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ABSTRACT  22 

Background and aims: Clinical decisions rely on a patient's ability to recall and report their 23 

pain experience. Monitoring pain in real-time (momentary pain) may reduce recall errors and 24 

optimize the clinical decision-making process. Tracking momentary pain can provide insights 25 

into detailed changes in pain intensity and distribution (area and location) over time. The 26 

primary aims of this study were i) to measure the temporal changes of pain intensity, area, and 27 

location in a dose-response fashion and ii) to assess recall accuracy of the peak pain intensity 28 

and distribution seven days later, using a digital pain mapping application. The secondary 29 

aims were to i) evaluate the influence of repeated momentary pain drawings on pain recall 30 

accuracy and ii) explore the associations among momentary and recall pain with 31 

psychological variables (pain catastrophizing and perceived stress). 32 

Methods: Healthy participants (N=57) received a low (0.5ml) or a high (1.0ml) dose of 33 

hypertonic saline (5.8%) injection into the right gluteus medius muscle and, subsequently, 34 

were randomized into a non-drawing or a drawing group. The non-drawing groups reported 35 

momentary pain intensity every 30-seconds. Whereas the drawing groups reported 36 

momentary pain intensity and distribution on a digital body chart every 30-seconds. The pain 37 

intensity, area (pixels), and distribution metrics (compound area, location, radiating extent) 38 

were compared at peak pain and over time to explore dose-response differences and 39 

spatiotemporal patterns. All participants recalled the peak pain intensity and the peak (most 40 

extensive) distribution seven days later. The peak pain intensity and area recall error was 41 

calculated. Pain distribution similarity was determined using a Jaccard index which compares 42 

pain drawings representing peak distribution at baseline and recall. The relationships were 43 

explored among peak intensity and area at baseline and recall, catastrophizing, and perceived 44 

stress. 45 

 46 
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Results:  The pain intensity, area, distribution metrics, and the duration of pain were lower 47 

for the 0.5ml than the 1.0ml dose over time (p<0.05). However, the pain intensity and area 48 

were similar between doses at peak pain (p>0.05). The pain area and distribution between 49 

momentary and recall pain drawings were similar (p>0.05), as reflected in the Jaccard index. 50 

Additionally, peak pain intensity did not correlate with the peak pain area. Further, peak pain 51 

intensity, but not area, was correlated with catastrophizing (p<0.01).  52 

Conclusions: This study showed differences in spatiotemporal patterns of pain intensity and 53 

distribution in a dose-response fashion to experimental acute low back pain. Unlike pain 54 

intensity, pain distribution and area may be less susceptible in an experimental setting. Higher 55 

intensities of momentary pain do not appear to influence the ability to recall the pain intensity 56 

or distribution in healthy participants. 57 

Implications: The recall of pain distribution in experimental settings does not appear to be 58 

influenced by the intensity despite differences in the pain experience. Pain distribution may 59 

add additional value to mechanism-based studies as the distribution reports do not vary with 60 

pain catastrophizing.    61 

 62 

REC# N-20150052 63 

 64 

Keywords (3-6) 65 

Hypertonic solutions, saline; digital technology; surveys and questionnaires; mental recall; 66 

pain measurement; ecological momentary assessment. 67 

 68 

1 Introduction  69 

To date, our understanding of pain distribution patterns in patient populations stems from 70 

cross-sectional studies (1–7,7–10). Such studies provide evidence that pain distribution can 71 
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assist with the prognosis of low back pain (11), the process of differential diagnosis of low 72 

back (1) and sacroiliac pain (2), as well as to differentiate between somatic referred and 73 

radicular back pain (12–14).  74 

 75 

Traditionally, pain distribution can be acquired using pen-to-paper pain drawings (15,16) and 76 

provide information about pain extent (area) and location (17). However, there is no gold 77 

standard and there exist few metrics for accurately assessing and quantifying changes in pain 78 

distribution (18). Indeed changes in pain distribution may reflect an alteration in the location, 79 

the size of the total area of pain, or both. Furthermore, we lack the knowledge or appreciation 80 

of the dynamic changes in pain distribution from daily, weekly and monthly timescales (19). 81 

Only a handful of studies attempted to track pain over time and may be a result of practical, 82 

technical and implementation barriers (19–21). 83 

 84 

Another consideration for tracking pain distribution over time is that clinical assessments are 85 

based on the patients’ recall of their pain, which may be especially problematic as the onset of 86 

pain can occur well before an initial consultation (1,22–26). Pain recall can be influenced by 87 

pain experiences and psychological variables, such as catastrophizing and stress (27–37). 88 

Errors in the pain recall accuracy may obscure the clinical decision-making process (26). 89 

Therefore, amongst other foreseeable benefits of tracking pain distribution over time, 90 

assessing pain in a more continuous fashion and in real-time (momentary) could mitigate 91 

recall errors and optimize the clinical decision-making process and improve knowledge 92 

stemming from pain mechanism-based studies.  93 

 94 

As a starting point, experimental pain studies in health individuals can help clarify the 95 

spatiotemporal patterns of pain distribution in response to noxious stimulation and algesic 96 
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substances. Such studies provide a stepping stone for teasing out differences between healthy 97 

and clinical populations. In short, experimental pain studies utilize a number of algesic 98 

substances, such as hypertonic saline (HS), mustard oil, and nerve growth factor, to model 99 

and characterize various interactions with evoked pain intensity and distribution (38–40). 100 

Some of these prior studies furthered our understanding of referred pain mechanisms and 101 

hyperalgesia (41,42). Of particular interest, HS is known to evoke transient, local, and 102 

referred pain resembling clinical musculoskeletal pain (41,43,44). Thus, the HS experimental 103 

model is an ideal starting point for exploring and quantifying changes in spatiotemporal 104 

patterns of pain distribution and recall accuracy.  105 

 106 

To track pain distribution over time, the digitalization of the pain drawings overcomes some 107 

practical, technical, and implementation barriers encountered by pen-to-paper methods. 108 

Further, digital pain drawings enable the testing and establishment of new metrics for 109 

assessing and quantifying the momentary pain experience over time. Moreover, they enable 110 

the exploration of spatiotemporal patterns of pain distribution in experimental and clinical 111 

settings.  112 

 113 

The primary aims of this study were i) to measure the temporal changes of pain intensity, 114 

location, and area in a dose-response fashion using digital pain mapping, and ii) to assess 115 

recall accuracy of the peak pain intensity and distribution. The secondary aims were to i) 116 

evaluate the influence of repeated momentary pain drawings on pain recall accuracy and ii) 117 

explore the associations of momentary and recall pain experience with psychological 118 

variables (pain catastrophizing and perceived stress). 119 

 120 

 121 
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 122 

 123 

2 Materials And Methods 124 

2.1 Participants 125 

Participants were recruited through social media groups, the university research recruitment 126 

website, and posters displayed on the university campus. Inclusion criteria included healthy 127 

adults age 18-65 years. Exclusion criteria included cognitive limitations, current or past 128 

history of chronic or recurrent pain or any other known medical condition that might affect 129 

pain perception and processing, such as neuropathy, epilepsy, or diabetes. A total of 57 130 

participants were recruited and randomized using a simple randomization method. 131 

 132 

2.2 Study design overview 133 

Healthy participants (N=57) participated in a baseline and recall session. Participants were 134 

randomized into four groups. Firstly, participants were blinded to receive either a 0.5ml (low-135 

dose) or a 1.0ml (high-dose) bolus injection of HS (NaCl 5.8%) to the right gluteus medius 136 

muscle (GMM). A second randomization divided participants from the low and high-dose 137 

groups into a drawing or a non-drawing group to assess the influence of repeating pain 138 

drawings every 30 seconds post-injection on recall accuracy. This means that we explored 139 

whether recall accuracy is influenced by reporting multiple drawings post-injection to those 140 

who did not. Thus, there are four groups: low-dose drawing (N=13), low-dose non-drawing 141 

(N=15), high-dose drawing (N=14), and high-dose non-drawing (N=15). Participants from the 142 

drawing groups reported the intensity of the HS evoked pain in addition to completing a pain 143 

drawing every 30 seconds. Whereas participants from the non-drawing groups verbally 144 

reported the HS evoked pain intensity every 30 seconds. Additionally, all participants 145 

completed a Perceived Stress Scale (PSS) and the Pain Catastrophizing Scale (PCS) at 146 
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baseline to determine the influence of these psychological factors on the four groups’ 147 

momentary and recall pain. These questionnaires were reproduced in Danish and English with 148 

permission. 149 

 150 

All pain drawings were completed using a digital body mapping android application 151 

(Navigate Pain, Version 0.1.9.9.3, Aalborg University, Denmark). A hand-held tablet 152 

(Samsung Galaxy Note 10.1 2014 Edition) displayed a high-resolution 2D male body chart in 153 

a posterior view. Drawings were completed using the tablet’s s-pen (45,46). Females drawing 154 

pain patterns onto a male body chart have not been shown to affect the ability to capture the 155 

perceived pain area (47).  156 

 157 

Seven days later, all participants were asked to recall their peak pain intensity rating and the 158 

most extensive evoked area and location on a digital body chart. Participants were not 159 

informed they would be asked to recall the pain intensity and distribution during their second 160 

session, prior to the study, to reduce possible expectation and attention biases. Therefore, both 161 

groups actively concentrated on the pain every 30 seconds to capture the information 162 

requested. 163 

 164 

The ethics committee in the North Denmark Region (N-20150052) approved the protocol. All 165 

participants gave written informed consent in accordance with the Declaration of Helsinki. 166 

 167 

2.3 Experimental Saline-Induced Low Back Pain  168 

HS injections were used as a model of nonspecific, acute, soft tissue, referred low back pain. 169 

The belly of the GMM was selected due to its accessibility, lack of large neural tissues that 170 

could be injured, and the expected area of pain distribution (48). The injection site in the right 171 



8 
 

GMM belly was located by palpating above an imaginary line between the right greater 172 

trochanter and the right posterior superior iliac crest while the participant lay in a prone 173 

position. Participants were asked to abduct the hip to confirm the location of the muscle (49). 174 

The injection site was marked, the skin was disinfected and let air-dry.  175 

Pilot studies were performed to gain training experience. A total of six pilots using real-time 176 

ultrasonography confirmed the location and injection technique reached the muscle belly of 177 

the GMM in individuals within normal and overweight Body Mass Index (BMI). Therefore, 178 

the use of ultrasound was deemed unnecessary during the main experiment. 179 

 180 

2.4 Assessment of the Momentary Pain Experience 181 

Participants remained in a prone position for the duration of the experiment and were asked 182 

by the examiner (MGV) to report their pain experience every 30 seconds.  183 

 184 

2.4.1 Pain Intensity 185 

All participants were asked to rate their pain intensity every 30 seconds on a Numerical 186 

Rating Scale (NRS, 0=no pain, 10=worst pain imaginable) immediately following the HS 187 

injection until the cessation of pain. Cessation of pain was defined as no pain (NRS=0). 188 

Participants from the non-drawing groups rated their pain intensity verbally. In contrast, 189 

participants from the drawing groups rated their pain intensity directly on the digital pain 190 

drawing application (app) using the tablet's S-pen. The examiner (MGV) immediately 191 

transcribed all the NRS scores on a separate document for future analyses. The participants' 192 

highest pain intensity was defined as the peak pain (PP) intensity and used for analyses. The 193 

time (in minutes) to reach PP intensity from post-injection was also calculated for statistical 194 

analyses. 195 

 196 



9 
 

PP intensity ratings were compared to assess dose-response differences among the four 197 

groups. The area under the pain intensity-time curve (IntensityAUC) was obtained for each of 198 

the four groups to measure the overall temporal changes of pain intensity. The area under the 199 

curve (AUC) over time for each participant from each group was calculated for the time all 200 

participants reported pain. 201 

 202 

2.4.2 Pain Area 203 

HS injection evoked pain is characterized by localized and referred soft-tissue pain on and 204 

around the injection site (41,42,50). In this study, localized and referred pain are combined 205 

when referring to pain area and distribution. Thus, the term pain area only accounts for the 206 

drawn areas of pain without any regard to the location, whereas the term pain distribution is 207 

defined as the area and location of pain drawn on the digital body chart. Participants from the 208 

low- and high-dose pain drawing groups reported their pain on the digital body chart every 30 209 

seconds from the time of injection until pain cessation. Participants from the drawing groups 210 

were instructed to save the time-stamped drawing and, automatically, reveal a new body 211 

chart. 212 

 213 

To quantify changes in pain area, two measures were used. As a first and simple measure, the 214 

most extensive pain area evoked immediately following the injection of HS was identified 215 

and defined as the PP area for each participant. The digital body mapping app automatically 216 

extracted and quantified the total area in pixels. The maximum total drawable area in the body 217 

chart was 204,410 pixels. The time (in minutes) to reach the PP area from the injection time 218 

was also identified and used for analyses. 219 

 220 
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The second measure utilized the area under the pain area-time curve (AreaAUC) as an overall 221 

measure of the spatiotemporal changes in pain area for the low- and high-dose drawing 222 

groups. The AUC for each participant was calculated for the time all participants reported 223 

pain. 224 

 225 

2.4.3 Pain Distribution 226 

Pain drawing overlays were created for the low- and high-dose drawing groups for each 30-227 

second interval immediately following the HS injection, as well as for the drawing and non-228 

drawing groups during the recall session. These overlays facilitated the visualization of 229 

similarities and differences in pain distribution between pain drawings. 230 

 231 

Novel approaches were applied, in an exploratory fashion, to quantify similarities and 232 

differences in the spatiotemporal patterns of pain distribution over time. Digital image 233 

analyses were used to extract and provide quantitative descriptors of the pain distribution over 234 

time and between doses. Three descriptors or pain distribution metrics were determined to 235 

detail the radiating extent (vector length), compound area (bounding box area), and location 236 

(centroid). The AUC assessing vector length (VectorAUC), bounding box area (BBAAUC) and 237 

centroid (CentroidAUC) were obtained to assess changes in pain distribution over time and 238 

between doses. The AUC for each participant was calculated until pain cessation, that is, until 239 

the pain rating was zero (NRS=0).  240 

 241 

Radiating Extent (vector length) 242 

Referred pain following experimental stimuli has previously been shown (51,52). The 243 

distance reached by the expansion of evoked pain area can be expressed as a vector length. 244 

Measuring the vector length provides insight into how far the pain spreads vertically or refers 245 
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beyond the injection site. The vector length was defined as the maximum distance, measured 246 

in pixels, from the injection site to the farthest located pixel on the pain drawing. Considering 247 

that the pain drawing might contain two or more areas in a discontinuous manner (53–55), the 248 

total vector length added the distance from the injection site to the periphery of each 249 

individual pain area, e.g. buttock and leg.  250 

 251 

Compound area (Bounding Box Area) 252 

The bounding box area describes the overall shape or spread of pain, regardless of the total 253 

number or shape of the drawn areas. The bounding box area is calculated by identifying the 254 

most distal pain locations on the body chart in the vertical and horizontal directions. These 255 

locations are then used to determine the maximum horizontal and vertical distances, enclosing 256 

the area or areas of pain in a box. The bounding box area is calculated by multiplying these 257 

two distances or lengths.   258 

 259 

Location (centroid) 260 

The centroid provides information about the general location or shift in the overall location of 261 

the pain area. The centroid is the weighted average point (geometric center) of all the points 262 

in a drawn area or areas. Shifts in the general location of the pain may result from changes in 263 

location, and the shape of the pain pattern. The centroid is expressed as X and Y coordinates.  264 

 265 

2.4.4 Pain Duration 266 

Dose-response differences in pain duration have been shown with a continuous infusion of 267 

HS (56). Thus, pain duration was calculated as the time immediately following the removal of 268 

the injection needle (time=0) until the cessation of pain. Additionally, the time-to-peak 269 

intensity and time-to-peak area (in minutes) were determined. 270 
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2.5 Assessment of Pain Recall Accuracy 271 

2.5.1 Recall Accuracy of Pain Intensity 272 

The accuracy of the pain intensity recall was assessed by subtracting the recalled PP intensity 273 

(RPP intensity) from the baseline PP intensity of each participant. The difference between the 274 

RPP and PP intensity was compared to the null hypothesis for each of the four groups to 275 

determine the pain intensity’s recall error. 276 

 277 

2.5.2 Recall Accuracy of Pain Area 278 

The pain area recall accuracy was assessed by subtracting the recalled PP area (RPP area) 279 

from the baseline PP area. The 0.5ml and the 1.0ml non-drawing groups do not have a 280 

baseline PP area. Therefore, their RPP area was contrasted to the drawing groups (0.5ml and 281 

1.0ml, respectively). The difference between the RPP and the PP area, measured in pixels, 282 

was compared to the null hypothesis to measure the pain area recall error.  283 

 284 

2.5.3 Recall Accuracy of Pain Distribution 285 

To quantify the pain distribution recall accuracy, the following measures were calculated: 286 

similarity index, homogeneity of variance, and pain distribution metrics (compound area, 287 

location, radiating extent). The pain distribution recall accuracy reflects the similarity 288 

between the PP area and the RPP area, as assessed in the drawing groups only.  289 

 290 

The similarity is calculated and expressed using the Jaccard similarity coefficient or Jaccard 291 

index (7). A high Jaccard index (range 0 -1) represents a greater pixel overlap and is a proxy 292 

measure for assessing the accuracy of pain location (7,10,57). A Jaccard index of 1, for 293 

example, would represent a 100% overlap between two pain drawing areas and location. 294 

 295 
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Levene's tests assessing the pain area recall homogeneity of variance were explored among 296 

the four groups to assess the spread around the mean and data variability (homogeneity or 297 

equality of variances). 298 

 299 

Lastly, the differences in compound area, location, and radiating extent for the four groups 300 

were determined by subtracting the recall metrics from the baseline metrics. Similar to the 301 

recall error, the baseline drawing groups were used as a reference to compare the recall non-302 

drawing groups. 303 

 304 

2.6 Assessment of Pain Catastrophizing and Perceived Stress  305 

Psychological variables, such as pain catastrophizing, are known to positively bias the pain 306 

intensity recall (58–61). Furthermore, stress can influence the quantity and quality of memory 307 

formation (62–67).  308 

 309 

Pain catastrophizing and perceived stress were registered at baseline using the Pain 310 

Catastrophizing Scale (PCS) and the Perceived Stress Scale (PSS). Both of these 311 

questionnaires have been validated and previously used in a healthy population receiving 312 

experimental models of pain (30,68). The PCS (69) is a standard tool to measure 313 

catastrophizing thoughts based on anticipated or actual pain (70,71). The PCS has three sub-314 

scales: rumination, magnification, and helplessness (72). All 13-items are rated on a 5-point 315 

scale with the anchors "0" not at all and "4" all the time. Total scores equal to or greater than 316 

30 suggest clinically relevant levels of catastrophizing (72). We hypothesized greater PCS 317 

scores will be associated with greater pain momentary peak pain intensity and area and with 318 

an exaggeration in pain recall. 319 

 320 
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The PSS measures the degree of perceived stress levels by rating feelings and thoughts that 321 

may have been experienced during the last month (73). Each of the 10-item self-reported 322 

questions rated on a 5-point scale with the anchors "0" never, and "4" very often. Total scores 323 

ranging from 0-13, 14-25, or 25-40 are considered to represent low, moderate, or high 324 

perceived stress levels, respectively (73). We hypothesized greater PSS scores will be 325 

associated with greater pain momentary peak pain intensity and area, as well as with a 326 

decrease in pain recall. 327 

 328 

2.7 Statistical analyses 329 

Histograms and Q-Q plots revealed parametric and non-parametric data distribution for the PP 330 

intensity and area, as well as the Jaccard indexes for the low-dose and high-dose groups. 331 

When no differences were identified between the drawing and non-drawing groups within the 332 

same dose at baseline, the data were pooled into the respective low-dose and high-dose 333 

groups for dose-response comparisons.  334 

 335 

The IntensityAUC and AreaAUC from the different groups were compared using a Kruskal-336 

Wallis H test. Changes in the pain distribution metrics over time were assessed with repeated 337 

measures ANOVA, with bins of 0.5, 1.0, 2.0 and 3.0 minutes. The vector length, bounding 338 

box area and centroid (X and Y coordinates) AUC values for the drawing groups were 339 

compared using a Mann-Whitney U test.  340 

 341 

One-sample T-tests were used to calculate the pain recall intensity and area error by 342 

comparing the difference between the RPP and the PP to the null hypothesis. Cronbach’s 343 

alpha correlation coefficients were used to calculated the PP intensity and area recall 344 

accuracy. Repeated measures ANOVA were used to assess the pain intensity and area recall 345 
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accuracy among drawing and non-drawing groups. Furthermore, parametric and non-346 

parametric Levene's tests for homogeneity of variance on the pain area were used to test for 347 

equal variance. Baseline and recall pain distribution metrics were compared using the Mann-348 

Whitney U test to assess the influence of repeating pain drawings post-injection on the recall 349 

accuracy.  350 

 351 

The PSS and the PCS scores were calculated and used for the correlation analyses. 352 

Spearman's correlations were run to determine dose-response associations related to the pain 353 

area, intensity ratings, duration, PSS, and PCS at baseline and recall. These correlations were 354 

also carried out for a dose-independent, pooled dataset.  355 

 356 

Statistical analyses were performed using SPSS 25 (SPSS Statistics, 2018). The pain mapping 357 

metrics, as well as the Jaccard indexes and pain drawings' overlays, were obtained with 358 

MATLAB R2017b (The MathWorks, Inc., Natick, Massachusetts, US). Correlation 359 

coefficients, means, and standard error of the mean (Mean ± SEM) are reported where 360 

relevant. P-values of less than 0.05 were considered statistically significant. A Bonferroni 361 

adjustment was used for all multiple analyses. 362 

 363 

3 Results  364 

3.1 Participants 365 

The study recruited 57 healthy participants. However, one participant from the low-dose non-366 

drawing and one participant from the high-dose non-drawing groups were excluded as they 367 

did not report pain within the first 3 minutes following the injection (n=2). In contrast, two 368 

participants from the high-dose non-drawing group were unable to remain in prone position 369 

due to the high intensity of pain evoked and thusly were also excluded. Therefore, a total of 370 
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53 participants were included (age range 19-45 years) with a BMI within the normal range 371 

(18.5-24.9 kg/m2). Twenty-five females (47%) were included in the study. 372 

 373 

3.2 Assessment of the Momentary Pain 374 

3.2.1 Pain Intensity 375 

There were no differences in PP intensity among the four groups (p>0.05) (Table 1). 376 

Additionally, the PP intensity ratings were similar between the low-dose (3.8±0.3) and the 377 

high-dose (5.3±0.6; p>0.05) groups.  378 

 379 

(please, insert table 1 here) 380 

 381 

Differences in pain intensity ratings over time were shown between the four groups (χ2(3) = 382 

20.35, p<0.01), with a mean rank IntensityAUC of 5.9 for the low-dose drawing and 11.6 for 383 

the low-dose non-drawing groups; 16.0 for the high-dose non-drawing and 25.5 for the high-384 

dose drawing groups (Figure 1). Pairwise comparisons showed that the IntensityAUC for the 385 

low-dose drawing group was significantly lower than the high-dose drawing group (p<0.001, 386 

figure 1). 387 

 388 

(please, insert figure 1 here) 389 

 390 

3.2.2 Pain Area 391 

Similar to the PP intensity, there was no difference in the PP area between the low-dose and 392 

the high-dose drawing groups, as expressed in pixels (p>0.05) (Table 1). The AreaAUC 393 

differed between the low-dose and the high-dose drawing groups (χ2(1) = 6.545, p<0.01). The 394 
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mean rank AreaAUC was 2.5 for the low-dose drawing and 8.0 for the high-dose drawing 395 

groups (Figure 2).  396 

 397 

(please, insert figure 2 here) 398 

 399 

3.2.3 Pain Distribution 400 

The CentroidAUC location differed between the low- and the high-dose (X coordinate U=3.0, 401 

p<0.05, with a Greenhouse-Geisser correction). The BBAAUC was smaller for the low- than 402 

for the high-dose (U=0.001, p<0.05, with a Greenhouse-Geisser correction). There was no 403 

dose-response difference for the VectorAUC (p>0.05) or intra-dose pain distribution metrics 404 

differences for the low- and high-dose drawing groups. (p>0.05) (Figure 3). 405 

 406 

(please, insert figure 3 here) 407 

 408 

3.2.4 Pain Duration 409 

Participants in the high-dose groups reported pain over a longer duration (11.3±1.2 min), as 410 

compared to the low-dose groups (6.6±0.5 min) (U=3.20, p<0.05) (Figures 1 and 3). The 411 

time-to-peak intensity was similar among the four groups (p>0.05, Table 1). The low dose 412 

drawing and non-drawing groups reached PP intensity at 0.8±0.2min and 1.6±0.4min, 413 

respectively. The high dose drawing and non-drawing groups reached PP intensity at 414 

1.8±0.5min and 1.8±0.4min, respectively. There was also a similar time-to-peak area of pain 415 

for the low and high-dose drawing groups (2.0±0.4min and 2.9±0.5min, p> 0.05, 416 

respectively).  417 

 418 

 419 
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3.2.5 Assessment of Pain Catastrophizing and Perceived Stress  420 

There were no differences in the PCS and PSS scores between the four groups at baseline 421 

(p>0.05, Table 1).  422 

 423 

3.3 Assessment of the Pain Recall Accuracy 424 

3.3.1 Pain intensity 425 

The RPP intensity was similar between the drawing and non-drawing groups in the low-dose 426 

(p> 0.05) and the high-dose groups (p> 0.05). The pain intensity recall error for the low-dose 427 

(0.30±0.16) and the high-dose (0.04±0.09) groups did not significantly differ from zero 428 

(p>0.05). The pain intensity recall error was similar between the low- and the high-dose 429 

groups (p>0.05). The Cronbach’s alpha for the peak pain intensity recall for the four groups 430 

ranged between 0.75 and 0.99. 431 

 432 

3.3.2 Pain Area 433 

The RPP area was similar between the drawing and non-drawing groups in the low-dose (p> 434 

0.05) and the high-dose groups (p> 0.05). The pain area recall error for the low-dose 435 

(160±1600) and the high-dose (10193±6612) groups did not significantly differ from zero 436 

(p>0.05). The pain area recall error was similar between the low- and the high-dose groups 437 

(p>0.05). The Cronbach’s alpha for the peak pain area recall was 0.66 for the high-dose 438 

drawing and 0.74 for the low-dose drawing group. 439 

 440 

3.3.3 Pain Distribution 441 

One subject from the high-dose non-drawing group recalled the pain on the non-painful side 442 

of the body map. Therefore, this wrong-sided data point was removed for the location recall 443 

accuracy statistical analysis.  444 
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There were no differences in the Jaccard indexes for the pain drawings representing the PP 445 

and the RPP areas for the low- (0.27 ± 0.07) and the high-dose drawing groups (0.43 ± 0.04) 446 

(p>0.05). Levene's tests showed equality of variance between the PP area and RPP area for 447 

the low- and high-dose drawing groups (p>0.05). Subsequent Levene's tests also showed 448 

equality of variance between the drawing and non-drawing pain area recall in the low- and 449 

high-dose (p>0.05). Additionally, the four groups did not differ in their ability to recall the 450 

pain distribution in terms of pain distribution metrics (vector length, bounding box area, 451 

centroid) (p>0.05) (Figure 4). 452 

 453 

(please, insert figure 4 here) 454 

 455 

3.4 Associations among pain intensity, area, duration, catastrophizing, and perceived 456 

stress at baseline and recall. 457 

The low-dose (drawing and non-drawing) groups showed correlations between the PP 458 

intensity with the RPP intensity, the PP area and the RPP area. A correlation between the PP 459 

intensity and the RPP area (p<0.01) was also shown (Table 2). 460 

 461 

(please, insert table 2 here) 462 

 463 

The high-dose (drawing and non-drawing) groups showed correlations between the PP 464 

intensity with the RPP intensity, the PP area with the RPP area, and the RPP intensity with the 465 

RPP intensity. Additionally, a correlation was shown between the PCS and the PSS (p<0.01) 466 

(Table 3). 467 

 468 

(please, insert table 3 here) 469 
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There was no dose-response difference in peak pain intensity and area at baseline and recall, 470 

as well as PCS and PSS. Therefore, data were pooled to explore dose-independent 471 

correlations.  472 

 473 

Pooled data showed a correlation (Table 4) between the RPP area, the PP intensity, and the 474 

RPP intensity (p<0.01). The PCS also correlated with the PP intensity and RPP intensity 475 

(p<0.01). Additionally, PCS was correlated with the PSS.  476 

 477 

(please, insert table 4 here) 478 

 479 

4 Discussion 480 

This is the first study to assess dose-response spatiotemporal patterns of pain intensity and 481 

distribution and the recall accuracy in response to experimentally evoked pain using digital 482 

pain mapping. The results show dose-response differences in pain intensity and distribution 483 

over time. However, no dose-response differences were identified at peak pain (PP) intensity 484 

and area. The results show that all participants had a similar recall accuracy for PP intensity 485 

and distribution seven days later, independently of the dose and drawing group. Lastly, results 486 

did not show a dose-response association among PCS and PSS with momentary and recall PP 487 

area and intensity. Additionally, the results show that more intense pain ratings did not 488 

associate with more extensive pain distributions.  489 

 490 

4.1 Momentary pain 491 

Repeated momentary pain assessments every 30 seconds revealed that a dose of 1.0ml of HS 492 

evoked a more prolonged, intense and extensive pain distribution over time, as captured by 493 

the area under the time-curve (AUC) than a dose of 0.5ml. Participants from the high dose 494 
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groups reported pain of longer duration; however, participants from the 0.5ml and the 1.0ml 495 

groups reached their PP intensity and area at a similar time following the injection of HS. 496 

Dose-response differences in the evoked pain intensity and area have been previously shown 497 

for HS (56) and for other experimental models, such as mustard oil (38). However, not all 498 

experimental models of pain show dose-response differences, as is the case of experimental 499 

pain induced by capsaicin injections (39). 500 

 501 

A relatively surprising finding is that the intensity ratings were not associated with the size of 502 

the area in the 1.0ml group when assessed at PP and overall (pooled, dose-independent data). 503 

However, the PP intensity ratings were strongly associated with the size of the PP area in the 504 

0.5ml group. These results suggest that more intense pain ratings are not clearly associated 505 

with more extensive pain distributions.  506 

 507 

The results showed that a 1.0ml HS dose evoked a greater overall pain spread, as expressed 508 

by the size of the bounding box area, and a greater overall shift laterally towards the hip, as 509 

expressed by the centroid X coordinate, than the 0.5ml dose. These results suggest that larger 510 

doses of HS evoke a larger pain spread. The results were could not identify any significant 511 

patterns in pain distribution within the 0.5ml or the 1.0 ml doses in a systematic fashion. The 512 

lack of pain distribution pattern identification for the 0.5ml or the 1.0ml may be explained by 513 

large variability in pain extent among participants and the moderate pain intensity evoked. 514 

 515 

In contrast to our study, Lei and colleagues (56) showed dose-response differences for the PP 516 

intensity and the PP area and for the time-to-PP intensity and area. These contradictory results 517 

may be explained by different HS doses and administration methods (56), evoking more or 518 

less intense pain ratings (42). Lei’s study administered much larger doses of HS (2.0ml and 519 
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4.8ml) by infusion (141,142) than our bolus injected 0.5ml and 1.0ml. Interestingly, Lei’s 520 

2.0ml dose and our 0.5ml dose evoked similar mean peak pain intensities (56). However, 521 

Lei’s pain duration was considerably longer (56). These findings suggest that longer pain 522 

duration may be associated with larger volumes of HS (50) rather than with the intensity of 523 

the pain evoked. Therefore, the individual’s HS reabsorption ability may be a factor 524 

influencing the duration of HS-evoked pain.  525 

 526 

Overall, these results suggest that there is evidence of the variability of spatiotemporal 527 

patterns of pain distribution following an acute low-back experimental model of pain, likely 528 

missed with traditional pen-and-paper approaches and that repeated momentary digital pain 529 

drawings can be used as a tool to explore further and deepen our understanding of the 530 

mechanisms of referred pain. 531 

 532 

4.2 Pain Recall 533 

Results show that the pain drawings representing the PP area and RPP (recalled peak pain)  534 

area were similar seven days later among the four groups. Participants accurately recalled the 535 

pain intensity and distribution independently of the dose received or the repeated pain 536 

drawing task, suggesting a low pain recall error. Therefore, repeated pain reports of pain 537 

intensity and drawings of pain distribution did not influence the pain recall accuracy in 538 

healthy participants following a single pain event. These results may differ in cases of 539 

multiple events of pain throughout the day or week and, most likely, under acute and 540 

persistent pain conditions. 541 

 542 

 543 

 544 
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4.3 Associations among psychological variables with momentary and recall pain. 545 

The size of the PP area and the RPP area were not associated with pain catastrophizing or 546 

perceived stress scores overall, as opposed to the PP intensity and RPP intensity ratings, 547 

suggesting that the pain area may be less susceptible to catastrophizing. These results suggest 548 

that pain distribution may add additional information during pain assessment, not captured by 549 

the pain intensity, as the area and intensity are not always correlated. The relationship 550 

between pain experience and catastrophizing in the clinical population has been widely 551 

described (74–76). However, none of the healthy participants in our study reported high 552 

catastrophizing scores (PCS<30); thus, these results may not apply to clinical pain 553 

populations where catastrophizing may play a role in the patient’s pain mediation (74–77).  554 

 555 

These findings can have implications in studies exploring experimental pain models including 556 

HS evoked pain. Future studies should consider the capture of momentary pain distribution to 557 

obtain a complete assessment of the experience of pain and modulation. Prospective studies 558 

could benefit from the use of digital pain drawings to explore spatiotemporal patterns of 559 

evoked pain following high doses of HS and other models.  560 

 561 

4.4 Limitations 562 

The assessment of momentary pain in this study had methodological limitations known prior 563 

to the start of the study. Firstly, the participants' perceived body image may influence the 564 

ability to accurately represent the HS evoked pain distribution onto the body chart (78). 565 

Secondly, a discrepancy between the real pain distribution and the drawable area on the body 566 

chart cannot be rule out, although in this study, each group would be equally influenced by 567 

this limitation. A visual review of the drawings does not show any pain areas extending to the 568 

edge the body chart; although this cannot rule out whether participants experienced pain on 569 
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the posterior aspect of the body. Future studies should include both front and back views of 570 

the body. Lastly, the number of participants in each of the four groups may not have been 571 

large enough to identify spatiotemporal differences in momentary pain due to the large 572 

variability of pain intensity ratings and distribution among participants. A post-hoc effect size 573 

calculation (partial ETA squared) for the PP area showed that 10% of the size of the PP area 574 

was attributable to the group, suggesting that the group size may be underpowered.  575 

 576 

The assessment of the pain recall accuracy also had a methodological limitation as the non-577 

drawing groups did not complete momentary pain drawings to quantify the size of the PP 578 

area. Therefore, the size of the PP area from the drawing groups was used as a reference for 579 

the non-drawing groups during the pain recall assessment. Using G*Power (79) it is estimated 580 

that a minimal sample size of 37 participants receiving a 1.0ml injection of hypertonic saline 581 

is necessary when exploring PP area recall accuracy This study design limitation may also 582 

have affected the results showing a lack of influence in the pain recall from the continuous 583 

pain drawing task.  584 

 585 

4.5 Conclusions and implications  586 

This study showed differences in spatiotemporal patterns of pain intensity and distribution in 587 

a dose-response fashion to experimental acute low back pain. Unlike pain intensity, pain 588 

distribution and area may be less susceptible in an experimental setting. Higher intensities of 589 

momentary pain do not appear to influence the ability to recall the pain intensity or 590 

distribution in healthy participants. 591 

 592 

The recall of pain distribution in experimental settings does not appear to be influenced by the 593 

intensity despite differences in the pain experience. Pain distribution may add additional value 594 
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to mechanism-based studies as the distribution reports do not vary with pain catastrophizing.    595 
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