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ABSTRACT 

The concept of limit plays a central role in the foundation of modern mathematical 
analysis. However, the concept itself plays a minor role in both upper secondary and 
undergraduate engineering education, leaving the students with many misconceptions 
about the concept, resulting in poor performance in calculus and calculus-based 
engineering courses. Most emphasis in teaching has been on how to calculate the limit 
instead of on understanding its definition. In this paper, we will use the frameworks of 
Brousseau’s theory of didactic situations (TDS) and Problem-Based Learning (PBL) to 
suggest a method to teach engineering students the concept of limit and explain its formal 
definition. The purpose is to enable the students to generate a precise definition of limit 
of a function that captures the intended meaning of the conventional ε-δ definition. 
Moreover, we will argue that TDS bears many similarities with PBL, as both frameworks 
require that the students act and engage in non-routine and realistic problems. 

1 INTRODUCTION 
Although mathematicians have long accepted the concept of limit as the foundation of 
modern calculus, the concept of limit itself has been marginalized in upper secondary 
schools and undergraduate engineering programs. Engineering students’ understandings 
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of calculus will greatly influence their ability to study more advanced analysis courses and 
engineering courses, such as dynamics, since these courses all require calculus as a 
prerequisite. One obstacle that can contribute to the difficulties of teaching and learning 
limits is the symbolic representation of the limit itself, lim

𝑥𝑥→𝑥𝑥0
𝑓𝑓(𝑥𝑥). It can give rise to 

apparently contradictory processes such as: One that potentially never ends, and another 
of “getting close to”. Nevertheless, as we will try to show in this paper, teaching the 
concept of limit successfully may not be an unattainable task if we use proper strategies 
and tools. 

The focus of this paper will be on how the PBL and TDS frameworks helped us in 
structuring our approach of teaching the concept of limit at both upper secondary and 
college level. Moreover, we demonstrate how PBL, in a mathematics teaching context, is 
compatible with TDS.  

2 WHY LIMITS ARE IMPORTANT? 
Teaching and learning the concept of limit has long been a very important subject to 
mathematics educators. In fact, the concept itself has a long and interesting history [1]. 
Many mathematical and engineering concepts depend upon the concept of limit and 
without a proper definition of it, mathematical analysis as we know it today would simply 
not exist, since basic notions in mathematics and engineering are limits in some sense, 
e.g., 

 Instantaneous velocity and acceleration are the limits of average velocities and 
average accelerations, respectively [2]. 

 The area of a circle is the limit of areas of inscribed polygon as the number of sides 
increases infinitely. 

 The slope of a tangent line to a curve is the limit of the slope of secant lines. 

3 ON PROBLEM-BASED LEARNING (PBL) 
In PBL, problems drive the learning. A teaching session begins with a problem to be 
solved, in such a way that students need to gain new knowledge before they can solve 
the problem. In contrast to a traditional teacher-centered pedagogy, PBL is a learner-
centered educational method based on realistic problems encountered in the real world. 
These problems act as a stimulus for learning, integrating and organizing learned 
information in ways that will ensure its application to new, future problems [3]. Thus, PBL 
is not merely preparing problems for the students to solve in the class, but also about 
creating opportunities for the students to construct knowledge through effective 
interactions and collaborative inquiry. In PBL, an important task of the instructor is to 
initiate class discussions to enhance the students’ reasoning skills and encourage them 
to apply their previous experiences to a novel case, thus enabling them to identify areas 
of gaps in their knowledge and prepare them to new knowledge acquisition. Through PBL, 
students are gradually given more and more responsibility for their own learning and 
become increasingly independent of the teacher in their understanding. The methodology 
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of PBL will be illustrated when we design teaching situations that gradually guide the 
students to the formal definition of limits.   

4 ON THE THEORY OF DIDACTIC SITUATIONS (TDS) 
TDS is based on the idea that students construct new knowledge when they solve non-
routine problems while adapting to what is called a didactical milieu [4]. Non-routine 
problems typically do not have an immediately apparent strategy for solving them. In TDS, 
the teacher’s aim is to engage the students by designing didactical situations in such a 
way that the targeted mathematical knowledge would be the best means available for 
understanding the rules of the game and elaborating the winning strategy [5]. The 
withdrawal of the teacher and the subsequent transfer of the responsibility of the learning 
situation to the students is the essence of Brousseau’s notion of devolution, where the 
students become the “owners” of a given problem, and thus enter the adidactic level, to 
produce the knowledge needed to solve it. [6] mentions four phases of didactic situations: 
Action, formulation, validation and institutionalization. These phases are exemplified 
below when we create didactical situations that eventually lead the students to capture 
the idea of limit.   

5 RESARCH QUESTIONS 
The main research questions of this article are 

 How can we design didactical situations that lead to the rigorous ε-δ definition of 
limits in an introductory calculus course?  

 Can the PBL and TDS frameworks be applied to teaching abstract notions in 
engineering mathematics, such as limits? 

We will try to show that even seemingly theoretical notions in engineering mathematics 
are amenable to the PBL and TDS frameworks. The raison d'etre of this paper came from 
two similar teaching situations that the first author taught to engineering students at a 
higher education level in 2018. These students had no experience with any 
mathematically rigorous processes using the definition or proofs related to limits. The 
didactical situations described below require that the students participate in well-designed 
activities that use real-life problems, which presumably would guide the students to the 
correct conception of limits. 

6 A PROBLEM-BASED APPROACH 

6.1 Sources of Difficulties in the Teaching of the Concept of Limit 
The differences between everyday language and the language of mathematics may 
contribute to the students’ misconceptions, and hence also bring learning obstacles. For 
example, one may say that “my limit of running continuously is four kilometers”. This 
everyday understanding of limit may suggest that a limit is some value one cannot 
exceed. The difficulties the students may encounter in understanding the concept of limit 
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are discussed in [7], where three forms of obstacles to students’ understanding of limits 
are mentioned: 

 Epistemological obstacles related to the historical development and formalization 
of the limit concept. 

 Cognitive obstacles related to the abstraction process involved in the formalization 
of the concept of limit. 

 Didactical obstacles related to the ways the concept of limit is presented to 
students. 

One consequence of these obstacles is that a formal definition of limits is not included in 
the Mathematics A curriculum in Denmark (the highest level possible), apparently due to 
its conceptual difficulty. Thus, upper secondary mathematics textbooks, such as the one 
by [8], give the following informal definition of limit: 

If the values of the function 𝑓𝑓(𝑥𝑥) approaches the value 𝐿𝐿 as 𝑥𝑥 approaches 𝑥𝑥0, we say that 
𝑓𝑓 has the limit 𝐿𝐿 as 𝑥𝑥 approaches 𝑥𝑥0 and we write 

  Lim
𝑥𝑥→𝑥𝑥0

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 

The real motive behind introducing the limits of functions in upper secondary school 
mathematics is its use in defining the derivative of a function at a point: 

The derivative of a function 𝑓𝑓 at a point 𝑥𝑥0, denoted 𝑓𝑓′(𝑥𝑥0), is given by 

𝑓𝑓′(𝑥𝑥0) = lim
ℎ→0

𝑓𝑓(𝑥𝑥0 + ℎ) − 𝑓𝑓(𝑥𝑥0)
ℎ  

provided this limit exists. 

The definition of the derivative is a so-called indeterminate form of type [00] [9]. These 
forms can usually be evaluated by cancelling common factors, which is the usual method 
used in upper secondary school mathematics. Thus, it seems that the limit concept is 
reduced to an algebra of limits, suppressing the topology of limits, which is crucial in the 
formal definition: This didactical obstacle may lead to the misconception that the algebra 
of limits and topology of limits may be completely disconnected. The informal definition of 
limits therefore has its shortcomings. First, the definition does not precisely convey the 
mathematical meaning of the concept of limit. Second, the expression “approaches to” 
may result in the confusion whether limits are dynamic processes, where motion is 
involved, or static objects.  

6.2 Teaching Situations Leading to the Concept of Limit 
In response to the above-mentioned difficulties, we will show how we tackled teaching 
the concept of limit, using a terminology that is close to the one used in the formal 
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definition, without sacrificing the topological aspect in the definition. Moreover, the 
concepts we use should be familiar to the students from their previous experiences. 
Specifically, we address the question: Given a process or system, how can we control the 
error tolerance in the input, given that the output (or product) should have a given error 
tolerance? So, in introducing the topic “Introduction to Limits of Functions” to the students, 
we started the lesson by giving the students five tasks. These tasks represent several 
teaching situations that may be needed to reach the institutionalized knowledge of limits 
of functions, i.e. the tasks can be regarded as a gradual transition from the students’ 
personal knowledge to institutionalized knowledge. 

Task 1: Discussion. How do you control the temperature of this classroom? Usually, we 
require that the room temperature to be the ideal 20°C, but can we be sure that it is 
precisely 20°C? If a temperature of exactly 20°C is practically unattainable, how can we 
keep the temperature of the room close to it? The discussion is open for all students. 
Many students gave the answer “We have to continuously adjust the settings of the 
radiator to guarantee that the temperature is always near 20°C”. Other students argued 
that “opening and closing the windows and the door also affect the temperature”. All 
agreed that the temperature in the classroom is dependent on many factors. To make 
things simple, we intervened in the discussion and drew the following figure on the white 
board and asked the students to elaborate on it: 

 
 
 
 
 

The purpose of this task is to guide students to reach the (simple) conclusion: To control 
the room temperature, one should adjust the settings of the radiator. Using TDS 
terminology, this task corresponds to the formulation phase, where the milieu is an open 
discussion. The students here construct personal knowledge about radiators and heat 
while interacting with the problem of maintaining a constant room temperature. Using the 
figure, the students’ personal knowledge is being validated and becomes more 
formalized. Besides, this task encourages students to use relevant experience-based 
knowledge in order to arrive at a plausible conclusion, to use PBL terminology [10]. 

Task 2: The area of a circular plate is given by 𝐴𝐴 = 𝜋𝜋𝑑𝑑2

4 , where 𝑑𝑑 is its diameter. A 
machinist is required to manufacture a circular metallic plate to be used in radio-controlled 
wall clocks. The area of the circular plate should be 169𝜋𝜋 cm2. But since nothing is perfect, 
the machinist would be satisfied with an area machined within an error tolerance. 

a) Within an error tolerance of ±1  cm2 for the area, how close to 26 cm must the 
machinist control the diameter of the plate to achieve this?  

Room 
Output 

(Temperature) 

Input  

(Radiator settings) 
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Room 
Output 

(Temperature) 

Input  

(Radiator settings) 

 

 

 

 
 

 

b) Given a positive number ε. Within an error tolerance of ±𝜀𝜀 cm2 for the area, find a 
formula for the resulting tolerance δ of the diameter of the plate. 

An excerpt of a student solution of Task 2 is shown in Fig. 1. The aim of Task 2 is twofold: 

 To support the students’ development of personal knowledge regarding the 
concepts of closeness and distance, which culminate in the result |𝑑𝑑 − 26| < 0.024 
(Fig. 1). 

 To help the students acquire new knowledge about tolerances, namely the fact 
that δ depends on ε. 

To use TDS terminology, the teacher hands over the milieu to the students by presenting 
the problem and explaining the rules for solving it in such a way that the students can 
engage in the intended activities [4]. This corresponds to the devolution phase in TDS. 
This is also a PBL situation where teaching should offer the students the opportunity to 
engage in activities like those of a researcher. “PBL assumes that students learn best 
when applying theory and research-based knowledge in their work with an authentic 
problem” [3]. 

 

 

Fig. 1. An example of a student solution to Task 2. 
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Engaging in the task, the students employ their previously developed experience with 
inequalities and absolute values in order to solve the problem. In TDS, this corresponds 
to the action phase, where the situation is adidactical. 

Task 3: This is a didactical situation where we explicitly interact with the students, in order 
to improve their understanding of error tolerances and provide them with some 
background for the independent acquisition of knowledge about dependent and 
independent variables. The function of the machine is to take metal sheets as input to 
produce circular plates as the final products, i.e., the output.  

 

 

 

The machinist must adjust the machine settings to satisfy the specifications of the 
products. The question now is: What error tolerance for the diameter d should be used 
so that the product (circular plates) requirements are met? Mathematically, Given 𝜀𝜀 > 0. 
Find δ such that if |𝐴𝐴 − 169| < 𝜀𝜀 then |𝑑𝑑 − 26| < 𝛿𝛿, where A is the area of the circular 
plate. 

Task 4: This task is a partial generalization of the third one. This task is really a “didactical 
game” consisting of a challenge and a response. The “machine” now is a function 𝑓𝑓 that 
transforms a number 𝑥𝑥 (input) to another number 𝑓𝑓(𝑥𝑥) (output). Like the machinist’s work, 
we want the output 𝑓𝑓(𝑥𝑥) to be equal to a number 𝐿𝐿.  In practice, we may be satisfied with 
an output 𝑓𝑓(𝑥𝑥)  somewhere between 𝐿𝐿 − 𝜀𝜀 and 𝐿𝐿 + 𝜀𝜀, where ε is the error tolerance of 
𝑓𝑓(𝑥𝑥). The question now is how accurate our control setting for 𝑥𝑥 (the input) must be to 
guarantee this degree of accuracy in the function value 𝑓𝑓(𝑥𝑥). This error tolerance for 𝑥𝑥 is 
usually denoted by δ. The function given to the students is 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥 − 3, together with 
the two numbers 𝐿𝐿 = 2 and 𝑥𝑥0 = 1. The challenge is to make |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| less than a given 
number 𝜀𝜀 > 0 by finding a number 𝛿𝛿 > 0 such that |𝑥𝑥 − 𝑥𝑥0| < 𝛿𝛿. The number ε itself is 
given in the following table: 

Table 1. The challenge and the response 

The challenge, ε The response, δ 
1
10  

1
100  

1
1000  

1
10000  

Machine 
Output or Product 

(Circular plates) 

  Input  

(metal sheets) 
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In the language of TDS, this task is the starting point directing the student’s acquisition of 
the institutional knowledge of limits. Within the framework of PBL, it helps students 
acquire the skills required to tackle new problems involving limits. The students were 
required to work in groups of two to find the “response” δ of the challenge ε, by completing 
the table. A two-student group consisted of a skeptic and a scholar: The skeptic presented 
ε-challenges to show that there is room for doubt. The scholar should answer every 
challenge with a δ-interval around 𝑥𝑥0 that keeps the function values within ε of 𝐿𝐿. The 
culmination of this task consisted of giving the students a new challenge: Find a formula 
for δ in terms of ε. 

The series of the tasks mentioned above constitutes a TDS teaching process to arrive at 
the sought definition of a limit. This process also conforms to the essence of a PBL 
framework [11]. The institutionalization of all these tasks, where the students’ personal 
knowledge finally reaches the state of institutional knowledge, is attained by confronting 
the students with the formal, rigorous definition of a limit of functions, as given in most 
engineering mathematics books, e.g. [9]: 

We say that 𝑓𝑓(𝑥𝑥) approaches the limit 𝐿𝐿 as 𝑥𝑥 approaches 𝑥𝑥0 if for every number 𝜀𝜀 > 0 
there exists a corresponding number 𝛿𝛿 > 0, such that for all 𝑥𝑥, if |𝑥𝑥 − 𝑥𝑥0| < 𝛿𝛿 then 
|𝑓𝑓(𝑥𝑥) − 𝐿𝐿| < 𝜀𝜀.  And we write 

 lim
𝑥𝑥→𝑥𝑥0

𝑓𝑓(𝑥𝑥) = 𝐿𝐿  

As a part of the institutional knowledge, we mentioned two remarks to this definition to 
the students:  

 The definition does not ask for a “best” positive δ, just one that will work.  

 Note that there is no need to evaluate 𝑓𝑓(𝑥𝑥0). In fact, 𝑓𝑓(𝑥𝑥0) may or may not equal 𝐿𝐿 
or may not exist at all! The limit 𝐿𝐿 of the function 𝑓𝑓(𝑥𝑥) as 𝑥𝑥 → 𝑥𝑥0 depends only on 
nearby values!  

Task 5: This final task consists of some exercises, the purpose of which is to test if the 
students grasp the concept of limit: Use the formal definition of limit to prove the indicated 
limits. Due to page limits, we only discuss one of these:  

1) Use a CAS tool to plot the graph of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−9
𝑥𝑥−3 . Show, 

graphically, that  lim
𝑥𝑥→3

𝑥𝑥2−9
𝑥𝑥−3 = 6 . 

This task is a validation situation, i.e. students convey their ideas and the teacher plays 
a role of bridging their knowledge to achieve the intended knowledge [4]. Regarding this 
exercise, the students used GeoGebra and Maple. Both these CAS tools produced wrong 
plots of the function. The students, who are used to use CAS to solve mathematical 
problems, including trivial operations on numbers, were surprised that the CAS tools 
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failed to draw the right graph. They were not aware of the limitations of these CAS tools. 
Here is the misleading graph which all students got (Fig. 2, left):  

  
Fig. 2. Left: The “wrong” graph of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−9

𝑥𝑥−3  . Right: The right graph. 

The catch is that CAS tools automatically try to reduce an expression without showing the 
condition under which the reduction is valid. In our exercise, the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−9

𝑥𝑥−3  is 
reduced to 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 3, without further notice: The result is a straight line, where x can 
be any number! It is too easy to declare that one should have a critical attitude regarding 
the outputs of CAS tools, as this requires deeper insight and knowledge in the internal 
workings of these tools, something most students do not possess. The impact of CAS 
tools on mathematics teaching and learning is still subject to intensive research [12] and 
it is beyond the scope of this paper to account for the possible contribution of CAS tools 
in improving the students understanding of mathematical topics. It is crucial to present 
the true graph of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−9

𝑥𝑥−3   to the students (Fig. 2 right) and elaborate on 
the analogy with the previous tasks: A straight line with a “hole” at 𝑥𝑥 = 3 means of course 
that 𝑥𝑥 ≠ 3. However, this does not prevent us from investigating the values of the function 
for values of x that are close to 3, like what we did in the previous tasks: 

 In Task 1, it was beyond our reach to require a room temperature of exactly 20°C, 
but we can get closer and closer to it. 

 In Tasks 2 and 3, it was impossible to produce circular plates having a diameter of 
exactly 26 cm but we can get closer and closer to that. 

Similarly, in the exercise in Task 5, we cannot give x the value 3, and hence the function 
cannot have the value 6. However, as the graph shows, the function can get closer and 
closer to 6 whenever x is sufficiently close to 3.  

7 CONCLUDING REMARKS AND DISCUSSION  
According to the PBL framework, “the problem is the starting point directing the student’s 
learning process. A problem can be both theoretical and practical. It must also be 
authentic and scientifically based” [3]. The main requirement of the PBL framework is that 
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the students seek new knowledge, through realistic problems. Thus, both PBL and TDS 
share the idea that a teacher provides students with the initial problem, so that the 
students act and formulate concepts related to the problem-solving activity. 

At Aalborg University, both students and researchers are supposed to engage in problem-
based, project-oriented approach in their academic work [13]. This paper itself can be 
regarded as a problem-based approach to applying TDS in introducing the theory of limits 
to engineering and upper secondary school students. In our own classes, many students 
were in fact able to prove that a given number is the limit of a given elementary function, 
using the formal definition. In fact, the problem that some students encounter was not in 
applying the definition, but rather in the algebra of inequalities involving absolute values. 
The ultimate purpose of the tasks mentioned is to make students capture the similarities 
between the following situations: 

 We cannot guarantee a room temperature of exactly 20°C, but we can get close to 
it. 

 We cannot produce circular plates having an area of exactly 169𝜋𝜋 cm2, but we can 
make their areas closer and closer to that. 

 We cannot divide by zero, but it is possible to investigate the properties of a rational 
function2 for values close to the zeros of its denominator.  

We therefore do not believe that the ε-δ definition of limits is too advanced for the 
mathematics curriculum at the upper secondary school and undergraduate engineering 
programs. Since, by using carefully designed teaching situations and pedagogical 
approaches, it can be possible to equip the students with a proper understanding of the 
concept of limit, and we hypothesize that it will pay off in other mathematics and 
engineering science courses the students may encounter in their study. 

8 FUTURE RESEARCH PERSPECTIVES 
The methodology of this concept paper has been used in an introductory calculus course 
for engineering students at Aalborg University in Copenhagen, Denmark. However, no 
pre-tests or post-tests were conducted in the course. The first author has only tested the 
students understanding of the concept of limit through Task 5. The informal assessment 
of the course seemed to be promising. However, more research in teaching the concept 
of limits at upper secondary schools is still needed to get a nuanced understanding of the 
students’ conceptions and misconceptions of the idea of limit and what it might mean to 
come to understand the limit concept. Therefore, in a future offering of the course, the 
first author plans to design empirical tests that would reveal the impact the TDS and PBL 
approaches might have on the students understanding of limits. This would be an 
interesting subject of a new research paper.  

                                                           
2 Such as the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−9

𝑥𝑥−3 . 
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