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Abstract—Fast electric vehicle charging systems (FEVCSs) 
are becoming popular, but to assure long-term operation, 
further research on battery lifetime is necessary. This is because 
FEVCSs use high charging currents, and consequently subject 
Li-Ion batteries to high levels of average state of charge (SOC) 
and temperatures within a short period of time. Thus, 
degradation mechanisms, such as Lithium plating and 
electrolyte breakdown, are inevitable in Li-Ion batteries, leading 
to reduced battery capacity and lifetime. Therefore to 
investigate the battery reliability of FEVCSs, this paper 
proposes a two-stage modeling approach. Using the proposed 
model, the impact of SOC and temperature on the reliability of 
the battery as well as the reliability of a Li-Ion battery under 
typical fast EV charging conditions are investigated, and results 
are presented to show how the battery reliability deteriorates 
under fast charging conditions. 

Keywords—Reliability, lifetime, mission profile, battery, fast 
electric vehicle charging systems 

I. INTRODUCTION 
At present, the ever-increasing Carbon emissions in the 

environment is a significant concern. Conventional vehicles 
that depend solely on internal combustion engines (ICEs) are 
the major contributor to high CO2 emissions [1]. Therefore, 
eco-friendly electric vehicles (EVs) are becoming an attractive 
alternative to ICE vehicles. However, shorter range per charge 
and longer recharging time are the major concerns of EV users 
that need addressing to increase the EV uptake. Thus, 
development of batteries with high energy density and fast 
(rapid) charging capability has become a research focus in EV 
charging systems. Amongst various battery technologies, Li-
Ion batteries have been predominately used in EV applications 
due to their high efficiency, fast response time, scalability, and 
low self-discharge rate [2, 3]. However, the development of 
low cost, compact and reliable batteries for fast EV charging 
systems (FEVCSs) has still been a challenge.  

The rate of charging or discharging of a battery cell is 
limited by the rate at which the active chemicals in the cells 
can be transformed. This is because there are different reaction 
gradients between the ions close to the electrodes, those 
further away and also within the electrodes themselves of a 
battery cell. Thus, forcing high currents through the battery 
results in an incomplete transformation of active chemicals 
and also causes unwanted, irreversible chemical reactions [4]. 
The incomplete transformations can result in the deposition of 
surplus ions on the anode in the form of Lithium metal. This 
is known as Lithium plating, which leads to irreversible loss 
of battery capacity. The unwanted chemical reactions 
consume some of the active chemicals, causing the battery to 
lose capacity and therefore to age prematurely. This may be 

accompanied by changes in the structure of electrode crystals 
such as crystal growth or cracking, which have a negative 
impact on the internal impedance of the battery cell. At the 
same time, maintaining high currents and voltages during fast 
charging may result in electrolyte breakdown, resulting in 
further loss in capacity. Therefore, with each charge/discharge 
cycle, the accumulated irreversible reduction in battery 
capacity is expected to increase and, eventually, the reduction 
in capacity will result in the cell being unable to store the 
amount of energy that is required. In other words, it reaches 
the end of its useful life. Since the loss of capacity is caused 
by the high current operation, it can be expected that higher is 
the current the shorter is the cycle life of the cell [5]. 
Accordingly, the batteries in FEVCSs are expected to 
degrade/wear-out at much faster rate and need to be replaced 
a few times within the lifespan of the charging system. 
Therefore to avoid the unnecessary accelerated battery 
degradation, the battery reliability must be analysed and taken 
into account first when implementing the charging algorithms 
for FEVCSs. 

According to the literature, battery reliability analysis 
depends on the application-specific operating conditions [6]. 
In [7] and [8], battery lifetime analysis models have been 
developed for grid-support applications. Another research on 
lifetime modeling of batteries in photovoltaic application have 
been carried out in [6] and [9]. In relation to EVs, different 
studies have investigated the lifetime of batteries, and various 
empirical models have been built based on experimental 
results. The battery capacity fade during the discharging 
process has been discussed in [10], and a model to analyse the 
battery degradation has been developed in [11]. Studying the 
battery ageing according to different usage patterns has been 
considered in [12]. In these methods, intensive experimental 
work is performed on the battery in the laboratory and the 
results are fit to mathematical functions to develop a model. 
However, these studies generally focus on the battery itself in 
specific laboratory conditions, and require significant effort 
and time. The operating fluctuations originated from traffic 
flow dynamics, varying mechanical forces and road 
conditions on the battery performance have been studied in 
[13]. Other factors that affect the EV battery in vehicle-to-grid 
(V2G) applications and its aging have been explored in [14-
16]. However, more research in relation to EV applications is 
still needed as development of comprehensive analytical 
battery lifetime models and the extension of battery lifetime 
models in a probabilistic manner to perform reliability 
analysis are yet to be carried-out. Moreover, since fast EV 
charging is becoming popular, reliability analysis of batteries 
in FEVCSs is important to ensure robust operation under fast 
charging conditions.  



Therefore this paper proposes a comprehensive reliability 
analysis model for Li-Ion batteries in FEVCSs. In this study, 
a two-stage analytical modeling approach based on electro-
thermal simulation is used to determine the battery lifetime 
and reliability. The rest of the paper is structured as follows. 
The paper discusses a typical FEVCS configuration in Section 
II. The reliability analysis model with a two-stage modeling 
approach is explained in Section III. In Section IV, a case 
study based on a three-phase 80 kW FEVCS is presented to 
demonstrate how the battery reliability deteriorates under fast 
charging conditions. Finally, conclusions are given in Section 
V. 

II. FAST EV CHARGING 
According to the society of automotive engineers (SAE) 

J1772 standard, EV charging is classified into four levels. AC 
level 1 is the slowest way of charging an EV. A domestic 120 
V outlet and less than 2 kW of charging power are used in this 
level. AC level 2 charges the EV 10 times faster than the AC 
level 1 charging. Typically, AC level 2 charging uses a 5 kW 
to 19 kW charging power, which is the most commonly used 
level for daily EV charging. DC level 1 and level 2 charging 
are the fastest ways to charge an EV. DC level 1 uses charging 
power up to 80 kW, while DC level 2 uses charging power up 
to 400 kW. Usually, AC chargers are on-board chargers. 
These chargers convert AC power into DC using the power 
electronic converters placed inside the vehicle. Unlike AC 
chargers, DC fast chargers use DC to charge the EV. Because 
of the high charging power levels in DC fast charging, it is 
difficult to carry the required components on-board due to size 
constraints. Therefore, DC fast chargers are typically off-
board chargers, and the conversion of power from AC to DC 
usually takes place at the charging station [17]. However, DC 
fast chargers cost tens of thousands of dollars, and working 
with a high level of power, user safety, efficient power 
conversion and reliability of the charging system are critical 
in DC fast chargers. 

 In order to analyse the reliability of a Li-Ion battery, 
charged by a typical three-phase FEVCS shown in Fig. 1, is 

considered. This charging system consists of two 
interconnected power electronic converters, a three phase 
AC/DC converter and a DC/DC converter. The three-phase 
AC/DC converter, which is fed by a 400 V AC supply, draws 
a sinusoidal current and maintains the DC link voltage at 600 
V. The DC/DC converter is a phase-shift controlled dual 
active bridge, with input and output DC voltages being 600 V 
and 384 V, respectively, and operated at 20 kHz. The DC/DC 
converter regulates the power flow required to charge the 
battery while providing galvanic isolation. 

Fig. 1. A typical three-phase fast EV charging system. 

III. RELIABILITY ANALYSIS MODEL 
Fig. 2 presents the proposed battery reliability analysis 

model, comprising a two-stage modeling approach which is 
given below. 
Stage 1: Translation of mission profile into stress profiles 

• Mission profile interpretation 
• Stress profile interpretation 

Stage 2: Reliability estimation 
• Rainflow cycle counting 
• Lifetime modeling 
• Lifetime distribution 
• Reliability evaluation 

 The steps in the two stages of the reliability analysis model 
will be explained in details in the following sections. 

A. Mission Profile Interpretation (Stage 1) 
 The battery lifetime can be mainly influenced by the 
operating conditions of the system. Thus, in order to estimate  

Fig. 2. Reliability analysis model.  
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the battery reliability, the operating conditions throughout the 
charging process must be known [18]. In this respect, a 
mission profile representing the operating conditions of the 
battery is needed. The charging profile of the FEVCS is 
directly related to the operating conditions of the fast EV 
charger. Therefore, the charging profile is considered as the 
mission profile. Amongst different EV charging strategies, 
multistage constant current (MSCC) charging is the most 
preferred method for fast charging. Hence, the MSCC 
charging profile is used in this study. The method described in 
[19] is considered to implement the MSCC charging profile 
with optimal current levels, which results in minimum 
charging time. There are five current level stages in the MSCC 
charging profile. The current levels at different stages are used 
for the reference currents in the current controller of the 
DC/DC converter. The battery is charged with the current 
levels in each stage until the battery voltage reaches a 
predefined maximum permissible value. 

B. Stress Profile Interpretation (Stage 1) 
The principal deterioration mechanism in batteries is the 

electrolyte loss, which results in a reduction in capacity, for 
which the battery state of charge (SOC) and surface 
temperature (Ts) being the most relevant stress variables. 
Therefore, the battery SOC and Ts need to be derived from the 
mission profile to represent the real operating conditions. 
Hence to obtain the SOC, the current levels in the charging 
profile are used as the input to Stage 1 of the model, and SOC 
is obtained as: 

                                   SOC = SOCint + 
׬ I(t)
Qmax

                            (1) 

where SOCint, I(t) and Qmax are initial SOC, charging current 
and maximum capacity of the battery, respectively. Ts can be 
determined using internal heat generation (q) and thermal 
equivalent circuit of the battery cell. The q can be calculated 
using Bernardi’s equation as: 

       q = I ሺOCVavg ሺSOC) - V) - I ൤Ts ൬
δOCVavg

δT
(SOC)൰൨    (2) 

where V is the battery terminal voltage, and OCVavg(SOC) and 
δOCVavg/δT(SOC) are open circuit voltage and entropic heat 
coefficient of the battery cell at a certain SOC, respectively. 
The look-up table (LUT) approach in the PLECS simulator is 
used to obtain the OCVavg and δOCVavg/δT. In this regard, 
under a particular set of operating conditions, the OCVavg and 
δOCVavg/δT are obtained in advance and the OCVavg and 
δOCVavg/δT for the required operating conditions are then 
interpolated using the LUT. After calculating the q, battery Ts 
can be obtained as: 

       Ts(t) = Tamb + Rconv × q ൤1-exp ൬
-t

Cth(Rconv + Rcond)
൰൨       (3) 

where Tamb, Rconv, Rcond, Cth and t are ambient temperature, 
convection resistance, conduction resistance, thermal 
capacitance and operation time of the battery, respectively. 
The parameters Rconv, Rcond and Cth of the battery are calculated 
according to the method described in [20]. Thus, the battery 
SOC and Ts for a certain mission profile can be obtained. 

C. Rainflow Cycle Counting (Stage 2) 

 A cycle counting method must be used to extract the 
cycling distribution of the SOC stress profile, which is needed 
as an input parameter for the battery lifetime model. Hence, 

the Rainflow cycle counting method, which is a widely used 
approach for extracting cycle information, is used to extract 
the cycles in the SOC profile [21]. Usually, the extracted cycle 
data are stored in a matrix form referred to as a Rainflow 
matrix. Thus, the required parameters such as the mean SOC 
(SOCm), SOC cycle amplitude (∆SOC), and the number of 
cycles (n) can be obtained form the Rainflow matrix and used 
directly in the battery lifetime model. 

D. Lifetime Modeling (Stage 2) 
The lifetime model of the battery provides the information 

of the battery capacity fade, which occurs due to ageing. Li-
Ion batteries are ageing during both storage and operation. 
Ageing during storage is referred to as calendar ageing and 
ageing during operation is referred to as cycling ageing. The 
calendar ageing of Li-Ion batteries is mainly enhanced by high 
SOC levels and high temperatures, which are causing both 
power capability decrease and capacity fade [22, 23]. The 
cycling ageing of Li-Ion batteries is mainly influenced by the 
high SOC levels, the SOC cycle depth, the 
charging/discharging C-rate and temperature, which are also 
causing both power capability decrease and capacity fade [24, 
25]. Expression for capacity fade is defined as [26]: 

  Cca = 1.9775×10-11×e0.07511×Ts×1.639×100.00738×SOCm×t0.8 (4) 
 

Ccy = 2.6418×e-0.01943×SOCm×(0.004×e0.01705×Ts) 
 
                     ×(0.0123×∆SOC 0.7162)×n0.5                           (5) 
 
                                          Cf = Cca + Ccy                                  (6) 

where Cca, Ccy, Cf and t are the capacity fade due to calendar 
aging, capacity fade due to cycling, total capacity fade of the 
battery and operation time, respectively. The input 
parameters, SOC cycle information, SOCm, ΔSOC, and n, can 
be determined from the Rainflow cycle counting method 
described above. The Ts can be obtained according to the 
method explained in Section III. B. The battery lifetime is 
usually described in terms of life consumption (LC). 
According to Palmgren Miner’s rule [27], the LC of the 
battery during the operation can be calculated as: 

                                           LC = ∑ Cfi                               (7)
i

 

where Cfi is the capacity fade for a particular SOCm and ΔSOC. 
When the LC accumulates to 0.7, which corresponds to a 30% 
capacity fade, the battery is considered to be at the end of its 
life. 

E. Lifetime Distribution (Stage 2) 
The battery lifetime predictions obtained from (7) can be 

considered as an ideal case in which all the components have 
the same failure rate. In reality, there are uncertainties in the 
lifetime prediction due to manufacturing variations, 
differences in the lifetime model parameters and stress 
changes. In order to consider these uncertainties, it is required 
to perform the Monte Carlo analysis [28] by introducing 
lifetime model parameter variations and determining the 
lifetime with a large sample size. With a significant sample 
size, the results will then converge to the required value. Thus, 
the lifetime predictions can be presented in terms of a 
statistical value rather than a fixed value by taking into 
account the system parameter variations. In this approach, the 



parameters in the lifetime model described in (4) and (5) must 
be modeled by a specific distribution function introducing a 
certain parameter variation range. Thus, by performing the 
Monte Carlo simulation, the lifetime distribution f(x) for the 
battery can be obtained from the lifetime data of the selected 
number of samples. 

F. Reliability Evaluation (Stage 2) 
The lifetime distribution f(x) of the battery follows a 

Weibull distribution [20], with the probability density 
function (PDF) given as [30]: 

                              fሺx) = 
β
ηβ xβ – 1exp ൤ – (

x
η

)
β
൨                         (8) 

where β is the shape parameter and η is the scale parameter. β 
usually indicates the failure mode, while η represents the time 
when 63.2% of the population has failed [30]. Using the PDF 
of the Weibull distribution, it is possible to obtain the 
cumulative distribution function (CDF) by integration over 
the operation period. The CDF is referred to as an unreliability 
function F(x) which indicates the development of failure 
population over time. Consequently, using the unreliability 
function, the B15 lifetime of the battery, which is used as a 
reliability metric, can be obtained. The quantity, B15 lifetime 
represents the time taken for 15% of the population to fail [30]. 
Thus, by considering the unreliability function, the reliability 
or the B15 lifetime of the battery can be determined. 

IV. CASE STUDY 

A. Mission Profile of the Case Study 
In order to investigate the battery reliability, a case study 

of a Li-Ion battery in a typical three-phase 80 kW FEVCS, 
shown in Fig. 1, was considered. The battery SOC and Ts were 
determined by charging the battery for 20 minutes period with 
a MSCC charging profile, as illustrated in Fig. 3. The battery 
was charged with five stages of current levels, and currents in 
each stage were applied to the battery until the battery voltage 
reached a predefined maximum permissible value. 

 
Fig. 3. Fast EV charging profile. 

B. Battery SOC and Ts Profiles 
Using the approach of mission profile translation outlined 

in Section III. B, the battery SOC and Ts were obtained and 
depicted in Fig. 4 and Fig. 5, respectively. In order to ensure 
safe and long-term operation, the battery SOC is usually 
limited to a certain range in FEVCSs. Hence as shown in Fig. 
4, the battery was charged from 20% to 80% SOC within 20 
minutes by feeding the MSCC charging profile. According to 
Fig. 5, it can be observed that the Ts of the battery reaches its 
highest value of 46.7 0C, while its mean value is 40 0C when 
the battery was charged under air-cooling conditions. 

 
Fig. 4. Battery SOC profile. 

 

Fig. 5. Battery Ts profile. 

C. Translated SOC Profile with Cycle Counting 
 As described in Stage 2, the Rainflow cycle counting was 
performed to organize the SOC profile in a manner that was 
appropriate for the lifetime model. By doing so, the mean 
value, cycle amplitude and the number of cycles of the SOC 
profile were obtained. The resultant Rainflow matrix 
histogram for the battery SOC is shown in Fig. 6. The SOC 
cycles have a SOCm value of 50.32% during the charging and 
49.9% during the discharging, with a ∆SOC of about 30%. 

 
Fig. 6. Rainflow matrix of the battery SOC. 

D. Lifetime and Reliability Evaluation 
 By applying the Rainflow cycle counting results and the 
battery Ts into (7), the corresponding LC of the battery was 
calculated. The resultant LC of the battery is 0.1223/year. This 
implies that the battery is expected to reach its end of useful 
life that is 70% of battery capacity, after 6 years of operation. 

Furthermore, by introducing parameter variances into the 
lifetime model, the Monte Carlo simulation was employed to 
simulate the lifetime with a large number of samples. In this 
regard, each parameter in the lifetime model described in (4) 
and (5) was modeled by a normal distribution with a 5% 
parameter variation. Thus, a set of lifetime data were obtained 
with a population of 10000 samples and represented by a 
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lifetime distribution. The obtained lifetime distribution along 
with the corresponding Weibull distribution is depicted in Fig. 
7. According to the lifetime distribution of the battery, it can 
be observed that the lifetime of most of the samples lies near 
to 6 years, which is equal to the lifetime of the battery 
calculated with one sample. 

 
Fig. 7. f(x) and the corresponding Weibull PDF of the battery.  

By integrating the obtained lifetime distribution over the 
operation time, the unreliability function for the battery was 
obtained and presented in Fig. 8. According to the 
unreliability function, the reliability of the battery, which is 
represented by the B15 lifetime, under fast charging 
conditions is 4.5 years. This implies that 15% of the 
population of batteries under fast charging conditions is 
expected to fail after 4.5 years. According to the manufacture 
data, batteries in slow electric vehicle charging systems 
(SEVCSs) last for at least 8 years. Thus, results indicate that 
batteries in FEVCSs are expected to fail around 3.5 years 
earlier than the batteries in SEVCSs. Furthermore, it is 
important to note that the reliability analysis presented here 
can be further extended to improve the battery reliability by 
introducing rest periods during the charging and introducing 
advanced cooling methods. 

  

Fig. 8. F(x) of the battery. 

V. CONCLUSION  
In this paper, a two-stage modeling approach has been 

presented to investigate the reliability of batteries in FEVCSs. 
Within each stage, systematic mathematical and simulation 
models have been developed to analyse the impact of SOC and 
temperature on the battery reliability. Using the proposed 
modelling approach, the reliability of a Li-Ion battery has been 
investigated under typical fast EV charging conditions, and 
results have been presented showing how battery reliability 
deteriorates under fast charging conditions. The proposed 
reliability analysis model is expected to be a valuable tool 
when designing reliable FEVCSs. 
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