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ABSTRACT
With their rising adoption and integration into smart grids, heat

pumps are becoming an increasingly important source of flexible

energy. Heat pump flexibility can be utilized by using controllers

to remotely manage their operation while maintaining the temper-

ature within predefined user comfort bounds. Traditional indoor

temperature modelling approaches require detailed information

about the deployment site, device specific parameters and moni-

tored data, making them inapplicable for the majority of heat pump

deployments. This paper proposes a novel data-driven machine

learning based method HeatFlex for indoor temperature forecast-

ing and flexibility prediction using only 3 monitored variables:

indoor and outdoor temperatures and heat pump power consump-

tion. HeatFlex enables plug-and-play flexibility prediction from heat

pumps without requiring exact device and building specifications or

installation of additional sensors. This paper also introduces novel

flexibility metrics enabling quantitative evaluation of heat pump

flexibility prediction performance. HeatFlex is based on deep learn-

ing predictive models: Long Short-TermMemory (LSTM) and Gated

Recurrent Unit (GRU) recurrent neural networks. Our experimental

evaluation compared these networks with traditional multivariate

linear regression and SARIMAX time series forecasting model base-

lines. HeatFlex performance was qualitatively and quantitatively

evaluated using data from three real-world heat pump deployments

with different building sizes, heat pump types and specifications.

Experimental results indicate that HeatFlex is effective to accurately

predict over 90% of available potential flexibility.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies→ Neural networks; Supervised learning.

KEYWORDS
flexibility prediction, indoor temperature forecasting, smart grid

ready heat pump, machine learning, deep learning
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1 INTRODUCTION
Over the past few years, significant advancements were made in

the development of smart grids, capable of balancing supply and de-

mand and maximising the utilization of renewable energy sources

(RES). The majority of recent research focuses on flexibility based

demand response mechanisms for shifting energy supply and de-

mand according to the availability of RES and other factors. Previ-

ous research has identified and built on various aspects of energy

flexibility, such as: aggregation and disaggregation of flexibility

[29], frameworks and architectures for flexibility data management

[4, 25], flexibility modeling [26], measurement and comparison [33],

and trading in energy markets [34].

Heat pumps have seen a significant rise in adoption in Europe

[6]. They offer an attractive alternative to conventional electrical

heating solutions due to their substantially higher efficiency and,

therefore lower carbon footprint [11, 22, 35]. With heating con-

stituting the largest part of energy demand for both residential

and commercial sectors, heat pump installations are key sources of

potential energy flexibility [23]. One way of harnessing potential

flexibility is allowing deviations in building indoor temperature

within predefined user comfort bounds. The heat pumps could then

be controlled to increase or decrease power consumption for a pe-

riod of timewhile still maintaining indoor temperature within given

bounds [23]. In order to utilize available flexibility a remote control

mechanism is required which would allow dynamic modification

of heat pump operation. Also, an indoor temperature forecasting

model would be required to estimate how the modified operation

will impact indoor temperature to make sure it does not violate the

user defined comfort bounds.

In recent years, an interface specification known as Smart Grid

Ready (SG-Ready) has been developed enabling heat pump opera-

tion to be adjusted using an external signal. It has seen widespread

adoption among manufacturers and is available in more than 1200

heat pump models [11]. As seen in Table 1, SG-Ready defines 4

supported operating modes. Out of the 4 specified operation modes,

Off and ForcedOn enforce deterministic, implementation-agnostic
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heat pump behaviour. Mode Off interrupts heating and reduces

heat pump power consumption to a minimum, where as ForcedOn
forces the heat pump to consume the maximum amount of power,

increasing the heat. These two modes enable the utilization of

heat pump flexibility, as they allow to temporarily decrease power

consumption with mode Off or increase power consumption with

ForcedOn mode.

Table 1: SG-Ready heat pump operating modes

Operating

mode

Definition

Off Heat pump operation actively switched off,

using minimal power (limited to 2 hours a

day)

Normal Heat pump operation is normal

RecommendedOn Heat pump operation is set to prefer switch-

ing on (interpreted as a recommendation)

ForcedOn Heat pump (and auxiliary heaters, if appli-

cable) operation actively switched on, using

maximum power

However, there are no known scalable, data-driven methods for

individual smart heat pump flexibility prediction that estimate what

heat pump operation is possible given user predefined tempera-

ture comfort bounds. Previously conducted studies utilize physical

models to forecast thermal response, however, these methods re-

quire exact heat pump specifications, detailed information about

the building and its layout which are unique to each deployment

[23]. Furthermore, these methods use a lot of monitored variables

which are not always available due to lack of sensors [15, 24].

This paper aims to address these limitations by proposing a

novel data-driven flexibility prediction method HeatFlex for indi-

vidual smart heat pumps and makes the following contributions: (1)

Proposes HeatFlex, the first, to the authors’ knowledge, fully data-

driven flexibility prediction method for smart heat pumps based on

modern machine learning methods. (2) Introduces novel flexibility

metrics, enabling quantitative evaluation of predicted flexibility.

(3) Experimental qualitative and quantitative evaluation of Heat-

Flex using real world heat pump data from three deployments.

HeatFlex is fully data-driven and does not require a predefined

physical model of the deployment environment or exact specifi-

cations of the heat pump and only uses 3 monitored variables for

prediction: indoor temperature, heat pump power consumption

and outdoor temperature, which are widely available from most

modern energy management systems and open-access weather

information providers. Our experimental evaluation shows that

HeatFlex, utilizing modern recurrent neural networks, significantly

outperforms multivariate linear regression and SARIMAX time se-

ries forecasting model baselines in terms of prediction error. Results

show that HeatFlex is capable of accurately predicting over 90% of

available flexibility throughout different seasons and heat pump

deployments.

The paper is structured as follows: Section 2 describes related

work. Section 3 defines the flexibility prediction and indoor tem-

perature forecasting problems. Section 4 provides an outline of

the proposed method HeatFlex for flexibility prediction. Section 5

describes used indoor temperature forecasting models and metrics.

Section 6 describes our proposed algorithm for predicting flexibility

and proposed flexibility metrics. Section 7 describes setup for the

experiments. Section 8 shows the results of the experiments. Finally,

Section 9 concludes the paper and outlines directions for future

work.

2 RELATEDWORK
In previous work, several methods have been proposed for flexibil-

ity prediction. A regression and temporal sequence matching based

method has been proposed for predicting device activation time

and energy demand of electric vehicles and wet-devices (washing

and cleaning devices that use water, like dishwashers or washer

dryers) [20, 21] . A physical model based energy demand prediction

algorithm has been proposed for shifting demand of electrical vehi-

cles and heat pumps to minimize the cost of consumed electricity

[23]. Another study proposes a physical modelling approach for

estimating the energy profile of a building with an installed heat

pump expressed as a first order linear time invariant system [21].

In comparison, this paper proposes HeatFlex, a model-free, fully

data-driven method for predicting flexibility from individual smart

heat pumps.

Traditionally, physical modelling through parametrized differ-

ential equations was used to model building’s thermal response

to change in heating operation of HVAC systems, including heat

pumps [23]. However, this approach requires prior knowledge about

the heating installations, building layout, precise device specifica-

tions and a significant number of monitored variables through

installed sensors, which are not typically available in real world de-

ployments. Furthermore, the physical modelling approach requires

defined equations describing the exact environment configuration

for each individual deployment and is also heavily reliant on con-

stantly available high frequency, accurate sensor readings [15, 24].

Alternative data-driven methods, such as regression methods or

time-series forecasting models do not have such strict prerequisites

and have been applied to solve load forecasting problems [10]. How-

ever, regression methods do not capture temporal dependencies

and most cannot model non-linear relationships, whereas time se-

ries forecasting models tend to underperform on highly non-linear,

non-stationary data [18, 30]. HeatFlex utilizes modern data-driven

modeling methods that can capture both sequential and complex,

non-linear relationships.

Over the past few years, machine learning based approaches

have been successfully adopted and achieved state-of-the-art per-

formance for various prediction problems in the energy domain

[2, 12, 14]. Modern machine learning methods like deep neural

networks are capable of modelling complex, non-linear relation-

ships between variables, having much greater applicability and,

usually, higher performance than traditional regression or time

series forecasting algorithms [24]. Recently, these methods have

been applied for load and thermal response prediction in buildings

equipped with HVAC systems. Traditional neural networks have

been used for single step ahead humidity and indoor temperature

forecasting in households [31], indoor temperature forecasting for

several areas of a school building [1]. More advanced recurrent
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Figure 1: Overview of HeatFlex: data-driven smart heat pump flexibility prediction method

neural networks, such as the Long-Short Term Memory (LSTM)

network have also been used for indoor temperature forecasting in

a building with an installed air handling unit [17], outperforming

traditional neural network models. LSTM based models have also

been used for heating load forecasting for combined heating and

power plants, yielding significant performance gains compared

to traditional regression approaches [18]. This paper improves on

previous research by effectively applying modern neural networks

for smart heat pump indoor temperature forecasting and flexibility

prediction.

3 PROBLEM DEFINITION
This section formally describes the preliminaries and provides a

problem definition for the paper.

𝑋 =
[
𝑋 (𝑡 −𝑚 + 1) . . . 𝑋 (𝑡 − 1) 𝑋 (𝑡)

]
(1)

𝑋 is a regular time series holding historical data of past observed

parameter values with record count𝑚 (known as memory) defining

how many past records will be used for prediction. 𝑋 is composed

of vectors 𝑋 (𝑡):

𝑋 (𝑡) =
[
𝑇𝑖𝑛𝑑 (𝑡) 𝑇𝑜𝑢𝑡 (𝑡) 𝑃ℎ𝑝 (𝑡) 𝐷𝑇 (𝑡)

]
(2)

where 𝑇𝑖𝑛𝑑 (𝑡) is the indoor temperature in a selected environment

at time 𝑡 , 𝑇𝑜𝑢𝑡 (𝑡) is the outdoor (external) temperature at time 𝑡 ,

𝑃ℎ𝑝 (𝑡) is the average power consumption by the heat pump in the

time interval (𝑡 − 𝑠; 𝑡], and 𝐷𝑇 (𝑡) is the date and time at which

𝑇𝑖𝑛𝑑 (𝑡), 𝑇𝑜𝑢𝑡 (𝑡), and 𝑃ℎ𝑝 (𝑡) were gathered. Variables 𝑇𝑖𝑛𝑑 (𝑡) and
𝑃ℎ𝑝 (𝑡) can be retrieved from the energy management system of

the heat pump, variable 𝑇𝑜𝑢𝑡 (𝑡) can be retrieved from a locally

installed sensor or an open access weather service, and 𝐷𝑇 (𝑡) can
be retrieved along with the other variables or be generated.

𝑈 =
[
𝑃ℎ𝑝 (𝑡 + 1) . . . 𝑃ℎ𝑝 (𝑡 + ℎ − 1) 𝑃ℎ𝑝 (𝑡 + ℎ)

]
(3)

𝑈 is a one-dimensional vector of lengthℎ called the control signal.

It contains planned heat pump power consumption values 𝑃ℎ𝑝 (𝑡+𝑖),
where 𝑖 <= ℎ. ℎ is known as prediction horizon and defines how

many time steps of indoor temperature will be predicted by the

model.

𝑌 =
[
𝑇𝑖𝑛𝑑 (𝑡 + 1) . . . 𝑇𝑖𝑛𝑑 (𝑡 + ℎ − 1) 𝑇𝑖𝑛𝑑 (𝑡 + ℎ)

]
(4)

𝑌 and 𝑌 are one-dimensional vectors of length ℎ, containing

ground-truth and predicted indoor temperatures, respectively.

In this paper heat pump flexibility is denoted as 𝐹 . Flexibility

𝐹 ∈ Z, 𝐹 > 0 is a positive integer scalar, representing how many

timesteps the user predefined lower temperature bound 𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟

and upper temperature bound 𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 will not be violated if the

heat pump is operating according to the control signal𝑈 . Predicted

flexibility is defined as 𝐹 , whereas existing potential flexibility is

denoted as 𝐹 .

Problem definition. Let FLEX_PREDICT be a function taking pre-

dicted indoor temperature 𝑌 , lower temperature bound 𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟

and upper temperature bound 𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 , returning predicted flex-

ibility 𝐹 , such that:

𝐹𝐿𝐸𝑋_𝑃𝑅𝐸𝐷𝐼𝐶𝑇 : (𝑌,𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 ,𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 ) ↦→ 𝐹 (5)

Let TEMP_FORECAST be a function taking historical readings 𝑋 ,

control signal𝑈 , returning forecasted temperature 𝑌 , such that:

𝑇𝐸𝑀𝑃_𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇 : (𝑋,𝑈 ) ↦→ 𝑌 (6)

Given historical data 𝑋 , control signal 𝑈 , lower user defined

temperature bound 𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 and upper user defined tempera-

ture bound 𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 , find the two functions FLEX_PREDICT and

TEMP_FORECAST, such that prediction errors for predicted flexibil-

ity |𝐹 −𝐹 | and forecasted indoor temperature |𝑌 −𝑌 | are minimized.

4 HEATFLEX OVERVIEW
This section outlines the flexibility prediction method HeatFlex

proposed in this paper. HeatFlex utilizes data-driven predictive

models to learn 𝑇𝐸𝑀𝑃_𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇 , an indoor temperature fore-

casting function used to accurately forecast indoor temperature 𝑌

given historical data 𝑋 and control signal𝑈 for prediction horizon

ℎ. As seen in Figure 1, HeatFlex has two phases: indoor temperature

forecasting and flexibility prediction.

For the indoor temperature forecasting phase, the historical 𝑋

and 𝑈 data are preprocessed (see Section 7.2). Afterwards, the ma-

chine learning algorithm for the temperature forecasting model (see

Section 5) and its parameters are selected, including memory param-

eter𝑚, horizon parameter ℎ and model-specific hyper-parameters

(such as cell count for neural networks). Once the model is selected,

the preprocessed historical data is used to train the selected model

to predict indoor temperature 𝑌 , with the training goal of minimiz-

ing error |𝑌 −𝑌 |. The trained model is then used to forecast indoor

temperature 𝑌 in two scenarios. The first scenario Off assumes that

the heat pump will be switched to mode Off , interrupting heating.
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Figure 2: Overview of used indoor temperature forecasting models (visualized in order starting from the left: LSTM, GRU,
Multivariate Linear Regression, SARIMAX)

In this case, the trained model will take historical data 𝑋 and con-

trol signal 𝑈𝑜 𝑓 𝑓 as inputs and predict how the temperature will

change, returning predicted temperature 𝑌𝑜 𝑓 𝑓 . In the second sce-

nario ForcedOn, the same procedure is repeated for mode ForcedOn,
using historical data 𝑋 and control signal𝑈𝑜𝑛 to predict 𝑌𝑜𝑛 .

During the flexibility prediction phase, the forecasted temper-

atures are used to predict flexibility. In both scenarios Off and

ForcedOn, the predicted temperature along with user defined tem-

perature bounds 𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 ,𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 are used to predict flexibil-

ity, using function 𝐹𝐿𝐸𝑋_𝑃𝑅𝐸𝐷𝐼𝐶𝑇 as described in Section 6. In

scenario Off , 𝑌𝑜 𝑓 𝑓 is used to predict 𝐹𝑜 𝑓 𝑓 , whereas in scenario

ForcedOn, 𝑌𝑜𝑛 is used to predict 𝐹𝑜𝑛 . The average forecasting er-

ror 𝜀 calculated during model training can be optionally used in

𝐹𝐿𝐸𝑋_𝑃𝑅𝐸𝐷𝐼𝐶𝑇 to adjust for forecasting error when predicting

flexibility (see Section 6).

5 INDOOR TEMPERATURE FORECASTING
In this paper, predictive models are used to learn the function

𝑇𝐸𝑀𝑃_𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇 to accurately forecast indoor temperature 𝑌

for horizon ℎ, given 𝑋 and 𝑈 . Metrics are used to quantitatively

evaluate prediction accuracy.

5.1 Predictive models
Four different models were analyzed for indoor temperature fore-

casting. These include twomodern recurrent neural networks: Long

Short-Term Memory, Gated Recurrent Unit and two baseline mod-

els: Multivariate Linear Regression, Seasonal Auto-Regressive In-

tegrated Moving Average with eXogenous variables (SARIMAX).

As shown in Figure 2, all models apart from linear regression use

concatenated matrices 𝑋 and𝑈 as inputs, where𝑈 is repeated for

each time step in matrix𝑋 . Because linear regression models cannot

handle sequential data, inputs for them are formed by flattening

matrix 𝑋 and then concatenating with𝑈 .

Long Short-TermMemory recurrent neural networks. These are the
most commonly utilized recurrent neural networks for sequential

data. Long Short-TermMemory (LSTM) was introduced to solve the

original recurrent neural network’s (RNN) inability to capture long-

term non-linear dependencies in sequential data [3]. The LSTM

architecture utilizes an improved hidden unit, called memory cell,

which calculates hidden state ℎ𝑠𝑡 and long term memory 𝑙𝑚𝑡 from

previously seen sequential data. The memory cell has parameters

which define how the cell attains, updates and discards information

from ℎ𝑠𝑡 and 𝑙𝑚𝑡 , which get learned during training. As seen in

Figure 2, during inference, ℎ𝑠𝑖 and 𝑙𝑚𝑖 are recursively calculated

using input vector 𝑥𝑖 from concatenated matrices 𝑋 and 𝑈 at time

step 𝑖 ∈ [1,𝑚] and previously calculated hidden state ℎ𝑠𝑖−1 and
long term memory 𝑙𝑚𝑖−1 [13]. As seen in Figure 2, an LSTM neural

network uses multiple memory cells (denoted by 𝑐). The output of

the network is calculated by using a fully connected layer, calculat-

ing a weighted sum of the final values of ℎ𝑠 from all of the cells for

each value in output vector 𝑌 .

Gated Recurrent Unit recurrent neural networks. These networks
were introduced as a potential improvement to the LSTM neural

network [8, 9]. Like the LSTM, GRU uses a memory cell to calculate

a hidden state from previously seen sequential data. The key differ-

ence is that GRU does not use two separate hidden states ℎ𝑠𝑡 and

𝑙𝑚𝑡 , instead using only one: ℎ𝑠𝑡 . This change results in a simplified

structure of the memory cell and a slight decrease in required com-

putation. As shown in Figure 2, the GRU neural network also uses

multiple memory cells and the output 𝑌 is calculated using a fully

connected layer. Previous studies suggest that GRU performance

is similar to LSTM and which network is superior depends on the

specific dataset used [9].

Multivariate Linear Regression. Linear regression (LR) is a predic-

tive modelling method which assumes a linear relationship between

input and output. Linear regression models are often used as per-

formance baselines for many prediction tasks due to their relatively

low complexity and reasonable accuracy in some cases [16, 19].

In this paper, multivariate linear regression models are be used,

since traditional LR can only use a single input variable for pre-

diction. Because LR can only predict a single value at a time, a

separate regressor is trained for each individual forecasted value

𝑇𝑖𝑛𝑑 (𝑡 + 𝑖), 𝑖 ∈ [1, ℎ] in the predicted horizon. Output of the model

163



HeatFlex: Machine learning based data-driven flexibility prediction for individual heat pumps e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

is calculated by passing the input to each of the trained regressors

and then collecting their results into the output vector 𝑌 .

SARIMAX. Autoregressive Integrated Moving Average (ARIMA)

is a classical, widely used and explored time series forecastingmodel

first introduced more than 4 decades ago [5, 27]. SARIMAX is an

extension of classical ARIMAmodels, improving on them by adding

additional parameters, accounting for repeating trends in the time

series. Also, unlike ARIMA, SARIMAX are multivariate models,

capable of using more than one input variable to predict the output

[10, 32]. SARIMAX models have several parameters which define

the relationship between input and output. Non-negative integer

parameters 𝑝, 𝑑, 𝑞 ∈ Z define the relationship between past obser-

vations and the output. Non-negative parameters 𝑃, 𝐷,𝑄,𝑚 ∈ Z,
known as seasonal terms, define the seasonal trends within time

series as well as the number of time steps in a single season. Tradi-

tionally, optimal parameter values are found by manually analysing

the time series with statistical methods [10]. However, modern time

series forecasting libraries automate this process by performing an

parameter search without requiring human intervention [27].

5.2 Metrics for quantitative evaluation
Several metrics have been selected for quantitative evaluation of

indoor temperature predictive models trained during experiments.

Widely used Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE) metrics have been selected for evaluating average

predictive model performance over the test set [7]. Maximum er-

ror metric (MAXE) has been selected to showcase the worst-case

predictive error of the model.

𝑅𝑀𝑆𝐸 (𝑌,𝑌 ) =

√√
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖 )2 (7)

𝑀𝐴𝐸 (𝑌,𝑌 ) = 1

𝑛

𝑛∑
𝑖=1

|𝑌𝑖 − 𝑌𝑖 | (8)

𝑀𝐴𝑋𝐸 (𝑌,𝑌 ) = max( |𝑌 − 𝑌 |) (9)

where 𝑦 and 𝑦 are ground truth and predicted one-dimensional

vectors, 𝑦𝑖 is the 𝑖-th element in the vector (starting from 1), 𝑛 is

the number of elements in 𝑦 and 𝑦.

6 FLEXIBILITY PREDICTION
Heat pump flexibility will be predicted by using𝑇𝐸𝑀𝑃_𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇

to forecast indoor temperature 𝑌 and calculating how long can the

heat pump be in mode ForcedOn or mode Off before violating

user predefined indoor temperature comfort bounds𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 and

𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 .

6.1 Prediction method
In this paper, flexibility will be predicted in two scenarios Off and

ForcedOn, as described in Section 4. To predict flexibility in either

scenario, the control signal𝑈 has to be appropriately defined before

forecasting temperature with 𝑇𝐸𝑀𝑃_𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇 . When predict-

ing flexibility for Off , 𝑈 should consist of values 𝑃ℎ𝑝_𝑚𝑖𝑛 , where

𝑃ℎ𝑝_𝑚𝑖𝑛 is the average power consumption of the heat pump being

in idle. In most cases, 𝑃ℎ𝑝_𝑚𝑖𝑛 > 0 and can be determined using the

specification of the heat pump. In this case,𝑀𝑜𝑑𝑒𝑙 (𝑋,𝑈 ) forecasts
indoor temperature 𝑌𝑜 𝑓 𝑓 if the heat pump will remain in mode

Off for prediction horizon ℎ time steps. When predicting flexibility

for ForcedOn,𝑈 should consist of values 𝑃ℎ𝑝_𝑚𝑎𝑥 , where 𝑃ℎ𝑝_𝑚𝑎𝑥

is the average power consumption of the heat pump operating at

its maximum capacity, usually below maximum rated power. In

this case,𝑀𝑜𝑑𝑒𝑙 (𝑋,𝑈 ) forecasts indoor temperature 𝑌𝑜𝑛 if the heat

pump will remain in mode ForcedOn for prediction horizon ℎ time

steps.

Algorithm 1 Flexibility prediction algorithm 𝐹𝐿𝐸𝑋_𝑃𝑅𝐸𝐷𝐼𝐶𝑇

INPUT:
𝑌 - forecasted indoor temperature

𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 - lower bound of temperature

𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 - upper bound of temperature

𝜀 - absolute temperature forecasting error used for adjustment

OUTPUT:
𝐹 - predicted flexibility

1: procedure FLEX_PREDICT
2: 𝐹 ← 0

3: 𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑌 )
4: for 𝑖 ← 1 to 𝑁 do
5: if

(
𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 + 𝜀

)
≤ 𝑌 (𝑖) ≤

(
𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 − 𝜀

)
then

6: 𝐹 ← 𝐹 + 1 ⊲ If temperature is within bounds

7: else
8: 𝑏𝑟𝑒𝑎𝑘 ⊲ If temperature violates bounds

9: return 𝐹

Once indoor temperature 𝑌 is forecasted, flexibility will be pre-

dicted using 𝐹𝐿𝐸𝑋_𝑃𝑅𝐸𝐷𝐼𝐶𝑇 , as defined in Algorithm 1, using 𝑌

and predefined user temperature bounds𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 and𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 .

Optionally, an absolute forecasting error parameter 𝜀, where 𝜀 >= 0

can be used to adjust for average𝑇𝐸𝑀𝑃_𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇 error. As seen

in Algorithm 1, 𝜀 effectively shrinks the temperature bounds by

subtracting 𝜀 from the upper bound 𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 and adding 𝜀 to

lower bound 𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 . If 𝜀 > 0, this results in a more pessimistic

prediction of potential heat pump flexibility. If error adjustment is

not preferred, 𝜀 = 0 is used.

6.2 Metrics for evaluating flexibility
In this paper, we propose several metrics for evaluating flexibility

prediction performance. Flexibility prediction performance can be

numerically evaluated by comparing predicted flexibility 𝐹 calcu-

lated using forecasted indoor temperature𝑌 and potential flexibility

𝐹 calculated using ground-truth indoor temperature 𝑌 .

Mean Absolute Flexibility Error (MAFE) is an adaptation of MAE

for evaluating average absolute error for predicted flexibility.

𝑀𝐴𝐹𝐸 (𝑍, 𝑍 ) = 1

𝑛

𝑛∑
𝑖=1

|𝑍𝑖 − 𝑍𝑖 | (10)

where 𝑍 = ⟨𝐹1, 𝐹2, . . . , 𝐹𝑛⟩ and 𝑍 = ⟨𝐹1, 𝐹2, . . . , 𝐹𝑛⟩ are vectors of
predicted flexibility from predicted and ground-truth temperatures,

respectively. 𝑛 is the number of elements in 𝑍 and 𝑍 .

Two types of errors are possible while predicting flexibility: un-

derestimation when 𝐹 < 𝐹 (predict that the heat pump can operate
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in a given mode for less time than it possibly could) and overesti-

mation when 𝐹 > 𝐹 (predict that the heat pump can operate in a

given mode for more time than it possibly could). To capture what

type of error is prevalent, we introduce two specialized variants of

MAFE. Mean Absolute Overestimated Flexibility Error (MAOFE) is

a variant of MAFE, which only calculates overestimated flexibility

error (𝐹 > 𝐹 ).

𝑀𝐴𝑂𝐹𝐸 (𝑍, 𝑍 ) = 1

𝑛

𝑛∑
𝑖=1

|𝑚𝑖𝑛(𝑍𝑖 − 𝑍𝑖 , 0) | (11)

Mean Absolute Underestimated Flexibility Error (MAUFE) only

calculates underestimated flexibility error (𝐹 < 𝐹 ).

𝑀𝐴𝑈𝐹𝐸 (𝑍, 𝑍 ) = 1

𝑛

𝑛∑
𝑖=1

|𝑚𝑎𝑥 (𝑍𝑖 − 𝑍𝑖 , 0) | (12)

Notably, overestimation and underestimation are the only two types

of possible errors and are mutually exclusive, meaning that:

𝑀𝐴𝑈𝐹𝐸 +𝑀𝐴𝑂𝐹𝐸 = 𝑀𝐴𝐹𝐸 (13)

Extracted Potential Flexibility Ratio is a metric that shows how

much flexibility has been predicted in comparison to howmuch was

available. Notably, this metric does not penalize overestimations,

only underestimations.

𝐸𝑃𝐹𝑅(𝑍, 𝑍 ) =
∑𝑛
𝑖=1𝑚𝑎𝑥 (𝑍𝑖 − 𝑍𝑖 , 0)∑𝑛

𝑖=1 𝑍𝑖
(14)

These 4 proposed metrics enable to quantitatively evaluate over-

all flexibility prediction performance, identify what type of error

is more prevalent, and measure what percentage of total potential

flexibility has been predicted.

7 EXPERIMENTS
In this paper, the experiments were performed using data from 3

heat pump deployments from 2 open datasets containing historical

indoor, outdoor temperature and power consumption data.

7.1 Datasets
The first dataset (NIST Net-Zero) is collected from the Net-Zero

Energy Residential Test Facility, a residential building test bed con-

structed to study and demonstrate various technologies for effec-

tively meeting typical residential demands using renewable energy.

The data were collected from an experiment simulating realistic

consumption and usage patterns of a family of four. During the

demonstration period, heating for the household was performed

by an air-source (air-to-air) heat pump. The heat pump was con-

figured to maintain two constant temperature set points of 23.8◦𝐶
during the cooling season and 21.1◦𝐶 during the heating season.

The indoor temperature fluctuated very little throughout the year,

changing by less than 2
◦𝐶 from the set point. The dataset collected

from this experiment includes 1 minute granularity indoor time

series, outdoor temperature, and heat pump power consumption

readings for one year. This dataset is open access and has been

widely used in other studies [28, 36].

The second and third datasets aremade available by theNewYork

State Energy Research and Development Authority (NYSERDA).

They provide data from 50 geothermal heat pumps installed in res-

idential buildings ranging from around 100 to nearly 600 square

meters in footage in New York State in the United States. The two

datasets were collected from deployments with identifiers S40 and

S44. No set point temperature information was provided, however,

in the NYSERDA S40 dataset, the heat pump maintained an indoor

temperature of around 21.1◦𝐶 and in the NYSERDA S44 dataset

– around 20
◦𝐶 . The indoor temperature in both sites fluctuated

significantly, especially during the winter season, where the indoor

temperature in both sites would change by more than 4
◦𝐶 from the

approximated set points. Both datasets include 15 minute granular-

ity time series indoor, outdoor and power consumption readings

over approximately 12 months and are available for open access.

7.2 Data preprocessing
All datasets in the experiments (as defined in Section 7.1) were

preprocessed in the following steps:

Data collection. Data for experiments were collected by selecting

indoor temperature 𝑇𝑖𝑛𝑑 , outdoor temperature 𝑇𝑜𝑢𝑡 and power 𝑃ℎ𝑝
readings from the datasets. 𝑇𝑖𝑛𝑑 values for NIST Net-Zero dataset

were calculated by calculating the mean of all provided indoor

temperature readings in the original dataset. Data from two sites

were included in the experiments from the NYSERDA dataset: S40

and S44. Furthermore, temperature readings in NYSERDA S40 and

NYSERDA S44 were converted from Fahrenheit to Celsius.

Poor quality data removal. Outlier values were removed by se-

lecting data points where temperatures 𝑇𝑖𝑛𝑑 ∈ [10; 30], 𝑇𝑜𝑢𝑡 ∈
[−50; 50]. Furthermore, records with changes of more than 15

◦𝐶
within a 15 minute period were also removed. Data marked as in-

correct or inconsistent in the provided data specifications were also

removed.

Data resampling. In the experiments, 15 minute data granularity

was selected to be used across all datasets, as it is usually used in

electricity and flexibility markets [15]. For NIST Net-Zero dataset,

data were downsampled by averaging power 𝑃ℎ𝑝 readings to 15

minute intervals, and taking the last outdoor temperature 𝑇𝑜𝑢𝑡 and

indoor temperature 𝑇𝑖𝑛𝑑 readings. No resampling was required for

NYSERDA S40 or NYSERDA S44 datasets.

Date and time feature extraction. As used predictive models re-

quire inputs and outputs to have a numeric type, the given date and

time timestamp 𝐷𝑇 (𝑡) ∈ 𝑋 (𝑡) was converted into respective year,

month, day, hour, minute, day of the week integer values. This was

done for each vector 𝑋 (𝑡) in given historical data 𝑋 .

Training data Validation data Test data

16 2 2

Figure 3: Visual representation of the sequential dataset
split strategy applied in intervals of 20 days

Data splitting for training, validation and testing. Each dataset was
split into training, validation, and test subsets (sets). Training and
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Table 2: Snapshot of the overall best performing indoor temperature forecasting models

Dataset
NIST NYSERDA S40 NYSERDA S44

Model RMSE MAE MAXE RMSE MAE MAXE RMSE MAE MAXE
LSTM (c=16, m=16) 0.3240 0.3209 0.3680 0.2352 0.2125 0.3266 0.3084 0.2727 0.4448
LSTM (c=32, m=96) 0.0833 0.0752 0.1202 0.2408 0.2169 0.3357 0.3106 0.2749 0.4475

LSTM average 0.3967 0.3924 0.4397 0.2580 0.2340 0.3570 0.3281 0.2938 0.4653

GRU (c=16, m=16) 0.3200 0.3157 0.3726 0.2513 0.2302 0.3378 0.3171 0.2850 0.4446

GRU (c=16, m=96) 0.1262 0.1209 0.1607 0.2458 0.2230 0.3404 0.3283 0.2936 0.4687

GRU average 0.2835 0.2749 0.3449 0.2780 0.2520 0.3860 0.3544 0.3198 0.4970

LR (m=32) 0.2620 0.2519 0.3328 0.2852 0.2549 0.4053 0.4066 0.3577 0.5884

LR (m=16) 0.3274 0.3240 0.3773 0.2604 0.2281 0.3797 0.4119 0.3622 0.5940

LR average 0.2712 0.2591 0.3431 0.3110 0.2740 0.4560 0.4850 0.4167 0.7365

SARIMAX 0.1424 0.1280 0.2063 0.9086 0.8439 1.1724 2.2577 2.0835 2.8021

validation sets were used during predictive model training process,

to learn model weights. The test set was only used to assess model

performance on previously unseen data and was not used during

model training. All datasets are time series and possess sequential

dependencies, trends and seasonality. As such, traditionally used

splitting techniques such as k-fold splitting are not applicable.

To account for this, a sequential data split strategy was utilized.

The original dataset was divided into parts of one day each and

then sequentially divided into three bins for each of the training,

validation and test sets. Following best machine learning practices,

every 20 days in the dataset, a sequence of 16 days was added to

the training set, following a sequence of 2 days which was added

to the validation set, after which a sequence of 2 days was added to

the test set (as seen in Figure 3). This was repeated until the entire

dataset was split. This splitting technique ensures that each set

is representative of intra-day temperature change and power con-

sumption patterns and how they change between different months

and seasons.

7.3 Implementation details
Grid search was used to find appropriate machine learning model

hyperparameter configurations. For LSTM and GRU models, differ-

ent cell counts 𝑐 ∈ ⟨16, 32, 48, 80⟩ were used. As previous studies
have shown that memory parameter𝑚 selection can have a signifi-

cant impact on the performance of themodel, several configurations

of𝑚 ∈ ⟨16, 32, 48, 96⟩ were tested with all trained models [37]. Dur-

ing experiments, models were trained with horizon ℎ = 4, meaning

that the models predicted indoor temperature for the next hour

in 4 time steps. Training of all models, apart from SARIMAX, was

conducted using the Adam optimizer with learning rate parameter

𝛼 = 0.005, using RMSE as the loss function. Models were trained

with a batch size of 64 for a maximum of 125 epochs with early

stopping enabled to prevent overfitting. During training and valida-

tion losses were logged into persistent storage. Model checkpoints

were made every 5 epochs. Checkpoint of the lowest validation

loss model was kept in storage. To account for potential outlier

results due to the random initial parameter initialization in LSTM,

GRU and LR models, each model configuration was trained 3 times

and the model with the second-lowest error was used in results

analysis and flexibility prediction. For SARIMAX models, optimal

parameters were found using the auto-ARIMA parameter search

mechanism, finding parameters 𝑝, 𝑑, 𝑞, 𝑃, 𝐷,𝑄,𝑚.

Dataset preprocessing, analysis, flexibility prediction, result col-

lection and visualizationwas realized using the PyData data analysis

toolkit in Python. LSTM, GRU, and linear regression indoor temper-

ature predictive models were implemented, trained and tested using

the open source machine learning library PyTorch (version 1.6.0)

and high level API extension library PyTorch Lightning (version

1.1.1). SARIMAX models were fitted and tested using open source

library Pmdarima (version 1.8.0). Model training and evaluation

was carried out on several workstations equipped with NVIDIA

graphics processing units and using the Google Colab platform.

8 RESULTS
During the experiments, the indoor temperature forecasting models

were trained using the training set and validation set. The indoor

temperature forecasting and flexibility prediction error was then

evaluated using the test set. Each model was trained and evaluated

using data from only one dataset.

8.1 Indoor temperature forecasting results
Quantitative model performance. Trained indoor temperature fore-

casting model performance was quantitatively evaluated using data

from the test set by calculating average 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and 𝑀𝐴𝑋𝐸

metric values. Results from the experiments indicate that the trained

predictive models managed to effectively capture how indoor tem-

perature changes w.r.t. heat pump operation and outdoor tempera-

ture. Quantitative model performance evaluation shows that the

best performing predictive models were trained using the LSTM

and GRU neural network architectures, with LSTM having the over-

all best performance. As seen in Table 2, best performing LSTM and

GRU architecture models outperform multivariate linear regres-

sion and SARIMAX models. LSTM models have the lowest error

in experiments on all three deployments, outperforming GRU by

over 9% lower RMSE, multivariate LR models by over 32% lower

RMSE. Best performing LSTM models also significantly outperform
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Figure 4: Best performing indoor temperature forecasting model RMSE error by season on NYSERDA S44 dataset

SARIMAX models, especially on NYSERDA S40 and NYSERDA S44

datasets, where LSTM models recorded over 82% lower RMSE error.

Quantitative model results also show that baseline linear regres-

sion and SARIMAXmodels fittedwith auto-ARIMAhave reasonable

performance on the NIST Net-Zero dataset, where the indoor tem-

perature does not change by more than a few degrees over the

entire year. As seen in Table 2 SARIMAX outperforms the best

performing LR model by over 45% lower RMSE on the NIST Net-

Zero dataset. However, these baseline models have significantly

higher predictive error on NYSERDA S44 than their LSTM and

GRU counterparts. Multivariate LR models have, on average, over

30% higher error and SARIMAX has over 7 times higher error than

GRU or LSTM models. These significant performance differences

suggest that SARIMAX and multivariate linear regression models,

although generally effective, are not capable of effectively adapt-

ing to rapid indoor temperature fluctuations and capturing other

complex patterns present in the NYSERDA S44 dataset.

Seasonal performance analysis. After quantitative evaluation of

trained indoor temperature predictive models, model performance

was also analysed across different seasons. This indicates whether

trained models are effective at capturing different patterns present

throughout the entire calendar year. As all of the heat pump deploy-

ments are situated in the northern hemisphere, we use 4 meteoro-

logical seasons of winter, spring, summer and autumn, spanning

December to February, March to May, June to August, and Septem-

ber to November, respectively.

Seasonal analysis showed that LSTM and GRU predictive models

have high accuracy during the entire year, with their predictive er-

ror changing by less than 10% between different seasons. However,

baseline multivariate linear regression and SARIMAXmodel perfor-

mance vary significantly between seasons. This trend is the most

pronounced in the experiments conducted on the NYSERDA S44

dataset. As seen in Figure 4, best performing LSTM and GRU mod-

els have similar predictive errors across seasons on the NYSERDA

S44 dataset. However, multivariate LR and SARIMAX model per-

formance fluctuate, with linear regression having 30% higher error

in summer season and around 15% higher error in winter season

and SARIMAX having more than 9 times worse error during the

winter season than the best performing models. Poor performance

during the colder seasons is highly undesirable, as heat pumps op-

erate and use more power when the outside temperatures are lower,

increasing the amount of potential flexibility [15]. Intuitively, the

difference of performance between seasons can be attributed to the

fact that both multivariate linear regression and SARIMAX models

have a very limited amount of trainable parameters and thus are

unable to capture all of the emerging patterns between seasons.

Model configuration comparison. Although it has been established
that LSTM and GRU models possess high performance in terms

of numerical error, some model configurations produced compara-

tively poor results. LSTM and GRU models trained using cell count

𝑐 = 80 had significantly worse results on average than best perform-

ing models trained with 𝑐 = 16 or 𝑐 = 32. On the NIST Net-Zero

dataset models with cell count configuration 𝑐 = 80 recorded av-

erage RMSE +0.5 higher, compared to the best performing model

LSTM (c=32, m=96) and, on average, +0.6 higher on the NYSERDA

S44 and the NYSERDA S40 datasets. Inspection of validation loss

during training indicated that some of these models failed to con-

verge during training, even across multiple runs, despite having

potentially higher capacity of capturing complex trends due to the

increase in cell count. These results along with quantitative results

presented in Table 2 indicate cell count hyperparameter selection

is crucial for training accurate LSTM and GRU models.

Model training time. In order to evaluate model training time

fairly, all models were trained using the same Google Colab instance

with an NVIDIA Tesla P100 GPU. This includes dataset loading,

model checkpointing, logging, generating, and saving predictions

on the test set. All indoor temperature predictive models were

trained in less than 10 minutes on the given Colab instance. Predic-

tion generation using an already trained model takes ≤ 10𝑚𝑠 using

the Google Colab instance and Apple MacBook Pro with an Intel i5

2.0 GHz CPU.

8.2 Flexibility prediction results
Heat pump flexibility prediction was performed using trained in-

door temperature predictive models (as shown in Figure 1). Heat

pump flexibility scenarios Off and ForcedOn were examined, coin-

cidingwith SG-Ready heat pump operationmodesOff and ForcedOn
(as defined in Table 1).

For scenario Off, data for flexibility prediction performance eval-

uation were collected from the test set by taking records where

heat pump power was below a predefined power threshold for at

least 45 minutes from start. The threshold of 100𝑊 for mode Off
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Figure 5: Flexibility prediction results using best performing models from Table 2 with user temperature threshold of 0.5◦𝐶
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Figure 6: Diagram visualizing MAFE and RMSE correlation
of all the trained models during experiments

was used for NIST Net-Zero, NYSERDA S40, and NYSERDA S44

datasets.

For scenario ForcedOn, data for flexibility prediction performance

evaluation were also collected from the test set. Records were se-

lected, where heat pump power was above a predefined power

threshold for at least 45 minutes from start. The threshold for mode

ForcedOn was 1.5𝑘𝑊 for NIST Net-Zero dataset, 2.14𝑘𝑊 for NY-

SERDA S44 dataset, and 0.92𝑘𝑊 for the NYSERDA S40 dataset.

Flexibility was predicted using 𝐹𝐿𝐸𝑋_𝑃𝑅𝐸𝐷𝐼𝐶𝑇 defined in Al-

gorithm 1. Lower and upper bounds 𝑇𝑖𝑛𝑑_𝑙𝑜𝑤𝑒𝑟 ,𝑇𝑖𝑛𝑑_𝑢𝑝𝑝𝑒𝑟 were

calculated by adding and subtracting an indoor temperature thresh-

old value from the last known indoor temperature to get upper

and lower bounds, respectively. 0.5◦𝐶 was selected as the indoor

temperature threshold value. No adjustment for predictive model

error was used in initial experiments (𝜀 = 0).

Quantitative flexibility prediction performance. Flexibility pre-

diction using trained predictive models experiments show that

HeatFlex is capable of predicting flexibility with a high degree of

accuracy. As seen in Figure 5, best performing trained temperature

predictive models perform well across all three datasets.

For the NIST Net-Zero dataset, the average MAFE error for sce-

nario Off was 0.1, with underestimated flexibility being the only

type of error. For scenario ForcedOn, MAFE was 0.28, with underes-

timated error MAUFE constituting for over 95% of total error. The

best performing model for flexibility prediction was the GRU (c=16,

m=16), followed closely by LSTM (c=16, m=16). Notably, both GRU

(c=16, m=16) and LSTM (c=16, m=16) had more than 3 times higher

RMSE indoor temperature predictive error than the best performing

indoor temperature predictive model LSTM (c=32, m=96), which

had the worst total MAFE for both modes across all 7 models. This

indicates that temperature predictive model RMSE does not always

translate into better flexibility prediction MAFE error.

For NYSERDA S40 dataset, the average MAFE error for scenario

Off was 0.8 with overestimated flexibility constituting over 95%

of total error. All of the models performed very similarly, predict-

ing flexibility within 5% of the average 0.8. The average MAFE for

ForcedOn, excluding the SARIMAX model results, was 0.98. SARI-

MAX underperformed significantly with MAFE of 2.5. The best

overall performing model for flexibility prediction was the GRU

(c=16, m=16).

For NYSERDA S44 dataset, the average MAFE error for sce-

nario Off was 1.1. Similarly to the results on the NYSERDA S40

dataset overestimated flexibility made up over 90% of the total error.

For predicting flexibility for ForcedOn, the average error was 1.35,
with overestimated flexibility error MAOFE constituting for around

60% of the total error. The best performing model for flexibility

prediction was the LSTM (c=16, m=16), which was also the best

performing temperature predictive model (as seen in Table 2).

Correlation analysis of predictive model error and predicted flexibil-
ity. Trained model flexibility prediction results were also analysed

to identify if a numeric relationship exists between indoor temper-

ature predictive model error and predicted flexibility error. Figure

6 visualizes the bivariate correlation between trained model RMSE

and the mean MAFE for scenarios Off and ForcedOn. The figure
shows that in models of all three datasets there is a positive cor-

relation between RMSE and MAFE. However, the correlation is

non-linear and has a lot of outliers, meaning that indoor temper-

ature RMSE is a reasonable metric for estimating flexibility error

MAFE, but higher indoor temperature model accuracy does not

always translate into more accurate flexibility prediction.

Adjustment for predictive model error results. In HeatFlex, indoor

temperature prediction and flexibility prediction is separated, al-

lowing adjusting for trained indoor temperature predictive model

error during flexibility prediction. One adjustment strategy is to use

the 𝜀 adjustment variable in the flexibility prediction algorithm (as

defined in Algorithm 1). If 𝜀 > 0, it reduces the range between user

defined comfort bounds. As seen in Figure 7 the user comfort bound

reduction forces the predictive models to underestimate flexibility,

reducing MAOFE error at the cost of increasing MAUFE, which

might be a preferable trade-off, depending on the use-case. An alter-

native strategy for adjusting for predictive model error is to widen

the user comfort bounds by negotiating with the end-user. It could
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Figure 7: Flexibility prediction results for NYSERDA S44 dataset using indoor temperature threshold of 0.5◦𝐶 (left) compared
with adjustment strategy RMSE/2 (center) and increased temperature threshold of 1.0◦𝐶 (right)

Table 3: Total flexible energy (kWh) and EPFR percentage of best performing models

NIST NYSERDA S40 NYSERDA S44

𝑚𝑜𝑑𝑒 = Off 𝑚𝑜𝑑𝑒 = ForcedOn 𝑚𝑜𝑑𝑒 = Off 𝑚𝑜𝑑𝑒 = ForcedOn 𝑚𝑜𝑑𝑒 = Off 𝑚𝑜𝑑𝑒 = ForcedOn

Flexible Energy (𝐸𝑚𝑜𝑑𝑒 ) 1166 kWh 430 kWh 1087 kWh 714 kWh 1855 kWh 785 kWh

EPFR 98.70% 87.20% 97.30% 86.20% 87.40% 95.40%

be used in cases where previous adjustment for error strategies do

not yield satisfactory results. Widening the comfort bounds has a

two-fold effect: it potentially reduces the flexibility prediction error

and increases the total amount of potential heat pump flexibility.

As seen in Figure 7, the widening of the user comfort bounds by

0.5◦𝐶 decreased MAFE by 85% on average. The widening of bounds

also yielded an over 41% increase in potential flexibility for modes

Off and ForcedOn.
Evaluation of the amounts of predicted flexible energy. After all

experiments were completed, flexibility prediction results were ag-

gregated and the total amount of flexible energy was calculated. To

calculate flexible energy for𝑚𝑜𝑑𝑒 ∈ {ForcedOn,Off}, the average
power consumptions of the heat pump were calculated in both nor-

mal operation 𝑃𝑛𝑜𝑟𝑚𝑎𝑙 and in the given mode 𝑃𝑚𝑜𝑑𝑒 and then the

absolute difference was multiplied the predicted flexibility amount

𝐹𝑚𝑜𝑑𝑒 divided by 4 to normalize to hours (one time step every 15

minutes).

𝐸𝑚𝑜𝑑𝑒 = (𝑃𝑚𝑜𝑑𝑒 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙 ) ∗
𝐹𝑚𝑜𝑑𝑒

4

(15)

The comfort bound of 0.5◦𝐶 was used across all datasets for flex-

ibility prediction. As seen in Table 3 all of the heat pump deploy-

ments provide over 1.5𝑀𝑊ℎ of combined flexible energy, with the

NYSERDA S44 providing 2.64𝑀𝑊ℎ. The results indicate that the

majority (over 68%) of total potential flexible energy can be utilized

with scenario Off . On average, the flexibility prediction models

managed to predict over 90% of available flexibility (EPFR) from all

three datasets between both modes. Notably, all of the monitored

heat pumps used in this study were not configured to maximize

flexible energy and were operating to maintain a set temperature.

9 CONCLUSIONS AND FUTUREWORK
This paper proposes HeatFlex, a novel data-driven method for pre-

dicting flexibility from smart heat pumps. HeatFlex, utilizing mod-

ern machine learning models, LSTM and GRU recurrent neural

networks, can accurately predict flexibility from heat pump devices

without requiring knowledge about deployed heat pump parame-

ters, building layout or environment details or manual development

of physical models. Furthermore, HeatFlex only uses three, widely

available monitored variables, making it applicable in a majority

of use cases. The paper also proposes new metrics for heat pump

flexibility, enabling quantitative evaluation of flexibility prediction

performance. Conducted experiments on 3 open access datasets

show that machine learning based indoor temperature forecast-

ing models can be trained in a scalable, data-driven way and be

effective at predicting energy flexibility from individual smart heat

pump devices. Quantitative and qualitative performance evaluation

shows that HeatFlex, utilizing recurrent neural networks, has over

32% lower indoor temperature forecasting error than the model

baselines linear regression and SARIMAX, while also having more

consistent performance throughout different seasons. Experimental

results show that HeatFlex can be effective in different deployments,

with different building sizes and heat pump types, predicting over

90% of potential heat pump flexibility.

In future work, we will develop data-driven predictive models

that could predict flexibility from other types of devices (e.g. air con-

ditioners, electric vehicle chargers). We will perform experiments

using additional data from real smart heat pump deployments as

well as simulations to verify HeatFlex robustness in various flexible

operation conditions. Additionally, we will explore developing pre-

dictive models that optimize directly on flexibility prediction error,

thus maximizing utility. Finally, we will develop novel probabilistic

models which will enable evaluating potential prediction accuracy

during inference.

ACKNOWLEDGMENTS
This workwas supported by the FEVER (Flexible Energy Production,

Demand and Storage-based Virtual Power Plants for Electricity

Markets and Resilient DSO Operation) project under the Horizon

2020 programme.

169



HeatFlex: Machine learning based data-driven flexibility prediction for individual heat pumps e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

REFERENCES
[1] Alessandro Aliberti, Francesca Maria Ugliotti, Lorenzo Bottaccioli, Giansalvo

Cirrincione, Anna Osello, Enrico MacIi, Edoardo Patti, and Andrea Acquaviva.

2018. Indoor Air-Temperature Forecast for Energy-Efficient Management in

Smart Buildings. Proceedings - 2018 IEEE International Conference on Environment
and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems
Europe, EEEIC/I and CPS Europe 2018 (2018). https://doi.org/10.1109/EEEIC.2018.

8494382

[2] Abdulaziz Almalaq andGeorge Edwards. 2017. A review of deep learningmethods

applied on load forecasting. Proceedings - 16th IEEE International Conference on
Machine Learning and Applications, ICMLA 2017 2017-December (2017), 511–516.

https://doi.org/10.1109/ICMLA.2017.0-110

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning Long-Term

Dependencies with Gradient Descent is Difficult. IEEE Transactions on Neural
Networks 5, 2 (1994), 157–166. https://doi.org/10.1109/72.279181

[4] Matthias Boehm, Lars Dannecker, Andreas Doms, Erik Dovgan, Bogdan Filipič,

Ulrike Fischer, Wolfgang Lehner, Torben Bach Pedersen, Yoann Pitarch, Laurynas

Šikšnys, and Tea Tušar. 2012. Data management in the MIRABEL smart grid

system. ACM International Conference Proceeding Series (2012), 95–102. https:

//doi.org/10.1145/2320765.2320797

[5] George Edward Pelham Box and Gwilym Jenkins. 1990. Time Series Analysis,
Forecasting and Control. Holden-Day, Inc., USA.

[6] P. Carroll, M. Chesser, and P. Lyons. 2020. Air Source Heat Pumps field studies:

A systematic literature review. Renewable and Sustainable Energy Reviews 134,
August (2020). https://doi.org/10.1016/j.rser.2020.110275

[7] T. Chai and R. R. Draxler. 2014. Root mean square error (RMSE) or mean absolute

error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific
Model Development 7, 3 (2014), 1247–1250. https://doi.org/10.5194/gmd-7-1247-

2014

[8] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.

2015. On the Properties of Neural Machine Translation: Encoder–Decoder Ap-

proaches. (2015), 103–111. https://doi.org/10.3115/v1/w14-4012 arXiv:1409.1259

[9] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.

(dec 2014). arXiv:1412.3555 http://arxiv.org/abs/1412.3555

[10] Tingting Fang and Risto Lahdelma. 2016. Evaluation of a multiple linear regres-

sion model and SARIMA model in forecasting heat demand for district heating

system. Applied Energy 179 (2016), 544–552. https://doi.org/10.1016/j.apenergy.

2016.06.133

[11] David Fischer, Marc Andre Triebel, and Oliver Selinger-Lutz. 2018. A Concept for

Controlling Heat Pump Pools Using the Smart Grid Ready Interface. Proceedings -
2018 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe
2018 (2018). https://doi.org/10.1109/ISGTEurope.2018.8571870

[12] Benedikt Heidrich, Marian Turowski, Nicole Ludwig, Ralf Mikut, and Veit Ha-

genmeyer. 2020. Forecasting energy time series with profile neural networks. In

e-Energy 2020 - Proceedings of the 11th ACM International Conference on Future
Energy Systems. Association for Computing Machinery, Inc, New York, NY, USA,

220–230. https://doi.org/10.1145/3396851.3397683

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.

8.1735

[14] Chiou Jye Huang and Ping Huan Kuo. 2019. Multiple-Input Deep Convolutional

Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE
Access 7 (2019), 74822–74834. https://doi.org/10.1109/ACCESS.2019.2921238

[15] Konstantinos Kouzelis, Zheng H. Tan, Birgitte Bak-Jensen, Jayakrishnan Rad-

hakrishna Pillai, and Ewen Ritchie. 2015. Estimation of Residential Heat Pump

Consumption for Flexibility Market Applications. IEEE Transactions on Smart
Grid 6, 4 (2015), 1852–1864. https://doi.org/10.1109/TSG.2015.2414490

[16] Guokun Lai, Wei Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Model-

ing long- and short-term temporal patterns with deep neural networks. 41st
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2018 July (2018), 95–104. https://doi.org/10.1145/3209978.3210006

arXiv:arXiv:1703.07015v3

[17] Ming Li, Yijun Li, and Xinli Min. 2020. Practice and Application of LSTM in

Temperature Prediction of HVAC System. Proceedings of 2020 IEEE 5th Information
Technology and Mechatronics Engineering Conference, ITOEC 2020 Itoec (2020),
1000–1004. https://doi.org/10.1109/ITOEC49072.2020.9141910

[18] Junyu Liu, Xiao Wang, Yan Zhao, Bin Dong, Kuan Lu, and Ranran Wang. 2020.

Heating Load Forecasting for Combined Heat and Power Plants Via Strand-Based

LSTM. IEEE Access 8 (2020), 33360–33369. https://doi.org/10.1109/ACCESS.2020.

2972303

[19] FernandoMateo, Juan José Carrasco, Abderrahim Sellami, Mónica Millán-Giraldo,

Manuel Domínguez, and Emilio Soria-Olivas. 2013. Machine learning methods to

forecast temperature in buildings. Expert Systems with Applications 40, 4 (2013),
1061–1068. https://doi.org/10.1016/j.eswa.2012.08.030

[20] Bijay Neupane, Torben Bach Pedersen, and Bo Thiesson. 2018. Utilizing device-

level demand forecasting for flexibility markets. e-Energy 2018 - Proceedings of

the 9th ACM International Conference on Future Energy Systems (2018), 108–118.
https://doi.org/10.1145/3208903.3208922

[21] Bijay Neupane, Laurynas Siksnys, and Torben Bach Pedersen. 2017. Generation

and evaluation of flex-offers from flexible electrical devices. In e-Energy 2017 - Pro-
ceedings of the 8th International Conference on Future Energy Systems. Association
for ComputingMachinery, Inc, 143–156. https://doi.org/10.1145/3077839.3077850

[22] Thomas Nowak and Pascal Westring. 2017. Growing for good ? The European

Heat Pump Market - Status and outlook. 12th IEA Heat Pump Conference 2017
(2017), 1–10.

[23] Dimitrios Papadaskalopoulos, Goran Strbac, Pierluigi Mancarella, Marko Aunedi,

and Vladimir Stanojevic. 2013. Decentralized participation of flexible demand in

electricity markets - Part II: Application with electric vehicles and heat pump

systems. IEEE Transactions on Power Systems 28, 4 (2013), 3667–3674. https:

//doi.org/10.1109/TPWRS.2013.2245687

[24] Debayan Paul, Tanmay Chakraborty, Soumya Kanti Datta, and Debolina Paul.

2018. IoT and Machine Learning Based Prediction of Smart Building Indoor

Temperature. 2018 4th International Conference on Computer and Information
Sciences: Revolutionising Digital Landscape for Sustainable Smart Society, ICCOINS
2018 - Proceedings (2018), 1–6. https://doi.org/10.1109/ICCOINS.2018.8510597

[25] Torben Bach Pedersen, Thibaut Le Gully, Per D. Pedersen, Luis L. Ferreira, Lau-

rynas Šikšnys, Petr Stluka, Michele Albano, Arne Skou, and Petur Olsen. 2016.

An Energy Flexibility Framework on the Internet of Things. 2 (2016), 17–37.

https://doi.org/10.5220/0006163400170037

[26] Torben Bach Pedersen, Laurynas Siksnys, and Bijay Neupane. 2018. Modeling and

Managing Energy Flexibility Using FlexOffers. 2018 IEEE International Conference
on Communications, Control, and Computing Technologies for Smart Grids, Smart-
GridComm 2018 (2018). https://doi.org/10.1109/SmartGridComm.2018.8587605

[27] Rob J Hyndman and Yeasmin Khandakar. 2008. Automatic Time Series Forecast-

ing: The forecast Package for R. Journal of Statistical Software 27, 3 (2008), 22.
http://www.jstatsoft.org/v27/i03/paper

[28] Olga Rybnytska, Laurynas Šikšnys, Torben Bach Pedersen, and Bijay Neupane.

2020. PGFMU: Integrating data management with physical system modelling.

Advances in Database Technology - EDBT 2020-March (2020), 109–120.

[29] Laurynas Šikšnys, Emmanouil Valsomatzis, Katja Hose, and Torben Bach Ped-

ersen. 2015. Aggregating and Disaggregating Flexibility Objects. IEEE Trans-
actions on Knowledge and Data Engineering 27, 11 (2015), 2893–2906. https:

//doi.org/10.1109/TKDE.2015.2445755

[30] Jiancai Song, Guixiang Xue, Xuhua Pan, Yunpeng Ma, and Han Li. 2020. Hourly

heat load prediction model based on temporal convolutional neural network.

IEEE Access 8 (2020), 16726–16741. https://doi.org/10.1109/ACCESS.2020.2968536

[31] Hai Tao, Li Junjie, Shi Yu, Chen Yongjian, and Liu Zhenyu. 2020. Predictive

analysis of indoor temperature and humidity based on BP neural network single-

step prediction method. Proceedings of 2020 IEEE 3rd International Conference on
Information Systems and Computer Aided Education, ICISCAE 2020 (2020), 402–407.
https://doi.org/10.1109/ICISCAE51034.2020.9236853

[32] Stylianos I. Vagropoulos, G. I. Chouliaras, E. G. Kardakos, C. K. Simoglou, and

A. G. Bakirtzis. 2016. Comparison of SARIMAX, SARIMA, modified SARIMA

and ANN-based models for short-term PV generation forecasting. 2016 IEEE
International Energy Conference, ENERGYCON 2016 (2016), 0–5. https://doi.org/

10.1109/ENERGYCON.2016.7514029

[33] Emmanouil Valsomatzis, Katja Hose, Torben Bach Pedersen, and Laurynas

Šikšnys. 2015. Measuring and comparing energy flexibilities. CEUR Workshop
Proceedings 1330, c (2015), 78–85.

[34] Emmanouil Valsomatzis, Torben Bach Pedersen, and Alberto Abelló. 2018. Day-

ahead trading of aggregated energy flexibility. e-Energy 2018 - Proceedings of
the 9th ACM International Conference on Future Energy Systems (2018), 134–138.
https://doi.org/10.1145/3208903.3208936

[35] Inna Vorushylo, Patrick Keatley, Nikhilkumar Shah, Richard Green, and Neil

Hewitt. 2018. How heat pumps and thermal energy storage can be used to

manage wind power: A study of Ireland. Energy 157 (2018), 539–549. https:

//doi.org/10.1016/j.energy.2018.03.001

[36] WeiWu, HarrisonM. Skye, and Piotr A. Domanski. 2018. Selecting HVAC systems

to achieve comfortable and cost-effective residential net-zero energy buildings.

Applied Energy 212, October 2017 (2018), 577–591. https://doi.org/10.1016/j.

apenergy.2017.12.046

[37] Keming Yan, Chris Diduch, and Mary E. Kaye. 2019. An improved temperature

prediction technique for HVAC units using intelligent algorithms. 2019 IEEE
Energy Conversion Congress and Exposition, ECCE 2019 (2019), 490–494. https:

//doi.org/10.1109/ECCE.2019.8912944

170

https://doi.org/10.1109/EEEIC.2018.8494382
https://doi.org/10.1109/EEEIC.2018.8494382
https://doi.org/10.1109/ICMLA.2017.0-110
https://doi.org/10.1109/72.279181
https://doi.org/10.1145/2320765.2320797
https://doi.org/10.1145/2320765.2320797
https://doi.org/10.1016/j.rser.2020.110275
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.3115/v1/w14-4012
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1016/j.apenergy.2016.06.133
https://doi.org/10.1016/j.apenergy.2016.06.133
https://doi.org/10.1109/ISGTEurope.2018.8571870
https://doi.org/10.1145/3396851.3397683
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ACCESS.2019.2921238
https://doi.org/10.1109/TSG.2015.2414490
https://doi.org/10.1145/3209978.3210006
https://arxiv.org/abs/arXiv:1703.07015v3
https://doi.org/10.1109/ITOEC49072.2020.9141910
https://doi.org/10.1109/ACCESS.2020.2972303
https://doi.org/10.1109/ACCESS.2020.2972303
https://doi.org/10.1016/j.eswa.2012.08.030
https://doi.org/10.1145/3208903.3208922
https://doi.org/10.1145/3077839.3077850
https://doi.org/10.1109/TPWRS.2013.2245687
https://doi.org/10.1109/TPWRS.2013.2245687
https://doi.org/10.1109/ICCOINS.2018.8510597
https://doi.org/10.5220/0006163400170037
https://doi.org/10.1109/SmartGridComm.2018.8587605
http://www.jstatsoft.org/v27/i03/paper
https://doi.org/10.1109/TKDE.2015.2445755
https://doi.org/10.1109/TKDE.2015.2445755
https://doi.org/10.1109/ACCESS.2020.2968536
https://doi.org/10.1109/ICISCAE51034.2020.9236853
https://doi.org/10.1109/ENERGYCON.2016.7514029
https://doi.org/10.1109/ENERGYCON.2016.7514029
https://doi.org/10.1145/3208903.3208936
https://doi.org/10.1016/j.energy.2018.03.001
https://doi.org/10.1016/j.energy.2018.03.001
https://doi.org/10.1016/j.apenergy.2017.12.046
https://doi.org/10.1016/j.apenergy.2017.12.046
https://doi.org/10.1109/ECCE.2019.8912944
https://doi.org/10.1109/ECCE.2019.8912944

	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 HeatFlex Overview
	5 Indoor temperature forecasting
	5.1 Predictive models
	5.2 Metrics for quantitative evaluation

	6 Flexibility prediction
	6.1 Prediction method
	6.2 Metrics for evaluating flexibility

	7 Experiments
	7.1 Datasets
	7.2 Data preprocessing
	7.3 Implementation details

	8 Results
	8.1 Indoor temperature forecasting results
	8.2 Flexibility prediction results

	9 Conclusions and future work
	Acknowledgments
	References

