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Semi-Deterministic Dynamic Millimeter-wave
Channel Modeling Based on an Optimal Neural

Network Approach
Xiongwen Zhao, Senior Member, IEEE, Zihao Fu, Wei Fan, Senior Member, IEEE,

Yu Zhang, Suiyan Geng, Fei Du, Peng Qin, Zhenyu Zhou, Senior Member, IEEE, Lei Zhang

Abstract—Billions of mobile terminals will be deployed in
various of Internet of Things (IoTs), in which millimeter-wave
technology will be gradually applied. Accurate modeling and
simulation of wireless channel is the base for efficient design and
performance evaluation, this becomes more important for indus-
trial scenarios, which might be highly dynamic and potentially
different from well-investigated cellular deployment scenarios. In
this work, a novel semi-deterministic millimeter-wave dynamic
channel modeling approach based on optimal neural network
(ONN) principle is proposed. The ONNs are radial basis function
neural networks trained with optimal variance parameters and
are applied to predict large-scale channel parameters (e.g., path-
loss, delay spread and angle spreads). Based on the ONNs
predicted large-scale parameters and the simplified propagation
environment including the layout of transmitter, receiver and
major scatterers, the proposed channel modeling approach can
generate accurate dynamic channel parameters. The proposed
approach is validated by the channel data measured at a high-
voltage substation. Large-scale parameters, multipath component
distribution and power delay profile are validated. The proposed
approach is demonstrated to be an accurate, fast and robust
channel modeling method, which can be used for both link-
level and system-level channel simulation for future design and
optimization of industrial IoTs.

Index Terms—Millimeter wave, dynamic channel modeling, op-
timal neural network, multipath component, map-based channel
modeling

I. INTRODUCTION

IN the coming years, billions of mobile terminals and
sensors will be deployed in various scenarios, such as smart

grid, smart industry and intelligent transportation systems
(ITS). Wireless communication, including the fifth generation
(5G) and its beyond technologies, will play a major role in
Internet of Things (IoT) systems to meet the requirement
of high transmission data rate of payload links [1]. Large-
scale deployment of 5G commercial systems is ongoing,
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where the focus has been on sub-6 GHz massive multiple-
input multiple-output (MIMO) technology. Millimeter-wave
(mmWave) technology is seen essential in 5G hotspot scenar-
ios (which demands high data-rate transmission in dense user
scenarios), thanks to its large available system bandwidth [2].

Unlike sub-6 GHz frequency bands, mmWave channel is
shown to be highly sparse and specular, making it highly sen-
sitive to environment changes [3] [4]. Furthermore, mmWave
suffers from high transmission loss and cannot penetrate
objects, which makes it highly dynamic [5]. The dynamic
of channel is caused by either the variation of environment
or the positions changing of transceiver. Accurate and re-
alistic channel modeling is essential for system design and
evaluation. So far, significant efforts have been carried out in
the standardization, e.g., in the Third Generation Partnership
Project (3GPP) [6], International Telecommunication Union
(ITU) [7] and Wireless World Initiative New Radio (WIN-
NER) [8]. However, although various deployment scenarios
(e.g., indoor, urban, suburban) are considered, few works have
reported channel modeling results in typical power industry
hotspot scenarios.

Radio channel modeling is a long-standing and evolving
research topic due to its importance. Channel modeling ap-
proaches may be grouped into two categories, i.e., determin-
istic approach and stochastic approach [9]. The deterministic
models, e.g., ray tracing (RT) and stored measurement data,
are physically meaningful and potentially accurate [10]–[12].
However, RT requires accurate geometric and electromagnetic
description of the database, which might not be available. Its
computation complexity can also be prohibitive. Furthermore,
it is site-specific, which means it is only representative for the
scenario considered. As a result, many runs using different
environment are required in many cases, leading to more time-
consuming simulations. Mobile and wireless communications
Enablers for the Twenty-twenty Information Society (METIS)
map-based model is a simple ray tracing approach, which aims
at reducing computation and modeling complexity yet offers
reasonable channel simulation accuracy [13].

Stochastic modeling approach, on the other hand, de-
scribes wireless signal propagation using statistical parameters.
The most popular and widely accepted stochastic modeling
approach is the geometry-based stochastic channel model
(GSCM [14]). With the GSCM, the scatterer locations in
the environment are selected in a random manner follow-
ing certain probability distribution, yet the actual channel
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impulse response is obtained in a deterministic RT manner.
GSCM is widely accepted in the fourth generation (4G) (e.g.,
3GPP 25.996 [9]) and 5G standards (e.g., 3GPP 38.901 [6]).
However, the GSCM is generally stationary, which might
be inaccurate to model highly dynamic mmWave channels.
In recent years, dynamic channel modeling and simulation
have been widely studied. RT is regarded as an effective
approach to investigate dynamic channels [15]. However, its
complexity is still a major bottleneck. Semi-dynamic channel
modeling based on the GSCM framework is also another
popular strategy, where some time evolution features can be
added. In [16]–[18], the quasi deterministic radio channel
generator (QuaDRiGa) is proposed, which contains dynamic
channel modeling capability. In [19], a unified GSCM-based
framework is investigated, aiming at capturing non-stationary
small-scale fading channel characterization. Besides, GSCM-
based dynamic channel models are also investigated for
mobile-to-mobile [20] and unmanned aerial vehicle (UAV)
[21] scenarios. The main drawback of GSCM-based channel
modeling approach is its stochastic nature, which makes it
difficult to directly compare with the real-world measurements.
Motivated by the main drawbacks of the deterministic and
stochastic channel modeling approach, it is highly desirable
that the modeling approach should be accurate, realistic yet
also computationally efficient.

Due to the excellent performance of nonlinear fitting ca-
pability and prediction accuracy offered by machine learning
(ML) algorithms, it has been applied extensively in channel
modeling research in recent years. The artificial neural network
(ANN) based channel modeling approaches have been applied
to model path-loss (PL), shadow fading (SF)), channel impulse
response (CIR), delay spread (DS), angle spread (AS) and
multipath components (MPCs). In [22] [23], ANNs are applied
to improve the prediction accuracy of outdoor signal received
power. Combined with fuzzy logic and ANN, the adaptive
neuro-fuzzy inference system is applied to develop PL models
in [24]. In [25], a radial basis function (RBF) based PL
model is established to investigate the relationship between
PL and propagation distance in the mmWave band. In [26], a
convolutional neural network (CNN) based model is proposed
to predict the PL based on the environment map. A generative
adversarial network (GAN) framework is proposed in [27] to
achieve autonomous wireless channel modeling.

The ANN-based method is also promising to model dy-
namic channels.In [28], based on the RT simulated channels,
the CNN is applied for channel parameters prediction. In
[29], the feed-forward neural network (NN) and RBF NN
is applied to predict dynamic receive power, DS and AS,
both measured and simulated data are considered. In [30],
a ML-based big data application is investigated in channel
modeling and parameter prediction, where multiple ANNs are
trained by either measurement or simulation data to predict
dynamic received power and DS at untrained positions. In [31],
the RBF-based channel modeling approaches are proposed to
accurately play back time-varying measured channels in terms
of MPCs , PL, DS and AS. However, due to limited measured
data, only the results of the played back channel in known
locations are given in [31], while its ability to predict MPCs

at unknown positions remains to be verified.
As a summary, the dynamic channel modeling approach will

be a promising research direction with available big channel
data together with geographical database, yet it is not impecca-
ble and some aspects are still not thoroughly addressed in the
literature: 1) Traditional RT approaches are characterized by
high computational complexity, time-consuming and require
accurate environmental information, which makes it difficult
to be applied to channel simulations in a complicated environ-
ment with irregular scatterers. 2) There has been no reported
work on prediction of MPC distribution by the ANN-based
approaches due to the complexity associated with mapping
between MPC distribution and the propagation environment.
To address this topic, it was proposed to combine ANN with
other channel models, such as RT in [30]. However, due to
the computational complexity of RT, the approach in [30] is
not suitable for large-scale simulations. 3) The accuracy of
parameters predicted by the ANN-based approaches in case of
small data remains to be verified. At present, the measurement
data is relatively limited since 5G mmWave massive antenna
channel measurements are very time-consuming and expen-
sive. In [28] and [29], the NNs are utilized as an interpolation
tool to predict parameters. Besides, the structure of CNN is
relative complex in [28], while in [29], fixed parameter settings
are applied in the training process of NN, which may cause
the inaccurate of prediction results.

In this work, we propose an optimal neural network
(ONN) based three-dimensional (3D) semi-deterministic dy-
namic mmWave channel modeling approach, which considers
combining ANN, statistical channel model and environment
characteristics. The main purpose of the proposed channel
model is to simulate dynamic channels in a complicated
environment with irregular scatterers (such as the high-voltage
station) where ray tracing is not feasible and only limited
measurement data is available. The main contributions and
novelties of this paper are summarized as follows:

• A method to optimize neural network by searching the
optimal variance parameters of RBF NN is proposed to
predict large-scale channel parameters (LSCPs) exactly
in case of small training data. The LSCPs include PL,
DS, azimuth angular spread of arrive (AASA), elevation
angular spread of arrive (EASA) and number of clusters.

• The proposed semi-deterministic dynamic model supports
custom simulation scenario as well as trajectory of re-
ceiver and scatterers, and it can simulate the paths of
main MPCs while maintaining the statistical character-
istics of the channel. The LSCPs are predicted by the
trained ONNs, and the distribution of MPCs as well as
channel coefficients of the dynamic channel are generated
according to the geometric relationship and statistical
distribution, in which the LSCPs predicted by ONNs
are utilized to ensure the spatial continuity of simulated
channels.

• The performance of the ONN-based modeling approach
is validated by the mmWave channels measured in a high-
voltage substation. The measured LSCPs are used to train
the ONNs, and the ONN-based simulated channel proper-
ties including LSCPs, MPCs distribution and power delay
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profile (PDP) are validated by actual measurements and
compared with the simulated results from QuaDRiGa.

The remainder of this paper is organized as follows: Section
II investigates the proposed ONN-based 3D semi-deterministic
dynamic mmWave channel modeling framework. Section III
introduces the measured channel data used for model valida-
tion. Section IV shows the results and analysis. Conclusions
are drawn in Section V.

II. APPROACH DESCRIPTION OF THE ONN-BASED 3D
SEMI-DETERMINISTIC DYNAMIC CHANNEL MODEL

In this section, we will elaborate on our proposed channel
modeling and simulation process in detail. First of all, a
typical single-input multiple-output (SIMO) system wireless
communication channel between transmitter (TX) and receiver
(RX) is considered, in which one fixed antenna element is
deployed at TX and R× S antenna elements are deployed at
RX. The simplified schematic of the channel is shown in Fig.
2. The line-of-sight (LoS) ray is drawn in Fig. 2 with red line.
The observable rays are drawn in Fig. 2 with yellow dotted
lines, which are reflected or scattered by main scatterers (e.g.,
ground, buildings and walls). The main scatterers are easy to
locate, and they are modeled as determined scatterers, i.e.,
the coordinates of determined scatterers are set according to
the environment. The cluster grouped by these rays is called
determined cluster. The non-observable rays are drawn with
blue dotted lines in Fig. 2, and they come from multiple
reflections or scatterings, whose propagation links with weak
power are hardly observed. Besides, those weaker rays present
larger delays, which are of low importance since mmWave
communications rely on dominant propagation paths. Thus,
they are considered coming from randomly generated scat-
terers, i.e., the coordinates of the scatterers are randomly
generated according to the probability distribution. The cluster
grouped by these rays is called randomly generated cluster. For
clarity, the key parameters involved in the channel modeling
and simulation are listed in Table II.

The proposed modeling and simulation procedure is de-
scribed into five main steps: ONN generation, simulated
environment design, LSCPs prediction, small-scale channel
parameters (SSCPs) generation and CIR generation. In this

Fig. 1. An abstract scene of SIMO communication scenario.

work, LSCPs include PL, DS, AASA, EASA and number of
clusters, and SSCPs include power, delay and angles of each
ray, and the SSCPs are parameters of MPC. Fig. 2 shows
the full flow chart of the channel modeling and simulation
procedure as well as the relationship between input and output.
The details of the procedure are listed as follows:

• First, several ONNs are generated to model the relation-
ship between LSCPs and TX/RX coordinates. Note that
one ONN is used to predict only a specific LSCP, and
the ONN is trained by the optimal parameter ξ which is
found during the training process.

• Second, the simulated environment can be designed ac-
cording to the simulation requirements, including coor-
dinates of TX and scatterers, as well as the speed and
moving trajectory of the RX.

• Third, the 5 LSCPs are predicted by the ONNs according
to the TX/RX coordinates at time instant t.

• Fourth, the SSCPs of LoS ray are directly derived by
the geometric relationship according to the TX/RX co-
ordinates. The SSCPs of remaining rays are generated
in two steps: 1) generation of cluster parameters: the
cluster parameters of determined cluster are derived by
the geometric relationship according to the TX/RX co-
ordinates, while those of randomly generated cluster are
generated by statistical distribution according to the pre-
dicted AASA/EASA; 2) generation of SSCPs: the SSCPs
of rays in determined and randomly generated clusters are
calculated by the statistical distribution according to the
predicted DS and cluster parameters.

• Finally, the dynamic CIRs can be directly generated by
the simulated SSCPs. The principle of each sub-step will
be described in more details in the following subsections.

A. Optimal Neural Network Generation

The generation process of ONN is discussed in detail in
this sub-section. We first introduce the structure of RBF
NN, then the influence of parameter ξ on prediction error is
discussed, and the state-of-art methods to determine ξ value
in existing works are revisited and analyzed. Finally, the
generation process of ONNs based on the Simulated Annealing
(SA) algorithm is elaborated.

1) The structure of RBF NN: In this work, RBF NN is
considered to train the relationship between TX/RX coordi-
nates and LSCPs due to its advantage of nonlinear relationship
approximation capability and simple structure. The simplified
diagram of input and output mapping in RBF NN is shown
in Fig. 3, the structure of RBF NN contains 6 input nodes,
1 output node, several hidden nodes and 1 tunable parameter.
The 6 input nodes are the three-dimensional coordinates of the
RX and TX position, and one corresponding LSCP value can
be predicted by the output node. Note that in this work, each
RBF NN is trained to export only one LSCP parameter, in or-
der to reduce the difficulty of training. The input nodes and the
hidden nodes are connected by nonlinear transformation layer,
while the output node and the hidden nodes are connected by
linear combination layer. The variance of RBF ξ is a tunable
parameter which acts on the nonlinear transformation layer.
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Fig. 2. The modeling and simulation flow chart of the proposed model.

TABLE I
DEFINITION OF SIGNIFICANT CHANNEL MODELING PARAMETERS

Symbol Definition
AT

0 Coordinates of TX antenna element

AR
00(t) / AR

rs(t) Coordinates of the first/the r-th row and s-th column RX antenna element

Cd,i(t) Coordinate of the center of the i-th determined scatterer

CT,r,i/CR,r,i Coordinate of the center of the i-th randomly generated scatterers

λH /λV Horizontal/vertical antenna spacing of the UPA in RX

vR(t) The velocity vector of RX at time t

θT,LoS
rs /φT,LoS

rs /θR,LoS
rs /φR,LoS

rs AAoD/EAoD/AAoA/EAoA of the LoS ray

θT,d,i
rs,n /φT,d,i

rs,n /θR,d,i
rs,n /φR,d,i

rs,n AAoD/EAoD/AAoA/EAoA of the n-th ray in the i-th determined cluster

θT,r,i
rs,n /φT,r,i

rs,n /θR,r,i
rs,n /φR,r,i

rs,n AAoD/EAoD/AAoA/EAoA of the n-th ray in the i-th randomly generated cluster

DLoS
rs (t) Distance between TX and RX

DT,d,i
rs (t)/DR,d,i

rs (t) Distance between TX/RX and Cd,i

DT,r,i
rs /DR,r,i

rs (t) Distance between TX/RX and CT,r,i/CR,r,i

CN(t) The total number of clusters at time t

Ln The total number of rays in each cluster

x

Fig. 3. Simplified diagram of input and output mapping in RBF NN.

The mentioned nodes, layers and parameter together constitute
the structure of RBF NN and the k-th predicted LSCP Yk,out
can be simply expressed as

Yk,out =M(xR,k, yR,k, zR,k, xT,k, yT,k, zT,k, ξ), (1)

where M denotes the mapping of the input and output. The
prediction performance is validated by the root mean square
error (RMSE) between the predicted and measured values

ERMSE =

√√√√ 1

K

K∑
k=1

(Yk,out − Yk,act)
2
, (2)

where K is the total number of predicted values and Yk,act
is the k-th actual value. Note that both Yk,out and Yk,act are
represented for their real values and are not normalized, and
we use different RMSE values to evaluate the prediction
performance of different LSCPs.

2) The influence of parameter ξ on prediction error:
The prediction error of NN is affected by several factors,
such as the amount of data, dataset selection and parameters
settings. In this work, the prediction error can be reduced
by determining the optimal value ξ. Generally speaking, the
value of ξ should be set large enough to ensure that the
response range of input node should cover different input
vectors. However, if the value of ξ is set too large, different
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input nodes may have an overlapping response area, which
would reduce the prediction accuracy.
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Fig. 4. Predicted RMSEs of the RBF NN trained with different ξ values.

Fig. 4 shows the predicted RMSE curve for the RBF NN
trained with different ξ values. Note that the RBF NN here
is used to predict the DS, and a similar trend is existed when
using the RBF NNs in predicting other types of LSCPs. It is
seen in Fig. 4 that the prediction RMSE decreases first and
then increases with the increase of ξ value, as expected. Thus,
the main challenge of generating ONN is to search the optimal
value of ξ in an efficient way. The expression of the optimal ξ
value can be derived according to the structure of RBF NN and
(2), and the detailed derivation for (3) is given in Appendix A

ξ* = arg min
ξ

ERMSE

=arg min
ξ

√√√√ 1

K

K∑
k=1

(
W∑
i=1

[
wik ·e

− (q−wi)T(q−wi)
2ξ2 +bik

]
−Yk,act

)2

,

(3)

where W is the number of hidden nodes which is determined
by the total number of input vectors, wik and bik are the con-
nection weight and offset of the linear combination layer, re-
spectively, and they are updated by the back propagation algo-
rithm during the training process. q = [xT , yT , zT , xR, yR, zR]
is the 6-dimensional input vector and wi is the weight matrix
of the nonlinear transformation layer. Note that the variable
wik and bik will constantly change during the training process,
which means the optimal value of ξ cannot be directly derived
by (3).

The determination of ξ value has been discussed in some
existing works. In [29], the value of ξ is fixed during the
training of RBF NN. An estimation method for determining
the value of ξ is given in [32]. However, these methods have
certain subjective factors, leading to non-optimal ξ value. In
order to obtain the NN with lowest prediction error, global
search algorithms are considered in the training of RBF NN.
The most commonly used algorithms are annealing (SA) [33]
and particle swarm optimization (PSO) [34] algorithm. The
SA algorithm is a random optimization algorithm based on
the Monte-Carlo strategy, it enables the search to jump out of
the local optimum via randomly updating new solutions and
accepting worse solutions with certain probability, thus in this
work, the SA algorithm is adapted as the approach to searching
the optima value of ξ.

SA 

Algorithm

LSCP, TX and 

RX Coordinates 

in Training 

Dataset
Predicted

LSCP
TX and RX 

Coordinates in 

Validation 

Dataset    

1.Train

2.Input
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Dataset 

3.Validation

Output

Update 

value of aa
Run over?

Yes

NoRedo 1-4

Final Train

RBF Neural 

Network

4.Error Calculation

Optimized 

value of aa

Fig. 5. The ONN generation process based on the adjusted SA algorithm.

3) The ONN generation process based on the SA algorithm:
Fig. 5 shows the generation process of ONN by applying the
SA algorithm. Each dataset includes 7 data, i.e., 6 coordinates
values and 1 corresponding LSCP value, and the total number
of datasets is K. The K datasets are divided into two parts
according to a certain proportion, namely training datasets and
validation datasets. The training datasets are used to train the
RBF NN, then we input the validation TX and RX coordinates
information and obtain predicted LSCPs. The RMSE between
predicted and actual LSCPs is calculated, and the value of ξ is
updated according to the SA algorithm [33], then we continue
training the RBF NN until the optimal value of ξ is determined.
Finally, the ONNs can be trained with the optimal value of ξ.

B. Simulated environment design

In this sub-section, the environment parameters required by
dynamic simulation is introduced. As the Fig. 1 shows, the
initial coordinates of TX can be set as AT

0 = [0 0 HT ],
and HT is the antenna height of TX. According to the preset
environment, the coordinates of the i-th determined scatterer
can be estimated as Cd,i(t) = [xd,i yd,i zd,i], and the number
of determined scatterers are customized by actual deployment
scenario. The initial coordinates of RX can be customized as
AR

00(0), and the coordinates of the r-th row and s-th column
antenna element can be expressed as

AR
rs(0)=AR

00(0)+(r−1)·λH · [0 1 0 ]+(s−1)·λV · [0 0 1 ] . (4)

Then according to the customized RX trajectory, the coor-
dinate of RX at time instant t can be derived as

AR
rs(t)=AR

rs(0)+

∫ t

0

vR(t),vR(t)=[vx(t), vy(t), vz(t)], (5)

where vx(t), vy(t), vz(t) are the RX velocity components
decomposed on the x, y and z axes, respectively.

C. LSCPs prediction

Based on the generation process in sub-section A, five
ONNs are trained to predict the 5 parameters, i.e., PL, DS,
AASA, EASA and number of clusters, respectively. By utiliz-
ing the 3D coordinates of TX and RX at time instant t, the
LSCPs can be predicted. Taking DS as an example

DS(t) = MDS(xR,t, yR,t, zR,t, xT,t, yT,t, zT,t), (6)
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where MDS is the trained relationship between coordinates
and DS. Similar to (6), the remaining LSCPs can also be pre-
dicted. Note that total number of clusters can be decomposed
as the sum of number of determined and randomly generated
clusters CN(t) = CNd(t) + CNr(t), where CNd(t) and
CNr(t) are the number of determined and randomly generated
clusters, respectively.

D. SSCPs Generation

The generation of SSCPs can be decomposed into 4 sub-
steps, the sub-step a and b respectively generate the cluster
parameters for determined cluster and randomly generated
cluster. The sub-step c and d respectively generate the SSCPs
for LoS ray and the remaining rays.

1) Determined cluster parameter derivation: After setting
the coordinates of TX, RX and clusters at time instant t,
the parameters of determined clusters can be directly derived
according to geometry relationships. The cluster vectors of the
i-th determined cluster can be expressed as

rR,d,irs (t) = AR
rs(t)−Cd,i(t) = [xR,d,irs yR,d,irs zR,d,irs ], (7)

rT,d,irs (t) = Cd,i(t)−AT
0 = [xT,d,irs yT,d,irs zT,d,irs ]. (8)

Based on the cluster vector, the cluster delay of
the i-th determined cluster is expressed as τd,irs (t) =(
DR,d,i
rs (t) +DT,d,i

rs (t)
)
/c, where DT,d,i

rs (t) =
∥∥rT,d,irs (t)

∥∥
and DR,d,i

rs (t) =
∥∥rR,d,irs (t)

∥∥ are the distance between the
center of the i-th determined cluster to TX antenna and the
r-th row, s-th column RX antenna element, respectively. Then
the azimuth angle of arrival (AAoA) and elevation angle of
arrival (EAoA) of the i-th determined cluster can be expressed
as

θR,d,irs = arctan2

(
yR,d,irs , xR,d,irs

)
, (9)

φR,d,irs = arcsin
(
zR,d,irs , DR,d,i

rs

)
, (10)

where arctan2 (·) is the four-quadrant inverse tangent opera-
tion. Similar to (9) and (10), the azimuth angle of departure
(AAoD) and elevation angle of departure (EAoD) of the i-th
determined cluster can also be derived.

2) Randomly generated cluster parameter calculation: For
each new randomly generated cluster (the total number of
randomly generated clusters is CNr(t) at time instant t), the
3D coordinates are generated according to the AASA and
EASA predicted by the ONNs. The specific position of a
randomly generated cluster is calculated by AAoA, AAoD,
EAoA, EAoD and distance. For time instant t, the azimuth
and elevation angle can be generated as [21]

θR,r,irs = ZRA ·AASA(t) + ∂RA , (11)

φR,r,irs = ZRE · EASA(t) + ∂RE , (12)

where ZRA and ZRE follow normal distribution N (0,1),
AASA(t) and EASA(t) are the predicted AASA and EASA
at time instant t, respectively. ∂RA and ∂RE are mean values
of AAoA and EAoA, respectively. Similar to (11) and (12),
θT,r,irs and φT,r,irs can also be calculated. Then the coordinates of

center of the i-th randomly generated scatterers CT,r,i/CR,r,i
are derived respectively by

CT,r,i = AT
0 +DT,r,i

rs ·

 cos θT,r,irs · cosφT,r,irs

sin θT,r,irs · cosφT,r,irs

sinφT,r,irs

 , (13)

CR,r,i = AR
rs(t) +DR,r,i

rs ·

 cos θR,r,irs · cosφR,r,irs

sin θR,r,irs · cosφR,r,irs

sinφR,r,irs

 , (14)

where DR,r,i
r and DT,r,i

r are the distances between the i-th
randomly generated scatterers and RX/TX, respectively, which
are defined as a non-negative variable in accordance with
exponential distribution [35]. Finally, the cluster delay of the
i-th randomly generated cluster is calculated as

τ r,irs (t) =
(
DR,r,i
rs +DT,r,i

rs + ‖CT,r,i −CR,r,i‖
)
/c. (15)

3) SSCPs determination of the LoS ray: In the proposed
channel model, each ray has 6 SSCPs, which are power, delay,
AAoA, EAoA, AAoA and EAoD. The SSCPs of LoS ray can
be directly derived by the geometrical relationship. Similar
to the calculation of cluster vectors, the LoS vector can be
expressed as

rLoS
rs (t) = AR

rs(t)−AT
0 = [xLoS

rs yLoS
rs zLoS

rs ]. (16)

Based on the LoS vector, AAoA and EAoA of the LoS
cluster can be calculated as

θR,LoS
rs = arctan2

(
yLoS
rs , x

LoS
rs

)
, (17)

φR,LoS
rs = arcsin

(
zLoS
rs , D

LoS
rs (t)

)
, (18)

where DLoS
rs (t) =

∥∥rLoS
rs (t)

∥∥ is the distance between the
TX antenna element from the r-th row, s-th column RX
antenna element. Meanwhile, according to geometric sym-
metry relations, the AAoD and EAoD of the LoS ray can
be derived as θT,LoS

rs = π − θR,LoS
rs and ϕT,LoS

rs = −ϕR,LoS
rs ,

respectively. Besides, the delay of LoS ray is calculated by
τLoS
rs (t) = DLoS

rs (t)/c.
4) SSCPs generation of the determined and randomly gen-

erated rays: In this work, the generation method of the SSCPs
of determined and randomly generated rays are the same. For
each ray, the SSCPs are generated by both cluster parameters
and predicted DS. The delay of the n-th ray in the i-th
determined or randomly generated cluster can be expressed
by [6]

τΘ,i
rs,n(t) = τΘ,i

rs (t)−mτ ·DS(t) · ln (Xτ ) , (19)

where Xτ is uniformly distributed within (0,1), mτ is the delay
scalar and Θ = {d, r}. The AAoA and EAoA of the n-th ray
in one cluster can be calculated by adding the angular offset[
θR,Θ,irs,n (t), φR,Θ,irs,n (t)

]
T =

[
θR,Θ,irs (t), φR,Θ,irs (t)

]
T+
[
∆θR,∆φR

]
T ,

(20)
where ∆θR and ∆φR are angular offsets which are assumed to
follow Laplace distributions [19] with zero mean and standard
deviation of 1 degree. Note that the standard deviation should
be modified subjected to actual measured values to match the
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environment. Similar to (20), the AAoD and EAoD of the n-th
ray can be also calculated. Finally, based on the time-variant
ray delays, the power of the n-th ray in the i-th determined
or randomly generated cluster can be generated according to
an exponential distribution [6] [21]

PΘ,i
rs,n(t) = exp

(
-τΘ,i
rs,n(t)

mτ − 1

mτ ·DS(t)

)
. (21)

E. CIR generation
In the end, the CIR matrix hrs(t, τ) can be generated by

the SSCPs of all the rays, and it is used to describe the small-
scale fading of dynamic channel. The complex CIR matrix of
wireless channel between the TX antenna element and the r-
th row, s-th column RX antenna element can be calculated by
the superposition of the LoS, observable and non-observable
components, i.e.,

hrs(t, τ)=

√
1

KR+1

(
KR ·hLoS

rs (t, τ)+hobs
rs (t, τ)+hnobs

rs (t, τ)
)

(22)
where KR is the K-factor. The LoS component hLoS

rs (t, τ) can
be generated as

hLoS
rs (t, τ) =

[
Frs,V

(
θR,LoSrs , φR,LoS

rs

)
Frs,H

(
θR,LoS
rs , φR,LoS

rs

)]T [ejΦ
V V
LoS 0

0 ejΦ
HH
LoS

]
[
F0,V

(
θT,LoS
rs , φT,LoS

rs

)
F0,H

(
θT,LoS
rs , φT,LoS

rs

)]·ej2πfcτLoS
rs (t) ·δ

(
τ−τLoS

rs (t)
)
·ej2πν(t)t,

(23)

where j =
√
−1, fc is the carrier frequency, {·}T denotes

transposition, Frs/0,V and Frs/0,H are the antenna patterns of
RX/TX for vertical and horizontal polarizations, respectively.
Besides, ΦV VLoS and ΦHHLoS are random phases subject to uniform
distribution in (0, 2π], and ν(t) is the doppler frequency shift,
which can be calculated as

ν(t) =
vR(t)

λc
· cos θvr, (24)

where λc is the wavelength and λc = c/fc, θvr is the included
angle between the LoS vector rLoS

rs (t) and the velocity vector
vR(t). The observable component hobs

rs (t, τ) can be generated
by the SSCPs of the determined rays

hobs
rs (t, τ) =

CNd(t)∑
i=1

Ln∑
n=1

[
Frs,V

(
θR,d,irs,n , ϕ

R,d,i
rs,n

)
Frs,H

(
θR,d,irs,n , ϕ

R,d,i
rs,n

)]T[
ejΦ

V V
d,i

√
κd,i−1ejΦ

VH
d,i√

κd,i−1ejΦ
HV
d,i ejΦ

HH
d,i

] [
F0,V

(
θT,d,irs,n , ϕ

T,d,i
rs,n

)
F0,H

(
θT,d,irs,n , ϕ

T,d,i
rs,n

)]√
P d,irs,n(t) · e2πjfcτ

d,i
rs,n(t) · δ

(
τ − τd,irs,n(t)

)
· ej2πν(t)t, (25)

where ΦV Vd , ΦV Hd , ΦHVd , ΦHHd are the initial phases subject
to uniform distribution in (0, 2π], κ is the cross-polarization
power ratio and Ln is the number of rays in each cluster.
Similar to (25), the non-observable component hnobs

rs (t, τ) can
be also generated by the SSCPs of the randomly generated
rays.

Note that (22)-(25) can support dynamic channel simulation
in a non-line-of-sight (NLoS) case as well by removing the
LoS ray component in generation of the CIR.

F. Supplementary Description

In order to maintain the dynamic characteristics and param-
eter continuities of the proposed model, the birth and death
rules of clusters are specified as follows: 1) in general, LoS
component and determined clusters are always present, and
only the number of randomly generated clusters is updated;
2) if CN(t+ 1) > CN(t) is met, i.e., the number of clusters
at the time instant t + 1 is greater than that at time instant
t, new randomly generated cluster(s) will be added, and the
other clusters will not change; 3) if CN(t + 1) < CN(t) is
met, i.e., the number of clusters at the time instant t + 1 is
less than that at time instant t, the randomly generated clusters
with the largest delay will die, and the other clusters will not
change.

Note that the proposed 3D semi-deterministic channel
model can support both standard geometry based stochastic
channel modeling as well as deterministic channel modeling:
1) if the determined scatterers are not set, the channel model
can be simplified to traditional statistical model and can simu-
late mmWave channels which only conforms to the statistical
distribution; 2) if the randomly generated scatterers are not
set, i.e., all the coordinates of scatterers are determined, the
channel model can be approximated as ray tracing, where
however the difficulty of setting up the simulation environment
and the computations of the parameter calculations will also
increase due to the added massive scatterers.

III. MEASUREMENT DATA FOR MODEL VALIDATION

In this work, the proposed ONN-based semi-deterministic
dynamic channel modeling approach is validated by the 28
GHz mmWave channel measured data. In this section, the mea-
surement campaigns are first introduced, and the parameters
calculation approach is discussed in detail.

A. Measurement Campaigns

The 28 GHz mmWave channel measurement campaign was
conducted at a 220 kV high-voltage substation located in Qing-
dao, China using Keysight time-domain channel sounder [36].
At the high-voltage substation, the environment is relatively
static, and the scatterers between the TX and RX include
power equipment, such as voltage and current transformers,
various types of wires, as well as trees and walls, etc. Figs.
6 (a) and (b) show the measurement environment for the TX
and RX equipment of the channel sounder, respectively. It can
be seen from Fig. 6 that the environment is complicated, there
are many towers, wires and railings in the substation, which
makes it impossible to model the environment and use the RT.

The layout of transceiver locations of the channel measure-
ment is shown in Fig. 7, in which the TX was located at the
fixed position marked with a rectangle, and the RX was located
at a total of 27 positions marked with black circles along the
LoS route. The distance between two adjacent measurement
positions is 5 m, except for positions 7 and 8, with a distance
of 20 m. The length of the measurement route is 150 m. The
actual environment in Fig. 7 can be simplified to the abstract
scene in Fig. 1. In Fig. 7, the LoS ray always exists and its
path is marked with a red line. There are some observable rays
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reflected or refracted by the ground or power facilities whose
paths are marked with yellow dashed lines. The approximate
paths of non-observable rays are marked with blue lines.

An omni-directional antenna with 3 dBi gain is applied at
the TX with the height of 2.5 m, while a uniform linear array
(ULA) with 8 array elements (ULA-8) is applied at the RX
with the height of 2.0 m, and the ULA-8 are connected with
eight individual radio frequency (RF) channels at the receiver
side of the Keysight channel sounder. By moving the ULA-8
antenna eight times horizontally and eight times vertically, an
8×64 virtual uniform planner array (VUPA) can be generated,
which results in a virtual SIMO system. Similar strategy was
reported in [37] to improve the spatial resolution of the channel
sounding system. The spacing between two adjacent antenna
elements of the VUPA is half-wavelength of electromagnetic
wave at 28 GHz (i.e., 5.36 mm). The SIMO system will be
used for extracting multipath information from measured CIRs
later. Back-to-back system calibration was performed before
the measurement to eliminate the inherent system response
[36]. Specific measurement parameters are can be found in
previous work [38].

(a) (b)

Fig. 6. Measurement environments of the Qingdao high-voltage substation.
(a) Transmitter. (b) Receiver.

Fig. 7. Simplified schematic diagram of the measurement layout.

B. Parameters Calculation Approach

In this work, the channel parameters required in the mod-
eling and simulation are extracted from the raw channel data,
and the full flow chart of channel measurement and data post-
processing are shown in Fig. 8. The raw measured data is

Specific Scenario

Raw Measured Data

CIR Data

Channel Measurement

Measurement System

Calibration Data

Direct Connection

SAGE 

Algorithm

PDP and PL

SSCPs

MCD 

Algorithm
Clusters

LSCPs

Statistical Analysis

Fig. 8. Flow chart of the data post-processing.

TABLE II
CHANNEL PARAMETERS OF THE HIGH-VOLTAGE SUBSTAION

Parameter Value Parameter Value

PL
[dB]

PL0 61.38
EASA [lg(°)]

µEASA 1.32
n 2.46 σEASA 0.12
σXs 4.12 Number of

Clusters
µC 7.15

DS
[lg(s)]

µDS -8.29 σC 1.94
σDS 0.24 Cluster DS [ns] - 2.82

AASA
[lg(°)]

µAASA 1.5 Cluster AASA [°] - 7.37
σAASA 0.045 Cluster EASA [°] - 5.21

record by the Keysight channel sounder, and the calibration
data is obtained in the back-to-back measurements. The system
response can be therefore calibrated from the measured CIR
data [36]. Based on the CIR data, the PDP can be directly
derived by formula (36) in [21], and PL can be calculated by
formula (6) in [39]. Space alternating generalized expectation-
maximization (SAGE) algorithm [40] is applied to extract
MPCs distribution. We also apply the multipath component
distance (MCD) algorithm [41] to cluster the extracted MPCs.
Then LSCPs including DS, AS (including AASA and EASA)
and K-factor are calculated through statistical analysis of
SSCPs by formula (9)-(14) in [39]. In order to describe the
channel characteristics of substation scenario in a concise
manner, PL can be modeled as distance-related variables by
close-in (CI) model [42] and SF can be described as a zero
mean normal distribution. DS and AS can be modeled as
lognormal distributions. Number of clusters can be represented
as an ordinary normal distribution. Table II summarizes the
simplified channel parameters of the high-voltage substation.

IV. RESULTS AND ANALYSIS

In this section, we present the performance of our proposed
channel modeling approach. First, 5 ONNs are generated based
on the actual measured channel parameters in the high-voltage
substation, and a simulation scenario for algorithm evaluation
is described according to the measurement scenario. Second,
the LSCPs according to the simulation scenario can be pre-
dicted by the generated ONNs. The measured, non-optimized
RBF NN predicted and QuaDRiGa simulated LSCPs are
compared with the ONN predicted ones to validate the predic-
tion accuracy. Third, the simulated MPCs and corresponding
parameters can be obtained based on the simulation scenario
as well as the predicted LSCPs, and they are compared with
the measured ones. Finally, the CIR matrix can be derived by
delays and angles of the simulated MPCs, then the dynamic
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PDPs are calculated and compared with the measured and
QuaDRiGa simulated ones.

A. ONNs Generation and Simulation Scenario Design

There are totally 27 groups of measured coordinates and
corresponding LSCPs in the high-voltage scenario, and we
increase the number of datasets by doing interpolation between
every two adjacent measured positions, thus 53 groups of
datasets can be applied in the ONN generation. According to
the generation process in Section II.A 3), the measured data
are divided into three parts, 33 groups for training, 8 groups
for validation and 12 groups for testing datasets, respectively.
The testing datasets are determined first and consisted of
three randomly selected segments, each segment contains four
consecutive positions. Then 8 validation datasets are randomly
selected from the remaining 41 groups of datasets. The reason
for choosing the testing datasets in this way is to verify the
ability of ONN to predict parameters at consecutive unknown
positions. There are five RBF NNs trained by the training
datasets, and the optimal values of ξ which minimizes the
prediction RMSE of the validation datasets are searched by
the SA algorithm. Finally, 5 ONNs are trained by the training
and validation datasets as well as the optimal values of ξ.

After generating the ONNs, the simulation scenario can
be customized according to the simulation requirements. In
this work, the coordinates of TX and RX in the simulation
scenario are set consistently with the high-voltage substation
for convenient comparison. The simulation scenario including
one TX, one moving RX and several determined scatterers.
The coordinates of TX are fixed at (0, 0, 2.5). The RX
trajectory is set consistently with actual measurement and the
total length is set as 150 m. The velocity vector vR(t) is set
as 1 m/s and the data sampling rate is 1 per second, so the
distance between two adjacent simulation positions is 1 m.
Note that the actual environment in Fig. 7 is too complicated
to be accurate modeled, thus in this work, four determined
scatterers are set. The first determined scatterer represents the
TX equipment, and the approximate coordinates are set near
the TX. The second determined scatterer represents ground,
and the coordinates are changing with the moving of RX. The
specific coordinates are calculated by the geometric relation-
ship. The other two determined scatterers represent the electric
power facilities on the both sides of RX trajectory. Note that
the electric power facilities are abstracted to two points and
the coordinates are estimated by the actual environment in Fig.
7.

B. Performance Analysis of the Predicted LSCPs

The generated ONNs can be applied to predict LSCPs at
positions where measured data that are not available. Figs.
9 (a)-(e) show the results of PL, DS, AASA, EASA and
number of clusters from measurement, ONN-based simulation,
QuaDRiGa simulation, non-optimized RBF NN simulation and
spline interpolation, respectively. The positions in training and
validation datasets are marked with black square in Fig. 9,
while the positions in testing datasets are marked with red
square. 150 groups of simulated channels and corresponding

TABLE III
ERROR ANALYSIS OF LSCP PREDICTION

Parameters ONN-based
Model

QuaDRiGa
Platform

Non-optimized
RBF NN

Spline
Interpolation

RMSE

PL [dB] 2.50 4.88 3.63 2.83
DS [ns] 1.34 4.42 1.65 7.56

AASA [◦] 0.90 5.28 3.16 1.34
EASA [◦] 11.95 9.31 8.27
Number of

Clusters 1.36 4.16 1.25 2.84

MAPE
[%]

PL 1.81 4.06 2.43 2.23
DS 10.98 37.99 11.16 63.98

AASA 2.38 14.80 8.27 3.42
EASA 11.46 46.05 37.74 29.40

Number of
Clusters 13.07 53.37 13.65 28.78

Average 7.94 31.25 14.65 25.56

LSCPs are generated by QuaDRiGa platform for comparison.
Simulated channel generation was reported in our previous
work [38]. Non-optimized RBF NNs are trained with default
parameter value, i.e., ξ = 1. In addition, spline interpolation
is performed using the training datasets. We can see from
Fig. 9 that the LSCPs predicted by the ONNs are obviously
closer to the measured ones than that simulated by other
approaches. The QuaDRiGa simulated channels parameters
have large errors at certain positions and it cannot be directly
used for accurate link-level channel simulation. Besides, the
number of clusters is set as a fixed value in the QuaDRiGa
platform according to the existing standardization [6]. The
LSCPs predicted by non-optimized RBF NN are discontinuous
and less accurate compared with these of the ONN-based ones.
The LSCPs predicted by spline interpolation are continuous,
however the interpolated parameters have large errors as
demonstrated in Fig. 9. Furthermore, the interpolation results
cannot be used for LSCPs prediction in other scenarios.

In order to quantify the prediction performance of the var-
ious approaches of Fig. 9, the prediction errors are calculated
and listed in Table III. Since the RMSEs of different LSCPs
have different units, we use mean absolute percentage error
(MAPE) [31] to evaluate the average prediction error of dif-
ferent approaches. As shown in Table III, the average MAPEs
of the ONN-based model, QuaDRiGa platform, non-optimized
RBF NN and spline interpolation are 7.94%, 31.25%, 14.65%
and 25.56%, respectively, which indicates that the prediction
performance of ONN-based model is far better than that of
other approaches.

C. Performance Analysis of the Simulated SSCPs

The LSCPs predicted by the ONNs are utilized in the
time evolution simulations, and the SSCPs of each MPC are
generated by sub-section II. D. Figs. 10 (a) and (b) show
the AAoAs distribution from measurement and ONN-based
simulation, respectively, while Figs. 11 (a) and (b) show the
EAoA distribution. The coordinates of TX, RX and determined
scatterers are set as the positions described in subsection A,
and only the main rays with strong power are considered in
the Fig. 10 and Fig. 11.

We can see from Fig. 10 (b) and Fig. 11 (b) that the AAoA
and EAoA distribution of the ONN-based simulated MPCs
match very well with the measured ones. In the Fig. 10 (b),
the simulated LoS component can be clearly observed around
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Fig. 9. Comparisons of the LSCPs by measurement, ONN, QuaDRiGa and non-optimized RBF NN based simulations. (a) PL. (b) DS. (c) AASA. (d) EASA.
(e) Number of clusters.
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Fig. 10. AAoA distributions. (a) Measurement. (b) ONN-based simulation.
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Fig. 11. EAoA distributions. (a) Measurement. (b) ONN-based simulation.

90 degrees in AAoA, and a dominant cluster can be observed
next to the LoS component, which is generated by ground
and TX equipment. The other two determined clusters can
be observed on the both sides of the LoS component with the
excess delay about 60 ns, which are generated by the scatterers
on the both sides of RX trajectory. Similarly, in Fig. 11 (b),
the LoS component can be observed around 90 degrees in
EAoA, and one determined cluster can also be observed next
to the LoS component which is generated by TX equipment.
Besides, the MPC cluster generated by ground appears around

60 degrees in EAoA and 10 ns of excess delay, and the
other two determined clusters appears near 60 ns of excess
delay. All these observations can verify the correctness and
effectiveness of the proposed ONN-based semi-deterministic
dynamic model in terms of the distribution of MPCs. However,
there are still some discrepancies in the AAoA and EAoA
distribution between the measured and simulated MPCs and
marked by the black circle in the Fig. 10 and Fig. 11, which
are caused by simplification of the environment in the database
modeling.

D. Performance Analysis of the Generated CIRs

Finally, the dynamic CIR of each simulation position can
be generated through the simulated SSCPs in Section II. E,
and the accuracy of the simulated CIRs can be validated by
PDPs. The PDP is obtained by averaging the CIR of each
antenna and then square it. Figs. 12 (a)-(d) depict the dy-
namic PDPs derived by the measured, ONN-based simulated
without randomly generated clusters, ONN-based simulated
and QuaDRiGa simulated channels, where x, y-axes and
the colorbar denote the propagation delay, distance between
TX/RX and normalized power, respectively. In Fig. 12 (b),
the LoS component, determined clusters can be observed and
distinguished. The LoS component has the smallest delay and
the strongest power, and the signal surround LoS component
is the combination of rays in determined clusters. However
the simulated channels with only determined clusters cannot
match the rich multipath in the actual environment. In Fig. 12
(c), randomly generated clusters can be observed with larger
delay and weaker power. We can see from Figs. 12 (a) and (c)
that the PDPs derived by the ONN-based simulated channels
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Fig. 12. Dynamic PDPs. (a) Measurement. (b) ONN-based simulation without randomly generated clusters. (c) ONN-based simulation. (d) QuaDRiGa
simulation.
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Fig. 13. SSIMs of the dynamic PDPs simulated by different approaches.

agree very well with the measured ones. However, there are
still some discrepancies between the ONN-based simulated
and measured channels in case of weak randomly generated
rays, which is due to the database simplification. We also
observe from Figs. 12 (a) and (d) that there is a big difference
between the QuaDRiGa simulated and the measured PDPs, as
expected.

Furthermore, structural similarity index measure (SSIM) is
applied to quantify the accuracy of the ONN-based simulated
channels. SSIM is widely applied in image compression and
restoration as a measure of figure similarity [43]. The range
of SSIM is from 0 to 1, with larger values indicating greater
similarity between the two figures. Fig. 13 compares the
CDF curves of dynamic PDP SSIM of different simulation
approaches. The mean SSIM values of the ONN-based sim-
ulation, ONN-based simulation without randomly generated

clusters and QuaDRiGa simulation are 0.83, 0.76 and 0.35,
respectively. The results show that the ONN-based simulation
with both determined and randomly generated clusters has
the highest SSIM, validating the importance of randomly
generated clusters. In conclusion, the proposed channel model
has the capability to simulate dynamic channels with different
kinds of rays, and the simulated PDPs match the measured
PDPs very well.

V. CONCLUSION

In this work, a novel semi-deterministic mmWave dynamic
channel modeling approach based on the ONN principle
is proposed for accurate channel simulation and subsequent
network design of the industrial IoTs. The proposed model
is able to simulate dynamic mmWave channel with arbitrary
customized trajectory of terminal and scatterers. In the channel
model, the ONNs are trained by measured large-scale channel
parameters and optimized by the SA algorithm to achieve the
minimum prediction error. The large-scale channel parameters
predicted by the ONNs are applied in the dynamic simulation
and channel impulse response matrix are derived according
to the geometric relationship, thus all the simulated channel
parameters can be consistent with the expected parameters.

To validate the performance of the proposed model,
mmWave channel measurements were carried out at a high-
voltage substation. Based on the measured channel parameters,
five ONNs are generated to predict LSCPs at unknown posi-
tions, and the predicted LSCPs are applied in dynamic channel
simulation. The performance of the simulation is validated by
LSCPs, distribution of MPCs as well as PDPs. The results
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show that the average MAPE of the LSCPs simulated by
the ONN-based, QuaDRiGa, non-optimized RBF NN and
spline interpolation approaches are 7.94%, 31.25%, 14.65%
and 25.56%, respectively, which indicates that the prediction
performance of ONN-based model is far better than that of
other approaches. Both the AAoA and EAoA distribution of
the ONN-based simulated MPCs match very well with the
measured ones, even though the simulated scenario is very
simple. The simulated PDPs are almost consistent with the
measured PDPs, which is unachievable for others channel
model. Besides, the SSIM values of the ONN-based sim-
ulation, ONN-based simulation without randomly generated
clusters and QuaDRiGa simulation are 0.83, 0.76 and 0.35,
respectively, which indicates that the random component of
the ONN-based model is indispensable.

In conclusion, the proposed channel model has the ad-
vantage of customization and high accuracy, it can simulate
the paths of main MPCs while maintaining the statistical
characteristics of the channel, which provides an accurate
channel simulation approach for both link-level and system-
level in the design and optimization of industrial IoTs.

APPENDIX A
DERIVATION OF THE EQUATION 3

RBF NN is a kind of static forward network, which consists
of two layers as shown in Fig. 3, namely nonlinear transfor-
mation layer and linear combination layer, respectively. The
output of the first layer can be expressed as

outhidden,i = g (‖q− wi‖) , (26)

where q is the input vector. wi is the weight matrix of
the nonlinear transformation layer, which is equal to the
training input vector matrix. ‖·‖denotes 2-norm and g (·) is
the nonlinear function and always taken as the Gauss function
in RBF NN, which is calculated as

g(x) = exp

{
− x2

2ξ2

}
, (27)

where ξ is the variance of the radial basis function, i.e., the
width of the nonlinear transformation function. The value of ξ
is adjustable and directly influences the accuracy of prediction,
and it is feasible to improve prediction accuracy by finding the
optimal value of ξ.

The second layer of RBF NN is the linear combination
layer, which is responsible for linearly combining the output
of the nonlinear transformation layer. There are two ways to
determine the number of hidden nodes. One is based on the
training error during the training process, and a hidden node is
added if the error is greater than the threshold. The other is to
customize directly. By substituting (27) into (26), the output
of the linear combination layer can be derived as (28), and
the expression of mapping between input and output can be
simplified to M

Yk,out = M(q, ξ) =

W∑
i=1

(wik·outhidden,i + bik)

=

W∑
i=1

[
wik · exp

{
− (q− wi)T (q− wi)

2ξ2

}
+ bik

]
, (28)

where wik and bik are adjusted by the gradient descent
algorithm. By substituting (28) into (2), the final solution can
be translated into (3).
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