Pilot study experiences with hyperpolarized [1-13 C]pyruvate MRI in pancreatic cancer patients

Stødkilde-Jørgensen, Hans; Laustsen, Christoffer; Hansen, Esben Søvsø Szocska; Schulte, Rolf; Ardenkjaer-Larsen, Jan Henrik; Comment, Arnaud; Frøkiaer, Jørgen; Ringgaard, Steffen; Bertelsen, Lotte Bonde; Ladekarl, Morten; Weber, Britta

Published in:
Journal of Magnetic Resonance Imaging

DOI (link to publication from Publisher):
10.1002/jmri.26888

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -
Pancreatic cancer is one of the most lethal cancers with a five-year survival of less than ten percent (1) and incidence rate of less than 13 in 100,000 people (2). Most patients present with locally advanced or systemic disease, but even patients with resectable tumors have a poor prognosis as the cancer recurs in more than 80% of the cases (3).

Adjuvant chemotherapy (4) and preoperative chemotherapy or combined chemoradiotherapy have the potential to improve survival (5). However reliable methods to predict the treatment efficacy of both chemotherapy and radiotherapy at an early stage are desirable. It might be possible to use functional imaging of microenvironmental factors to improved patient stratification (2,6,7).

Hyperpolarized 13C MRI (8) has proven feasible in experimental models, differentiating exocrine pancreas, pancreatitis and pancreatic cancer tissue by the enzymatic conversion of pyruvate-to-lactate and pyruvate-to-alanine (represented by the alanine-to-lactate ratio or alanine transferase/lactate dehydrogenase ratio) and furthermore demonstrated that this relationship correlates with disease progression and treatment response (9). We hereby present our experiences with hyperpolarized MR using [1-13C]pyruvate for characterization of heterogenous and hypoxic pancreatic tumors in humans.

MATERIALS AND METHODS

Two patients with stage IV pancreatic cancer with liver metastases were studied. Both patients had received more than 8 cycles of FOLFIRINOX (5-FU/leucovorin, irinotecan, and oxaliplatin), and had a partial response according to Response Evaluation Criteria in Solid Tumours (RECIST) guidelines (10). The patients were included after having provided written informed consent. The scientific ethical committee of the Central Denmark Region and the Danish Medicines agency approved the study. Both patients were still on treatment with the last chemotherapy treatment administrated 1 week before the study. Patient no 1 was a 57-year old male, active smoker, performance status 1 with diabetes but no other comorbidity. He was treated with daily insulatard subcutaneously. Patient no 2 was a 58-year old female, non-smoker, performance status 0, who was diagnosed with a pulmonary embolism at the same time as the pancreatic cancer and was treated with daily dalteparin subcutaneously. Hyperpolarized [1-13C]pyruvate for intravenous injection was prepared less than 24 hours prior to injection and polarized in a 5T SPINlab™ polarizer (GE healthcare, Brøndby, DK)
according to the manufacture instructions (8). Prior to administration, a quality control (QC) system ensured safety and technical parameters (See table 1). A standard non-contrast enhanced 1H MRI protocol of the pancreas and liver region was performed using a GE 3T MRI 750 system (GE healthcare, Brøndby, DK). The 1H MRI protocol included a diffusion weighted imaging (DWI) sequence consisting of a Spin Echo EPI with two b-values of 50 s/mm2 (NEX=1) and 700 s/mm2 (NEX=2) (TR/TE/FOV/matrix/slice thickness 3663ms/49,8ms/420x420 mm2/80x128/7mm). Immediately following injection of hyperpolarized [1-13C]pyruvate, a 13C MR spectroscopy (MRSI), consisting of 1D dynamic 13C spatially localized MRSI with 2048 number of points and a spectral width of 5000 Hz was performed in patient no 1. In patient no 2, a 2D single–time point chemical shift imaging (CSI) for spatial determination with 256 number of points and a spectral with of 5000 Hz (FOV/matrix/TR/flip angle/slice thickness/ 240x240mm2/16x16/75ms/10°/20mm) was performed 35 seconds after start of the injection. A volume of 0.43ml/kg pyruvate was used in both patients. Patients were observed and vital signs including blood pressure, heart rate, peripheral oxygenation, temperature and glasgow coma scale were registered at 0 min, 1 min, 15 min, 30 min, and 60 min after injection of hyperpolarized [1-13C]-pyruvate. Blood and urinary test were performed before and after the injection and any toxicity according to CTCAE 4.1 were registered.

RESULTS

In patient no 1, a dynamic 1D MR spectrum was acquired, demonstrating a late hemodynamic and metabolic response in the pancreatic region (Figure 1). This information was used to determine the optimal time point for the chemical shift imaging (CSI) acquisition performed in patient no 2. In this patient, the acquired metabolic images showed a heterogeneous signal of [1-13C]lactate (Lactate-to-Pyruvate ratio of 0.36) and [1-13C]alanine (Alanine-to-Pyruvate ratio of 0.12) largely originating from the pancreatic tumor, with an intra-tumor alanine-to-lactate ratio of 0.33 (Figure 2). Alanine signal was mostly localized to the tumor, whereas the lactate signal was more diffusely distributed in the tumor and in the surrounding tissue. A less intense signal was observed in the non-cancerous part of the exocrine pancreas for both lactate and alanine as well as a lower alanine-to-lactate ratio of 0.23 (Figure 2, purple arrow). No adverse events were reported in relation to the hyperpolarized MR examination. A low intra-tumoral water apparent diffusion coefficient (ADC) of 794.4 mm2/s was observed (Figure 2).
DISCUSSION

Hyperpolarized [1-13C]pyruvate MRI, successfully differentiated pancreatic tumor tissue from surrounding tissue >30 s after the injection via [1-13C]lactate and [1-13C]alanine production. No adverse events were observed or reported.

Metabolic cross-talk in the local microenvironment between pancreatic ductal adenocarcinoma (PDAC) cells and exocrine pancreatic cells results in altered secretion and consumption patterns of lactate and alanine (7). This is likely the origin of the distinct alanine/lactate ratio seen in pancreatic cancer experimental models, where similar pool sizes are correlated with disease progression (9). We observed a high intra-tumor signal of both alanine and lactate in the pancreatic tumor compared to other tissues in the abdomen. The tumor alanine-to-lactate ratio was similar to prior work (9) and higher than exocrine pancreas tissue. Thus, indicating that the alanine/lactate ratio could be a potential marker used to differentiate suspected malignant pancreatic lesions from nonmalignant lesions or detect local recurrences at an early stage in the near future. Also, the [1-13C]pyruvate MRI was performed in patients responding to chemotherapy, which might influence the uptake and subsequent metabolism. The diffuse lactate signal could be due to a high lactate signal bleeding to adjacent tissue.

These results support further investigations in pancreatic patients, and calls for further improvement of MRI scanner equipment and imaging strategies.

Figure legends:

Figure 2 Top row: Anatomical axial slice showing the pancreatic tumor in patient no 2 with a white arrow and the exocrine pancreas with a purple arrow (green ROI outlines pancreas and pancreatic cancer). The apparent diffusion coefficient (ADC) is greatly reduced in the tumor tissue. Bottom row: A heterogeneous distribution of 13C signal was observed in the abdomen, with a general high signal observed for [1-13C]pyruvate, [1-13C]lactate and [1-13C]alanine in the pancreatic tumor (> 30 s after injection of [1-13C]pyruvate).
Table 1 Quality control (QC) results prior to injection.

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate Concentration (mM)</td>
<td>226</td>
<td>227</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
<td>7.6</td>
</tr>
<tr>
<td>EPA concentration (uM)</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>35.7</td>
<td>35.3</td>
</tr>
<tr>
<td>Volume (mL)</td>
<td>>40 mL</td>
<td>>40 mL</td>
</tr>
<tr>
<td>Hyperpolarization (%)</td>
<td>28</td>
<td>27</td>
</tr>
</tbody>
</table>

REFERENCES

