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Abstract—Conventional dual-loop grid-forming (GFM) 

inverters tend to be unstable when connecting to a stronger grid 
with a small grid inductance. Virtual inductance methods can 
increase the equivalent inductance to enhance stability. 
However, the impact of virtual inductance on the small-signal 
stability of GFM inverters is still absent in existing research. 
Hence, the stabilities of two virtual inductance methods (i.e. 
admittance method and impedance method) are compared 
initially in this paper. It is revealed that the stability range of the 
virtual admittance method is wider than that of the virtual 
impedance method. Besides, for the virtual admittance method, 
the stability is mainly influenced by the value of virtual 
admittance. A complex-value single-input single-output (SISO) 
small-signal model is proposed in this paper to find the critical 
stable value of the virtual admittance, which is not only simple 
but almost as accurate as the multiple-input multiple-output 
(MIMO) model. Finally, simulation results verify the 
effectiveness of theoretical analysis. 

Keywords—grid-forming inverter, small-signal stability, 
virtual admittance, single input single output method 

I. INTRODUCTION 
Nowadays, grid-following (GFL) inverters have been 

widely applied in renewable energy generation systems, such 
as wind and solar photovoltaic (PV) power plants. However, 
GFL inverters have some challenges to provide inertia 
support. Hence, the modern power system might suffer from 
frequency stability issues as the penetration of renewable 
energy sources increases and the total inertia decreases [1]. 
Additionally, GFL inverters behave like current sources, 
which rely on the grid voltage to realize synchronization and 
normal operation. Therefore, the islanded operation is also a 
big challenge for GFL inverters [2]. 

Differently, grid-forming (GFM) inverters can support the 
grid frequency to solve the frequency stability issues. Two 
commonly used methods are virtual synchronous generator 
(VSG) control and droop control methods to achieve the grid 
synchronization. When the virtual inertia is designed as zero, 
the VSG control method is equivalent to the droop control 
method [3]. In addition, GFM inverters behave like voltage 
sources so that they have the islanded operation ability. The 
islanded operation and frequency support are two obvious 
advantages of GFM inverters compared with GFL inverters. 
Therefore, GFM inverters have attracted a lot of attentions in 
recent years [4]-[9]. 

However, it is reported in [10] that conventional dual-loop 
GFM inverter is prone to be unstable under a stronger grid 
condition due to only a small grid inductance connecting two 
voltage sources on grid-side and converter-side. Hence, it is 
recommended in [10] to use another GFM control method 
without inner current loops. Because the total inductance 
between two voltage sources can be increased by including the 

filter inductance, the small-signal stability is able to be 
improved. However, the lack of current limitations and the 
poor voltage harmonic performance are two drawbacks of this 
method. 

Similarly, an alternative idea is adding a virtual inductance 
to increase the total equivalent inductance between two 
voltage sources. To implement this idea, the virtual impedance 
method [11] and the virtual admittance method [12] are two 
interesting approaches. The equivalent circuits of these two 
methods are basically the same, but the stability ranges of 
them are different. Based on the eigenvalue analysis of these 
two methods, it is found that the small-signal stability range 
of the virtual admittance method is wider than that of the 
virtual impedance method. Therefore, the virtual admittance 
method is chosen for further study in this paper. 

The value of the virtual admittance is determined by two 
parameters, namely the virtual resistance Rv and inductance 
Xv. It can also be represented by the magnitude and the phase 
angle (or the ratio of resistance and inductance Rv/Xv) in the 
complex-value form. This paper reveals that the magnitude of 
the virtual admittance and the ratio of the virtual resistance 
and inductance Rv/Xv are two key parameters to determine the 
small-signal stability of the GFM inverter system. The critical 
stable value of these two parameters can be found according 
to the eigenvalue analysis. Moreover, an equivalent complex-
value single-input single-output (SISO) small-signal model is 
proposed in this paper, which allows to use Bode diagram to 
find the critical stable values. Compared with the multiple-
input multiple-output (MIMO) model, this SISO model is not 
only simple but almost as accurate as the MIMO model. Thus, 
this SISO model can take place of the MIMO model for 
parameter design, which is convenient to use. 

The rest of this paper is organized as follows. Section II 
introduces the configurations of three typical GFM inverter 
control schemes. Besides, their small-signal stabilities are also 
compared. In Section III, the impact of the virtual admittance 
on the small-signal stability is analyzed. Besides, an SISO 
method is introduced to find the critical values. In Section IV, 
simulation results are provided to verify the theoretical 
analysis. Finally, this paper is concluded in Section V. 

II. STABILITY COMPARISON OF THREE GRID-FORMING 
CONTROL METHODS 

A. Configurations of Three Grid-Forming Control Schemes 
Three typical GFM control methods and equivalent 

circuits are presented in Fig. 1, where Gv and Gi are the closed-
loop transfer functions of the voltage control loop and current 
control loop. Lf and Cf are the filter inductance and 
capacitance. Lg and vg are the grid inductance and grid voltage 
of Thevenin’s equivalent circuit of the power grid. 



 

 

 
Fig. 1. Three typical grid-forming control methods and equivalent circuits. 

The conventional dual-loop GFM inverter with droop 
control is shown in Fig. 1(a), which is the same as [13]. The 
virtual impedance method is shown in Fig. 1(b), where a 
virtual impedance Zv = Rv + jω1Lv is directly added based on 
the conventional dual-loop control method. Fig. 1(c) 
demonstrates an alternative method by adding a virtual 
admittance Yv = 1 / (sLv + Rv). Their equivalent circuits are also 
shown in Fig. 1. Intuitively, both the virtual impedance 
method and the virtual admittance method can increase the 
equivalent inductance between two voltage sources to 
enhance the stability of the conventional dual-loop control 
method. However, a quantitative comparison regarding 
stability is still absent in existing research. Hence, small-
signal stabilities of these three methods will be compared 
quantitatively in this section. 

B. Small-Signal State-Space Models and Stability Analysis 
The detailed control structure of the conventional dual-

loop GFM control method can be seen in [13], which is not 
given in this paper. The small-signal differential equations of 
each method shown in Fig. 1 will be derived in this section. 
Same as [13], the superscript ‘ctrl’ denotes the variables in the 
control d-q frame in this paper. Besides, the subscript ‘0’ 
denotes a steady-state operating point, and the symbol ‘Δ’ 
denotes a small-signal perturbation of a variable. 

The small-signal differential equations of the Lf - Cf - Lg 
circuits in the system d-q frame are given by (1)-(3). 
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According to the Park and iPark transformations, the 
small-signal equations of the coordinate transformations can 
be derived as (4)-(7), where Δθps is the angle between the 
control d-q frame and the grid d-q frame [13]. 
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Besides, the small-signal linearized equations of the 
current control loops are provided by (8) and (9). 
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Moreover, the small-signal linearized equations of the 
voltage control loops are given by (10) and (11). 
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In addition, the small-signal linearized equations of the 
active power and reactive power can be derived as (12)-(13). 
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The small-signal differential equations of the first-order 
low-pass filter (LPF) are given by (14). 
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where ωLPF is the cut-off angular frequency of the LPFs. 

Furthermore, the small-signal equations of the P-droop 
and Q-droop control are presented by (15). 
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For the conventional dual-loop GFM control method, the 
reference values of the voltage control loop are shown in (16). 
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According to (1)-(16), the small-signal state-space model 
of conventional dual-loop GFM control can be derived as: 

 = ⋅ + ⋅1(13×1) 1(13×13) 1(13×1) 1(13×4) 1(4×1)Δx A Δx B Δu  (17) 

where Δx1(13×1) = [Δigd, Δigq, ΔvCd, ΔvCq, ΔiLd, ΔiLq, ΔIntid, 
ΔIntiq, Δintvd, Δintvq, ΔPLPF

ctrl, Δθps, ΔQLPF
ctrl]T and Δu1(4×1) = 

[Δvgd, Δvgq, ΔP*, ΔQ*]. 

For the virtual impedance method in Fig. 1(b), the 
reference values of the voltage control loop are shown in (18). 
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Similarly, according to (1)-(15) and (18), the small-signal 
state-space model of the virtual impedance method can be 
derived as (19). 

TABLE I.  PARAMETERS OF GRID-FORMING INVERTER 

Parameters Values 

Grid phase voltage Vg and nomimal voltage VN VN = Vg =311 V 

Grid frequency fg and nomimal frequency ωN ωN =2πfg =2π·50 Hz 

Rated power of inverter SN and PN PN = SN =30 kVA 

Maximum current of inverter (peak value), Imax 64.3 A 

DC-link voltage, Vdc 700 V 

Output filter inductor, Lf 5 mH 

Output filter capacitor, Cf 10 μF 

R/X ratio of grid impedance, Rg/Xg 0.01 

Short circuit ratio, SCR 1~30 

Grid inductor, Lg 0.5~15.3 mH 

Grid resistor, Rg 1.6~48 mΩ 

Switching/sampling frequency, fs 10 kHz 

Designed current-loop bandwidth, ωi 2000 rad/s 

Designed voltage-loop bandwidth, ωv 400 rad/s 

Active power droop coefficient, mp 2.5% ωN/PN 

Reactive power droop coefficient, nq 2.5% VN/PN 

Cut-off angular frequency of LPF, ωLPF 300 rad/s 

Virtual impedance Zv = |Zv|∠arctan(Xv/Rv) 
|Zv| = 0.5 pu, and  

Rv/Xv = 0.1 

Virtual admittance Yv = [|Zv|∠arctan(Xv/Rv)]-1 |Zv| = 0.5 pu, and  
Rv/Xv = 0.1 

 

 = ⋅ + ⋅2(13×1) 2(13×13) 2(13×1) 2(13×4) 2(4×1)Δx A Δx B Δu  (19) 

where Δx2(13×1) = Δx1(13×1) and Δu2(4×1) = Δu1(4×1). 

For the virtual admittance method in Fig. 1(c), the small-
signal equations of current reference values are shown in (20). 
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According to (1)-(9), (12)-(15), and (20), the state-space 
model of the virtual admittance method can be derived as (21). 

 = ⋅ + ⋅3(13×1) 3(13×13) 3(13×1) 3(13×4) 3(4×1)Δx A Δx B Δu  (21) 

where Δx3(13×1) = [Δigd, Δigq, ΔvCd, ΔvCq, ΔiLd, ΔiLq, ΔIntid, 
ΔIntiq, ΔiLd

*, ΔiLq
*, ΔPLPF

ctrl, Δθps, ΔQLPF
ctrl]T and Δu3(4×1) = 

Δu1(4×1). 

Considering the stability depends on A, only the matrixes 
A1(13×13), A2(13×13) and A3(13×13) are given in Appendix. Since 
the power has weak impact on the small-signal stability, the 
zero power condition is used for analysis in this paper. Thus, 
the calculation of steady-state operating points is same as [13]. 

The system and control parameters of a 30 kW GFM 
inverter are shown in Table I. The grid strength can be 
described by the short circuit ratio (SCR) [14]. Based on 
matrixes A1(13×13), A2(13×13) and A3(13×13) in (17), (19), and (21), 
the dominant eigenvalues near the imaginary axis of three 
state-space models are presented in Fig. 2, where the SCR is 
changed to evaluate the stability under different grid strengths. 



 

 

 
Fig. 2. Dominant eigenvalues of small-signal state-space models of three 
grid-forming control methods with different SCRs. 

Fig. 2(a) shows eigenvalues of the conventional dual-loop 
control method. When the SCR is increased to 3, the system 
becomes unstable. Fig. 2(b) shows eigenvalues of the virtual 
impedance method. When the SCR is increased to 20, it 
becomes unstable. Besides, Fig. 2(c) shows eigenvalues of the 
virtual admittance method. As the SCR increases, the 
eigenvalues move to left (far from the right half plane). Thus, 
the stability range regarding the SCR can be considered as [1, 
∞]. Therefore, the stability range of the virtual admittance 
method is larger than that of the other two methods. Due to 
this advantage, the virtual admittance method will be the focus 
in this paper. Notably, the case SCR<1 is not considered in 
this paper because SCR=1 is the benchmark weak grid [15]. 

III. STABILITY ANALYSIS OF VIRTUAL ADMITTANCE BASED 
GRID-FORMING INVERTER 

For the virtual admittance based GFM inverter, the small-
signal stability is mainly influenced by the value of virtual 
admittance. The eigenvalues of small-signal state-space 
models with different |Zv| and Rv/Xv are shown in Fig. 3 and 
Fig. 4 respectively. It can be seen that |Zv| = 0.4 pu and Rv/Xv 
= 1.1 are the critical stable points. 

 

 
Fig. 3. Eigenvalues of small-signal state-space models of virtual admittance 
method with different |Zv| when SCR is 2. 

 

 
Fig. 4. Eigenvalues of small-signal state-space models of virtual admittance 
method with different Rv/Xv when SCR is 2. 

Besides, the eigenvalues of the grid-connected mode and 
the initial start-up mode without grid-connection are 
compared in Fig. 3 and Fig. 4. It can be seen that the critical 
stable values of |Zv| and Rv/Xv in these two operating modes 
are basically the same. 



 

 
Fig. 5. Small-signal control structures of virtual admittance method in two 
operating modes. 

Based on the eigenvalue analysis results in Fig. 3 and Fig. 
4, the small-signal models of the virtual admittance method in 
the grid-connected mode and the initial start-up mode 
basically have the same critical values to determine the 
stability. Thus, the small-signal model of the initial start-up 
mode is preferable to be used for stability analysis and finding 
the critical stable points, because it is simpler. 

Since the time-domain small-signal model and the 
frequency-domain small-signal model can be derived from 
each other [16], the time-domain state-space model of the 
virtual admittance method in (21) can also be represented by 
the frequency-domain model shown in Fig. 5(a), where the 
2×2 matrixes BPI-I, BLf, BCf, etc are the same as [13]. Thus, in 
the initial start-up mode without grid-connection, the small-
signal model can be simplified as Fig. 5(b). 

According to the frequency-domain small-signal model in 
Fig. 5(b), the open-loop transfer function matrix from Δedq* to 
ΔvCdq can be derived as (22). 

1 1( ) [( ) ]s − −= ⋅ + − + ⋅ol Lv Lf PI-I decpl Cf PI-IT B B B B B I B  (22) 

Since all the matrixes in (22) are symmetric, they can be 
represented by the complex vector form, as shown in (23). 
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According to the open-loop transfer function Tol(s) in (23), 
the SISO method can be used for stability analysis. The Bode 
diagrams of Tol(s) are shown in Fig. 6. 

 

 
Fig. 6. Bode diagrams of open-loop transfer function Tol(s). 

It can be seen in Fig. 6(a) that the system is unstable when 
|Zv| is smaller than 0.4 pu, while it is stable when |Zv| is larger 
than 0.4 pu. Thus, 0.4 pu can be considered as the critical 
stable value for |Zv|. Similarly, according to the stability 
analysis results in Fig. 6(b), the ratio 1.1 can be considered as 
the critical stable value for Rv/Xv. The stability analysis results 
in Fig. 6 agree with that in Fig. 3 and Fig. 4. Thus, it is easy to 
use this SISO method to design the parameters |Zv| and Rv/Xv 
according to the phase margin requirement (e.g. ≥ 45 degree). 

IV. SIMULATION RESULTS 
In order to verify the correctness of the analyses above, a 

30 kW virtual admittance based GFM inverter simulation 
model is established in Matlab/Simulink. The system and 
control parameters are shown in Table I, which are the same 
as the parameters used for stability analyses. To avoid the 
influence of the high-frequency harmonics, an average model 
of the inverter is used. A weak grid condition with SCR = 1 
and a strong grid condition with SCR = 30 are used as 
examples to evaluate the stability of the virtual admittance 
control method. The simulation results with different |Zv| and 
Rv/Xv are shown in Fig. 7 and Fig. 8 respectively. 

It can be seen from Fig. 7 that the system is stable initially, 
but when the parameter |Zv| is reduced from 0.5 pu to 0.3 pu at 
the moment of 3.5s, the system becomes unstable. Then, when 
|Zv| is increased to 0.5 pu at the instant of 5s, the system 
becomes stable again. These simulation results reflect that a 
larger |Zv| is beneficial for the small-signal stability. 



 

 
Fig. 7. Simulation results of virtual admittance method with different |Zv|. 

Moreover, it can be seen from Fig. 8 that when the 
parameter Rv/Xv is increased from 0.1 to 1.2 at the moment of 
3.5s, the system becomes unstable. However, when Rv/Xv is 
decreased to 0.1 at the instant of 5s, the system becomes stable 
again. These simulation results reflect that a smaller Rv/Xv is 
beneficial for stability. The same stability feature can be 
observed under weak grid and strong grid conditions, which 
means the robustness of the virtual admittance method is quite 
good if the value of virtual admittance Yv is designed properly. 
The simulation results in Fig. 7 and Fig. 8 agree well with the 
stability analysis results in Fig. 6(a) and Fig. 6(b). 

Furthermore, it is worth mentioning that although a 
smaller Rv/Xv is beneficial for stability, the purely inductive 
case Rv/Xv = 0 should be avoided. Because if Rv/Xv is close to 
0, the synchronous oscillation will appear. Thus, the Rv/Xv 
equal to 0.1 or 0.2 is recommended to use. 

 

 
Fig. 8. Simulation results of virtual admittance method with different Rv/Xv. 

V. CONCLUSION 
This paper reveals that both the virtual impedance method 

and the virtual admittance method can enhance the stability of 
the conventional dual-loop GFM inverter. Besides, the virtual 
admittance method has wider stability ranges than the virtual 
impedance method regarding the SCR, so the virtual 
admittance method is preferable to be used in this paper. It is 
revealed that the magnitude |Zv| and the ratio Rv/Xv are two key 
parameters to determine the stability of the virtual admittance 
method. Moreover, a simple SISO stability analysis method is 
proposed in this paper to find the critical stable points. The 
accuracy of this SISO method is basically same as the 
eigenvalue analysis results of the MIMO state-space model. 
Thus, it is simpler to use this SISO method for parameter 
design. When the virtual admittance is designed properly, the 
inverter is stable no matter the grid is strong or weak. 
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(A1) 

where A1(12,5) = (ω1LfiLd0-vcq0)/Lf +Kp_id(-Kp_vdvCq0+ω1CfvCd0-iLq0)/Lf, A1(12,6) = (ω1LfiLq0+vcd0)/Lf +Kp_iq(Kp_vqvCd0+ω1CfvCq0+iLd0)/Lf, 
A1(12,7) = -Kp_vdvCq0+ω1CfvCd0-iLq0, and A1(12,8) = Kp_vqvCd0+ω1CfvCq0+iLd0. 
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(A2) 

where A2(5,5) = -Rf/Lf -Kp_id(1+Kp_vdRv)/Lf, A2(5,6) = Kp_idKp_vd ω1Lv/Lf, A2(6,5) = -Kp_iqKp_vq ω1Lv/Lf, A2(6,6) = -Rf/Lf -Kp_iq(1+Kp_vqRv)/Lf, 
A2(12,5) = (ω1LfiLd0-vcq0)/Lf +Kp_id[-Kp_vd(vCq0+RviLq0+ω1LviLd0)+ω1CfvCd0-iLq0]/Lf, A2(12,6) = (ω1LfiLq0+vcd0)/Lf +Kp_iq[Kp_vq(vCd0+RviLd0-
ω1LviLq0)+ω1CfvCq0+iLd0]/Lf, A2(12,7) = -Kp_vdvCq0+ω1CfvCd0-iLq0+Kp_vd(-RviLq0-ω1LviLd0), A2(12,8) = Kp_vqvCd0+ω1CfvCq0+iLd0+Kp_vq(Rv· 
iLd0-ω1LviLq0), A2(12,9) = -RviLq0-ω1LviLd0-vCq0, and A2(12,10) = RviLd0-ω1LviLq0+vCd0. 
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