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Abstract: Data acquisition is a central task in research
and one of the largest opportunities for citizen science.
Especially in urban surveys investigating traffic and peo-
ple flows, extensivemanual labor is required, occasionally
augmented by smartphones. We present DesPat, an app
designed to turn a wide range of low-cost Android phones
into a privacy-respecting camera-based pedestrian track-
ing tool to automatize data collection. This data can then
be used to analyze pedestrian traffic patterns in general,
and identify crowd hotspots and bottlenecks, which are
particularly relevant in light of the recent COVID-19 pan-
demic. All image analysis is done locally on the device
through a convolutional neural network, thereby avoiding
any privacy concerns or legal issues regarding video sur-
veillance. We show example heatmap visualizations from
deployments of our prototype in urban areas and com-
pare performance data for a variety of phones to discuss
suitability of on-device object detection for our usecase of
pedestrian data collection.

Keywords: citizen science, object detection, pedestrian
tracking, smartphone

1 Introduction

Access to smartphones with their multitude of sensors has
enabled a wide range of citizen science applications and
contributions in the last decade. Some citizen science apps
are used as a frontend for manual data input while option-
ally including built-in sensors, some rely primarily on data
providedby these sensors. Frommarking locations of spot-
ted birds [48] or recording soundbites of nightingale popu-
lations [52] to repurposing cameras as air pollution detec-
tors [46], all available sensors are utilized in some way by
interested researchers.

*Corresponding author: Florian Echtler, Aalborg University, Aalborg,
Denmark, e-mail: floech@cs.aau.dk
Christopher Getschmann, Aalborg University, Aalborg, Denmark,
e-mail: cget@cs.aau.dk

Figure 1: Smartphone capturing a pedestrian traffic dataset on loca-
tion.

When analyzing cities and urban space, evaluating
development projects, or backing civic action with quan-
tifiable data, the movement patterns of pedestrians and
other traffic participants are a key element. Usually, this
data is gathered only by expensive, permanently installed
systems or through laborious fieldwork andmanual count-
ing, and large datasets have consequently been out of
reach for most citizens and many researchers. In addition
to cost, automated data collection systems based on com-
puter visiondo raise questions about consent, privacy, and
compliance with local laws. While low-cost smartphones
can already be used to collect manual pedestrian or car
counts, the device itself can also gather pedestrian data by
using local processing power to run object detection net-
works on the device itself to process camera input. This
approach will help lower the entry barrier for citizens to
participate in better knowing their own community, as ini-
tially discussed by Jacobs in her seminalwork [25] and also
later elaborated on by Foth et al. regarding empowering
citizens in the digital age [14].

We present an object detection app for mobile devices
that allows automated collection of pedestrian movement
data in a simple, inexpensive and privacy-preserving way.
Smartphones can be placed on windows and balconies to
survey public spaces in view of the camera. The on-device
object detection is performed with the Tensorflow mobile
framework [1] running three different networks of varying
speed and precision for different phones, all pretrained on
the Microsoft COCO Dataset [31]. Any detections of known
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objects by the network are postprocessed and transformed
to geocoordinates, computed from point correspondences
between a map and the scene. These can be selected man-
ually by the user on an averaged image of all captures,
thereby preserving all image features necessary for map-
ping points without storing or retaining any footage of in-
dividually identifiable pedestrians. Acquired observation
data can be easily exported, shared and analyzed in a vi-
sualization tool we provide.

Pedestriandata in general canbeacquiredat three lev-
els of fidelity: individual trajectories, counting data, and
spatial distribution densities. DesPat currently allows ac-
quisition and visualization of distribution data, at the ad-
vantage of lower processing requirements for inexpensive
or outdated smartphones.

Although a server-based solution with far higher pro-
cessing power would improve the performance allowing
trajectory detection, our approach has the advantages
of being entirely self-contained, especially regarding net-
work connectivity, and will never collect any sensitive im-
age data which might later be abused in unforeseen ways.
In addition, a purely app-based approach allows the cre-
ation of datasets with a minimum of hardware cost and
technical expertise, thereby enabling large-scale data col-
lection to support novel research avenues.

Our contribution is two-fold:we analyze the feasibility
of running object detection networks on inexpensive and
low-end mobile devices, and provide an open-source mo-
bile object detector app as a proof of concept for concerned
citizens and researchers to collect datasets of pedestrian,
cyclist and car densities with very low cost and effort.

2 Related Work

2.1 Citizen Science

Citizen scientist contributions have enabled a wide range
of research, either by contributing work, resources, or
data. However, two of the major challenges of citizen sci-
ence are data collection and engaging with the commu-
nity. Citizens’ smartphones can help tackle these issues,
so researchers have been relying on them extensively.

The eBird [48] project moved from purely web-based
input to a smartphone app that allows citizen scientists
and birders to log locations of bird observations. Other
projects such as the Naturblick Nightingale app [52], log-
ging nightingale encounters, incorporate additional sen-
sor data and interaction, in this casemicrophonedata. The
“Loss of the Night” app [27] relies on the camera, using the

Table 1: Citizen science apps and sensor usage.

Project/App Sensor

eBird [48] Manual Data Input
Nightingale [52] Microphone
Loss of the Night [27] Camera
iSpex [46] Camera + external hardware
Cycletracks [42] GPS
MyShake [26] Accelerometer

image data as the main sensor to measure light pollution.
For every built-in sensor, there is a project that makes use
of direct or indirect measurements to collect data for their
specific research (see Table 1). This range of sensors can
even be extended by providing additional sensors or re-
purposing existing sensors with additional hardware, as
demonstrated by the iSpex system [46] which turns the
smartphone camera into a spectrometer.

A related approach named Zensors [28] makes use
of low-cost smartphones as computer vision sensors, an-
swering questions stated in natural language about im-
age contents. The image data is sent to a server for man-
ual processing by humans first. After receiving a sufficient
amount of answers from humans, a machine learning al-
gorithm is trained on this data to take over. Zensors is well
suited for tasks which are not clearly defined or very di-
verse in their requirements.

2.2 Pedestrian Detection

However, for the very specific task ofmeasuringpedestrian
traffic automatically, there are specialized hardware and
software products. To acquire an overview it is useful to
have a look at themost frequently used and installed tech-
nology (for a tabular overview see Table 2).

Short-range sensors such as pressure mats and in-
frared barriers [9] allow accurate measurements for low
crowd densities on narrowwalkways.While these are rela-
tively inexpensive and therefore widely used sensors, they
are unsuited for larger spaces. When privacy is a con-
cern, automated pedestrian counting for open spaces is of-
ten conducted with far-infrared/thermal cameras, which
allow better foreground/background separation and im-
prove detection accuracy [20]. However, like other com-
mercial systems in this application space, they are pro-
hibitively expensive for citizen scientists. Moreover, most
FIR-based counters are limited to a few meters in their op-
erational range. The same is true for stereoscopic depth
cameras [44], mostly used in small spaces such as en-
trances in retail environments.
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Table 2: Overview of available automated pedestrian data acquisition solutions.

Range Sensor Example Fixed Location Accuracy

Short Infrared Beam EcoPost [9] Yes High
Short Thermal Camera Goubet et al. [20] Yes High
Short Stereo Camera Sensource [44] Yes High
Medium WiFi/Bluetooth-Tracking Bluemark [2] Yes Low
Wide Cell Data MotionLogic [36] No Low
Wide Fitness Tracker Strava Metro [47] No Low
Wide Citizen Science/Personal Data Donations Cycletracks [42] No Medium
Wide Monocular Camera Placemeter [38] No Medium/High

The usage of smartphone presence detection for
counting and tracking passersby, either active or passive,
has emerged shortly after the widespread adoption of
WiFi-enabled phones. For an extensive survey of this ap-
proach, see [8]. Wide-range passive tracking of pedestri-
ans happens by installing static devices in retail stores
or public spaces that record WiFi or Bluetooth signals
emitted from peoples’ phones for commercial [2] or aca-
demic purposes [50]. Coarse wide-area position data is
also acquired bymobile network operators that track users
based on cell tower antenna data and sell access to these
pseudonymized datasets. An example is Motionlogic [36],
a subsidiary of T-Mobile. Active tracking of smartphone
users happens via installed apps or smart fitness track-
ers. An example for a commercial product is Strava Metro
[47], the dataset and visualization product for urban plan-
ners by the fitness band company Strava. However, these
datasets incorporate mostly sports activities such as jog-
ging or cycling and are primarily useful for analyzing these
recreational traffic patterns rather than general traffic. In
addition, this data is biased towards social groups that
use fitness tracking devices to quantify their workout. No-
tably, in early 2018, Strava Heatmap data inadvertently
exposed previously unknown military bases in the Mid-
dle East, thereby highlighting the privacy risks associ-
ated with pedestrian traffic data [22]. An example of a
volunteer-driven approach is the Cycletracks app in San
Francisco [42] which enabled cyclists to share their rides
with the SanFrancisco TransportationAuthority. This data
wasused tohelp trafficplanners understandwhich impact
traffic elements like separated bike lanes have. After the
project concluded in 2010, the app has been adapted by 18
other cities at the time of writing.

All thesemethods have in common that they only pro-
vide a rough estimate of pedestrian or cyclist traffic since
not every person carries an active smartphone or has the
required app installed. Access to datasets from carriers is
expensive but offers a higher amount of data in relation to
tracked area and time range. In both cases, accuracy is low

to very low (on the order of 10–100m due to wireless cell
size), thereby only allowing very generalized statements
about pedestrian flows.

Mobile optical systems are the most relevant traf-
fic measurement systems for high-accuracy detection on
large-scale spaces. The Miovision Scout [33] is a mobile
traffic counter camera. It can be mounted on an extend-
able pole to survey streets. Computation is done after up-
loading recorded footage to a server. The modcam [34]
is marketed as a pedestrian counter for retail and facil-
ity management. It is a monocular ceiling-mounted cam-
era with a fisheye lens running the detection algorithm
directly on the device. The startup Placemeter [38] used
low-costAndroid smartphones to gather imagedata.Video
data from the devices is streamed to a central server where
object detection is performed. Customers are billed per
video stream and object type (car, pedestrian, etc.). Every
phone requires a constant broadband network connection
to stream video data and is not supposed to run on battery.
Placemeter was acquired by Netgear and the service is no
longer available to new customers.

A proof of concept for an open-source mobile object
counter is the opendatacam [35]. A Nvidia Jetson Board is
used to capturewebcam input on-sitewhile processing the
video feed with the YOLO object detection algorithm [39].
While the opendatacam approach partly aligns with our
goals, there are three major issues. Cost: the Jetson board
including additional hardware is more expensive than a
state-of-the-art Android phone. This makes it infeasible
for short-term deployments, citizen science projects, or in-
stallations requiring multiple viewing angles. Safety: the
wiring and lithium-polymer battery connectors need to be
assembled by the user and soldered. Complexity: the en-
closure is complex to build and the board requires solder-
ing skills; setting up the software also requires at least a
basic understanding of software development.

Similarly, the more recent Telraam project [49] as part
of the WeCount [53] initiative uses a Raspberry Pi for data
acquisition and processing. This approach requires less
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hardware setup effort than opendatacam, but still is tar-
geted towards tech-savvy users. In contrast, DesPat aims
to reduce the required setup to simply installing an app
from the official store.

2.3 Visualization and Use of Pedestrian Data

Capturing data is only half of the work, visualizing these
datasets is important to infer information.Most pedestrian
data visualizations are manually edited maps enriched
with manually obtained data, such as maps from Gehl’s
“Public Life – Public Space” surveys [15] (see Figure 2a).

Figure 2:Manual visualization of pedestrian counts in New York City
and online visualization for Melbourne.

The City ofMelbourne installed permanent pedestrian
counters in the city center in 2009 andpublishes this infor-
mation as a part of their open data portal [37]. This is one
of few examples where non-manual pedestrian data is vi-
sualized (see Figure 2b).

Once data about pedestrian flows is available, it can
then be used to analyze the behavior of passersby in ev-
eryday situations, but also in relation to short-term in-
stallations such as large public displays [13, 41]. Inside
larger buildings, pedestrian data can also be collected and
used to support Post-Occupancy Evaluation (POE), which

would otherwise require large-scale sensor installations
such as in [11, 51].

2.4 Summary

Pedestrian tracking based on wireless data offers low-
fidelity data for very large areas. Thermal and stereo cam-
eras allow more precise counting in small areas, but are
not applicable for larger spaces such as public places.
Monocular camera systems such as Placemeter or Miovi-
sion Scout make tracking objects on larger public spaces
possible, although they are expensive and mostly tied to
centralized servers.

Consequently, none of the above-mentioned research
or products is aligned with our approach of offering an
open dataset acquisition tool suitable for citizen science
and urban research. Nonewith the exception of opendata-
cam or the Cycletracks app is open-source or in any way
suitable for low-cost data acquisition or citizen science.
While Placemeter did follow the same low-cost approach
in terms of raw data acquisition, privacy was not a con-
cern in the architecture of their system. opendatacam and
Telraamare similar in their purpose and share design deci-
sionswith our approach, but have a far higher entry barrier
and are also costly.

3 Pedestrian Detection
Before presenting the design of our app,wewill first briefly
summarize relevant background information regarding
vision-based pedestrian tracking and object detection us-
ing convolutional neural networks (CNNs). Two different
network architectures are relevant:

Among the best-performing generalized object detec-
tion networks is Faster Region-CNN [40] (FRCNN), which
uses a two-stage approach. The first stage is the Region
Proposal Network which generates proposals for image re-
gions that are likely to contain a detectable object. These
region proposals are resized and fed into the second stage,
a network used solely for object recognition.

Another approach in contrast to FRCNNs two-stage
architecture is handling bounding box regression and
classification in a single network: Single Shot Detectors
(SSD) [32] generate a fixed number of pairs of class score
and bounding box coordinates for each image.

The most prominent advantage of FRCNNs is that pro-
posal generation is run on the input image in original di-
mensions without resizing, which is helpful for detecting
small objects. For SSDs, the image needs to be resized to
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Figure 3: Averaged images of all four locations in our own dataset.

a fixed width and height prior to running the network.
However, SSD-based networks are faster and have a lower
memory footprint.

These architectures are combined with different net-
work types, called base networks, contributing the exact
details of filter parameters and image operations. In ad-
dition, both types of detection networks can be extended
by using Feature Pyramids (FPN) [30], efficient representa-
tions for image features at different scales. This increases
precision for small objects at the cost of speed.

3.1 Pedestrian Datasets

Whenevermachine learning algorithms are used, datasets
are as relevant as the algorithms themselves. Regarding
pedestrian detection, there are datasets which are specif-
ically created to train and evaluate detection algorithms
for persons in urban scenes and general datasets for ob-
ject recognition and detection of multiple classes. An im-
portant example for the latter type of dataset is Microsofts
Common Objects in Context (COCO) [31], a dataset for ob-
ject detection consisting of ∼200,000 images with 1.5 mil-
lion objects labeled from 80 classes. These include person,
bicycle, car and truck.

Datasets which have been compiled to specifically
detect pedestrians include Caltech Pedestrian Detection
Benchmark [7], KITTI Vision Benchmark Suite [16], INRIA
Person Dataset [6], ETHZ datasets [12], TUD-Brussels [54],
CrowdHuman [45],Daimler [10], andCityPersons [56]. All of
the datasets above have in common that they are designed
to facilitate pedestrian detection for autonomous driving
(see also [21]).

Consequently, they have several disadvantages for our
application: the resolution is relatively low, the pedestri-
ans in these images are large compared to the total image
and sparse at ∼1 person per image on average, and the im-
ages cover only a single city each [56]. The image data is
recorded from a dashcam in amoving vehicle and features
no elevated or static viewpoints. CityPersons and Crowd-

Human feature more images with larger crowds from a
more diverse set of cities and are, therefore, an improve-
ment over other automotive pedestrian datasets in terms
of data diversity and size, but still suffer from the same
perspective issue as every other dashboard-recorded video
frame sequence. None of these datasets is therefore suffi-
ciently similar to a static pedestrian detection setup on an
elevated viewpoint to be used for training or evaluation.

To the best of our knowledge, there is no comprehen-
sive dataset of urban scenes that features high-resolution
images from a static, elevated viewpoint. Hence, we have
decided to evaluate the performance of our system on a
suitable self-compiled dataset.

3.2 Evaluation Dataset

Our dataset consists of 160 manually annotated images
from 4 different scenes (40 per scene), featuring four ele-
vated observation positions with a downward viewing an-
gle of 30 to 60 degrees (see Figure 3). The scenes show
(from left to right) a bus station, a busy intersection, a
walkway in a public park, and a residential street corner,
and are representative for a variety of urban settings. The
2378 personbounding boxes in the evaluation batch of this
dataset have an average size of 83x193 pixel and can be
considered small in relation to the overall resolution of
our images (11 to 20 megapixels). This is relevant regard-
ing the specific type of neural network used for detection.
Some architectures (SSDs, see above) require resizing of
the whole input image so the original resolution of an ob-
ject becomes less important, while others (Faster R-CNN,
see above) operate on the original image data and bene-
fit from a high-resolution input. In addition to person, the
dataset also contains labels for the classes car, truck, bus
and bicycle, although only the class personwill be used for
this evaluation.

Ground truth annotation of this dataset was done
manually using labelImg [29]. Bounding boxes are cover-
ing the whole extent of the object without padding, even
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occluded areas. As stated in [55], the learning process ben-
efits from this setting. Therefore, we also follow this ap-
proach for labeling our dataset.

Caltech and other pedestrian datasets included the
concept of ‘ignore regions’ such as extremely crowded
parts of an image. In these regions, no detections of the
algorithm are rated as false positive or false negative. Our
evaluation dataset contains these annotations, but they
are currently ignored. Thus, performance is slightly under-
reported. The size of our dataset is small with 3495 bound-
ing boxes in total (2378 in the class person). This limits the
ability to generalize from the evaluation set, but gives a
better estimation of the overall performance for our spe-
cific use case.

3.3 Object Detection on Mobile Devices

To select the best-suited architecture for our detector on
a mobile system, several requirements need to be consid-
ered:

Precision and speed are always a tradeoff. For the
task of recording the paths of pedestrians precision is a
higher priority than speed, for counting pedestrians it is
vice versa. For bothmodes, faster networks reduce battery
consumption and increase the total observation time.

Memory: on many smartphones, processing power is
not the limiting factor, but rather memory capacity and
speed. A big networkmay performwell onmodern phones
with 2–4GBRAMbutwill run out ofmemory onoldermod-
els.

Object size. Pedestrians are small objects in high-
resolution images of public spaces. The network needs to
detect objects at a lower scale reliably. This is our main
problem which needs to be addressed.

To test different networks on Android we use the Ten-
sorflow Mobile Framework [17] in combination with the
TensorflowObject Detection API [18]. This allows us to use
thenetworks in theTensorflowmodel zoowhichhavebeen
pre-trained on the COCO dataset [31].

We compare several SSD and FRCNN models with dif-
ferent base recognition networks (see Figure 4). The left
bar (blue) represents average precision as mAP for the
class person (higher is better). The right bar (green) rep-
resents the complete processing time of the network from
image input to object output for one image. Runtime was
measured on a mid-level smartphone (LG G6). The abso-
lute runtime is device-dependent, but the relative runtime
will remain fairly constant.

In terms of speed, Mobilenets in both versions [23, 43]
as a base for SSD outperform the larger FRCNN networks.

Figure 4: Comparison of detection algorithms on full image (higher
is better for precision, lower is better for runtime).

The lower precision of SSD-based models compared to
FRCNN networks can be explained by their fixed input
size. The SSD FPN models require rescaling to 640 pix-
els, all other SSD models to 300 pixels before processing.
FRCNN networks deliver better precision, but also have
higher memory consumption and are slightly slower.

To further improve performance for the task of detect-
ing small pedestrians in high-resolution images, several
points must be taken into consideration.

3.4 Image Tiling

One of the most promising approaches of upscaling the
whole image as proposed for the Citypersons dataset [56]
is not an option on a mobile platform, as this increases
memory consumption and is only suitable for FRCNN net-
works. However, an effect similar to upscaling without
the same memory requirements can be achieved by a
sliding-window approach. Consequently, we split the full-
resolution input image in non-overlapping tiles of con-
stant size, downscale each tile to the network’s fixed input
size, and detect objects in every tile separately.

When applying this approach to the best-performing
networks in terms of speed and precision, both compu-
tation time and precision improve considerably (see Fig-
ure 5). The mobilenet-based SSD has a fixed input size of
300 pixels and shows the best tradeoff between accuracy
and speed at image tiles of about twice its input size. If Fea-
turePyramids areused (at 640pixels input size), the image
tiles can be increased to three times the input size before
the models begin to show a strong decrease in precision.
This shows that architectures with Feature Pyramids have
an advantage for detecting small objects in our evalua-
tion dataset, while differences between the base networks
(resnet50 or mobilenets) can be neglected for the SSD FPN
architecture.
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Figure 5: Precision and runtime for a full image in relation to tile
sizes. Inference time was measured across the whole evaluation set
on a GPU (Nvidia GeForce GTX1050Ti). The FPN model has a larger
input size and is evaluated starting at 640 pixels. X-axis increments:
50 pixels.

When splitting the image into tiles, two issues are in-
troduced. There are detection artifacts when objects are
split across tile boundaries (causing either no detection or
double detection) and a reduced field of view as fixed tile
sizes which are not an exact divisor of the image size will
exclude areas around the image border, resulting in false
negatives.

3.5 Transfer Learning

We assume that the precision of the networks, pre-trained
on COCOs 80 classes, can be further improved by transfer
learning and fine-tuning on a more specific dataset. The
main difference between COCO’s examples for the person
class and our dataset are object sizes and viewing angles.

To evaluate possible gains achieved by transfer learn-
ing, we split our evaluation dataset into 120 images (3
scenes) for training and 40 images (1 scene) for evaluation.
With a subset of three COCO-classes (person, bicycle, car)
we retrained the fastest butworst-performingnetwork SSD
mobilenet v1 on 5490 randomly-cropped image tiles de-
rived from the training set images. However,when evaluat-
ing the precision of fine-tuned and original network on the
remaining 40 images, no significant improvement could
be reported. We assume that examples of persons from
our dataset and COCO are too close for transfer learning
to yield any substantial precision gains when trained on

our small evaluation dataset. Expanding our dataset and
reevaluating transfer-learning is part of the future work.

3.6 Results

While FRCNN outperforms SSD variants in terms of pre-
cision, even small FRCNN networks have a higher mem-
ory consumption than every SSD model. When choosing
SSD models, we recognize that feature-pyramid networks
(FPN) have a clear advantage over standard variants. The
twoFPNnetworks, SSDwithmobilenets v1 and resnet50 as
base networks perform at the same level while the resnet
network has a slightly higher inference time and binary
size. While FPN SSDs performwell on larger tiles than reg-
ular SSDs, their inference time is considerably higher, es-
pecially on mobile devices. Consequently, we settle on the
SSD mobilenet v1 network as the default object detection
network for our app. We use non-overlapping tiles to im-
prove the precision at small scales for SSD networks. Since
this network offers the highest speed at the expense of pre-
cision, we call this the Low-Fidelity option. Phones with
sufficient computing power can optionally use the FRCNN
inception v2 model (Mid-Fidelity) or the SSD mobilenet v1
FPN network (High-Fidelity) for increased precision.

4 App & Visualization

4.1 DesPat Android App

We selected Android as our target platform, as we want to
make use of inexpensive smartphones and need to access
the camerawithout user interaction. Our app is targeted at
phones running Android 6.0 (API level 23) and above. At
the time of writing, this corresponds to about 74.8 percent
of all active devices using the Google Play Store [19].

The core functions of our app consist of five distinct
parts:

ImageCapturing.Forperiodic image capture, the app
needs to trigger the shutter at fixed intervals without any
user interaction (and not when the system schedules it).
The capturing service can run in two different modes: per-
sistent and non-persistent camera.

In non-persistent mode, the camera module is closed
after each capture. It is powered down and an event is
scheduled using Androids Alarm Manager to wake up in
time for the next capture. Once this happens, the camera
is initialized and a full metering run is started to get a fo-
cus lock as well as determine exposure andwhite balance.
This may take up to 1.5 seconds, depending on the illumi-



132 | C. Getschmann and F. Echtler, DesPat: Smartphone-Based Object Detection

nation and hardware. By allowing the device to sleep in
between captures, more than a full day of battery life can
be achieved. Theminimum shutter interval in this mode is
6 seconds.

In persistent mode, the camera is initialized at startup
and runs permanently in preview mode. Consequently,
both the processor as well as the camera module are pow-
ered up and active. When the camera is triggered, images
can be captured without delay as the camera is active and
autofocus/auto-exposure have already been finished. This
mode increases power consumption and heats up the de-
vice, but allows shutter intervals of less than 6 seconds.
3 hours of battery life are common in this mode among
tested phones if running at maximum possible speed, and
about 10 to 12 hours at one image per minute.

Detection. After image capture the footage is ana-
lyzed for pedestrians and other tracked objects. Processing
of the buffered images is done in batches by the detector
service, which runs once a minute when the phone wakes
up and takes care of the costly process of running the de-
tection algorithm on every image. After the algorithm has
processed the image, no image data is retained. The detec-
tion algorithms are discussed in detail in Section 3.

Homography Transformation. The detection algo-
rithm returns bounding boxes for detected objects, which
need to be transformed to map coordinates. Before trans-
formation, bounding boxes are reduced to a single point.
For cars, this is the center point of the bounding box; for
pedestrians and bicycles, the center of the lower bounding
box boundary (e. g. a person’s feet). To transform these im-
age points to map coordinates, a homography transforma-
tion is calculated. At least four corresponding points are
required, which have to be manually selected on a map
and an image of the scene (Figure 6).

Image Averaging. The corresponding points to com-
pute the homographymatrix need to be selectedmanually,
however, doing that on location is usually not feasible. Ei-

Figure 6: User interface for selecting image to map point correspon-
dences.

ther thephone is inaccessible, or touching thephonewhile
mountedmay change the camera orientation, thereby ren-
dering the point correspondences invalid. The alternative
is storing an image and selecting the correspondences af-
ter capturing. To avoid inadvertent capture of unsuspect-
ing pedestrians, we average all captured images to create
amean image containing only static objects. Even persons
standing or sitting in place will blur after processing only
a few images. To achieve a fully pedestrian-less scene, a
minimum of 30 to 50 images is usually sufficient, depend-
ing on the amount of movement in the scene and the pixel
size of the non-static objects.

Data Export. All data from a single capturing session
can be exported as a ZIP archive by using the Android
share functionality. This allows to save the file on the de-
vice, in a shared cloud folder, or directly attach it to an
email. Each archive contains three files: a CSV file with
all detections, including confidence values, class, and co-
ordinates; a JSON file with session metadata such as de-
vice name and homography points; and the averaged re-
sult from all captured images as JPEG.

4.2 VizPat Visualization Tool

The exported CSV data can be processed with spreadsheet
software such as Excel and visualized with Google Maps,
but neither of these tools performs well on the task of vi-
sualizing pedestrian density data. Since data acquisition
is pointless without means of examining and evaluating,
we present our own visualization tool:

Density data for arbitrary object classes is displayed as
a binned heatmap or in a raw scatter plot on top of a map
layer, which can be loaded from Google Maps or Open-
StreetMap. All layers are interactive and can be turned on
or off. Themap allows panning and zooming; the heatmap
parameters regarding bin size and opacity can also be
changed. Data can be filtered by time, object class and
recording device. Datasets gathered in parallel from dif-
ferent phones or sequentially from the same device can
be combined. The JavaScript library D3 [3] is used to in-
teractively manipulate the visualization and to filter data
points.

We choose a heatmap with hexagonal bins as default
visualization [4], since binned map positions are easy to
visually parse and do not give a false presumption of lo-
cation accuracy in contrast to a scatterplot (which is also
available as an optional visualization). The hexagon is an
obvious choice for tile shape since its geometry is efficient
to compute and it is the highest-order polygon that allows
tiling without overlapping.
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Figure 7:Web-based visualization tool with heat map (top), timeline
(center), and user settings (bottom).

For a live demo, see http://despat.de/visualize/.

5 Performance Evaluation
Our evaluationwill focus on precision and speed of the de-
tector network. Precision is reported as Mean Average Pre-
cision (mAP), calculated similarly to the COCO evaluation
as the area under the full interpolated precision-recall-
curve (but only with an Intersection over Union thresh-
old of 0.5 because the improved localization metric us-
ing multiple thresholds is not required). For a detailed
explanation of the mAP calculation, see [24]. All speed
measurements are given per image, independent of cam-
era resolution. When evaluating inference time measure-
ments it should be noted that all computation was done
on the CPU of the smartphone as no GPU support for all
used network models was available at the time of writing.
This may change in the near future and we assume that
some phones in the mid- to high-cost section will improve
their performance with the Neural Networks Interface in-
troduced in Android 8.0.

5.1 Performance of the Detector

We evaluate three networks: SSD mobilenet v1 (low-fi),
FRCNN inception v2 (mid-fi), and SSD mobilenet v1 FPN

(high-fi), running on limited hardware in terms of process-
ing power, memory and battery. Our reference network is
the best-performing available network from the Tensor-
flow model zoo, trained on COCO and executed on a desk-
top GPU (NVidia GeForce GTX1050Ti). Ground truth was
compiled by a human without time constraints and with
access to the whole image and the complete image series.

Table 3: Precision of the three networks used in the app (mAP [24]
for class person). The reference network always uses 6 tiles per
image and does not suffer from the tiling error of false negatives at
image borders.

Network mAP

SSD mobilenet v1 @ 800px (low-fi) 0.54
FRCNN inception v2 @ 800px (mid-fi) 0.65
SSD mobilenet v1 FPN@ 800px (high-fi) 0.78
FRCNN NAS@ 1/6 (reference) 0.86
Ground Truth 1.00

The low-fi network only achieves a relatively low over-
all mAP of 0.54. However, the mid-fi and high-fi networks
achieve an average precision of 0.65 and 0.78 respectively,
which compares verywell to the reference networkwith an
mAPof 0.86. An average precision of 0.78 and above on our
very challenging dataset, without any additional postpro-
cessing, can be noted positively. In addition, the reference
network runs about 30 times slower than our high-fi net-
work when both are executed on the same desktop GPU.

Figure 8: Runtime of the networks on different devices at native
camera resolution, optimized for maximum precision (error bar is
standard deviation).

The phones used as test cases have been chosen from
all price ranges over the last 2 years. The Google Pixel 3a
is priced around 450 USD, representing the higher-end de-
vice class (by performance). Mid-range phones are repre-
sentedby the LGG6, available at about 230USD,while low-
end phones such as the Motorola 5GS are available for less
than 130 USD.

http://despat.de/visualize/
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Results from the low-fidelity network highlight the
runtime-precision tradeoffmentioned above. It runs at just
4.5 s on the high-end and 4.6 s on the mid-range phone,
thereby easily allowing a capture rate of 5 to 6 images per
minute. The performance on the low-end device is worst at
14.3 s.

The mid-fidelity network’s runtime is 32.7 s and 41.5 s
on high and mid-range phones. The low-end phone fin-
ishes processing after 83 s, setting the maximum capture
interval to about 0.5 images per minute.

The high-fidelity network takes only marginally more
time on the high and mid-level models, running for 36.4
and 45.9 s. Although it is possible to run the high-fidelity
network on the low-end phone, it is prohibitively slow at
about 153 s.

While some phones will be slower in detection, their
maximum inprecision is potentially higher due to their ad-
vantage in resolution. However, a gain in resolution can-
not be directly translated to gains in precision due to inex-
pensive optical systems, small sensor size, and resulting
poor image quality.

Note that all these measurements were conducted
with networks running at maximum resolution and the
smallest feasible tile size and thus are the upper bound-
ary. If a phone is placed in a store entrance or on a balcony
surveying only a narrow street, distance from the camera
to pedestrians is low and their size in the image is consid-
erably higher. This allows to increase the tile size and re-
duces the number of overall tiles, thereby improving run-
time.

In conclusion, we currently select the low-fi network
as the default choice, even though it has relatively low pre-
cision. However, its runtime stays below 10 s on most de-
vices, evenat full resolution, therebyat least partially com-
pensating for missed detections through a higher update
rate.

5.2 Performance and Thermal Limits

The heat management capacities of smartphones are not
designed to support long periods of full CPU load. When
running a phone constantly at full load, the temperature
causes processor throttling, which increases processing
time. This sets device temperature as the upper bound-
ary of performance rather than computing resources of the
processor. When running the camera subsystem perma-
nently (camera is active and providing a preview datas-
tream), battery temperature increases by 10 °C above am-
bient. We determined empirically that about 50 to 70%
CPU utilization keeps most phones within safe working

battery temperatures of 50 °C or less. Consequently, if the
individual combination of phone and network requires 5
seconds per image, a recommended shutter interval of 10
seconds is suggested to the user.

6 Example Results

Based on our performance analysis, we conclude that it
is indeed feasible to support citizen science through ob-
ject detectors on inexpensive mobile devices. We present
two real-world examples of recorded datasets and discuss
these results (running the high-fi network).

The first dataset in Figure 9 from the rear entrance
of the train station in Erfurt, Germany is a good example
of the amount of space a single camera can survey when
placed well. It is clearly visible which routes people prefer
to cross the street. When the visualization tool is used, it is
even possible to see the arrival time of trams and trains on
the timeline. Live visualization for this dataset is available
at http://despat.de/visualize/#dataset_erfurt.

The second dataset in Figure 10 was recorded at a
the Summaery festival in Weimar, Germany by four de-
vices simultaneously. When using multiple phones in par-
allel, a more complex geometry of a public space (or sim-
ply larger spaces) can be surveyed. However, the visu-
alization tool will currently naively merge overlapping
areas, pedestrians that have been picked up by several
cameras at once are simply added up. Live visualization
for this dataset is available at http://despat.de/visualize/
#dataset_summaery.

7 Discussion

Based on experiences from our deployments for urban
survey datasets described above, we conclude that a
downward-facing viewing angle of approximately 30 de-
grees is best-suited for urban spaces. At lower angles,
pedestrians will start occluding each other in groups,
while at higher angles, the raw images will differ signif-
icantly from the person images the neural network was
trained with, thereby lowering detection rate. In our sta-
tion dataset, the distance between the camera and the far-
thest detections is approximately 80m, while the closest
detections are about 14m from the camera. This is caused
by image tiling: at lower distances, pedestrians will be
split across two or more image tiles, thereby inhibiting de-
tection. This problem can be mitigated by using larger tile

http://despat.de/visualize/#dataset_erfurt
http://despat.de/visualize/#dataset_summaery
http://despat.de/visualize/#dataset_summaery
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Figure 9: Train station rear entrance, Erfurt (top: averaged camera view, bottom: map visualization). Map image data: ©Google 2018,
GeoBasis-DE/BKG ©2009.

sizes if close-range detection is desired, e. g. in smaller in-
door spaces where the minimum distance is likely to be
lower. Despite these limitations, our app is able to provide
data on urban movement patterns with far less staff re-
sources than common methods – a high-end device is po-
tentially able to run for over 12 hours continuously, which
could only be achieved with several persons taking turns
during a manual survey and would already constitute an
Accuracy Level 3 survey according to the guidelines of the
City of London [5].

During our deployments, we noted that while our
processing workflow is designed to take people’s privacy
into account and does not retain images, there is no way
to communicate this without additional measures. When
running unattended setups from elevated viewpoints, it
may be advisable to keep the smartphone unobtrusive. In
all other cases, one needs to be prepared to engage with
pedestrians and discuss the work, however, this was not
an issue at any deployment as people tend to be curious
and are generally pleasant.



136 | C. Getschmann and F. Echtler, DesPat: Smartphone-Based Object Detection

Figure 10: Summaery festival, Weimar (top: averaged camera views, bottom: map visualization with camera locations). Map image data:
©Google 2018, GeoBasis-DE/BKG ©2009.

The collected data is currently does not provide
additional attributes of passersby, such as group size,
age, or walking speed, which can arguably be collected
through manual surveys. We discuss potential exten-
sions to alleviate some of these limitations in the future
work.

The approach of tiling images to increase detection
precision for tiny objects is suitable for the specific prob-
lem at hand. While this is a tradeoff between speed and
precision, we conclude that this is the most feasible op-
tion. Especially for small objects, the temporal resolution
still is limited, allowing us to record occurrences at fixed
intervals but not the individual paths. This yields neither
trajectory data nor counting data, but allows object iden-
tification (Is this a pedestrian, a cyclist or a car?). While
tracking individual trajectories of objects would be possi-
ble using a different computer vision approach, tracking
trajectories and object classes of small objects at the same
is not feasible given commodity smartphones. However,
given the rise in image processing capabilities of modern

smartphones, this compromise may be outdated in a few
years’ notice.

Nevertheless, we are already able to evaluate general
traffic patterns and desire paths (Where do people cross
a public space?), quantify dwelling time (The bikelane in
front of my house is blocked by illegally parked cars for 6
hours per day on average.), give relative usage estimation
(Pedestrian density at 9 am is twice as high as at 11 am.), or
analyze crowd hotspots which should be avoided during
the COVID-19 pandemic (Bus stop is overcrowded between
7 and 8 am.).

While our app is compatiblewith everydevice running
Android Version 6.0 or later, detector performance relies
heavily on the hardware of the device. By offering faster
but less precise networks andusing less tiles per image,we
can still utilize even very slow hardware. However, preci-
sion also relies on the camera system and especially bud-
get hardware with 5 or 8 megapixel cameras are not suit-
able for large spaces. Nevertheless, these low-end devices
can still be used for small streets and pathways.
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8 Future Work
Weare currently planning real-worlddeploymentswithur-
ban studies and architecture researchers exploring poten-
tial integration of our app into their data acquisition pro-
cedures. Historic and current data used in this context is
overwhelmingly pedestrian counts, sampled in 10 to 60
minute timeslots. To include our app well in already exist-
ing data acquisitionprocedures, the additional functional-
ity to record reliable counts in addition to pedestrian paths
is required and is part of our future work. We also will in-
vestigate how DesPat can be integrated with related, more
centralized projects such as Telraam [49] without compro-
mising the privacy of passersby.

Future workshops nonwithstanding, however, we
publish our app, all source code, and additional materials
(datasets etc.) under permissive licenses to support adap-
tion and modification of resources.

There are three main categories we want to improve
in the app itself: we want to add functionality regarding
data features, improve the performance of the detector,
andmake our appmore accessible for usage in aworkshop
scenario.

Counting and Action Labels: We plan to introduce
action labels for detected objects (static and moving)
based on inter-image comparison. This allows answering
the questionwhere people aremoving through, andwhere
people need orwant to spend time lingering around. In ad-
dition, by generating object paths, the movement speed
can be calculated and accurate counting becomes possi-
ble.Wewill investigate if this canbe reliably done for small
regions of the image (e. g. zebra crossings, street corners,
etc) with an increased update rate. Additionally, other ob-
ject classes besides pedestrians could then be counted,
such as fast-moving bicycles or cars.

Extending the dataset and transfer learning: Ex-
tending our dataset of ground-truth annotated high-
resolution pedestrian images is a priority. We are explor-
ing options how this could be integrated into a workshop
formatwith interested researchers. Once a larger dataset is
available, we will reevaluate the precision improvements
achievable with transfer-learning for our specific problem
domain of small-objects with a downward facing angle.

IgnoreRegions:Not all parts of an imagemay contain
pedestrians. When starting a new session, the user could
mark ignore regions suchas skyor buildings.When the im-
age is subdivided into tiles, all tiles that are covered by an
ignore region can be skipped during detection. This would
reduce processing time as well as reducing false positives
from reflections inmirror facades or people visible through
windows.

9 Conclusion

We present an end-to-end open-source solution to enable
researchers and citizen scientists alike to collect and ana-
lyze pedestrian movement data using object detection al-
gorithms on widely-available smartphones. Our app uses
convolutional neural networks running directly on a wide
range of Android phones to enable automated data acqui-
sition while avoiding potentially privacy-sensitive image
storage or transport. We conclude that it is indeed feasi-
ble to augment citizen science apps by object detectors on
smartphones of all price-ranges, even old or inexpensive
devices. In the case of data acquisition for urban surveys,
the tradeoff between runtime and accuracy is suitable for
detecting pedestrians in order to evaluate their paths or a
general assessment of crowdedness and space allocation
in a given timeframe.

Furtherworkwill focus on improving detection perfor-
mance, and exact counting of objects in small areas. We
encourage other researchers to evaluate if their research
can benefit from this automatized and inexpensive way
of data acquisition. All resources (evaluation dataset with
annotations, source code, data from live deployments) are
available under permissive licenses to reuse and adapt at
http://despat.de/visualize/#dataset_summaery.

Reproduction Note

The application, source code including documentation,
anonymized data, and scripts for generating all referenced
plots is available publicly: https://github.com/volzotan/
despat.
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