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HIGHLIGHTS

e An online two-level HEMS to reduce operation cost and power consumption peaks.

o Identification of load flexibility in MG using Non-Intrusive Load Monitoring (NILM).

e Automated extraction of the occupants’ power consumption patterns and preferences.

o Analyzing the performance of the proposed NILM-assisted HEMS in an AC/DC Microgrid.
o Validating the coordination of optimization and forecast systems with NILM modules.
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ABSTRACT

Traditional electric energy systems are experiencing a major revolution and the main drivers of this revolution
are green transition and digitalization. In this paper, an advanced system-level EMS is proposed for residential
AC/DC microgrids (MGs) by taking advantage of the innovations offered by digitalization. The proposed EMS
supports green transition as it is designed for an MG that includes renewable energy sources (RESs), batteries,
and electric vehicles. In addition, the electricity consumption behaviors of residential users have been auto-
matically extracted to create a more flexible MG. Deep learning-supported Non-intrusive load monitoring (NILM)
algorithm is deployed to analyze and disaggregate the aggregated consumption signal of each household in the
MG. A two-level EMS is designed that coordinates both households and MG components using optimization,
forecasting, and NILM modules. The proposed system-level EMS has been tested in a laboratory environment in
real-time. Experiments are performed considering different optimization periods and the effectiveness of the
proposed EMS has been shown for different optimization horizons. Compared to a peak shaving strategy as a
benchmark, the proposed EMS for 24-hour horizon provides a 12.36% reduction in the residential MG daily
operation cost.

1. Introduction

able to manage their power consumption pattern and participate in
demand response programs. This active participation benefits both the

During the last decade, with the increasing integration of residential
wind turbines (WTs) and photovoltaic panels (PVs) as well as electric
vehicles (EVs), electricity consumers have found a new role as pro-
sumers. The possibility of locally generating and storing power along
with the introduction of smart home appliances (washing machines,
dishwashers, cloth dryers, electric water heaters, air conditioners, etc.)
has considerably increased the flexibility on the consumer side being
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consumers and the electricity grid in several ways. From the consumers’
point of view, a lower energy cost and higher utilization of renewable
energy can be expected while electricity utilities can flatten the grid load
curve and reduce the stress on the system equipment, thereby increasing
the system efficiency, reliability, and lifetime.

However, to exploit this flexibility, advanced home energy man-
agement systems (HEMSs) are required for monitoring and control of
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energy production, storage, and consumption in smart houses taking
into account consumers’ comfort as well as their economical and envi-
ronmental concerns [1]. Accordingly, many studies have been dedicated
to HEMSs and residential energy management over the last decade. The
developed strategies are either for a single house [2-4] or multiple
households in a residential area [5,6]. Moreover, demand-side flexibility
management can be achieved through an aggregator as an intermediary
entity between consumers and distribution system operators [7,8].

In [2], an energy management strategy for a residential microgrid
(MG) is proposed to reduce the system costs and obtain a smoother grid
power profile. Instead of appliance-level analysis, the aggregated energy
consumption profile is forecasted and optimization is performed. In [3],
given the uncertainty of customers’ behavior, a load scheduling method
is proposed taking into account energy cost and a satisfaction function
through the robust intervals of different appliances. Customers are
required to preset the start and end times of the interval that the
appliance can be scheduled in. In [4], a two-stage HEMS is proposed that
aims at minimizing the deviation of electricity demand from a reference
trajectory received from the aggregator. To reduce the computational
complexity, hourly and intra-hourly appliance scheduling are performed
at the first and second stages, respectively. In [5], a HEMS is proposed
for multiple houses with EVs, PVs, air conditioners, and water heaters.
The problem is formulated as a multi-objective optimization problem to
maximize consumer satisfaction (in terms of room and water tempera-
ture) and minimize energy cost and the load peak-to-average ratio. A
Pareto tribe evolutionary algorithm is used to find the solution set.

In general, HEMSs deal with a load management problem that is
formulated in the form of a multi-criteria optimization problem subject
to several technical and operational constraints derived from the
available flexibility resources and user preferences. In this regard,
different controllable appliances should be identified and their power
consumption, operating interval, and possibility for operation inter-
ruption should be provided to the HEMS. Given the varying power
consumption patterns of residential consumers in different hours of the
day, days of the week, and times of the year, adjusting these settings
manually is a tedious task. In [6], given the difficulty of a priori setting
of customer comfort without distinguishing among different customers
with various needs, a HEMS with profile characterization of smart ap-
pliances is proposed. The goal is to minimize the household energy costs
and users’ annoyance levels using a quality of experience-driven
approach. Consumers are asked to register their tendency to shift the
loads or changing the temperature settings over a training period.
However, automating this process will minimize user intervention by
adaptively learning occupants’ power consumption patterns and pref-
erences. Equipping HEMSs with this capability requires advanced
learning techniques and power consumption data acquisition of
different household appliances. In this regard, Non-Intrusive Load
Monitoring (NILM), also referred to as energy disaggregation, provides a
promising solution.

1.1. Literature review for NILM

NILM, first proposed by Hart [9], is a technique to identify the power
consumption of different appliances and their activation intervals by
disaggregating the power consumption profile of the house, thereby
avoiding the installation and maintenance cost of separate sensors for
single appliances that are needed in intrusive techniques [10]. Having
appliance-level data allows customers to have detailed information
about their consumption and thus make more informed decisions. On
the other hand, electricity utilities might benefit from the knowledge of
appliance-level consumption preferences to estimate the potential ca-
pacity for demand response programs and adjusting their pricing stra-
tegies as well as policymaking [11].

NILM analysis can be performed with both high and low sampling
frequency measurements [12]. But there are already thousands of smart
meters installed. To exploit this potential, recent NILM studies are
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focusing on low sampling frequency measurements. NILM analysis is
performed in two different ways: non-event-based (state-based) and
event-based. Non-event-based approaches represent the appliances as
finite state machines. The operation of the devices is modeled by
designing state transition models. One of the most widely used non-
event-based approaches is the Hidden Markov Model (HMM) and its
variants such as Factorial HMM, Conditional Factorial HMM, Additive
Factorial HMM, Hierarchical HMM, and Super-state HMM [13-17]. The
most important disadvantage of HMM-based methods is that, as the
number of appliances increases, the complexity of the model increases
exponentially [18]. On the other hand, event-based approaches rely on
event detection and feature extraction. The authors of [19] have
developed an event-based appliance recognition algorithm working in
the frequency domain and deployed a filtering process to detect state
transitions. To extract high-level features, a multiscale wavelet packet
tree has been used. In [20], the detection of simultaneous switching
devices, which is one of the important research topics of NILM analysis,
has been evaluated. An adaptive-window-based detection approach is
applied to detect the events, and a deep dictionary learning model is
used in the real-time load monitoring architecture. In order to increase
the quality of extracted features, appliance power signals have been
transformed into 2D space and short histograms representing individual
appliance consumption have been extracted in [21]. However the
aforementioned event-based methods need event detection and feature
extraction process which might be time-consuming. Besides, they are
designed only for load identification. However, to design an effective
EMS, it is necessary not only to identify the loads but also to extract their
power consumption.

With the increasing availability of public datasets, machine learning
methods started to be applied frequently in the field. Convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and
Generative Adversarial Networks are the most widely used deep
learning methods in the literature [22-25]. RNNs are used to analyze
time series because they can analyze temporal dependencies. This
feature is significant for NILM because the energy consumption of the
devices is a time series and is related to the past consumption profile
[26]. CNNs, on the other hand, can extract features hierarchically from
raw data [27]. Therefore, it enables the analysis of smart meter signals
without exhausting preprocessing. In order to increase the generaliza-
tion of deep learning models, the authors of [28] have used data
augmentation to generate synthetic data for training a CNN-based NILM
model. The proposed data augmentation technique works by combining
on and off-durations of a target appliance from various datasets.
Considering that having a large amount of labeled data might not be
always practical, the authors of [29] have used a spiking neural network
that only requires the user to label one instance for each appliance while
adapting to a new household.

1.2. Literature review for NILM assisted HEMS

Given the ability of NILM to identify appliance usage patterns in a
non-intrusive manner, deploying it in a HEMS will help improve its ef-
ficiency and autonomy [30]. However, this is a rather new concept that
has been investigated in few studies. In [31], a NILM-based HEMS is
proposed in which NILM is used to identify the preferred usage time of
different appliances and their wattage. Day-ahead load scheduling is
formulated in the multi-objective optimization framework with con-
flicting objectives of cost and residents’ comfort. It is shown that total
electricity payments and load peak-to-average ratio are reduced with
deploying this method. Moreover, authors in [32] propose a deep neural
network-based NILM integrated with EMS. Power consumption and
operating status of different appliances are identified using a multi-task
neural network. Afterward, average power consumption, operation
cycle, daily usage frequency, and desired usage periods for different
appliances are estimated. The proposed method is evaluated for the EMS
of a household MG with WT, PV, and energy storage system (ESS).
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According to the results, operation cost and customer satisfaction have
been considerably improved. Incorporating NILM for demand response
flexibility estimation is analyzed in [33]. An unsupervised NILM algo-
rithm based on a combinatorial optimization problem is proposed to
disaggregate the power consumption of residential consumers. The de-
mand response flexibility of a region is quantified by comparing the load
patterns before and after implementing demand response programs.
According to their study, EVs provide the most flexibility for the demand
response programs. Another residential energy flexibility study sup-
ported by NILM is proposed in [34]. An unsupervised algorithm is
deployed to disaggregate the controllable load patterns. Then flexibility
characterization is determined considering the consumers’ usage
behavior. The proposed method is verified in an individual building
level and aggregated level including 50 residential buildings. The au-
thors of [35] propose a NILM-assisted demand response program.
Operation information of controllable loads, which are air conditioning
units and EVs, is extracted by NILM. The obtained results are sent to the
utility as feedback showing whether the enrolled appliances comply
with the demand response signals or not.

As seen in the above-mentioned studies, NILM is basically a signal
processing problem, where most of the studies have focused on
increasing its analysis accuracy. However, how to benefit from NILM,
where and how to use the results have not been adequately addressed.

In this paper, an advanced system-level NILM-assisted EMS is
designed for hybrid AC/DC residential MGs. The goal is to automate the
load profile characterization by learning occupants’ power consumption
patterns and preferences and maximize the consumers’ benefits using
the maximum available flexibility sources. The main contributions of the
paper are as follows:

e Designing an online two-level HEMS for reducing the consumers’
electricity bill and the power consumption peaks while considering
occupants’ preferences by exploiting different flexibility sources in
residential MGs.

e Identification of different flexibility sources in a residential MG
including the flexible loads and their power consumption and
preferred usage intervals with the help of a non-intrusive tool to
minimize sensor cost and user intervention.

o Integrating a deep learning-based NILM algorithm with the HEMS to
automate extracting the occupants’ power consumption patterns and
preferences.

e Analyzing the performance of the proposed NILM-assisted HEMS in a
hybrid AC/DC MG taking into account the increasing use of flexible
units such as home appliances, WTs, PVs, and EVs.

e Validating the coordination of optimization and forecast systems
with NILM modules in a real-time EMS at the system level with HIL
tests in a laboratory environment.

2. The architecture of the residential AC/DC MG

MGs are known as small-scale power systems including different
types of distributed generation units and storage devices that are used in
many different areas such as aviation, automotive, military, and
households [36]. Considering that 27.4% of the electrical energy
generated worldwide is consumed by households, it is understood that
households have great potential in terms of energy savings [37]. By
using small capacity RESs and ESSs, each house becomes a small MG,
being able to meet its energy needs on its own, and become an active
participant in the energy sector. Another advantage of households is that
there are a large number of controllable loads inside. Shifting the
operation time of appliances according to electricity price signals pro-
vides a financial gain to the consumers. In addition, it may positively
contribute to the peak load problem faced by the distribution network in
the evening hours. In this regard, EMSs play an important role, espe-
cially for residential MGs. By having information such as power con-
sumption profiles of households, available power generation of RESs,
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and real-time electricity prices, more effective EMSs can be designed. In
this paper, considering that the households have a great potential in
energy saving, a residential AC/DC MG which is shown in Fig. 1 is
analyzed [38].

The analyzed MG includes more than one apartment. Therefore, the
WT, PV, ESS, and EV charging station belong to the entire building. The
reason why a hybrid MG is analyzed is the advantages of DC-based
power systems in terms of simplicity and efficiency [39]. If PVs and
ESSs are connected to the DC bus, there will be no need for an extra DC/
AC conversion process, so the cost is reduced and efficiency is increased
by using fewer power converters. In addition, the increase in the use of
EVs and the fact that most of the charging units are DC is another
advantage. However, it does not seem possible for now to use only DC in
residential buildings. The reason is that DC systems to be used in
buildings are not yet subject to a standardized regulation in terms of
protection, control, and operation. For this reason, the MG is designed
by using a DC and an AC bus so that the apartments in the building are
fed without extra design. The AC and DC buses are connected by a 3-
phase interlink converter. With the help of an interlink converter,
power transfer between busbars is regulated.

3. Proposed energy management system
3.1. Introduction of EMS architecture

EMSs can be defined as computer-aided systems that monitor MGs
and enable them to operate in an economical, reliable, and sustainable
manner. The energy management algorithm of the EMS tries to deter-
mine the optimum operating points of MGs equipment considering their
technical and operational constraints as well as information of elec-
tricity demand and market prices to ensure optimal system operation.
Many different operation management strategies such as generation
planning, energy-saving, reactive power support, and frequency regu-
lation have been implemented before [40]. Although EMS can be
designed for different purposes, in this paper, it is aimed to achieve the
optimum generation-consumption balance by monitoring and coordi-
nating all units in a residential MG in an online framework. To achieve
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Fig. 1. The architecture of the residential AC/DC MG.
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this goal, an online EMS, which is shown in Fig. 2, is proposed.

The proposed EMS consists of 5 different modules. The first of these
is the Data storage and Data Acquisition / Human-Machine Interface (DAQ/
HMI). Bidirectional communication is established with the MG, and data
exchange is provided through this module. HMI allows all the data
collected from the MG to be visualized. If needed, input values can be
modified based on the required data. This module reads the necessary
measurements from the MG, shares them with other modules, and sends
back the output signals of EMS to the MG. Moreover, all the collected
data are stored in this module.

The second module is the Data Preprocessing module that enables
data received from the storage module to be converted into the required
structure before being distributed to other modules. Since the NILM,
Forecast, and Optimization modules need different data structures, using
a preprocessing module will facilitate appropriate coordination and data
sharing.

The third module is the NILM module which uses the smart meter
signals of the apartments as input. The read signals are analyzed using
various mathematical or pattern recognition methods and appliance-
level data are extracted, which enables the analysis of the energy con-
sumption behavior of each apartment. Thus, considering the preferences
of the consumers, their electricity bills can be reduced and their comfort
level can be maximized.

The Forecast module provides the necessary generation and con-
sumption forecasts for the operation planning of the MG. Some variables
such as renewable energy generation, household electricity demand,
and the use of EV charging stations have a probabilistic nature. How-
ever, to operate the MG in an optimum way, it is necessary to know the
generation and consumption information of all units in the system in
advance. This module helps the Optimization module to make a more
efficient energy management strategy by making forecasts. As the error
of the forecasts decreases, the efficiency of the EMS will increase.

The last module is the Optimization module in which the optimization
process is performed for a previously determined horizon and the
operating set-points of the MG units are determined. It is aimed that the
MG will be operated optimally by ensuring that the units will follow the
set-points.

3.2. Interaction of modules

The operation principle and interaction of different modules are
shown in Fig. 3. First of all, with the help of the DAQ/HMI module, the
necessary measurements are collected from the MG and stored in the
database. In the next step, forecasting and NILM are performed simul-
taneously. The Forecast module requests the data from the Preprocessing
module and makes power generation-consumption estimations. NILM is
performed only at the beginning of the day and it analyzes the con-
sumer’s preferences. After the forecasting and NILM processes are
completed, the obtained data are concatenated and sent to the Optimi-
zation module through the Data Preprocessing module. At this stage, an
optimization process is carried out by taking into account the
generation-consumption forecast, electricity price, state-of-charge (SoC)

Microgrid

Processor ’@ Optimization H

[; Forecast H<—> @ Data
° Preprocess

oy g .

g Data Storage and DAQ/HMI |<>

fi NmM >

Fig. 2. The architecture of the proposed EMS.
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Fig. 3. Operation flowchart of the proposed EMS.

of battery, and system constraints. Optimization is performed for a
period defined as the optimization horizon (H) with a time step of Ah,
which is shown in Fig. 4. Once the optimization is completed, the
operating set-points are sent back to the MG through DAQ/HMI module.

For an online EMS, all operation steps described above are repeated
after waiting a user-specified time which is called the optimization step
(top)- For each iteration, the necessary sensor measurements are ob-
tained, new forecasts are made, and the optimization process is per-
formed again. In this way, the inconsistency between forecasted and
actual values is minimized as it will be easier to forecast the near future.
This process continues until a user-defined time (tjim)-

3.3. NILM

NILM, also referred to as energy disaggregation, is the process of
obtaining appliance-level data by disaggregating the total household
electricity consumption measured by the main meter using various
signal processing or pattern recognition methods [9]. Rather than using
a separate sensor for each appliance, the aggregated signal which is the
total energy consumption of a household is monitored. Since the main
meter data is only needed for analysis, it is less costly than the other
monitoring systems [10]. NILM can also be thought of as a filter as
shown in Fig. 5.

The NILM problem is formulated as follows:

Panlt) = 351 pa(0) + () &

nenN

Optimization
Step (topt)
— *

Iteration

l%l 1 ]
| Timestep (4h)

Time (h)

Optimization Horizon (H)

Fig. 4. Optimization windows.
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Fig. 5. NILM process.

where pg,(t) indicates the aggregated active power consumption
read from the smart meter at time instant ¢, s, is a binary variable
showing whether appliance n is running, and p, indicates the active
power consumption of appliance n. e(t) is the measurement error and N
is the total number of appliances in the household. As a result of NILM
analysis, s, and p,, are expected to be extracted with high accuracy.

By using NILM, statistical data about appliances (usage frequency,
consumed energy, usage time, etc.) can be obtained, and this informa-
tion can be used for appliance scheduling, thereby energy saving. With
the integration of the NILM in EMS, consumers’ electricity consumption
habits can be extracted. Considering these habits, customers can
participate in various demand response applications that will be offered
by the utility grid. One of the easiest ways to reduce the electricity bill is
to shift the use of appliances to periods where the price of electricity is
cheaper. However, it is not always possible for customers to manually
program their consumption by following the variation of electricity
prices. Studies show that consumers who want to change their energy
consumption behaviors to reduce their bills are either the elderly or
prudential people [41]. Other consumers are either too busy or are
unsure of how to respond to grid signals. For this reason, automation has
a big role in demand response applications. The lifestyles of each con-
sumer must be taken into account to design and implement an auto-
mated management strategy for different households. By using the
NILM, the life habits and consumption behaviors of each customer can
be learned and consumer-specific optimization can be made. In this way,
both energy costs can be reduced and consumer comfort can be
maximized.

The aggregated signal is sufficient to extract appliance-level infor-
mation and it can be easily obtained with the help of smart meters. The
widespread use of smart meters means that the data that can be used for
analysis is abundant. Therefore, data-driven techniques can be a viable
solution to solve this problem. In this paper, the energy consumption
behavior of the consumers in the apartment is analyzed using a Multi-
task neural network model which extracts both power consumption
profiles and the status of appliances. Since the main purpose of this
paper is to explain the operation principle of the proposed online EMS
and to implement it in real-time, the deep learning model will not be
explained in detail. However, the NILM model was presented and
implemented in our previous paper [32].

1) Extracting of appliance parameters

Once the NILM analysis is complete, some appliance parameters
need to be extracted for use in the EMS. These are the average power
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consumption (PC), the average operation time (OT), the average number
of daily uses (NU), and the most preferred operation interval (POI).
These parameters are extracted by analyzing the NILM outputs using the
following formulas:

S e 0, (200, Pa(0)/ (B, — )]

PC, = 2
U (2)
or, - S cu by ~ @) @
U,
Uﬂ
NU, =2
Un=12p 4

where U, is the total number of uses for appliance n detected during
the analysis period. [ayn, fun] indicates the time interval the appliance n
is actively operating in the u™ usage. The PC is calculated by dividing the
sum of the average power consumed by the appliance during each
operating period by the total number of uses U,. p,,(t) indicates the NILM
estimation of active power consumption of appliance n for time t. Similar
to the PC, the OT is calculated by dividing the sum of each run time by
the total number of uses. The NU is obtained by dividing the total use
number of the appliance by the daily analysis period AP. The NU is an
important parameter because the usage number of appliances used in an
apartment with five people and an apartment with a single person can be
significantly different. The POI, which indicates the period in which the
appliances are used most frequently, is a statistical value spread over 24
h. Therefore, the POI will be defined with a probability density function
(PDF).

3.4. Optimization procedure

In this paper, a two-level optimization problem for AC/DC residen-
tial MGs is proposed and it is mathematically modeled. In this way, it is
aimed to meet the demands of both the distribution system operator and
the customers at the same time.

1) Level 1 - local optimization

The first level of optimization aims to minimize the electricity bills of
the apartments in the building individually by shifting the usage time of
the appliances. For this reason, the objective function of Level 1 is
defined as follows:

24
Min { OF 4 =Y  RTP(t)-Pipaq a (1) } 5)
t=1

where RTP stands for the real-time price of the utility grid, Pjyaq,q(t)
indicates the active power consumption of apartment d at time t and it is
determined by scheduling the runtime of appliances. Before starting the
optimization, consumers who accept the scheduling of the appliances in
the home, i.e., those who want to participate in the EMS, should be
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»
/\ o/
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Fig. 6. Level 1 - Local optimization.
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determined. Therefore, local optimization is applied only for consumers
who want to participate in the EMS, as shown in Fig. 6. Local optimi-
zation is applied separately since consumer behavior can be significantly
different.

First, the smart meter signals of the consumers are read through
DAQ/HMI module and analyzed with the help of the NILM module.
Following this analysis, the appliance-level energy consumption infor-
mation of the consumers is obtained.

The appliances in the apartments are divided into two categories as
non-shiftable and shiftable loads. Non-shiftable loads such as ovens and
hair dryers are devices that the consumer should use whenever they
need. However, the run time of shiftable loads such as washing machines
and dishwashers can be shifted. Another example is thermostatically-
controlled loads such as air conditioners and refrigerators which can
be controlled to maintain the temperatures within certain limits [42].
Significant energy savings can be achieved by shifting the runtime of
shiftable appliances according to RTP and user preferences. Shiftable
tasks can be planned according to several operating requirements. The
required constraints are defined as follows [43]:

24

> sat) = 0T, O]
t=1

24
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D sul0)7(h = OT, + " s,(1) = OT, (®)
t=1 =1

thd(t) = Z Pk(t) + ZP,([)S[([)<PZ‘:,Z (9)

k€ NN le NS

where s is a binary variable showing that the appliance is operating
or not. Equation (6) ensures that appliance n finishes its operation
within the determined OT, while (7) ensures that uninterruptible ap-
pliances such as washing machines and dishwashers operate without
interruption. The operation of some appliances, such as a dryer, depends
on the washing machine running before it. Equation (8) ensures the
operation order of such dependent appliances. y indicates a unit step
function while 1 defines a positive number less than one. Besides,
equation (9) guarantees that the instantaneous power consumption is
below the upper limit, taking into account the capacity of the protection
equipment. Here, NN and NS refer to the number of unshiftable and
shiftable loads in the household, respectively.

The local optimization phase is completed by applying (5)-(9)
separately for each user participating in the EMS. Thus, the scheduled
consumption profiles for the participating users (Pp,) during the next 24-
hour scheduling interval are obtained. The consumption profiles of non-
participating users (Pnpg) are determined by the Forecast module. The
output of Level 1 is an aggregated consumption profile, which is the sum
of the next day 24-hour consumption profiles of all apartments as fol-
lows. Therefore, Level 1 is performed only once a day to plan the next
day’s power consumption.

Pge(t) = Ppa(t) + Pupal(t) t=1,..24 10)

2) Level 2 - global optimization

At this level, the problem is viewed from a broader perspective.
Details regarding the operation of the MG, such as generation planning
of the units, evaluation of SoC of the batteries and charge status, and
power exchange with the grid, are handled at this stage. The architec-
ture of the secondary level optimization is shown in Fig. 7.

At this stage, the result of the optimization performed at Level-1 is
transmitted to the global optimization unit. In addition, the power
generation and consumption estimations obtained from the Forecast
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Fig. 7. Level 2 - Global optimization.

module are also sent to the Optimization module and the optimization
process is performed for the MG. Two different objective functions are
taken into account for the operation cost of the MG (F;) and grid power
Peak-to-Average Ratio (PAR) which is modeled with the standard de-
viation (std) of the received power from the main grid (F2) [5]. The first
objective function is minimized to reduce the operating cost of the MG,
and the second objective deals with the new peaks which may appear
after power scheduling. These two functions are expressed as follows:

Fy =Y RTP(h)-Pyia(h) an
heH
Fy = std(Pgyiq) 12)

where H indicates the optimization horizon shown in Fig. 4, Pgia(h)
is the power exchanged with the utility grid at a given time h. By opti-
mizing the operation cost, the consumers residing in the building can get
the maximum economical benefit from the MG. The second term is
defined as the std of the power drawn from the grid. The smaller the F,
value, the smoother the power exchange profile. By considering these
two functions, a multi-objective optimization problem is defined for the
global optimization as follows:

Min Fi(x) i=1:Ny; 13)

where F; is the ith objective function and Nyp; shows the number of
objectives which is two in this case. Unlike single-objective optimization
problems, which result in a single optimal solution, multi-objective
optimization problems lead to a set of optimal solutions called Pareto
optimal set or non-dominated solutions. Considering two feasible solu-
tions of x and y, it is said that x dominates y if Fi(x) < Fy(y) for alli = 1:
Nopj and Fj(x) < Fj(y) for at least one objective in a minimization prob-
lem. In order to explore the Pareto optimal set, the weighted sum
objective function of OF; is formed as follows:

Min{OF, = w,-F, + wy-Fy} 14)

The coefficients w; and w, are weighting coefficients that are used to
assign the relative importance of different objectives. After finding the
Pareto optimal set, a compromise solution can be found considering the
decision-maker preferences. In this paper, the value of a linear fuzzy
membership function is calculated for all non-dominated solutions as
follows:

FMe _ F, v
Mlax m’in Flm msFi <F§WHX
=1 F = F (15)

0 otherwise

in which, F/™™ and FM® are the minimum and the maximum values
of the if" objective function, respectively [44]. The final solution is
selected from the point of view of a conservative decision-maker that
tries to maximize the minimum satisfaction of all objective functions
considering the N5 non-dominated solutions as represented below [45]:
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max min Mf (16)
k=1:Ngi=1:N,p;

The multi-objective optimization problem is subjected to several
constraints. The first of these constraints is the power generation-
demand balance of the MG. This balance should be maintained sepa-
rately for AC and DC busbars with the help of the following equations:

PWT(h) +va(h) —P[,m(h) —PE\/(}Z) —PLL(h) _P[C(h) =0 (17)

Pgrid(h) +ch(h) - Pagg(h) = 0 (18)

Equation (17) is defined for the energy balance of the DC bus. The
aim is to ensure that the power injected and drawn from the busbars at
time h is equal, according to Kirchoff’s current law. The wind turbine
(Pwr) and solar panels (Ppy) inject current into the DC bus, while the
electric vehicle (Pgy) and lift/lighting (P;) draw power from the DC bus.
The sign of the interlink converter (Pjc) is considered negative when it
draws power from the DC bus. Similar to the DC bus, the energy balance
of the AC bus is ensured by (18).

The next constraint is the upper and lower operating limits of the
units. The power generation of wind turbine and solar power plant, the
power drawn from and sold to the main grid is limited by the following
constraints:

Pyt v <Pwr ov) (RSP () (19)
P ria_buy (h)Sttgria () Pt buy (20)
Porasen()S(1 = tgra ())-PLs 21
Pyria(h) = Pgria_puy(h) — Pyria_sen(h) (22)

where P’"W‘; E',fl"f;‘) indicates the minimum (maximum) power that can be

obtained from the wind turbine (solar panels). Py ;i) indicates the
upper limit of power that can be drawn (sold) from (to) the main grid.
The point to be taken into consideration here is the criteria for avoiding
buying and selling power simultaneously. The binary variable ugq is
used to fulfill this requirement. If ug;q = 1, the power is drawn from the
grid and vice versa.

The energy storage unit, which is the most important component of
residential MGs, can provide reliable energy during a power outage or
store excess energy generated by renewable sources. Batteries are
operated according to certain constraints. The first of those is the battery
SoC level calculated as follows:

SoC(h+ 1) = SoC(h) + (Ppuy(h)-Ah/ Epe) (23)

where Ah is the timestep of the simulation, Epq, is the capacity of the
battery. To prolong the battery lifetime, the SoC must be kept within
certain limits as follows:

§0Cin<S0C(h)<S0C a 24

where S0Cpinmax) indicates the minimum (maximum) charge per-
centage of the battery. Similarly, the charging and discharging powers of
the battery should be limited by the following equations:

Pyt (R) Sty (B)-Pra="-,, (25)
PRt () Mgy S(1 = ta (R))-Pran=e" (26)
Py (h) = Py, (h) — Pyey () 27)

where P “M indicates the active power that the battery draws (in-

jects) during charging (discharging), Pf%-"*" indicates the maximum

charging (discharging) power of the battery, and #cn¢4cny indicates the
charge (discharge) efficiency. The point to be taken into consideration
here is the criteria for avoiding charging and discharging simulta-
neously. The binary variable up is used to satisfy this requirement. If it
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is 1, the battery is charging and vice versa.

The last constraint ensures that the SoC value of the battery at the
end of each day is equal to its initial value. Thus, a more sustainable EMS
can be achieved.

S()C(H) = S()C,’nirml (28)
4. Case study
4.1. Operation of the residential MG

The analyzed residential MG, which is shown in Fig. 1, consists of
two busbars, AC and DC. Since the WT and PV are renewable-based
generation units, power converters are designed to extract the
maximum power. With the help of maximum power point tracking al-
gorithms such as Perturb&Observe, the maximum power point is
determined and appropriate control signals are sent to converters.
Therefore, renewable power generation can be estimated by using the
solar irradiation, temperature, and wind speed data of the region. The
battery is used to ensure the power quality of the DC bus. The voltage
level of the DC bus tends to fluctuate due to the connection of RESs and
their power variations. To handle this problem, the battery is controlled
to keep the voltage of the DC bus constant at 700 V. It has been shown in
previous studies that this level is a good compromise in terms of effi-
ciency, safety, and compatibility with the AC grid [46]. In addition, the
surplus energy can be stored in the battery and the power exchange with
the main grid can be economically realized. The electric vehicle
charging station and lift/lighting units, which are the consumption
units, can be considered as DC loads. The last unit is the interlink con-
verter which is controlled by the EMS since it regulates the power ex-
change with the main grid. The values of parameters for the MG and
EMS are given in Table 1.

4.2. Operation of EMS

As explained in Section III, the modules within the EMS produce the
outputs required for the optimal operation of the MG by using various
inputs. These inputs and outputs are shown in Fig. 8.

The NILM module uses the smart meter signals of the participating
apartments as the input and extracts the appliance-level data. These data
are sent to the Optimization module through the Data Preprocessing
module and then used for Level-1 optimization. Thus, the electricity bill
is reduced by considering consumer comfort.

The Forecast module estimates renewable energy generation, electric
vehicle and lift/lighting power consumption, and consumption of non-
participating apartments. These forecasts are sent to the Optimization
module through the Data Preprocessing module and used for Level-2
optimization. Consumption estimates have been obtained using proba-
bilistic models. Renewable generation forecasts were made using his-
torical weather data measured by a weather station, located in the AAU
Energy Department at Aalborg University. Undoubtedly, there will be
differences between estimates and actual values. This difference has
been taken into account during real-time implementation. The actual

Table 1

parameters of the mg and ems [38]
Parameters Value Unit Parameters Value Unit
Pwr 5 kWp Epa 80 kWh
Ppy 8 KWp  S0Chax (min) 90 (30) %
Pgy 2 kw S0Cinitial 50 %
Vie_bus 700 A% p;";’(—ch (dch) 10 (10) kw
At 1 hour Neh (deh) 87 (90) %
topt 15 min H 6,12, 24 hour
w1 0.60 22 0.40

Number of Apartments 16
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Fig. 8. Data flow between EMS modules.

generation and consumption profiles have been emulated and sent to the
test-bed by adding random errors within +30% of the forecasted value.

Fig. 9 represents the Pareto front of the Level-2 optimization problem
and the best compromise solution from the point of view of a conser-
vative decision-maker as discussed in Section III-D-2. The minimum and
maximum values of F; and F5 used for linear fuzzy membership function
calculation are empirically determined as 1100-1500 and 0-10,
respectively. The weighting coefficients related to the best compromise
solution (w; = 0.60, wy = 0.40) are then used in the experimental test to
validate the performance of the proposed EMS framework.

To observe the effect of different optimization horizons (H) on the
proposed EMS performance, horizons of 6, 12, and 24 h with a time slot

Pareto Front
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+
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Fig. 9. Pareto front for the Level-2 optimization.
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Ah = 1 h were chosen for optimization. As shown in Fig. 4, the opti-
mization process is performed every t,,; = 15 min and new set-points are
sent to the MG. Therefore, optimization inputs need to be updated
accordingly. It was assumed that the RTP information is shared with
consumers the day before by the utility grid operator.

5. Experimental results
5.1. System description

The residential MG and the proposed EMS have been tested in real-
time at Aalborg University, AAU Energy, AC/DC Microgrid Labora-
tory. The experimental setup, which is shown in Fig. 10, has been used to
test the proposed EMS. The real-time platform consists of a 3-phase
isolation transformer (12.5kVA, 400 V) for grid connection, four 2.2
kW 3-phase AC/DC power converters for power conversion, four LCL
filters (8.6mH, 4.5pF, 1.8mH), and a dSPACE DS1006 processor board.
Since the analyzed MG is grid-connected, it has been assumed that the
voltage and frequency values of the AC busbar are regulated by the main
grid. Due to the hardware limitations, the DC part of the MG is emulated
in the laboratory environment using four AC/DC inverters, which are
connected to the same DC bus. While one of the inverters emulates
renewable energy generation (Ppy + Pwr), another represents the con-
sumption of the electric vehicle and lift/lighting (Pgy + Prr). These in-
verters operate in grid-feeding mode. By following the active and
reactive power reference values, they can inject/absorb current into/
from the grid. The third inverter is responsible for emulating the battery
to regulate the DC bus voltage. For this reason, it’s designed as a grid-
forming inverter. The last inverter is used as an interlink inverter to
emulate the power exchange between the AC and DC buses. In case the
SoC is below the lower limit, the grid regulates the DC bus voltage
through the interlink inverter. The inverters are controlled using nested
control loops, where the inner current loop controls the output current
of the inverter and the outer control loop is responsible for generating
reference current values I*, 4 as a function of voltage, active, and reac-
tive power references (V*, P*, Q*). To generate a reference current value
synchronized with the main grid, Clarke transformation is applied by
using the phase angle of the grid voltage obtained from the phase-locked
loop, and the reference current values are obtained within the af static
reference frame [47].

All local controllers for inverters are designed with Matlab/Simulink
on a control station. Moreover, the EMS is coded and implemented in a

Control Station
for EMS

Fig. 10. Experimental setup.
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Matlab script. For the optimization process, the general algebraic
modeling language (GAMS) is used. The EMS sends the required data to
GAMS every 15 min, requesting optimization to be performed. The
outputs of GAMS are read by Matlab and sent to the test-bed. The
communication between the control station and the real-time platform is
provided through a User Datagram Protocol over ethernet. Due to the
hardware limitations, all the power values (generation, consumption,
etc.) used in the EMS process were scaled down by a factor of 30. In
addition, the time was scaled down such that 1 h:2 min for applicability.

5.2. NILM outputs

In this module, the smart meter signals of the apartments are
analyzed and the consumption habits of the users are extracted. The
energy consumption of the 16 apartments in the residential MG is
modeled using the consumption data in the REFIT dataset [48]. The
REFIT dataset includes the total consumption and appliance-level con-
sumption data of twenty different households measured in watts at 8-
second intervals. For the simplicity of the study, three of the houses
which are specified as House 2, 3, and 15 in the data set were chosen for
analysis considering the number of occupants, the shiftable appliances
in the house, and the recording quality of the data. The consumption
profiles of the 16 houses in the residential MG were generated by
randomly shifting the consumption profiles of these three houses for-
ward or backward on the time axis. For the analysis, only high power
devices such as washing machines (WM), dishwashers (DW), and dryers
(DR) were considered. House 3 and 15 have all three appliances, while
House 2 has only WM and DW. A deep learning model was trained for
each appliance. It is assumed that half of the apartments participate in
appliance scheduling and the smart meter signals of these consumers
were analyzed. Following this analysis, the energy consumption habits
of the users were obtained. After the analysis for House 2, the POI
parameter which shows the most frequently used periods of the device
was obtained by using a probability density function as shown in Fig. 11.

The blue line in Fig. 11 is obtained using actual data, showing which
time of day the appliance is preferred to be used. The yellow line shows
the result obtained from the NILM analysis. As seen in Fig. 11, the
probability of daily use was obtained with high accuracy. The peaks in
the curve indicate the periods in which the device is used most
frequently. However, many different peaks can be found in the figure. In
this paper, peaks that are less than 50% of the maximum peak are not
considered. The dashed red lines describe the period interval in which
the device is used most frequently. The same graph for House 3 and 15 is
shown in Fig. 12.

Other parameters required to schedule the appliances were obtained
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Fig. 11. Preferred operational intervals of House-2.
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as shown in Table 2.

When Table 2 is examined, it is observed that the OT, NU, and PC
were estimated with 96%, 78%, and 94% accuracy, respectively. All
these results show that NILM analysis can be useful to obtain the
appliance-level parameters. By using this data, it is possible to create a
more advanced and autonomous EMS. When the NU values are exam-
ined, it is seen that House-15 rarely uses home appliances (Dryer-almost
once in 5 days). This is because there is only one occupant in House-15
while there are more occupants in other houses. To use NU within EMS,
the real-time application should be done at least for one week. However,
in this paper, real-time implementation was carried out only for 24 h.
For this reason, the NU value is determined as 1 for all devices.

5.3. EMS outputs

As explained in Section D, the consumption profiles of the partici-
pating apartments are scheduled by performing local optimization. The
consumption profiles of non-participant users are determined with the
help of the Forecast module. Since the main purpose is to determine the
consumption profile of the next day, this process is applied only once
each day. The total consumption data of 16 flats are shown in Fig. 13 (a),
while the RTP used in the optimization is shown in (b). For the RTP
graph, T1 indicates the periods when the price of electricity is low and
T2 is the high-price interval. Renewable energy generation forecasts and
actual values are shown in Fig. 14.

For the real-time test, generation and consumption values are
modeled by converters at intervals of 5 min (10 s with scaling). The
forecasted load and generation profiles of the MG represented in Fig. 13
and Fig. 14 are used for optimization, while the actual data are used for
real-time implementation. Therefore, the differences that may occur
between the forecast and real-time measurements are also taken into
account. These differences are compensated by the battery. Another
important parameter for EMS is the optimization horizon H. In this
paper, 3 different horizons, 6, 12, and 24 h, have been considered to
observe the effect of H on the results.

Table 2
Appliance parameters of Houses 2, 3, and 15
Houses App. OT (min) NU PC (W)
Actual NILM Actual NILM Actual NILM
House 2 WM 107 108 0.5 0.5 275 261
DwW 115 114 0.7 0.65 704 680
House 3 WM 81 70 0.875 0.685 435 385
DwW 73 72 0.8 0.725 1083 1041
DR 80 79 0.35 0.25 1387 1538
House 15 WM 99 105 0.4 0.35 552 606
DwW 95 92 0.2 0.1 554 582
DR 90 93 0.2 0.1 1475 1537
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In addition, a peak shaving strategy is implemented as a benchmark.
This strategy ensures that the power drawn from the grid remains below
a threshold level. As long as the absorbed power is below the threshold,
there will be no power exchange between the AC and DC buses. When
the threshold is exceeded, the required amount of energy is transferred
from the DC bus to the AC bus. Meanwhile, if the SoC of the battery goes
beyond the limit values in (24), the required amount of power will be
transferred from the AC bus to the DC bus (in case of SoC < SoCp;in) or
vice versa, and constraint (24) is guaranteed. In this paper, the threshold
value is set to 16 kW. It is worth mentioning that the Level-1 optimi-
zation is also implemented in the peak-shaving strategy.

The obtained results were compared by considering the average time
spent for each optimization, operation cost Fj, std F5, and the Level-2
multi-objective function OF; values as shown in Table 3.

In Table 3, the second column related to the optimization time shows
the average time of solving the optimization problem every 15 min. It is
observed that the shorter the horizon, the shorter the average optimi-
zation time. Since a 24-hour optimization has a wider search space, the
calculation time is longer as expected. The average calculation time of
the 24-hour horizon was measured as 0.539 s, which is good enough for
a real-time application.

When the F; values obtained in the experiments are compared, it is
seen that the optimal cost is $1416.49 for the 24-hour horizon. In
contrast, the higher cost was achieved with the peak shaving strategy
due to the operation without optimization. The proposed EMS provides a
12.36% reduction in operating cost compared to the peak shaving
strategy. As can be seen in Table 3, in 24-hour optimization, the total
objective value (OF2) value is less than other horizons. The reason lies in

Table 3

Experimental results for a residential mg
Opt. Horizon Opt. time (s) F; (cent) F, (watt) OF,
Peak Shaving - 1616.21 4.068 0.937
6h 0.377 1496.05 4.112 0.759
12h 0.380 1492.37 3.525 0.729
24 h 0.539 1416.49 4.301 0.647

10
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the fact that the operating schedules are made based on a longer view,
thereby more information about the future operating conditions are
considered. If electricity price of the next 24 h is taken into account
while optimizing, the cheapest hours of the day can be determined and
the battery can be charged at those hours, and the stored energy can be
used during the hours when the RTP is high. However, if only the RTP of
the next 6 h is available, the optimization is made by ignoring the
cheaper periods. For this reason, the battery may be charged in expen-
sive periods, and the cost and hence the total objective value increases.
However, as the horizon gets longer, the accuracy of the forecasts may
decrease, which may prevent the optimization to find a global optimum
solution. For this reason, the extension of the optimization horizon may
not always constitute an advantage and a satisfactory trade-off is
required. According to Table 3, the best std value for the received power
from the grid belongs to the case with 12-hour optimization horizon. It is
worth noticing that there is a difference between the cost of the best
compromise solution and the cost values obtained in the experimental
tests. The reason is that the Pareto front in Fig. 9 is obtained with offline
simulation considering forecasted values for consumer load and
renewable power generation and the power loss of converters is
neglected. While in the experimental tests, the realized values are taken
into account and there is power loss in the system.

Fig. 15 shows the EMS outputs obtained for each experiment. In the
first row of Fig. 15, the power exchange with the main grid, in the
second row the power exchange of the interlink converter, and in the last
row the SoC value of the battery are represented. Undoubtedly, the most
important factor affecting the operation cost of the MG is RTP. Power
exchange with the main grid will be regulated according to RTP and the
battery will be operated in an optimum way. Therefore, the charging
and discharging state of the battery will significantly affect the operating
cost.

In Fig. 15, T1 and T2 represent the periods when the electricity price
is cheap and expensive, respectively. In the first column of Fig. 15, the
results of the peak shaving strategy, which operates independently from
RTP (since no optimization is applied), are depicted. In this strategy, the
battery is charged or discharged according to the generation/con-
sumption power values in the DC bus. As seen in Fig. 15, the battery is
discharged in the T1 period because there is not enough renewable
generation. However, as the generation increases with the sunrise, the
battery starts to be charged. Since the SOC exceeds the limit value at the
beginning of the T2 period, the surplus energy is transferred to the AC
bus via the interlink converter. Meanwhile, when the power drawn from
the grid exceeds the threshold of 16 kW, peak shaving is applied by
drawing the necessary power from the DC bus. The power exchange
between the DC and AC buses can be observed from the second row of
Fig. 15.

When the optimization-based EMSs implemented for 6 h, 12 h, and
24 h horizons are examined, different charge/discharge characteristics
are observed for the battery depending on the horizon. If the SoC vari-
ation of the 6-hours horizon is analyzed, it is observed that the SOC
value of the battery is stable during the T1 period and increases in the T2
period, which means the battery is charged during the expensive period.
The main reason is that RTP information for the whole day is not
available for the optimization process. Therefore, the algorithm cannot
distinguish between cheap and expensive electricity price periods.
Considering the 12-hour optimization, it is observed that the battery is
utilized better comparing to the 6-hour case because the RTP for the next
12 h is available. While the battery is partially charged during the T1
period, it desires to increase its SOC value as it gets closer to the T2
period. However, the fact that the SoC value does not reach the upper
limit of 90% indicates that the EMS cannot utilize the battery with its
best performance.

When 24-hour optimization is evaluated, it is seen that the battery is
almost fully charged during the T1 period, which is the best way to
reduce the operation cost of the MG. The SOC of the battery remains
relatively stable between the T1 and T2 periods and reaches a high SOC
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Fig. 15. Experimental results for the residential MG.

value at the beginning of T2 period. Since RTP for the next 24-hour is
available, cheap and expensive electricity price periods are distin-
guished by EMS, and a proper charging strategy is implemented.

In the last hours of the day, the terminal constraint defined by (28) is
activated to ensure that the battery starts the next day with the same SoC
level as SoCiyitial-

6. Conclusion

Energy management strategies are of great importance for the
optimal operation of MGs. In this paper, an advanced system-level EMS
designed for a hybrid AC/DC residential MG has been proposed and
experimentally validated to efficiently operate a residential MG. Since
the analyzed MG has individual households, the smart meter signals of
each household have been analyzed with NILM algorithm to extract the
consumption profiles of the customers. By using this information, con-
sumers’ daily energy costs were minimized at the first level of optimi-
zation, by considering their consumption habits. In this way, it was
ensured that both consumers’ bills were reduced and their comfort levels
were not affected. In the second level of optimization, optimum opera-
tion of MG was ensured by considering the generation and consumption
units of MG. Real-time test results have proven that a 24-hour optimi-
zation horizon provides more optimal operation than 6 and 12-hour
horizons. Experiments have shown that the battery cannot be fully
charged when using a 6-hour horizon, thus increasing the operating cost.
In the 24-hour horizon, the battery could be fully charged, thus mini-
mizing the operating cost of the MG. In addition, thanks to the PAR
function included in the multi-objective optimization problem, the
power drawn from the utility grid is smoothed.

As a limitation of the proposed method, deep learning-based ap-
proaches require large amounts of labeled data in case they are trained
in a supervised manner. However, obtaining labeled data may not al-
ways be practical. To mitigate this problem, new approaches trainable
with limited data should be developed. Another limitation of the pro-
posed NILM strategy is the lack of an updating mechanism. Some
appliance parameters such as the average number of daily uses (NU) and
the most preferred operation interval (POI) should be continuously
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updated since these parameters may vary depending on the seasonality
and other factors. This limitation will be addressed in future work of the
authors.
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