diffusers at the bottom of the aeration tanks. The compres-
sors are modelled using static methods describing the efficiency map of the compressors
in terms of system head and volumetric airflow rate. The remaining three subsystems;
pipelines, flow control valves and diffusers are combined and presented as the airflow
distribution network (marked in Figure 2 with a blue dashed rectangle). The notation used
in Figure 2 is explained in Table 1. All proposed models are tested against data from a real
plant, where key parameters are optimized to increase model prediction accuracy.

Table 1. Explanation of notation used in Figure 2.

Symbol Description Unit

χ Compressor load percentage %
Qin Airflow delivered by compressors m3/s
Qeq Airflow through airflow distribution network m3/s
Qv Valve airflow m3/s
Qd Diffuser airflow m3/s
DO Dissolved oxygen mg/L
NO−3 Nitrate concentration mg/L
NH+

4 Ammonium concentration mg/L

In summary, this paper presents a novel strategy for compressor scheduling and
control of the desired airflow to save energy without compromising wastewater quality.
The proposed scheduling algorithm incorporates changing system characteristics in the
selection process, to choose the optimum operation point for the compressors, which
results in maximized total efficiency. Three controllers are proposed in this work: a static
feedforward compensator, a classical feedback PID and a combined feedforward-feedback
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controller. The scheduling algorithm and the proposed control strategies are implemented
and evaluated in a simulation model based on real plant data.

This paper is structured as follows: Section 2 describes the case plant and the system
which is to be modelled. In Section 3, a first principle model of the airflow distribution
network is presented and parameter estimation is performed to fit the model to plant data.
The presented model is henceforth referred to as a simulation model based on plant data,
and subsequently used to generate static system curves representing the counter-pressure
which the air supplying compressors has to overcome. In Section 4 a feed-forward pressure
controller is proposed and evaluated based on its performance compared to a traditional
feed-back PID controller and feed-forward compensation. In Section 5, a compressor
scheduling algorithm with the goal of improving energy efficiency is introduced and
implemented in the simulation model, and the results are presented and evaluated in
Section 6. Finally, the contribution of this work is discussed in Section 7.

2. Case Plant: Grindsted Wastewater Treatment Plant

The Grindsted wastewater treatment plant which is a part of the Billund Biorefinery
(BBR), is the focus of the investigation in this work. The plant is located outside Grindsted,
Denmark, and serves a catchment of 70,000 population equivalents (PE). The aeration
system consists of four alternating aeration tanks connected in parallel, for which two
centrifugal compressors (C1 and C2) deliver the required airflow rate. For future reference,
system parameters and measurements for individual tanks will be noted by a subscript
i = {1, 2, 3, 4}, and the term airflow will be used when referring to the volumetric airflow
rate. A schematic of the aeration system is presented in Figure 3.

Centrifugal
Compressors

Tank

EffluentInfluent

Measured
Solubles

Diffusers

FT

PT

FV

Figure 3. Simplified sketch of the case plant aeration system with a pressure transmitter (PT),
flow transmitter (FT) and flow valve (FV).

As noted in Figure 3, the airflow and DO, nitrate (NO−3 ) and ammonium (NH+
4 )

concentrations are measured in each tank. Lastly, the pressure in the air supply pipe is
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measured upstream to the aeration tanks. The influent and effluent concentrations are
unknown, as well as the volume of entering wastewater. Due to unknown wastewater
inputs, as well as external conditions affecting the biochemical processes, disturbance
effects are introduced in the ASP [42]. Hence, to achieve proper nitrogen removal, a system
of cascaded controllers maintains the concentrations of nitrate and ammonium to desired
set-points. A block diagram of the general system is shown in Figure 4.

The work is based upon measurements from the introduced sensors, as well as power
readings from the individual compressors. The measurements were sampled at 15 s
intervals over a period of nine consecutive days. Note that the data was acquired during
normal operation of the case plant.

Seen from a control perspective, the manipulated variables i.e., the actuators, are
the flow regulating valves and the compressors. A consequence of the shared air supply
system is that the airflow to a specific tank is not solely dependent on the respective
valve, but also on the state of the remaining valves. An analogy for this system could be
made in electrical networks [54], where larger currents occur in lines with less resistance.
Furthermore, as the compressors operate within a specific limit of operation in terms of
head and airflow, the compressors are also coupled with the state of the valves making
efficient control of the DO loop more difficult. Referring to the electrical analogy, the model
describing the coupling between valves and compressors is noted as the airflow distribution
network. Depending on the modelling perspective, the compressor input can be in terms
of total airflow or supply pressure. The latter is used when deriving the model in later
sections, hence, it is illustrated as such in Figure 4.

Setpoint
Controller

DO
Controller

Activated	Sludge
Process

��
+
4

��
+
4,��

����

��

��

Flow
Distribution
Network

��

Supply	Pressure Disturbances( )���

Figure 4. Block diagram of the case plant ASP control loops.

The disturbance input in the ASP is shown to emphasize that various factors influence
the ASP e.g., time-varying parameters such as influent and effluent concentrations, pH-
value and variation in the wastewater fauna [42]. The signal names introduced in Figure 4
are summarized in Table 2.

Table 2. System signal descriptions.

Symbol Description Unit

Pin Upstream supply pipe pressure kPa
uv Valve state %
Qv Valve airflow m3/h
DO Dissolved oxygen mg/L
DOSP Dissolved oxygen setpoint mg/L
NH+

4 Ammonium concentration mg/L
NH+

4,SP Ammonium concentration setpoint mg/L

The DO control loop in the case plant is currently regulated by a rule-based strategy
consisting of two main logic/control algorithms;

Algorithm 1 A relational operator determines which compressor to activate depending
on the number of completely open valves.
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Algorithm 2 The DO controller is a relational operator between DO feedback and set-
point, meaning the valves are either set completely open or closed.

Naturally, the compressors have been designed to achieve efficient performance
in a specific operating region referred to as the best efficiency point (BEP). However,
when changing the system head by opening additional valves, the compressor operates
further from the optimal operation point, resulting in periods with inefficient aeration [42].
This control scheme may further deteriorate the lifespan of the compressors that have to
accommodate to frequent changes in system head and have to shut off entirely in intervals
where few or no valves are completely open.

3. Modelling of the Airflow Distribution Network

The airflow distribution network can be modelled from Bernoulli’s equation, with the
pipe pressure losses approximated by the Darcy-Weisbach equation and static pressure
losses from components [28,55]. The flow elements: valves and air diffusers, are modelled
based on known physical relations and by fitting polynomials to manufacturers’ data.
A diagram of the relevant elements in the airflow distribution network is shown in Figure 5.

Supply	Pipe

Figure 5. Sketch of the airflow distribution network with control volumes marked. Airflows are
noted in blue and flow regulating actuators in green.

Note that the diffuser flow is unidirectional to assure no wastewater flows into the
pipes, hence, it is illustrated as a check valve in Figure 5. The signals introduced in Figure 5
and the symbolic notation used in this section is summarized in Table 3.
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Table 3. Symbolic notation for the airflow model. Subscript i and j denotes the tank and compressor
number, respectively. The subscript n denote a control volume given as A, B, Ci.

Symbol Description Unit

Qin,j Airflow from compressor j m3/s
Qeq Total airflow through the supply pipe m3/s
Qv,i Airflow through a control valve m3/s
Qd,i Airflow through diffusers m3/s
Pn Pressure (absolute) in control volume n Pa
ρn Air density in control volume n kg/m3

uv,i State of flow regulating valve %
Cd Valve discharge coefficient −

3.1. Mass Balances

The airflow distribution network can be modelled using the principle of mass conser-
vation. First, we define the system state vector, x ∈ R6×1, which represents the mass of air
in the six control volumes:

x =
[
xA xB xC,1 xC,2 xC,3 xC,4

]T (1)

where xA and xB represent the mass of air in CVA and CVB, respectively. The states xC,i
are the mass of air in control volume CVC,i, which is the volume between the valve and
diffusers in each tank. Applying the equations of conservation yields the state equations
in (2).

ẋA =
2

∑
j=1

Qin,j · ρA −Qeq · ρA

ẋB = Qeq · ρA −
4

∑
i=1

Qv,i · ρB

ẋC,i = Qv,i · ρB −Qd,i · ρC,i

(2)

The simple form of Bernoulli’s equation is valid for incompressible flows i.e., gases moving
at low Mach number (<0.3 [56]). The Mach number in the supply pipe is estimated to
Ma < 0.05, indicating that the compressibility of the gas can be neglected, since the internal
forces induced by the fluid motion are not sufficiently large to cause a significant change in
the fluid density [56]. Therefore, the densities and pressure changes in the system can be
modelled based on the ideal gas law:

ρn =
xn

Vn
, Pn =

RT
M

ρn (3)

where xn denotes the mass in the control volumes, and R, M and T denote the universal
gas constant, molar mass, and temperature of air, respectively. Estimates of the volumes
VA, VB and VC are made based on construction schematics of the case plant.

3.2. Pipe Friction Losses

To account for pressure losses in the main supply pipe due to friction between the air
and the pipe surface, friction losses are implemented in the airflow model. Friction losses
in the supply pipe can be calculated based on the Darcy-Weisbach equation, applying the
methodology described in [19,51]. The Darcy-Weisbach equation expresses the dynamic
pressure difference from CVA to CVB, PA|B, due to friction in the supply pipe as:

PA|B = fd
L
D

ρ

2
V2

(4)
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where ρ is the fluid density, D is the pipe diameter, L is the pipe length and V = Qeq/A is
the area-averaged velocity through the supply pipe. Lastly, fd is the friction factor that is
solved directly using the Swamee and Jain approximation in Equation (5).

fd =
0.25[

log10

(
ε

D·3.7 + 5.74
Re0.9

)]2 (5)

In which ε is the absolute roughness factor of the inner pipe and Re is the Reynolds
number. The Reynolds number, calculated by Equation (6), is updated with respect to the
average flow velocity, V .

Re =
ρDV

µ
(6)

In Equation (6), µ is the dynamic viscosity.

3.3. Diffuser Model

The diffuser membranes ensures that air can flow into the tank without water flowing
back into the air supply system, resulting in a pressure drop caused by frictional forces
of the diffuser membranes. The relation between pressure drops and airflow across the
diffusers was estimated by fitting a polynomial to data provided by the case plant operators.
The resulting model is shown in Figure 6. The pressure drop at the diffusers can be
approximated by summation of static pressure losses of main components; manifold,
diffuser piping, membranes, and hydro-static pressure [28]. Thus, the pressure difference
is defined as ∆P = PC,i − (Ph + PL,eq), where Ph is the hydro-static pressure and PL,eq is the
equivalent pressure losses in flow elements. As Ph >> PL,eq, changes in PL,eq had minor
effects on the overall simulation result, hence, it was considered a tuning parameter.

Figure 6. Data points for the specific diffuser installation (from manufacturer datasheets), and the
corresponding polynomial fit (2nd order) with saturations.

The airflow through the diffusers can therefore be described by the polynomial fit in
Equation (7).

Qd,i = a∆P2 + b∆P + c, Qd,i ∈ [0; Qd,max] (7)

In which a, b and c are the fitted model parameters. Note the dead-zone from 0 to
3.05 kPa where the airflow is 0 [m3/s] due to the unidirectional flow through the diffusers.
Imperfections in the pipeline, such as cracks and leaks, result in a leakage flow. We define a
leakage flow constant CL to describe the gradual convergence towards equilibrium pressure
(atmospheric) when the air supply is turned off. Laminar flow can be assumed for leakage
flows [57], and the diffuser flow is hereby computed by Equation (8).

Qd,i = max{a∆P2 + b∆P + c, CL(PC,i − Patm)} (8)
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where CL is a leakage constant, and is regarded as a tuning constant, and Patm is the atmo-
spheric pressure. Note the leakage term only becomes relevant when the corresponding
diffuser airflow approaches zero.

3.4. Valve and Flow Sensor Models

For a given pressure, the nature of airflow is dependent on the dimensions and
geometry of the opening. For well-defined, purpose provided openings such as valves,
airflow is usually assumed to be turbulent [58,59] and is often approximated by the orifice
Equation (9). The following assumptions are made to apply the method [59]:

Assumption 1 The gas is an ideal gas and the flow through the orifice is steady.

Assumption 2 Flow through the orifice is an adiabatic process; there is no heat exchange
with the surroundings.

Assumption 3 The upstream flow velocity (inlet) is much smaller than the downstream
flow velocity.

Assumption 4 The discharge coefficient, Cd, is constant.

Q̂v,i = Cd Aouv,i

√
2
ρ
(PB − PC,i) (9)

where Cd is the discharge coefficient, Ao is the orifice area and uv,i is the state of the flow
regulating valves given as a decimal in the interval [0; 1]. In this formulation, the valve
opening percentage and orifice area are assumed linearly dependent.

The flow through the valves is measured by flow sensors, as indicated in Figure 3.
The flow sensors have a relatively slow transient response, and their dynamic is therefore
included in the model. The sensor dynamics are approximated by a first-order dynamic
Q̇v,i, with a time constant τs which was estimated to 55 s. Adding the sensor dynamics to
the model we obtain the following model for the flow:

Q̇v,i =
1
τs

(
Q̂v,i −Qv,i

)
(10)

3.5. Combined Model

The models obtained in Sections 3.1–3.4 are combined and referred to as the airflow
distribution network. Figure 7 shows a flowchart of the algorithm used to simulate
the model.

Initialize 
,  , 

Step 1: 
Calculate

 ,  ,  ,  

Step 2:
Calculate 

Step 3:
Calculate 

Step 4:
Calculate 

Step 5:
Update

, , , 

Inputs:
,  ,  

Output:

,  , 

Figure 7. Flowchart of the airflow model algorithm.

The inputs to the model are: the pressure measurement in CVA, PA, the states of all
valves, uv = [uv,1, . . . , uv,4], and the air temperature measured at the inlet of the compres-
sors, T. The output of the model is the airflow through all control valves, Qv. The algorithm
is executed with a sample time ts. Steps 1–5 presented in Figure 7 are elaborated below:

Step 1 Calculate PB, PC, ρB and ρC from Equation (3). Note the bold notation where
PC = [PC,1, . . . , PC,4] and ρC = [ρC,1, . . . , ρC,4]
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Step 2 Calculate Qeq using Equations (4)–(6).

Step 3 Calculate Qv using Equations (9) and (10). Note that Qv = [Qv,1, . . . , Qv,4].

Step 4 Calculate Qd using Equation (8). Note that Qd = [Qd,1, . . . , Qd,4].

Step 5 Update ẋ using (2), PA|B using (4) and fd using (5). Calculate x numerically using
Euler’s method: x = x + ẋts.

3.6. Parameter Identification

The structure and parameterization of the model derived up until now was based
on well-known physical principles. Some model elements were taken from manufacturer
data sources, others based on geometrical dimensions by applying well known formulae.
The model parameters have been listed in Table A1 in the Appendix A. The only remaining
unknowns are the discharge coefficients, Cd,i, which could be approximated experimentally
or found in manufacturer data. However, given that the objective of the model is predicting
the airflow distribution accurately, the parameters are instead computationally identified
for each branch to optimize model prediction. The benefit of this method is that any
uncertainty introduced in the different flow elements: diffusers, manifold, pipe friction
etc. can be compensated for by adjusting the discharge coefficient accordingly in the
respective branches.

The airflow model algorithm visualized in Figure 7 is used to perform an open-loop
simulation with the given input signals being real case plant data. The optimal Cd values
were estimated using the MATLAB function fminsearch, which applies the Nelder-Mead
(NM) “simplex” search algorithm [60,61]. The methodology is further discussed in [28].
The cost function subject to minimization was defined as the sum of squared errors (SSE)
for all data points, N, for each branch, i, as described by Equation (11).

SSE =
N

∑
k=1

4

∑
i=1

(
yk

i −Qk
v,i

)2
(11)

where yk
i is the k’th airflow measurement to the i’th tank. Qk

v,i is the model estimate of the
airflow. A subset of 16 h in the nine day dataset was used for identification. As it is known
from the work [62], the NM method is sensitive to initial simplex points and values of NM
coefficients, i.e., reflection (ρNM), expansion (χNM), contraction (γNM) and simplex size (σNM).
Therefore, we have applied the NM method with different coefficients proposed in [63,64],
the coefficients ([Cd,1, Cd,2, Cd,3, Cd,4]) and the resulting cost functions have been shown in
Table 4. The iterative estimation of the discharge coefficients is shown in Figure 8, where it
can be seen that the cost function converges to a specific minimum.

Table 4. A comparison of NM coefficients and their effect on the cost function.

NM Coefficient
Original NM Fan and Zahara [63] Wang and Shoup [64]

Setup 1 Setup 2 Setup 3

Reflection (ρNM) 1.00 1.50 1.29
Expansion (χNM) 2.00 2.75 2.29
Contraction (γNM) 0.50 0.75 0.47
Simplex size (σNM) 0.50 0.50 0.57

Final cost (normalized) 8.8196 · 10−2 8.8246 · 10−2 8.9214 · 10−2

Final Cd values [0.178, 0.116, 0.117, 0.131] [0.179, 0.114, 0.114, 0.130] [0.181, 0.119, 0.118, 0.127]
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Figure 8. Numerical estimation of the discharge coefficients with different NM coefficients. Left axis:
normalized value of the cost function. Right axis: value of the discharge coefficients. The stippled
line indicates the iteration where the solver is within < 1% of the final cost.

The analysis shows that the used approach is not sensitive to variations in the four
aforementioned NM coefficients, as the final cost and the obtained Cd values for all three
setups lies within a close margin. We can observe that setup 3 has the most efficient
algorithm behaviour, requiring least iterations to obtain the desired cost.

A goodness-of-fit (GOF) based on the normalized root mean square error (NRMSE)
was used as a metric for model performance (higher is better). The metric is calculated for
each distribution line and listed in Table 5.

Table 5. GOF [%] for the flow distribution model calculated by NRMSE.

Tank 1 2 3 4 Mean GOF

Identification Data (16 h) [GOF] 60.29 64.46 69.08 79.60 68.63
Validation Data (9 days) [GOF] 58.17 63.69 72.73 77.29 67.97

In Figure 9, a comparison of the measured and simulated airflow is shown. The proposed
model is able to reproduce measurements outside the identification subset and considered
to be a sufficient model for designing and testing control algorithms in later sections.
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Figure 9. Comparison of model output and measured airflow to each branch (subset of
validation data).

The airflow model is obtained from first principles, and is suited to model any other
airflow distribution network, as long as the constant parameters related to the case plant
layout are known (i.e., pipe lengths, diameters, tank volumes, discharge coefficients, etc.).
However, given that the Cd parameters are fitted to experimental data and identified for
each branch to optimize model prediction, the model now becomes an empirical model.
Nevertheless, the presented method remains applicable as long as the discharge coefficients
are considered adjustable parameters and plant data is available for model fitting.

3.7. System Curves

This section introduces a steady-state pressure-flow relation of the airflow system.
The pressure-flow relation is essential when controlling the compressors. Depending on
the pipes, the manifolds, the valves, or the hydro-static pressure, the terminal impedance
that the compressors have to overcome, i.e., the system curve, changes [65,66]. As a result,
the action of regulating the valves change the system characteristics, thus, appropriate con-
trol of the compressors is essential to maintain optimal efficiency operation [65]. Generally,
a system curve is described by Equation (12) [65].

Psys(Q) = k0 + k1Q2 (12)

where k0 is the static pressure the compressor system needs to lift, and k1 is a pressure
loss coefficient of the flow rate, Q. Due to the variable system characteristics resulting
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from the flow regulating valves, k0 and k1 should be considered as functions of the valve
states, uv = [uv,1, . . . , uv,4], or more specifically by the sum of open valves, U , given in
Equation (13).

U =
4

∑
i=1

uv,i (13)

Assuming the coefficients (k0 and k1) are known for a particular system state, then the
possible combinations of pressure and airflow must exist on that system curve [65].
This property is useful both for compressor scheduling and pressure control, as will be
discussed in the following sections.

The procedure of estimating the pressure coefficients is performed on the simulation
model of the airflow system. With four aeration tanks, the number of different valve
combinations increase by the fourth power i.e., nk = x4, where x denote the number of
valve states (two for on/off). A staircase airflow signal is used to excite the system, and the
steady-state pressure is logged. This process is then repeated nk times, corresponding to
the number of valves opening combinations. All pressure curve combinations with on/off
controlled valves are displayed in Figure 10. The individual curves are sorted by color with
respect to the sum of open valves, U .

Figure 10. System curves for the airflow model at different valve openings. The legend denotes
the sum of open valves for each configuration. The black lines denote the estimated models (using
Equation (12)).

As the valves in practice could operate at various intermediate states, the number of
combinations increase significantly. In this work, combinations with four opening states
are simulated; fully closed, 1⁄3 open, 2⁄3 open and fully open. The estimation procedure of the
pressure coefficients was done recursively, where both k0 and k1 were estimated in the first
iteration. Then k0 was averaged over all valve combinations and locked in the subsequent
estimation. Thus, simplifying the parameterization of operating points to k1 alone. Subse-
quently, the pressure coefficient was allocated to a look-up-table (LUT) with nk cells for
the various valve combinations. The resulting models have been illustrated in Figure 10.
For values between grid points, the output is interpolated from neighbouring points,
which means true system curves are not guaranteed. As a result, control must be achieved
in combination with a feedback controller, which also compensates for disturbances.
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4. Pressure Control

In Section 3.7 the steady-state pressure-flow relation was introduced, and as shown in
Figure 10, the system characteristics change significantly with respect to the sum of open
valves, U . As a result, stabilizing the system is challenging. However, the information
contained in the coefficients [k0, k1] can be utilized in a control scheme as presented in
this section. The system curve was expressed by Equation (12) in terms of the pressure
coefficients, k0 and k1, and it was made clear that different combinations of valve states
could alter their values. Using case plant data for the valve openings uv, the system flow
can be simulated using the algorithm described in Section 3.5 and visualized in Figure 7.
This simulation data can be used to estimate [k0, k1] in Equation (12). A time series of the
estimated k1 coefficient is shown in Figure 11, which clearly illustrates the changing system
characteristics.

Figure 11. Parameter changes of the pressure loss coefficient, k1, for a 12 h time span.

One way to deal with the changing system characteristics is to exploit the process
information stored in the pressure coefficient look-up table. This methodology is often
used to compensate for known disturbances (changes in variables) before the process is
significantly upset [67–69].

Three control schemes are evaluated in this section: a benchmark PID controller
(benchmark PID), a LUT-feedforward controller (LUT-FF) and a LUT-feedforward-feedback
controller (LUT-FF-FB). To evaluate the control schemes, a simulation comparison is evalu-
ated using an artificial pressure reference, generated based on the number of open valves.
The simulation is carried out using the airflow distribution model described in Section 3.
As the flow regulating valves in practice have long opening times (>140 s rise-time) com-
pared to the compressor dynamics (<15 s rise-time), the compressor dynamics are assumed
to be negligible overall.

4.1. Benchmark PID Controller (Benchmark PID)

A traditional PID controller is designed functioning as a benchmark solution for
evaluation of the proposed controllers. As the system in this case is heavily coupled and
does not have a single operating point that could be used as an equilibrium for linearization,
the benchmark PID control parameters are determined using Ziegler–Nichols (ZN) tuning
method. The performance of the tuned controller is shown in Figure 12.
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Figure 12. Comparison of the three pressure controllers; LUT-FF, Benchmark PID and LUT-FF-FB.

When implementing the controller, the control input is saturated between 1200 and
11,000 m3/h, reflecting the physical limitations of the compressor system. To tackle the
problems emerging from the limits in compressor flow capacity, anti-windup is imple-
mented to avoid operating in infeasible regions. Additionally, the input is considered as a
single signal, although two compressors supply the flow in practice. A method for sharing
the flow load between compressors will be discussed later.

4.2. LUT-Feedforward Controller (LUT-FF)

The nonlinearity introduced by the varying pressure coefficient, k1, can be corrected
for by implementing a feedforward control law. Assuming the present valve states are
known, the pressure coefficient can be found in the LUT previously described. Subse-
quently, any combination of pressure reference and airflow exists on the system curve,
meaning the feedforward control input can be computed by inverting Equation (12) result-
ing in Equation (14).

u f f =


√

Pre f−k0
k1

, if Pre f − k0 > 0

0, otherwise
(14)

In practice, the feedforward term alone is an open-loop controller. Hence, disturbances
introduced by the difference between estimated pressure coefficients (k1) and the real
system are not corrected when applying feedforward control. However, it is included in
the comparison to illustrate the effect of the feedforward term.

4.3. LUT-Feedforward-Feedback Controller (LUT-FF-FB)

Feedforward control on its own may lead to unsatisfactory behaviour, especially if
the estimated system curves are inaccurate. A method to improve regulatory control is to
combine the feedforward term with a feedback controller [67]. In this scheme, the LUT-FF
enables early compensation of a measured disturbance before it can seriously affect the
process. An ideal feedforward controller, based on direct inversion of the system, is often
not physically realizable [67], and the feedback controller is hence used to compensate
for errors caused by the non-ideal feedforward controller (due to uncertainties in the
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estimated operating points). The structure of the combined PID and feedforward controller
(LUT-FF-FB) is shown in Figure 13.

PID Plant

n-D	LUT

Figure 13. Structure of the proposed pressure controller (LUT-FF-FB).

The tuning procedure selected for the PID feedback controller for the LUT-FF-FB is
the ZN approach, and its performance is compared with the benchmark PID solution and
the LUT-FF in Figure 12.

Figure 12 shows a comparison of the three proposed controllers. Compared to the
benchmark PID and the LUT-FF-FB, the LUT-FF shows poor reference tracking perfor-
mance, especially during transient periods, when characteristics of the system change.
However, when observing the control input generated by the LUT-FF, this actuation signal
is moderate compared to the two other controllers. Both the Benchmark PID and the
LUT-FF-FB track the pressure reference relatively accurately, however, the Benchmark PID
has to make considerably larger input corrections, which can be seen in Figure 12b. As an
example, the control input oscillates up to 2000 [m3/h] (peak to peak) at the time interval
0.4–0.5 h. This behaviour is not desirable from a physical point of view, as it requires
sudden acceleration and deceleration of the compressors, resulting in an increase in power
consumption [43]. The tuning procedure of the benchmark PID becomes a trade-off of
fast dynamic response against overshoots and oscillations. On the other hand, the main
goal of the feedback controller in the LUT-FF-FB is to compensate for minor irregularities
or disturbances, allowing it to be designed less aggressive. In conclusion, the LUT-FF-FB
has the best performance, as the control input is fairly moderate and improves pressure
reference tracking during time-varying operating conditions.

5. Compressor Scheduling

The aim of the compressor scheduling algorithm is to improve energy efficiency of the
compressors. This goal is achieved by first obtaining static power models of the case plant
compressors and subsequently implementing an algorithm that adapts to the changing
system states.

5.1. Static Power Model

To find the optimal scheduling strategy, a model of the compressors will be developed
in this section. The model is a static map describing the relationship between electrical
power, pressure and airflow, denoted as W(P, Q). The following assumptions are made to
justify the deduced model:

Assumption 1 The transient dynamics of the compressors are assumed fast enough to be
neglected, meaning that static models are adequate to describe the system.

Assumption 2 The efficiency of the motor and motor driver is constant. This implies that
the system efficiency, η, can be defined as the ratio of hydraulic power to
electric power [65].
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Models for compressor performance have been proposed in [70–72], however, no
general structure is suggested. The 2nd-order polynomial structure from [72] is chosen due
to its fitness to the data, hence, the compressor power map is defined by Equation (15).

W(P, Q) = a1Q + a2P + a3Q2 + a4P2 + a5QP (15)

where P and Q denote gauge pressure and airflow, and a1, a2, ..., a5 are constant model
parameters. Note that the model structure does not explicitly describe the relationship
with compressor speed, which also affects power consumption [70,73]. However, it indi-
rectly describes it, as only one possible compressor speed for a given pressure and flow
rate exists, hence why speed is not directly present in Equation (15). This means that
W(P, Q) is well-defined with only 2 degrees of freedom between W, P and Q. The model
parameters reflect the specific compressor characteristics, and they could be identified
through experimentation by manipulating system head and airflow [65,70]. However,
in an industrial plant where operation down-time results in pollution of nitrogen to the
surrounding environment, an estimation procedure based on daily operation data was
necessary. Both power consumption (W), airflow (Q) and pressure (P) were included in
the case plant data-set making this procedure possible. With a slowly changing system
(aeration cycles of +20 min), several operating points could be extracted when the system
had reached an equilibrium, i.e., where pressure and airflow gradients were dQ

dt ≈ 0 and
dP
dt ≈ 0. The data points and resulting fitted power maps are shown in Figure 14.

Figure 14. Steady-state power data, W(P, Q), from the two compressors (black dots) and the
fitted maps.

The power maps shown in Figure 14 can be used to derive the efficiency maps of the
compressors. The compressor efficiency, η(P, Q), is defined as the ratio of hydraulic power
to electric power [23,73]. The electric power is measured at the motor driver, meaning
it includes losses in the entire drive-train. This yields Equation (16), which maps the
compressor efficiency.

η(P, Q) =
PQ

W(P, Q)
(16)

Then the compressor efficiency can be computed explicitly for a specific pressure and
airflow. The resulting compressor efficiency maps are shown in Figure 15.
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Figure 15. Efficiency model for the fitted surfaces η(P, Q) for the two compressors.

The power maps are based on a general structure without considering the physical
principles of the system, hence, the feasible window of operation of the compressors are
defined from the domain of the regression model in both flow and pressure [53]. Practically,
each compressor can only supply flow rates within a specific lower and upper boundary
according to its size. The lower and upper boundaries are considered in the derivation and
are denoted by the subscripts lb and ub.

5.2. Compressor Load Sharing

The characteristics of any number of parallel-connected compressors, Np, can be
computed by summarizing flow and power for the individual units [65,72,73]. Thus, for
any number of compressors j = 1, 2, · · · , Np the air supply characteristics are defined by
Equations (17) and (18).

Q =
Np

∑
j=1

Qj,
{

Qlb,j ≤ Qj ≤ Qub,j

}
P = k0 + k1Q2,

{
Plb ≤ P ≤ Pub

} (17)

W =
Np

∑
j=1

Wj(P, Qj), η =
PQ
W

(18)

where Q, P, W and η are the flow, pressure, power, and efficiency in the combined air sup-
ply system. Qlb,j and Qub,j is the lower and upper flow limits that compressor j can deliver
while Plb and Pub is the lower and upper pressure limits that the system can reach, respec-
tively. By taking advantage of the characteristics of the compressor units, i.e., the different
power and efficiency maps, the energy consumption of a network of compressors may
be improved [43,53]. Different strategies have been applied to share the load of multiple
compressors, refer to [53,74]. Ref. [74] argues that compressors with identical compressor
maps, may equally split the load or operate at the same surge margin. Additionally, it was
reported that for two compressors with very different efficiency characteristics, the larger
(or more efficient) unit should carry the base load, while the smaller (or less efficient) unit
is responsible for load fluctuations. Finally, another option is to distribute the load by using
an optimization routine like proposed in [53,75]. The compressors installed at the case plant
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considered in this study exhibit similar efficiency characteristics, hence, the equal load split
method is applied in this work. This method is advantageous in the proposed scheduling
algorithm, as only the desired load percentage is to be optimized for a given compressor
configuration [53]. Thus, for any number of operational compressors, the airflow delivered
by each unit, j, is defined as by Equation (19).

χ =
Q− CQlb

C(Qub −Qlb)
· 100%

Qj = Qj,lb + χ
(

Qj,ub −Qj,lb

) (19)

where χ is the percentage loading for all compressors going from 0% (idle) to 100% (fully
loaded), Q is the total air flow required, Qlb =

[
Qlb,1, Qlb,2, · · · , Qlb,Np

]
is the lower flow

limits for all Np compressors and Qub =
[

Qub,1, Qub,2, · · · , Qub,Np

]
is the upper flow flow

limits. C =
[
C1, C2, · · · , CNp

]T
is a binary decision vector denoting whether the respective

compressor is active (1) or inactive (0):

Cj =

{
1, if compressor j is in operation
0, otherwise

(20)

The investigated air supply system consists of two parallel-connected compressors,
meaning three pump combinations exists (excluding the default case with both being
inactive). Generally, a pump system consists of 2Np − 1 possible configurations.

5.3. Scheduling Algorithm

Assuming the pressure coefficients, k0 and k1, are known for a particular system state,
then the possible combinations of pressure and flow rate must exist on the system curve,
as per Equation (12). Thus, the system has only one degree of freedom between P and
Q, and by extension one degree of freedom for η. This property can be used to select
a combination of airflow and pressure reference maximizing the compressor efficiency.
Finally, scheduling between compressors can be performed by selecting the combination
with the highest efficiency.

Applying the LUT introduced in Section 3.7 and given as the pressure coefficients in
Equation (12) at any combination of valve states, allows an estimate of the system curve
to be made. Once the flow and pressure relationship is locked, both power and efficiency
characteristics are computed for all compressor combinations using the defined formulae;
(17) and (18).

The goal of the scheduling algorithm is to obtain the operating point (P, Q) and select
the respective compressor that maximizes the efficiency of the air supply system. However,
the solution should also be subject to constraints specific to the case plant. In this work two
main constraints are considered:

Constraint 1 The solution should be within the flow and pressure ranges defined in
Equation (17). This constraint ensures that the air supply system never
exceeds the physical limitations in pressure drop across the diffusers or
approaches the limits of operation (surge/stall) for the compressors.

Constraint 2 To facilitate biochemical treatment a minimum airflow supply for each
reactor is required (Qmin), therefore, the air supply is subject to: Q ≥
∑4

i uv,iQmin

The proposed algorithm evaluates the compressor efficiency in various operating
points and determines the maximum feasible efficiency subject to the above constraints. It
follows the procedure presented in Algorithm 1:

The results for different operating points have been shown in Figure 16. The blue
region marks the feasible solution range with regards to the pressure constraint.
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Algorithm 1: Compressor scheduling algorithm pseudo code.
Input: Valve states
Output: Compressor states, desired load %

1 k0, k1 = LUT(uv,1, uv,2, uv,3, uv,4)

2 foreach Compressor Combination, C do
// Initialize compressor load %

3 χ0 = 50%
// Newton-Raphson iterative maximization

4 while n < Max Iterations do
5 Estimate η′(χn) and η′′(χn) numerically using Function η(χ)

// Compute Newton-Raphson estimate

6 χn+1 = χn +
η′(χn)
η′′(χn)

7 if abs(χn+1 − χn) < Tolerance then
8 Check and apply solution constraints, Constraint 1 and Constraint 2

by clamping
9 Reevaluate objective function, η(χ)

10 break

11 n++
// Update solution if better compressor combination exists

12 if ηbest < η then
13 χbest = χ
14 Cbest = C

15 return Cbest, χbest

16 Function η(χ):
// Step 1: Compute individual flows and load(%) using (19)

17 [Q1, Q2, ..., QNp ] = LoadSharing(χ)
// Step 2: Compute system curve using (17)

18 P = k0 + k1

(
∑

Np
j=1 Qj

)2

// Step 3: Compute total power consumption and efficiency using (18)

19 W = ∑
Np
j=1 Wj(P, Qj)

20 η = PQ
W

21 return η

The proposed method maximizes the efficiency of the compressor system in configu-
ration (a), (b) and (c), while considering the system specific constraints.
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Figure 16. Selection of operation point based on valve openings. (a–c) shows the selected operating
point with 1, 2 and 4 completely open valves, respectively.

6. Results

Reducing the energy consumption in the aeration system is the main goal of this work.
The most straight forward way of achieving this is by not aerating, however, this would
severely compromise the performance of the nitrification/denitrification processes. Hence,
rather than comparing the actual energy consumption explicitly, the energy efficiency of
the compressors is a more suitable measure for examining the scheduling performance.
Using the energy efficiency and the number of restarts per day as evaluation criterion,
the current and the new proposed compressor scheduling are compared in this section.
The justification for using restarts per day is that they are directly related to compressor
wear and tear and increased energy consumption [76–79].

The scheduling algorithm introduced in Section 5.3 was implemented on the airflow
network model and simulated in parallel with the 9-day data-set from the real plant.
The power consumption and efficiency models introduced in Section 5 were derived based
on data from daily operation and reflects the performance of the real system and simulated
plant alike. Thus, the efficiency of the compressors is directly comparable between the
simulated and real system.

Intervals from the simulation have been highlighted in Figures 17 and 18 to comment
on the performance of the proposed scheduling algorithm.

On the case plant the compressor control consists of two rules Control Rule 1 and
Control Rule 2 . The compressor installations were based on the flow demand, meaning the
small compressor (C1) and the large compressor (C2) were selected to have the best
operating point (BEP) close to the demanded flow when:

Control Rule 1 one valve is completely open→ start C1
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Control Rule 2 two valves are completely open→ start C2

As a result, the efficiency of the case plant matches the maximum efficiency of the
proposed scheduling algorithm when 1–2 valves are completely open, which can be seen
in Figure 17. Furthermore, Figure 17 shows a significant improvement since the proposed
scheduling algorithm ensures fewer start-ups despite switching between 1 and two com-
pletely open valves. In the case plant, the compressors start and stop according to Control
Rule 1 and Control Rule 2 in addition to some on-time and off-time constraints to limit
switching frequency of the compressors. The proposed scheduling algorithm reduces
switching by alternating between compressors depending on the case plant pressure curves
and the pressure constraints set for the maximization of η(P̂, Q). This is made clear in the
interval 6–8 [h] in Figure 17.

Figure 17. Firstcomparison of aeration efficiency. The efficiency for the current configuration is
compared to a simulation with the proposed compressor scheduling and pressure control; (a) shows
the compressor efficiency for case plant and simulation, (b) shows which compressors are running,
and (c) shows the sum of open valves.

Depending on which pair of valves are open, the system pressure curves can change
significantly as illustrated previously in Figure 10. Consequently, the rule-based compressor
control, (Control Rule 1 and Control Rule 2 ), does not always ensure operation close to
the BEP. This is evident from Figure 18, where the efficiency drops as a result of system
curve changes between valves states (e.g., when 2–3 valves are open). It should also be
noted that the efficiency when 3–4 valves are open drops significantly in the case plant,
which is due to the compressors not operating in parallel.
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Figure 18. Second comparison of aeration efficiency. The efficiency for the current configuration is
compared to a simulation with the proposed compressor scheduling and pressure control; (a) shows
the compressor efficiency for case plant and simulation, (b) shows which compressors are running,
and (c) shows the sum of open valves.

Based on the entire data-set, the efficiency with different number of open valves have
been averaged. The metrics used for comparison are listed in Table 6.

Table 6. Efficiency given for 1–4 completely open valves (higher is better), and number of compressor
restart cycles (smaller is better).

Efficiency [%]
Restarts pr. Day

1 Valve 2 Valves 3 Valves 4 Valves
Current 69.7 77.3 71.6 61.4 93.4
Proposed 74.8 78.8 78.2 76.4 65.8
Difference 5.1 1.6 6.6 15.0 −27.6

Referring to Table 6 the proposed scheduling algorithm improves efficiency in all
cases and reduces the amount of compressor restarts. In agreement with our hypothesis,
the improvement in the 2-valve scenario is much smaller in relation to the other operating
points. The reason for this is that the case plant is designed to be most efficient when
two valves are open. A similar statement could be said for the 1-valve scenario; however,
we presume the efficiency improvement is a result of having very different system curves
depending on which tank is active, leading to operation at flow rates away from the BEP.
In conclusion, the simulation results shows that the proposed scheduling algorithm is
advantageous to the current rule-based control employed in the case plant.

7. Discussion

The purpose of this work is to improve the aeration energy efficiency of the case plant
ASP. In this work, the dynamic pressure control and compressor scheduling is examined
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with the focus on reducing energy consumption without compromising effluent quality.
Contrary to other studies, this work is focused on the characteristics and design of the
parallel compressor setup and proposes an algorithm to choose the best configuration for
any possible system state.

To address the problem of improving the energy efficiency of the aeration pro-
cess, first an airflow model is obtained. The airflow distribution is modelled by a well-
established method using mass balances, Bernoulli’s principle, and the Darcy–Weisbach
friction equation, similar to the approach in [19]. This approach is used since a detailed
airflow model provides insights into the system dynamics and enables optimization of the
process performance and efficiency [55]. Additionally, the detailed air distribution model
provides the best basis for DO modelling, as it is evident that all aeration tanks are not
provided with equal airflow [19,55]. Two main approximations of parameters are made to
fit the model to actual plant data:

Flow sensor dynamics are approximated assuming a first-order filter, resulting in the
model being fitted to the damped sensor measurements rather than the actual flows.
This is however a necessity as there is no other option for validating the airflow
distribution model without changing the system setup and implementing another
sensor. Should another, faster sensor (like a pressure transmitter) be implemented,
the sensor dynamics should still be modelled despite the faster dynamics, as these
dynamics most likely would contribute to the over-all system dynamics.

Valve discharge coefficients which are estimated using a numerical method minimizing
a cost function. By using this approach, the estimated parameters are not identified
to fit the actual discharge coefficients of the valves alone, but instead an estimate of
a general “loss coefficient” for the entire system, compensating for and eliminating
many of the uncertainties introduced when modelling other flow elements.

With these two approximations, both eliminating minor modelling errors and uncer-
tainties, the airflow distribution model estimates the actual airflow over each valve with
only small deviations and an overall fit percentage of approximately 68%.

Through simulations, the airflow model is subsequently used to produce the system
curves for 175 different valve combinations, making it possible to simplify the system
pressure curves as a second order polynomial model. The system curve models are
determined, and the static pressure coefficient and pressure loss coefficient is then arranged
in a look-up table (LUT) which lays the foundation for both the LUT-FF-FB pressure
controller and the new proposed scheduling algorithm.

The dynamic pressure control is designed similar to the approach used in [68], which is
often used in automotive applications, and involves feedback-feedforward control strategy.
The combined feedback-feedforward controller (LUT-FF-FB) overcomes the operating-
point dependent nonlinearities and shows better tracking performance than the benchmark
PID. The static LUT-FF is used to generate the feedforward signal,

The scheduling algorithm is based on the system curves, from which the optimal flow
rate is computed in the form of a pressure reference. Consequently, differences between
the case plant data and the estimated system curve can lead to sub-optimal performance
of the scheduling algorithm. This difference is compensated by the feedback term in the
LUT-FF-FB algorithm. Using the energy efficiency of the compressors and average restarts
per day as performance measures, the rule-based scheduling algorithm implemented on
the case plant and the proposed scheduling algorithm are compared. Since up to 75% of
the total electricity consumption for a WWTP is related to the aeration process, even a
small increase in energy efficiency can affect the operational cost and environmental impact
of the WWTP significantly. Additionally, the wear and tear of the compressors affects
the lifetime and repair downtime, which is strongly related to frequent restarts of the
machines [76–79].

The methods presented in this paper are limited to WWTPs and aeration systems
where plant data of the valve flow, Qv and data of the compressor flow, pressure and power
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consumption is available. Since the airflow model (presented in Section 3) is fitted to plant
data and parameters are identified for each branch to optimize model prediction, the model
now becomes an empirical model. Despite the use of empirical methods, the approach
presented in this work is still applicable to any WWTP as long as the discharge coefficients
Cd,i are considered adjustable parameters and plant data is available for model fitting.

Despite not being modelled dynamically, the static compressor power models are
obtained and considered sufficient for the purpose of designing an energy efficient schedul-
ing algorithm. This is justified by assuming that the transient dynamics of the compressors
are fast enough to be neglected. Consequently, the usefulness of the scheduling algorithm
proposed in this work is limited to larger airflow systems, where the pipe network is
large enough to dominate the overall system dynamics. As this is a distinctive feature
for most wastewater treatment plants, the method is regarded highly applicable in the
field of wastewater treatment. Furthermore, the static compressor power maps were ob-
tained with regression analysis without considering the physical principles of the system.
Consequently, the models are not of universal character as they are invalid outside the
domain of the regression model in both flow and pressure [53]. This is addressed by
implementing lower and upper boundaries for the flow and pressure of each compressor
(see Equation (17)).

The results of this paper are considered interesting for any WWTP with the wish to
reduce energy consumption and wear and tear of the compressors, solely by algorithm
implementations. It is especially appealing that the energy efficiency of the compressors
is increased regardless of the system state. Table 6 frames the benefits of the new pro-
posed scheduling strategy, while Figures 17 and 18 shows that the total efficiency of the
system hovers close to 80% and predominantly above the current case plant efficiency.
The exception being during the transient states when compressors are started or stopped
and whilst the sum of open valves is exactly 2.

The benefit of this work is its generalizability and applicability for any WWTP. As the
models of this work are based on first principle with numerically estimated parameters,
this method can be applied to any WWTP with component data sheets and operational
data available for model validation and result comparison. Furthermore, the method used
in this work is conducted using data of daily operation, meaning that no downtime or
additional experiments are required to follow the procedure presented in this paper.

Should the need be for experimental validation, the pressure curves, which in this
study are obtained from simulations, can be experimentally determined using simple tests
like described in Section 3.7. Increasing the airflow for any combination of valve states and
logging the steady-state pressure will provide the necessary experimental data.

8. Conclusions

In this work, Grindsted WWTP located near Billund, Denmark is used as case plant
providing the data for this simulation study, where improvements for the aeration process
in the ASP is proposed. A dynamic pressure controller and optimal compressor scheduling
algorithm is proposed from the energy efficiency point of view, meaning that results are
compared based on efficiency of the air supply system and also the number of restarts per
day for the compressors.

A first principle airflow model is developed and parameter estimation is done numer-
ically using an optimization algorithm and case plant data. The model is subsequently
validated on case plant data from daily operation and used to generate system curves
representing the airflow system. Those system curves are used to generate a LUT contain-
ing pressure loss coefficients for 175 different valve configurations. This LUT is used to
generate the feedforward control input to the dynamic pressure controller. Three dynamic
pressure controllers are compared in this study, concluding that the LUT-FF-FB is superior
to the benchmark-PID and the LUT-FF.

The generated LUT is used in the proposed scheduling algorithm as well. This scheduling
algorithm determines the two compressors’ load (in percentage) based on changing system
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parameters in the airflow system (valves opening/closing). Comparing the new proposed
scheduling algorithm with the current rule-based control shows major improvements in
both energy efficiency of the compressors, and results in fewer restarts per day. The result of
this study shows a clear and huge potential to improve the efficiency of any aeration process
with multiple compressors supplying the airflow to aeration tanks. Note that the compres-
sors of this case plant system are of different capacities, making this method applicable to
other WWTP with multiple compressors either identical or nonidentical compressors.

From a practical point of view, the system curves should be experimentally validated
before we recommend the method for extensive industrial application.
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Appendix A

Estimated values of parameters in the airflow distribution network model.

Table A1. Parameter estimates used in the airflow simulation.

Symbol Description Value Unit

D Main pipe diameter 460 mm
L Main pipe length 16.5 m
Am Main pipe cross-sectional area 0.1662 m2

VA Volume in CVA 4.00 m3

VB Volume in CVB 12.00 m3

VC,i Volume in CVC,i 4.00 m3

Ph Pressure at diffusers 149.9 kPa
CL Leakage flow coefficient 4.00 · 10−6 m3/s · Pa
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44. Vrečko, D.; Zupančič, U.; Babič, R. Improving Aeration Control at the Ljubljana Wastewater Treatment Plant. Water Sci. Technol.

2014, 69, 1395–1402. [CrossRef] [PubMed]
45. Bellman, R.; Glicksberg, I.; Gross, O. On the “bang-bang” control problem. Q. Appl. Math. 1956, 14, 11–18. [CrossRef]
46. Durdevic, P.; Pedersen, S.; Yang, Z. Challenges in modelling and control of offshore de-oiling hydrocyclone systems. In

Proceedings of the Journal of Physics: Conference Series, Lille, France, 17–18 November, 2016; Volume 783012048, pp. 1–10.
47. Durdevic, P.; Yang, Z. Application of h∞ robust control on a scaled offshore oil and gas de-oiling facility. Energies 2018, 11, 287.

[CrossRef]
48. Åmand, L.; Carlsson, B. Optimal Aeration Control in a Nitrifying Activated Sludge Process. Water Res. 2012, 46, 2101–2110.

[CrossRef] [PubMed]
49. Zhai, Z.; El Mankibi, M.; Zoubir, A. Review of Natural Ventilation Models. Energy Procedia 2015, 78, 2700–2705. [CrossRef]
50. Fariborz, H.; Li, H. Building Airflow Movement - Validation of Three Airflow Models. J. Archit. Plan. Res. 2004, 21, 331–349.
51. Ai, Z.T.; Mak, C.M. Pressure Losses Across Multiple Fittings in Ventilation Ducts. Sci. World J. 2013, 1–11. [CrossRef]
52. Yang, Z.; Pedersen, S.; Durdevic, P. Control of variable-speed pressurization fan for an offshore HVAC system. In Proceedings of

the IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 458–463.
53. Kopanos, G.M.; Xenos, D.P.; Cicciotti, M.; Pistikopoulos, E.N.; Thornhill, N.F. Optimization of a network of compressors in

parallel: Operational and maintenance planning—The air separation plant case. Appl. Energy 2015, 146, 453–470. [CrossRef]
54. Krawczyk, W.; Piotrowski, R.; Brdys, M.A.; Chotkowski, W. Modelling and identification of aeration systems for model predictive

control of dissolved oxygen—Swarzewo wastewater treatment plant case study. IFAC Proc. Vol. Ifac Pap. 2007, 40, 43–48.
[CrossRef]

55. Amaral, A.; Schraa, O.; Rieger, L.; Gillot, S.; Fayolle, Y.; Bellandi, G.; Amerlinck, Y.; Mortier, S.T.; Gori, R.; Neves, R.; et al. Towards
Advanced Aeration Modelling: From Blower to Bubbles to Bulk. Water Sci. Technol. 2017, 75, 507–517. [CrossRef]

56. Gerhart, P.M.; Gerhart, A.L.; Hochstein, J.I. Munson’s Fluid Mechanics, global edition; John Wiley & Sons, Inc.: Singapore, 2017.
57. Egeland, O.; Gravdahl, J. Modeling and Simulation for Automatic Control; Marine Cybernetics AS: Trondheim, Norway, 2002.
58. Walker, I.S.; Wilson, D.J.; Sherman, M.H. A Comparison of the Power Law to Quadratic Formulations for Air Infiltration

Calculations. Energy Build. 1998, 27, 293–299. [CrossRef]
59. Yin, Y. High Speed Pneumatic Theory and Technology Volume I: Servo System, 1st ed.; Springer: Singapore, 2019.
60. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
61. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder–Mead Simplex Method in Low

Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]
62. Niegodajew, P.; Marek, M.; Elsner, W.; Kowalczyk, L. Power Plant Optimisation—Effective Use of the Nelder-Mead Approach.

Processes 2020, 8, 357. [CrossRef]
63. Fan, S.K.S.; Zahara, E. A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper.

Res. 2007, 181, 527–548. [CrossRef]
64. Wang, P.C.; Shoup, T.E. Parameter sensitivity study of the Nelder-Mead Simplex Method. Adv. Eng. Softw. 2011, 42, 529–533.

[CrossRef]
65. Yang, Z.; Børsting, H. Optimal Scheduling and Control of a Multi-Pump Boosting System. IEEE Conf. Control Appl. Proc., 2010,

2010, 2071–2076
66. Yang, Z.; Børsting, H. Energy efficient control of a boosting system with multiple variable-speed pumps in parallel. In Proceedings

of the IEEE Conference on Decision and Control, Atlanta, GA, USA, 15–17 December 2010; pp. 2198–2203.
67. Nandong, J. A unified design for feedback-feedforward control system to improve regulatory control performance. Int. J. Control.

Autom. Syst. 2014, 13, 91–98. [CrossRef]
68. Zurbriggen, F.; Ott, T.; Onder, C.H. Fast and robust adaptation of lookup tables in internal combustion engines: Feedback and

feedforward controllers designed independently. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2016, 230, 723–735. [CrossRef]

http://dx.doi.org/10.1016/0043-1354(74)90090-6
http://dx.doi.org/10.1016/S1474-6670(17)66868-X
http://dx.doi.org/10.1016/j.ifacol.2018.06.373
http://dx.doi.org/10.1016/j.chemosphere.2014.03.086
http://www.ncbi.nlm.nih.gov/pubmed/24784771
http://dx.doi.org/10.1016/j.cej.2013.07.051
http://dx.doi.org/10.2166/wst.2013.139
http://dx.doi.org/10.1016/j.rser.2009.11.013
http://dx.doi.org/10.2166/wst.2013.815
http://www.ncbi.nlm.nih.gov/pubmed/24718328
http://dx.doi.org/10.1090/qam/78516
http://dx.doi.org/10.3390/en11020287
http://dx.doi.org/10.1016/j.watres.2012.01.023
http://www.ncbi.nlm.nih.gov/pubmed/22341831
http://dx.doi.org/10.1016/j.egypro.2015.11.355
http://dx.doi.org/10.1155/2013/195763
http://dx.doi.org/10.1016/j.apenergy.2015.01.080
http://dx.doi.org/10.3182/20070604-3-MX-2914.00076
http://dx.doi.org/10.2166/wst.2016.365
http://dx.doi.org/10.1016/S0378-7788(97)00047-9
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.3390/pr8030357
http://dx.doi.org/10.1016/j.ejor.2006.06.034
http://dx.doi.org/10.1016/j.advengsoft.2011.04.004
http://dx.doi.org/10.1007/s12555-014-0090-8
http://dx.doi.org/10.1177/0954407015595336


Water 2021, 13, 1037 30 of 30

69. de Vries, T.J.A.; Velthuis, W.J.R.; van Amerongen, J. Learning Feed-Forward Control: A Survey and Historical Note. IFAC Proc.
Vol. 2000, 33, 881–886. [CrossRef]

70. Jepsen, K.L.; Hansen, L.; Mai, C.; Yang, Z. Power consumption optimization for multiple parallel centrifugal pumps.
In Proceedings of the 1st Annual IEEE Conference on Control Technology and Applications, CCTA, Hawaii, USA, 27–30 August
2017; pp. 806–811.

71. Cortinovis, A.; Zovadelli, M.; Mercangoz, M.; Pareschi, D.; De Marco, A.; Bittanti, S. Online adaptation of performance maps for
centrifugal gas compressors. In Proceedings of the 2014 European Control Conference, ECC 2014, Strasbourg, France, 24–27 June
2014; pp. 1036–1041.

72. Tengesdal, N.; Kristoffersen, T.; Holden, C. Applied Nonlinear Compressor Control with Gain Scheduling and State Estimation.
IFAC Pap. 2018, 51, 151–157. [CrossRef]

73. Gülich, J.F. Centrifugal Pumps, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2014.
74. Kurz, R.; Lubomirsky, M.; Brun, K. Gas compressor station economic optimization. Int. J. Rotating Mach. 2012, 2012, 1–9.

[CrossRef]
75. Han, I.S.; Han, C.; Chung, C.B. Optimization of the air- and gas-supply network of a chemical plant. Chem. Eng. Res. Des. 2004,

82, 1337–1343. [CrossRef]
76. Booysen, W.; Kleingeld, M.; Van Rensburg, J. Optimising compressor control strategies for maximum energy savings. Energize

2009, 32, 65–68.
77. Nguyen, H.H.; Chan, C.W. Applications of artificial intelligence for optimization of compressor scheduling. Eng. Appl. Artif.

Intell. 2006, 19, 113–126. [CrossRef]
78. Nguyen, H.H.; Uraikul, V.; Chan, C.W.; Tontiwachwuthikul, P. A comparison of automation techniques for optimization of

compressor scheduling. Adv. Eng. Softw. 2008, 39, 178–188. [CrossRef]
79. Nguyen, H.H.; Chan, C.W. Optimal scheduling of gas pipeline operation using genetic algorithms. In Proceedings of the

Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 2195–2198.

http://dx.doi.org/10.1016/S1474-6670(17)39256-X
http://dx.doi.org/10.1016/j.ifacol.2018.06.370
http://dx.doi.org/10.1155/2012/715017
http://dx.doi.org/10.1205/cerd.82.10.1337.46744
http://dx.doi.org/10.1016/j.engappai.2005.06.008
http://dx.doi.org/10.1016/j.advengsoft.2007.02.003

