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A B S T R A C T   

Ventilation systems are the primary way of eliminating airborne pathogenic particles in an operating room (OR). 
However, such systems can be complex due to factors such as different surgical instruments, diverse room sizes, 
various staff counts, types of clothing used, different surgical types and duration, medications, and patient 
conditions. OR ventilation should provide a thermally comfortable environment for the surgical staff team 
members while preventing the patient from suffering from any extreme hypothermia. Many technical, logistical, 
and ethical implications need to be considered in the early stage of designing a ventilation system for an OR. 
Years of research and a significant number of publications have highlighted the controversy and disagreement 
among infection specialists, design engineers, and ventilation experts in this context. This review article aims to 
provide a good understanding of OR ventilation systems in the context of air quality and infection control from 
existing research and provide multidimensional insights for appropriate design and operation of the OR. To this 
end, we have conducted a systematic review of the literature, covering 253 articles in this context. Systematic 
review and meta-analyses were used to map the evidence and identify research gaps in the existing clinical, 
practical, and engineering knowledge. The present study is categorized into six research focuses: ventilation 
system, thermal comfort, staff work practice and obstacles, door operation and passage, air cleaning technology, 
emission rate, and clothing systems. In the conclusion, we summarize the key limitations of the existing studies 
and insights for future research direction.   

1. Introduction 

The history of surgical intervention is as old as the human race, and 

surgical site infections remain a deadly, costly, prevalent, and contro-
versial topic, which has been referred to as the 21st-century challenge. 
Several research studies have linked postoperative complications to the 
risk of morbidity and mortality, increased length of hospitalization, 
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patient dissatisfaction, a tremendous economic burden on patients and 
society, and permanent health conditions. 

The primary source of airborne pathogenic particles in the OR 

environment is the surgical staff, and ventilation systems are the main 
tools used to eliminate such infection agents. In addition, ventilation 
systems should provide a thermally comfortable environment for the 
surgical staff team while preventing the patient from suffering any 
extreme hypothermia. 

However, designing a general ventilation system for an OR is 
complicated. Different surgeries require different surgical instruments, 
diverse room sizes, various staff counts, different surgical duration, and 
medications. Many technical, logistical, and ethical implications need to 
be considered in the design stage of operating room ventilation. Many 
human factors need to be taken into account to achieve the desired 
outcome. 

To overcome all OR challenges, interdisciplinary collaboration, and 
mutual understanding between ventilation experts and surgical staff are 
key factors in reducing infection rates. 

Despite years of research and a significant number of publications, 
controversy and disagreement remain evident among the infection 
specialists, design engineers, and ventilation experts. There is still little 
or no general agreement on which type of ventilation systems should be 
implemented, which clothing system needs to be used, and what are the 
most critical factors affecting ventilation performance and efficiency. 
This is made it challenging, and in some cases impossible, to draw clear 
conclusions. 

This literature survey aims first to summarize the most relevant 
research studies that have been conducted in six different main cate-
gories, which will be outlined below. It also aims to provide a critical 
reflection on the parts with enough research and widespread agreement; 
at the same time, we have tried to highlight the parts that need more 
research to clarify uncertainties. 

We aim to present the most updated information regarding the en-
gineering aspects of hospital OR ventilation and air quality and infection 
control. Our focus is on identifying how different factors affect OR 
ventilation performance and, thus, the contaminant level that may affect 
surgical site infections (SSIs). We have also considered other factors that 
may not directly contribute to the level of airborne particles, but indi-
rectly affect the surgical staff performance. For example, in this regard 
we critically review the influence of different ventilation systems on 
staff thermal comfort, which may affect their performance during their 
demanding work in a given surgery. 

However, we have limited our review to the engineering aspect of OR 
ventilation design and related air quality fields. The number of post-
operative infections involves several clinical aspects (such as the sus-
ceptibility to infection of individual patient groups) that we have not 
considered in detail in this study. 

2. Methodology 

Systematic keyword-based searches were conducted on PubMed, 

Scopus, Web of Science, IEEE, and Google Scholar to collect articles that 
were relevant to the research questions. Other national websites were 
also searched to cover relevant documents, standards, national reports, 
and guidelines. A comprehensive list of keyboards, i.e., “operating 
rooms”, “airborne contamination”, “bacterial load”, “door openings”, 
“traffic flow”, “air cleaners” and “clothing system” was used, including 
as Medical Subject Headings (MeSH). The subsequent articles were then 
imported into a reference manager. After deduplication, all records were 
examined by their titles, keyboards, and abstracts. Thereafter, a full-text 
reading was performed to apply additional exclusion criteria based on 
research quality, validity, and publication date. Six sub-topics were 
defined after a meta-analysis review on the remaining articles based on 
the research questions and context. An additional literature search was 
performed based on each sub-topic, and relevant articles were added to 
the article database. Finally, 262 articles were considered eligible for 
inclusion in the present review study. Fig. 1 depict the distribution of the 
articles cited in the present review study. 

2.1. Operating room ventilation system 

Since the landmark study by Charnley [1] reported a significant role 
of the Laminar Airflow (LAF) system in decreasing wound infections 
(from 8.9% to 1.3%), hospitals around the world have shifted from the 
use of conventional mixing to the LAF systems. Although the LAF ven-
tilations appears to be superior compared to the mixing air distribution 
[2–4], the superiority of LAF or mixing ventilation is always contro-
versial and a matter of debate among the experts. Nevertheless, current 
national and international standards recommended that LAF systems be 
installed in ORs [5–13]. A recent review of epidemiological studies 
showed no benefit in implementing a LAF compared to turbulent mixing 
systems [14]. However, the studies included in that review were ques-
tioned given that most of them utilized ventilation data from national 

Abbreviation list 

ACH Air changes per hour 
BCP Bacteria-carrying particles 
CAP Atmospheric pressure plasma 
CFD Computational fluid dynamics 
CFU Colony-forming units 
C-UVC Crystalline ultraviolet C 
DV Displacement ventilation 
HEPA High-Efficiency Particulate air 
HVAC Heating, ventilation, and air conditioning 
LAF Laminar air flow 

OR Operating room 
PIV Particle image velocimetry 
PJI Periprosthetic joint infection 
PM Particulate matters 
SSI Surgical site infection 
TcAF Temperature-controlled air flow 
WHO World Health Organization 
ULPA Ultra-low penetration air 
UV Ultraviolet 
UV-C Short-wavelength ultraviolet (type C) 
UVGI Ultraviolet germicidal irradiation  

Fig. 1. The distribution of the cited articles in the current review study.  

S. Sadrizadeh et al.                                                                                                                                                                                                                             



Journal of Building Engineering 40 (2021) 102693

3

surveillance registries reported by surgeons or surgical departments. A 
recent validation study from the Norwegian Arthroplasty Register 
documented a significant misreporting rate associated with the surgeon 
reported ventilation data, thus questioning the validity of studies based 
on such data [15]. 

2.1.1. Turbulent mixing airflow ventilation 
When mixing ventilation systems, clean air is supplied to the OR 

environment through the ceiling or vertical wall diffusers and extracted, 
usually at the floor level. Such systems mainly rely on dilution to remove 
the OR environment’s contaminants, characterized by fully mixed and 
unstable airflow patterns throughout the entire OR. A tracer gas 
experimental study by Kuivjõgi et al. [24] demonstrated the inefficiency 
of mixing systems to dilute pollutants in the OR uniformly. Other 
influential factors (such as supply and exhaust locations, diffuser char-
acteristics, room layout and dimensions, location, and size of contami-
nation and heat sources) significantly impact the mixing systems [25, 
26]. 

2.1.2. Vertical (ceiling) airflow systems 
Vertical (ceiling) LAF systems supply a large volume of air from the 

ceiling to the floor at relatively low velocities (0.2–0.3 m/s), which 
enables the LAF to swipe (a “washing” effect) airborne pathogens away 
from the surgical zone to the exhaust grills (Fig. 2), that are either 
located in the side-walls or ceiling. Recent studies have shown that the 
locating the exhaust in the ceiling can prevent the recirculation of 
airborne contaminants and contribute to the improvement of LAF 
ventilation design [27,28]. 

Air velocity at the ceiling diffusers is an essential factor and signifi-
cantly influences the performance of LAF systems. Earlier measurements 
by Whyte et al. [30] showed that a supply velocity in the region of 
0.3–0.35 m/s results in the lowest microbiological concentrations, 
although a higher velocity of above 0.3 m/s might affect the surgical 
staff’s thermal comfort [31]. Based on a review of 16 national and in-
ternational standards in 2006, there is a somewhat global consensus 
regarding appropriate supply air velocity (0.20–0.30 m/s) and 
High-Efficiency Particulate Air (HEPA) filtration efficiencies 
(99.5–99.7%) [32]. 

However, since the publication of the German hospital hygiene 
guideline [33], the minimum requirement for the total LAF airflow rate 
defined by DIN 1946-4 in ORs has increased more than threefold: from 
2400 m3/h in 1999–9200 m3/h in 2008. Thus, the size of the LAF dif-
fusers has increased by the same factor and the new guidelines require 
the size of the ceiling to be larger than 3.2 × 3.2 m2; that is, a minimum 
supply velocity of 0.25 m/s. This trend has been followed by several 

other national/international guidelines in the past 10 years, as sum-
marized in Table 1. In support of these revisions, several studies have 
shown that the implementation of large-size ceilings LAF (≥3.2 × 3.2 
m2) reduces the OR microbiological contamination compared to 
smaller-sized LAF systems [2,34–37] (see Table 2). 

2.1.3. Horizontal and mobile LAF systems 
The horizontal LAF system is either wall-mounted (lateral) or 

portable. Wall-mounted horizontal LAF systems are easy to install and 
maintain and inexpensive compared to ceiling LAF systems [38]. How-
ever, improper positioning of surgical staff can significantly reduce the 
performance of lateral ventilation systems [39]. 

The protected area under the LAF systems is usually occupied by 
medical staff, patients, and other required equipment. Thus, in some 
cases, the instrument table and other peace of medical equipment may 
remain unprotected. To resolve this issue, portable units were developed 
as an extension to the main OR ventilation and used to protect both the 
instruments and the surgical site [21,22]. The air supply device is 
located on a portable trolley so the supplied HEPA filtered air can be 
directed immediately onto the surgical site with relatively high veloc-
ities (0.4–0.5 m/s) [40], pushing potentially contaminated air forwards, 
away from the sterile zone. Mobile LAF units supply HEPA-filtered air 
directly to the operating microenvironment [21,22,41–44]. The pro-
tection area offered by mobile LAF units is significantly smaller than the 
vertical or wall-mounted LAF supply inlet [45]. However, unlike the 
ceiling LAF, the mobile LAF reaches the surgical site or instruments table 
directly without encountering obstacles such as surgical lights and bent 
surgeons. 

While mobile LAF systems have attracted attention and their per-
formance has been reported in clinical studies [21–23], wall-mounted 
horizontal systems have been relatively underreported, and there are 
no existing guidelines or requirements concerning the supply airflow 
characteristics such as inlet size or required air diffuser velocity. There 
are also no clinical studies showing the direct effect of mobile LAF 
systems on the SSI rate. 

2.1.4. Displacement ventilation systems 
Displacement ventilation (DV) systems introduce a low-momentum 

stream of cold and clean air at the floor level to displace the contami-
nated air toward the OR ceiling [46]. When the cold air meets a heat 
source in the operating microenvironment, due to the temperature dif-
ference and buoyant force, warmed and contaminated air moves upward 
to the ceiling, where it is exhausted out of the room. A major limitation 
of DV systems in hospital rooms such as ORs is the lock-up phenomenon. 
Previous studies have shown that pollutants can be trapped or locked at 
the breathing height at certain conditions due to the temperature 
stratification [47,48]. A clinical study by Andersson et al. [19] 
compared LAF and DV systems during planned and acute orthopedic 
implant surgery. The researchers found that LAF offers higher-quality air 
and a lower level of CFUs than the DV systems. In addition, recom-
mendations on DV system characteristics have not been defined by 
existing national standards for OR ventilation systems [5–13]. 

2.1.5. Hybrid ventilation systems 
Hybrid ventilation systems have been developed to combine two or 

more ventilation concepts to maximize performance and reduce opera-
tional costs. An example is a recently developed system, usually referred 
to as temperature-controlled airflow (TcAF) [20,49–51]. TcAF com-
bined both LAF and turbulent mixing system in which the HEPA-filtered 
air was discharged toward the surgical zone with relatively colder air 
temperature (1.5–3 ◦C) compared to room temperature [49]. This small 
temperature difference subdivides the OR into two distinct zones, as 
depicted in Fig. 3. 

At the same time, warmer air is dispersed from surrounding air 
showers, preventing stagnation zones in the periphery of the room and 
maintaining the temperature gradient that drives the central vertical 

Fig. 2. (a) Schematic outline of airflow from a LAF unit, and (b) example of a 
vertical installed LAF in an OR of St. Olav’s Hospital in Trondheim (dashed lines 
indicate the operating microenvironment) [29]. 
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flow of cooled air. In contrast to the LAF and mixing air distribution, the 
TcAF system has shown resilience to obstacles and thermal plums [52] 
and has been reported to be less demanding, in terms of airflow volume, 
and energy, than LAF and mixing systems [20,53]. In 2019, a clinical 
research study analyzed 1000 primary total joint arthroplasties before 
and after TcAF installation and confirmed a significant decrease in in-
fectious complications, from 3.3% to 1.1% [54]. 

2.1.6. Comparison of the effect of different air distribution systems on 
airborne contamination rates and SSIs in ORs 

ORs equipped with a 3.2 × 3.2 m2 LAF systems exceeded the mini-
mum DIN 19464:2008–12 standard supply requirements, reporting 

mean and median values close to one Colony Forming Unit (CFU)/m3 

(significantly lower than the limit value of 10 CFU/m3 prescribed by 
standards). However, some studies have questioned the benefit of LAF 
systems and suggested that such systems not be used in infection-prone 
surgeries. A recent review article that summarized articles published 
between 1990 and 2016 [14] reported no advantage of using that ceiling 
LAF in total arthroplasty surgeries compared with conventional mixing 
systems. In addition, the new World Health Organization (WHO) 
guidelines state that LAF should not be used for orthopedic surgeries 
[55]. Bischoff’s [14] research methodological approach has been 
recently debated: no LAF system differentiation or definition based on 
technical specifications, no or limited documentation of surgical 
clothing worn, and validation on the ceiling LAF systems was reported in 
the study [56]. Therefore, it remains unclear whether the ceiling LAF 
systems’ inefficiency reported in Bischoff’s study has been due to either 
insufficient size of the LAF ceiling diffuser in previously published 
studies and/or physical obstructions the air’s unidirectional flow path. A 
recent Norwegian epidemiological registry study from 2020 assessed the 
impact of different ventilation systems on the risk of revision due to SSIs 
[57]. Based on 51 292 reported total hip arthroplasties, high-volume 
ceiling LAF systems reduced the risk of revision due to infection 
compared to mixing and horizontal LAF systems [57]. The question 
remains whether data reported in this study are conclusive enough for 
WHO to change its recommendations for ultraclean surgery. However, a 
recent study revealed a substantial misreporting rate in unvalidated 
surgeon reported ventilation data, clearly emphasizing the need for a 
reevaluation of WHO’s recommendations [15]. 

The cost-effectiveness of LAF systems is also an important factor as 
they are expensive to install and maintain and have significant energy 
requirements [62]. The installation cost ranged from $60,000 to $90, 

Table 1 
Characteristics of OR air distribution systems.   

Airflow disitribution concept Location of 
supply 

Location of 
exhaust 

Air supply conditions as reported in field studies Air supply conditions as defined by 
national guidelines 

Velocity 
(m/s) 

Air changes 
per hour 
(ACH) 

Diffuser size 
(m2) 

Velocity 
(m/s) 

Air 
changes 
per hour 
(ACH) 

Diffuser 
size (m2) 

Turbulent Flow 
Air 
distribution 
(TFAD) 

The concentration of airborne 
contaminants is diluted by 
mixing the supply air with the 
contaminated OR air 

Ceiling or 
wall- 
mounted 

Wall 
mounted 
near floor 

– 11.5–23.8 [2] 
12 [3] 
15.5–21.3 
[16] 50 [17] 
5.3–27.6 [18] 

– N/A ≥20 [5, 
11] 

N/A 

Vertical 
Laminar 
Airflow 
(vLAF) 

The unidirectional airflow 
swipes away the contaminants 
over the operating 
microenvironment 

Ceiling- 
mounted 

Ceiling 
and/or wall 
mounted 
near floor 

0.25–0.38 
[19] 

26-178 [3] 
80.5 [16] 58 
[17] 
15.1–59.9 
[18] 67 [19] 
100 [20] 

2.4 × 2.4–3.2 
× 3.2 [2] 3.8 ×
1.2–5.18 × 3.83 
[3] 3.2 × 3.2 
[16] 3.6 × 3.6 
[19] 2.75 ×
2.75 [20] 

#N/A ≥20 
[5,11) 

≥3.0 × 3.0 
[6] ≥ 3.2 
× 3.2 [7] 
≥ 8 [10] ≥
9 [13] 

Horizontal 
Laminar 
Airflow 
(hLAF) 

Wall- 
mounted 

Ceiling 
and/or wall 
mounted 
near floor       

Mobile Laminar 
Airflow 
(mLAF) 

In the 
vicinity of 
the operating 
table 

Ceiling 
and/or wall 
mounted 
near floor 

0.5–0.7 
[21] 

8.4 [22] 0.5 × 0.4 [19] 
0.69 × 0.7 [21] 

N/A N/A N/A 

Displacement 
Ventilation 
Airflow (DV) 

Cool air is supplied at floor 
level and is moved up 
displacing the contaminated 
air from the operating 
microenvironment 

Wall 
mounted 
near floor 

Ceiling or 
wall 
mounted 
near ceiling 

0.09–0.15 
[19] 

21 [19] – N/A N/A N/A 

Temperature- 
Controlled 
Airflow (TAF) 

Combination of LAF (cool 
laminar airflow breaking 
convective currents in the 
operating microenvironment) 
and TFW (warm air 
maintaining temperature 
gradient) 

Both cool 
and warm air 
is supplied 
from the 
ceiling 

Wall 
mounted 
near floor 

>0.25 
[20] 

47 [20] – N/A N/A N/A  

Fig. 3. Temperature-controlled ventilation system (KTH Visualization Studio 
– VIC). 
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000 [63] and required a 34% increase in annual operating costs 
compared to a conventional mixing system [64], although the presented 
data (from 2004) might be outdated. Mixing systems might be less 
demanding in terms of supplied airflow rate and installation costs; 
however, such systems require clothing systems with a very high pro-
tective capacity, which could jeopardize staff comfort. Overall, infection 
prevention, by any means, in ORs, is still the most cost-effective solution 
[65–71]. In 2016, SSIs cost to the US healthcare system estimated to be 
$3.5 to $10 billion annually [72]. 

2.2. Thermal comfort and hypothermia 

Infection control and patient safety are the main areas of focus when 
establishing hospital building codes and standards, and the concept of 
thermal comfort is a less addressed research component [73]. Thermal 
comfort is an intricate aspect that can cause severe problems if not 
correctly addressed, considering that several factors are present in an 
OR: different activity levels, different clothing levels, different health 
states (for the patient, surgeons, and other medical staff) and thermal 
preferences. A comprehensive review study on thermal comfort revealed 
the need to investigate the different thermal conditions required by 
different hospital occupants to satisfy their different thermal re-
quirements [74]. Various research studies in healthcare environments 
have highlighted the impact of thermal environment conditions on OR 
staff productivity and efficiency, directly connected to their quality of 
work, the number of errors, and thus patient safety [75–82]. 

While thermal comfort is generally discussed for the OR personnel, 
hypothermia is a relatively common occurrence in the surgical patient 
due to the low metabolic rate or lack of clothing protection while the 
thermoregulatory system is put on hold due to anesthetic substances 
[76]. Patients’ thermal comfort in hospitals can significantly differ from 
the thermal perception of a healthy person because of the physical 
disability, which affects the thermo-physiology, thermal sensation, 
metabolism, blood flow, and regulatory response [83]. A surgical pa-
tient is usually physically weak and may also experience anxiety, fear, 
and other negative feelings [76,84]. A moderate degree of perioperative 
hypothermia has been reported to significantly increase surgical pa-
tients’ mortality rate [85–88]. Anesthesia can also lead to body tem-
perature disorder [87,89], knowing that constant body temperature is 
the primary condition for a patient to maintain physiological functions. 
All of these studies indicate that the conditions leading to a patient’s 
cold thermal stress are vast and difficult to assess and address. Along 
with the control of the environmental parameters, local measures are 
used to increase the patient’s body temperature, such as heating blan-
kets [90–92], warm infusion/irrigation fluid [93–95], heated inhaling 
oxygen [96,97], forced-air convective systems [91,98], and increasing 
the thermal properties of drapes covering patients in non-operation 
procedure area [99]. A comprehensive description of patient warming 
solutions is described in Ref. [100], but that study focused on risk 
mitigation of medical procedures rather than the patients’ thermal 
comfort. However, the most commonly used solution to prevent hypo-
thermia of the patient is the high ambient temperature in the OR, 
various values have been proposed: 18–28 ◦C [101], 24–26 ◦C [102], 
and 26 ◦C [103]. On the opposite side are surgeons, anesthetists, and 
other medical staff. According to Leslie et al. [104], a temperature above 
23 ◦C is usually intolerable for the surgical team in the OR. Johnston and 
Hunter [102] reached similar conclusions and recommended a tem-
perature between 20 ◦C and 22 ◦C for the medical staff. In agreement 
with these findings, Olesen and Bovenzi [105] recommended 23–24 ◦C 
for anesthesiologists, 22–24.5 ◦C for nurses, and 19 ◦C for surgeons. 

On the other hand, the relative humidity reported in different studies 
has values between 30% and 60%. These limits ensure that the multi-
plication of certain microorganisms cannot take place. From a thermal 
comfort point of view, relative humidity of 30% may lead to problems 
for the medical staff related to the sensation of dryness and irritation of 
the skin and mucous membrane. The heterogeneity of values is 

significant and can also be observed in the standards, which recommend 
different temperature and relative humidity ranges, considering the 
primary surgery type (Table 3). OR temperature not only influences the 
thermal comfort and hypothermia, but also other important surgical 
procedures. For example, bone cement (polymethyl methacrylate) used 
in orthopedic surgeries is heat-sensitive. Any variation in temperature 
from the recommended temperature of approximately 21–23 ◦C affects 
the cement handling characteristics and setting time [106]. 

2.2.1. Factors that influence thermal comfort 
In the first study of the thermal sensations of medical personnel in 

ORs, Wyon [79] indicated that surgeons and anesthetists differ from 
other OR staff in their thermal preferences. Due to their different ac-
tivities, surgeons typically prefer a colder environment, while anesthe-
tist prefer a warmer one. One of Wyon’s conclusions was that variation 
in the clothing worn by different staff members might be the only way of 
resolving this difficulty. The patient, the surgeon, the anesthetist, and 
nurses might have different thermal requirements due to their activity. 
Other personal or external factors will directly impact the preferred 
temperature and make it different to the one imposed by standards 
[112]. Other studies have found similar results [81,113,114] for the 
medical staff categories, indicating this discrepancy. At the same time, 
more investigation is needed for the patients due to medical conditions 
that prevent them from evaluating thermal comfort. Dascalaki [115] 
stressed that surgeons in Greek hospitals, in warm climates, often 
experience sweating and thermal distress. However, opposite sensations 
were observed in the Netherlands (cold climate), which shows that the 
OR environment felt rather cold [116]. This variation shows that ORs’ 
problem of thermal discomfort is common, independent of geographic 
location, standards, and other national practices. Besides the general 
environmental aspects, the key parameters that prevent the achieve-
ment of thermal comfort are mainly the individual factors, such as the 
different metabolic rate of individual members of the medical team and 
the types of clothing used for the activity performed [75,117,118]. 

According to WHO, various surgery types can be classified based on 
the degree of invasiveness; for example, the surgeries can be either 
invasive or open surgeries [119]. Open surgeries typically involve more 
staff and equipment, which includes different levels of metabolic rate 
and thermal requirements. Surgeons work particles usually vary 
depending on the surgical procedure. Thus, their metabolic rate has 
different values, according to different studies: a minimum of 1.5 met 
according to EN ISO 7730:2005 [120], from 1.2 to 2.2 met as mentioned 
in Ref. [81], or 1.6 met for surgeons and 0.69 met for patients [114]. 

There is general agreement among design engineers that the staff 
clothing systems directly impact thermal comfort. However, the main 
goal is to offer protection for the patient and the personnel [121]. The 
medical clothing is standardized in the medical procedure’s function 
and can be specified according to the ANSI Standard AAMI PB70:2012 
[122]. Thermal comfort is not adequately addressed in the AAMI stan-
dard, while the EN13795 [123,124] standards provide basic indications 

Table 2 
Clinical studies reporting incidences of deep SSIs after total arthroplasty sur-
geries for LAF vs. mixing systems in ORs [29].  

Country (Study 
period) 

LAF Mixing Information on LAF 
supply requirements for 
comparison with DIN 
19464:2008–12 standard 

Total SSI 
(%) 

Total SSI 
(%) 

UK [58] 
(2000–04) 

212 0 (0.0) 223 9 
(4.0) 

N/A 

Germany [59] 
(2000–04) 

23 
650 

247 
(1.0) 

14 
369 

121 
(0.8) 

N/A 

Norway [60] 
(1987–2008) 

45 
620 

324 
(0.7) 

48 
338 

260 
(0.5) 

N/A 

Denmark [61] 
(1995–2008) 

72 
423 

517 
(0.7) 

8333 80 
(0.9) 

N/A  
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on thermal comfort assessments. During surgical procedures in an OR, 
medical personnel wear multiple-use surgical gowns that should meet 
requirements (regarding thermal resistance, water – vapor resistance, 
air permeability, drapability) described in Medical Devices Directive 
93/42/EEC [125], amended by 2007/47/EC, EN 13795–1:2019 [123] 
and EN 13795-2: [124]. Thermal insulation of surgical clothing ranges 
from 1 to 1.5 clo [81], 0.2–1.10 clo [114], or 0.42–1.1 clo [126], which 
will lead to an increase in skin temperature and relative humidity be-
tween skin and clothing layer and, thus, to thermal discomfort. Modern 
surgical clothing needs to satisfy several requirements: it should be 
comfortable, breathable, loose-fitting, keep users comfortable, and 
allow heat exchange between the body and the environment while 
limiting BCP release from the staff skin. 

Besides personal aspects, several other environmental factors 
directly impact the thermal comfort of the medical staff and patients. 
Pereira et al. [127] found that the surgical lights have a significant in-
fluence on the thermal discomfort sensation of the surgeon, while Sal-
onen et al. [128] emphasized the impact of the lighting systems on the 
thermal environment. For example, higher equivalent temperatures (the 
temperature of a uniform enclosure, with still air, in which a sizeable 
black body at 24 ◦C would lose heat at the same rate as that observed) 
were found in the upper part of the surgeon’s and nurse’s body because 
of the heat released by the surgical lights [127]. During operation, the 
surgeons carry out high-intensity work under the operating lamp 
wearing multi-layer clothes with a standing posture for hours, which can 
easily bring hot sensation and sweating to affect surgeons’ mood and 
pollute the surgical field of vision [114]. Further study is needed of 
adequate lighting systems, which enhance the visual field and the 
thermal comfort. 

Air distribution also has a substantial impact on the thermal sensa-
tion of the OR staff. For the LAF system, the velocity above the chest 
position is 0.15–0.26 m/s, similar to the velocity distribution with the 
mixing ventilation. The airflow distribution in the OR with LAF re-
sembles a stratified airflow with decreasing velocity when it approaches 
the operating table. Turbulence intensity (the ratio of the standard de-
viation of fluctuating air velocity to the mean airspeed) directly impacts 
local discomfort sensation. Cao et al. [129] reported a higher air tur-
bulence intensity for the mixing ventilation compared to that of LAF 
systems. Similar results have been identified in another research study, 
where, overall, most of the occupants in the mixing case were thermally 
dissatisfied, while the LAF case induces more thermal stress to the pa-
tient [24]. In hybrid ventilation systems such as TcAF, the colder air 
supplied in the surgical area may provide a thermal comfort condition 
for the active surgical team members, while OR periphery is kept 
warmer to satisfy the low activity level personnel [20]. 

In the context of OR thermal comfort, the main issue remains in the 
harmonization between the conditions of preventing the patient’s hy-
pothermia and satisfying the staff’s thermal requirements. 

Different technical solutions have been proposed for the surgical 
staff, such as cooling the surgical lights or replacing them with surgical 
lights with an integrated cooling mechanism or even local cooling 
clothing for surgeons [114,130]. Using modern LED lights in the ORs has 
also been proposed as a solution because they emit less heat. The 

clothing type, the contact area between clothing and skin surface, and 
the air layer all greatly impact the users’ thermal comfort state, espe-
cially on the sweating mechanisms triggered [131,132]. Further studies 
are needed in order to look for new materials and cooling/heating so-
lutions to satisfy individual thermal comfort requirements. 

2.3. Staff work practice and obstacles 

The performance of OR ventilation is influenced by several factors, 
including the presence of heat loads and obstacles in the OR environ-
ment (surgical lamps, medical equipment, personnel, etc.) [36]. Careful 
design and consideration of any airflow disturbance in the ORs are 
crucial to secure the air quality and provide a healthy environment to 
the patient and surgical team members [133–138]. 

A numerical study by Liu et al. [139] suggested using horizontal LAF 
airflow to overcome the blocking effects of surgical lamps on 
bacteria-carrying particles (BCPs) near a wound. The authors concluded 
that horizontal airflow is a better, than ceiling LAF, alternative to 
overcome surgical lamps’ detrimental effects and other obstacles in an 
OR. Nevertheless, the system’s effectiveness relies on the positioning of 
the patient’s wound area and should be prescribed correctly according 
to the surgical procedure. A similar comparison between vertical and 
horizontal LAF was performed numerically by Sadrizadeh and Holmberg 
[140], who focused on active and passive sampling of BCP with various 
source strengths arising from the OR personnel. The conclusions were 
similar to that of Liu et al. [139]; that is, horizontal LAF provides 
reduced BCPs near the patient with the caveat of appropriate positioning 
of patient and OR personnel. The effect of surgical lamps on the BCPs is 
more critical for vertical LAF compared to horizontal LAF. 

Recent research studies have also confirmed the detrimental effects 
of surgical lamps and obstacles on laminar airflow based ventilation in 
an OR and the corresponding impact on SSI [134,141,142]. Sadeghian 
et al. [134] conducted a CFD-based study to quantify the impact of 
surgical lamp design on the concentration of BCPs within the OR envi-
ronments. They also offered an innovative solution to overcome the 
lamps’ adverse effects, proposing a fan-mounted lamp design. The per-
formance of the proposed design was evaluated considering the effect on 
BCPs contamination under mixing and LAF ventilation. Aganovic et al. 
[141] also performed experimental measurements on a LAF system in an 
OR, assessing the effect of obstacles, including surgical lamps and OR 
personnel. The authors concluded that the surgical lamps decreased the 
airflow velocity significantly and increased the risk of SSI; however, that 
study only measured the airflow speed and no particle concentration. 

Several studies have investigated the detrimental effect of surgical 
lamps on the airflow from LAF [143,144]. However, they have mainly 
used the airflow visualization methods to demonstrate the impact of 
surgical lamps’, without any quantitative values. Other studies have also 
quantitatively reported the airflow velocities using the particle image 
velocimetry (PIV) method [144,145]. The authors concluded that the 
airflow velocity behind the lamps is significantly lower than the ambient 
OR environment, resulting in an accumulation of airborne infectious 
agents. A research study by Wang et al. [146] examined the influence of 
the surgical lamp shape (closed-shape and an open-shape lamp) on the 
airflow and particle distribution in OR, supplied with both LAF and 
TcAF. The results show that the closed-shape lamp severely obstructs the 
airflow and results in high BCP concentration in the laminar airflow, 
whereas the open-shape lamp has a negligible impact on the particle 
dispersion. However, the TcAF exhibited less sensitivity to surgical lamp 
shape and obstacles. 

Woloszyn et al. [147] conducted experimental measurements in a 
controlled chamber as well as CFD simulations and reported airflow 
velocity and SF6 concentration. The impact of the obstacles such as 
surgical lamps, equipment, and staff shows a similar lowering of the 
airflow velocity and the increase of tracer gas concentration in the 
lamp’s vicinity. However, the effect of buoyancy was not considered and 
no measurements of SSI risk were performed either. 

Table 3 
OR temperature suggested by different standards.  

UNI 11425:2011 [107] (Italy) Winter ≥ 20 ◦C, ≥40% RH | Summer ≤ 24 ◦C, 
≤ 60% R 

NF S 90 351 [108] (France and 
Belgium) 

19–26 ◦C, 45–65% RH 

ASHRAE, Std 170, 9/05 [5] (USA) 17–27 ◦C adjustable, 45–55% RH 
DIN 1946-4 [7] (Germany) 19–26 ◦C adjustable, RH as per DIN 13779 
SWKI 99-3F [109] (Switzerland) 18–24 ◦C adjustable, 30–50% RH 
GB 50333-2013 [110] (China) Level I clean OR temperatures 21–25 ◦C 
GOST R 52 539/2006 [111] 

(Russia) 
18–24 ◦C ± 1 ◦C, min value 30% RH with 22 ◦C  
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Surgical staff work practice is also another essential factor that has 
been discussed in several research studies. 

Chow et al. [148] investigated the influence of the impact of surgeon 
bending movement on BCP distribution in the ORs, comparing a static 
standing posture of the surgical team with a periodic bending move-
ment. The results confirmed that ventilation airflow can efficiently 
reduce the BCP level down to 1 CFU/m3 within the surgical zone in a 
static standing posture. However, the dynamic movement of surgical 
staff acts as an obstacle and can cause an excessively high BCP con-
centration in the critical surgical zone. Brohus et al. [149] also examined 
the influence of staff movements on BCP transport in an OR supplied 
with a LAF system. They introduced a relatively simple yet accurate 
numerical method to simulate two kinds of movement: a significant 
single event movement and continuous small-scale local movement. 
That study found that staff movements may impose savior damage to 
ventilation performance and increase the contamination level in the 
critical OR zones. 

A similar study was conducted by Sadrizadeh et al. [135] to inves-
tigate the impact of surgeon posture on BCP level in a turbulent mixing 
OR. A mobile LAF as an extension to main OR ventilation was integrated 
and examined. The results showed that a combination of proper work 
practice and the use of a local LAF unit could significantly reduce the 
contamination level. That study highlighted that the proper outcome 

will be ensured only if OR personnel understand how the work pro-
cedures should be performed and how the ventilation system functions. 

2.4. Door opening and passage 

Door openings connect the ORs to less controlled and often more 
contaminated [150] spaces, such as corridors. ORs are usually, but not 
always, equipped to maintain positive pressure relative to adjacent 
spaces to prevent the entry of contaminants through gaps and cracks. 
Other types of ORs are kept in a relatively lower pressure compared to 
the OR environment. Such negative pressure ORs were established to 
accommodate a surgical patient with infectious/contagious diseases to 
ensure there was no air penetration from the OR to the hospital envi-
ronment. Many medical and governmental organizations have pub-
lished recommendations and standards that restrict door openings and 
foot traffic in the OR to reduce SSIs. The reasoning behind this is 
two-fold. First, door openings may defeat the positive/negative pressure 
and disrupt the ventilation airflow, allowing the dirtier air to enter/exit 
the OR. Second, the movement of personnel increases the shedding of 
airborne BCPs. In addition, the distraction caused by the door opening 
and traffic flow has been identified as a contributory factor to surgical 
mistakes [151–153]. Observational studies have investigated door 
openings and foot traffic during surgery and evaluated their impact on 

Table 4 
OR door openings and their effect on SSI.  

Authors (year) Type of surgery Ventilation 
type 

Door opening 
frequency 
[Openings/h] 

Monitoring 
contamination/SSI? 

Association between door 
openings and contamination? 

Association between door 
openings and SSI rate? 

Bediako-Bowan 
et al. (2020) [154] 

Abdominal Mixingc 59.3a SSI – Yes 

Birgand et al. (2019) 
[155] 

Cardiac/ 
orthopaedic 

LAF/Mixing 20.2 Particles/CFU Yes/Yes – 

DiBartola et al. 
(2019) [156] 

Orthopaedic Unknown 27.0–34.8a – – – 

Roth et al. (2019) 
[157] 

Cardiac LAF 32.4 SSI – Yes 

Alsved et al. (2018) 
[20] 

Orthopedic LAF/Mixing/ 
TcAF 

2.1–5.6 CFU No – 

Hamilton et al. 
(2018) [158] 

Total joint 
arthroplasty 

LAF 19.2–21.6a – – – 

Perez et al. (2018) 
[159] 

Orthopaedic/ 
general 

LAF 12.6–36.6a CFU Yes – 

Teter et al. (2017) 
[160] 

Plastic surgery Unknown 13.4 Particles Yes – 

Bohl et al. (2016) 
[161] 

Neurosurgery LAF 46.2 SSI – No 

Mathijssen et al. 
(2016) [162] 

Hip revision Mixing 3.3a CFU Yes – 

Elliott et al. (2015) 
[163] 

Cardiac/general Unknown 33–54 – – – 

Mears et al. (2015) 
[164] 

Joint Arthroplasty Mixingb 16.6–37.3a SSI – Unclear 

Smith et al. (2013) 
[165] 

Orthopaedic LAF 37.2a CFU Yes – 

Andersson et al. 
(2012) [166] 

Orthopaedic Displacement 12.5a CFU Yes – 

Crolla et al. (2012) 
[167] 

Colorectal Unknown – SSI – Yes 

Panahi et al. (2012) 
[168] 

Total joint 
arthroplasty 

LAF 41.4a – – – 

Young and O’Regan 
(2010) [151] 

Cardiac Unknown 19.2 SSI – Yes 

Stocks et al. (2010) 
[169] 

Joint Arthroplasty Mixing 33.6a Particles/CFU -/No – 

Lynch et al. (2009) 
[170] 

Multiple Unknown 19–50 – – – 

Scaltriti et al. (2007) 
[171] 

Orthopaedic/ 
urology/general 

Mixingb 56.4a Particles/CFU No/Yes –  

a Calculated based on values given in the article, either information on number of door openings/surgeries and the duration of surgery or openings/minute. 
b The articles give information on the average ACH. 
c Non-laminar. 
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OR environments and SSI risks. Table 4 summarizes the major findings 
of these studies (see Table 5). 

2.4.1. Frequency of door openings 
The frequency of OR door openings varies significantly among 

different studies. Different door opening frequencies can be attributed 
partly to the type and complexity of surgery [170]. The door opening 
frequency can also result from poor preoperative planning, as the most 
common reason for door openings during operation is to get supplies and 
equipment. Information exchange and communication are the 
second-largest reason for door openings [160,168], while social talk and 
coffee breaks are other important reasons [167]. Many such door 
openings are unnecessary and should be avoided. Alsved et al. [20] and 
Mathijssen et al. [162] reported a frequency of fewer than six times per 
hour, while the other studies listed above documented a frequency 
ranging from 12 to 60 per hour. In a multicenter study of 34 orthopedic 
and 25 cardiac procedures, Birgand et al. [155] found the median fre-
quency of door opening to be 14.8 per hour in orthopedic procedures 
and 23.4 per hour in cardiac procedures. When OR doors were not 
allowed to be opened unless strictly necessary, Mathijssen et al. [162] 
reported a median number of eight door openings per case (3.3 per hour) 
during hip revision operations [162], which is low compared with other 
studies [151,166,168,170,172]. 

2.4.2. Association between door opening and OR contamination or SSI risks 
Most of the literature (summarized in Table 4) has reported a sta-

tistical correlation between door openings and increased OR contami-
nation, regardless of the ventilation system. Mathijssen et al. [162] 
suggested that a single OR door opening equipped with a mixing 
ventilation system contributed to a 5% increase in the odds of microbial 
contamination ≥20 CFU/m3. In mixing ventilated ORs, Scaltriti et al. 
[171] found that door openings increase the CFU level, but reduce 
particle counts. However, a few studies have demonstrated contradic-
tory evidence. Stocks et al. [169] did not detect any relationship be-
tween the traffic flow and the CFU level in ORs with mixing ventilation. 
Alsved et al. [20] found no significant correlation between the number 
of door openings and the CFU level at the wound area in three ORs 
supplied by LAF, mixing, and TcAF. A low level of corridor contami-
nations and the low number of door openings (2.1–5.3 per hour) might 
justify that study’s result. A PhD work by Wang [173] studied different 
OR ventilations extensively and favored LAF over fully mixed systems in 
minimizing the contamination caused by door openings. Perez et al. 
[159] reported an association between increased CFU count and door 
openings only in the area outside the clean LAF zone. Smith et al. [165] 
also found that the CFU level was lower inside the LAF zone than the OR 
periphery, suggesting that LAF independently reduced the risk of 
contamination. 

The impact of the door opening on the risk of SSI is highly contro-
versial in the literature. Several studies have shown that door openings 
and corresponding foot traffic are directly associated with SSI rates 
[151,157,167]. Crolla et al. [167] noted a significant correlation be-
tween SSI development and a higher number of door openings in a 
cohort study of 1537 colorectal procedures. Roth et al. [157] recorded 
SSI occurrence within 30 days after cardiac surgery in LAF-ventilated 
ORs and demonstrated a positive association between increased door 
openings and SSI rates. However, this study was challenged by Yoshioka 
et al. [174] and Birgand et al. [175], who pointed out the potential 
methodological weakness in Roth et al.‘s study, arguing that unmea-
sured variables could confound the relationship between the door 
openings and SSI. For instance, more frequent door openings may reflect 
a more severe or complicated level of the procedures, which by them-
selves impose more risk for SSI. In a randomized OR traffic trail, Bohl 
et al. [161] found no significant difference in the door traffic rate be-
tween SSI and non-SSI groups and questioned the benefit of restricting 
OR traffic in reducing SSI rates. 

2.4.3. Airflow exchange and contaminant intrusion 
Since statistical correlation does not prove causation, it is necessary 

to refer to engineering studies exploring the airflow behavior to un-
derstand the effect of door openings on the OR environment. The airflow 
through a doorway is driven by a complex combination of several fac-
tors, such as the temperature and pressure difference, the ventilation 
airflow, the personnel motions, and the door’s movement itself. Early 
engineering studies adopted an analytical approach, which attempted to 
develop a formula to quantify the air volume exchange as a function of 
temperature difference [176–179]. Recent works have focused more on 
the containment failure in isolation rooms caused by door openings. 
Those studies used scale models [180–185], full-scale mock-ups 
[186–188], and CFD simulations [189–196]. The majority of such 
studies have concentrated on hinged doors and found that the hinged 
door’s motion can cause an inter-zonal air transfer, which is referred to 
as the door swing pumping effect [181,184,189,192]. While hinged 
doors are common in hospital isolation rooms, modern ORs tend to use 
sliding doors. Analyses have shown that the gravity (or 
buoyancy)-driven flow dominates the air exchange through the doorway 
[194], and the difference between the two types of doors becomes 
insignificant when a temperature difference is involved [191]. 

Very few studies have explored the door-opening induced airflow in 
the ORs. Villafruela et al. [197] measured the transient airflow across 
the doorway caused by opening a sliding door in an empty OR with LAF 
ventilation. A small volume of air exchange between the OR and the 
corridor was detected, even under isothermal conditions. Those authors 
also noted that the human passage could induce a more significant air 
volume migration. Early numerical studies used static simulation to 
investigate the airflow and contaminant dispersion in the OR with an 
open door [198,199]. As the door cycle is short compared to the dura-
tion of surgery, it is the transient flow behavior that dominates the air 
exchange, and steady-state simulations are less likely to reflect the re-
ality. The dynamic simulation by Balocco et al. [200] showed disrup-
tions of the airflow inside the OR caused by the door opening and 
closing, as well as staff movements. Zhou et al. [201] simulated the 
interface airflow and contaminant penetration caused by sliding door 
openings in a LAF-ventilated OR. The results suggested that the OR and 
adjacent corridor’s temperature difference played an essential role in 
determining the two-way airflow pattern and the contaminant intrusion. 
The simulation study by Sadrizadeh et al. [202] emphasized the cu-
mulative effect of door openings and showed that frequent door open-
ings could lead to a greater elevation of overall contamination in the OR. 

The above-mentioned studies quantified the air volume exchange or 
focused on overall OR contamination. However, the risk of SSI is asso-
ciated more with the local contamination close to the incision and in-
strument table. Thus, it is necessary to investigate the spread of 
contaminants within the OR and evaluate the airborne contamination at 
the surgical site. Wang et al. [203] simulated the transient airflow and 
BCP spread by sliding door openings in an OR with mixing ventilation. 
The results demonstrated that the airborne contamination at the surgical 
site could be drastically different under different thermal conditions 
even if the overall contamination were similar. The authors emphasized 
that the contaminant dispersion resulted from the airflow interaction 
across the doorway with the main OR ventilation. The findings of that 
study could partly explain the contradictory evidence in the literature 
regarding the association between the door opening and OR 
contamination. 

2.5. Air cleaning technology and filters 

2.5.1. Ventilation systems in ducts (or the ceiling) 
OR ventilation systems are usually equipped with HEPA or ultra-low 

penetration air (ULPA) filters [204,205]. While the staff emits the vast 
majority of microbiological contamination that may initiate SSIs, these 
HEPA/ULPA ventilation systems ensure particle-free air supply to the 
OR. The role of filters becomes crucial if the OR air is partially 
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recirculated back into the OR environment. An air cleaning solution has 
also been used to supplement the HEPA-filtered ventilation systems to 
remove existing airborne particles within the ORs. Stand-alone air 
cleaners are usually developed by integrating a short-wavelength ul-
traviolet (UV–C) light (100–280 nm), known as ultraviolet germicidal 
irradiation (UVGI), and HEPA/ULPA filters [206–208]. However, 
in-duct air cleaning systems feature a bank of UVGI lamps installed in-
side HVAC exhaust or air supply ducts [209,210]. Several studies have 
reported the efficacy of UV-C in reducing the total and viable particle 
counts in highly controlled OR environments [211,212]. It has been 
reported that air filtration and disinfection units combining HEPA 
filtration and UV-C disinfection technologies may reduce the potential 
for patient infection. Evans [63] reviewed experience of LAF and ul-
traviolet light effectiveness, concluding that both LAF and ultraviolet 
light reduce the prevalence of periprosthetic joint infection. Evans also 
mentioned that many of the studies available do not take a high-level 
perspective, but are often retrospective from one institution. The chal-
lenge involves using UV lights because UV radiations damage human 
tissue, particularly skin, and thus cannot be used a given surgery in the 
OR’s occupied zone [213]. 

Zhang et al. [214] conducted a comprehensive analysis of air puri-
fication methods in ORs located in China. The authors concluded that air 
cleaning technology is used in 81% of the investigated hospitals, of 
which 4% is central ventilation systems with integrated air purification 
devices. However, the authors did not discuss the efficiencies of the air 
purification devices implemented in the ventilation systems. 

Ülgen and Tezer [215] studied the effects of ultraviolet radiation on 
the OR’s airborne particles and microorganisms. A single 30 W 
low-pressure mercury lamp (234 nm) was mounted at the height of 234 
cm and above the room entrance. The authors concluded that the effect 
of ultraviolet radiation on the microorganisms was significant in one 
location out of 15 measured locations in the OR [215]. 

Ereth et al. [216] studied the effect of an electrostatic field manip-
ulation on airborne particulate matter in two live real-world OR settings 
and on pathogen survival in a microbiology laboratory. The authors 
concluded that the electrostatic field manipulation technology reduced 
fine and ultrafine particle counts by 95% during two different OR 
studies. 

Prehn et al. [217] introduced cold atmospheric-pressure plasma 
(CAP) technology that enables the inactivation of microorganisms, 
including multidrug-resistant strains. The authors confirmed the 
decontamination potential of CAP by eliminating 89% of the tested 
microorganisms. 

Stocks et al. [218] studied the use of a system that delivers a small 
field of local, directed air from a HEPA filter to reduce airborne partic-
ulate and airborne bacteria in the surgical field during total hip 
arthroplasty. The device consists of two components: a HEPA blower 
and a sterile nozzle. The nozzle is secured in immediate proximity to the 
surgical site and emits HEPA-filtered air to wash airborne particles away 
from the wound area. The authors concluded that the system is effective 
in reducing airborne particulate and BCPs. 

2.5.2. Portable air cleaners 
LAF systems provide a relatively small clean zone that is usually 

occupied by staff members and necessary medical equipment. Thus, 
some surgical instruments might remain outside the protected area. In 
order to overcome such issues, portable ultra-clean airflow units were 
introduced as an extension of the main ventilation system. 

Curtis et al. [219] designed an experimental study to investigate BCP 
count variation related to OR foot traffic and to examine the efficiency of 
a crystalline UVC (C-UVC) filter unit. Three series of experiments were 
performed where a base case with no C-UVC unit was compared with a 
C-UVC unit placed four and 8 m from the door. The case study with the 
C-UVC unit of 4 m from the door had significantly lower particle levels 
than the base case (no C-UVC unit). In terms of BCP counts, the authors 
found no significant difference when the C-UVC unit was placed at a 

distance of four and 8 m from the OR doorway. 
Cook et al. [220] compared the infection rate in a turbulent mixing 

OR with and without a supplemental HEPA – ultraviolet ventilation 
system. The results confirmed that the supplemental air decontamina-
tion unit might significantly reduce the overall risk of PJI. The validity of 
the results presented in that study is a matter of concern as the sample 
size might not be either statistically significant or clinically relevant. 

There are different types of surgical smokes and odors in the OR, 
containing various malodorous and hazardous combustion byproducts 
that need to be removed from the surgical environment. Ha et al. [221] 
used a built-in-filter port to remove surgical smoke and found a signif-
icantly lower level of volatile organic compounds and aldehydes. 

2.5.3. Personal protection technologies for the patient or surgeon 
Personal protection technologies have been used in the ORs to reduce 

airborne contamination levels during a given surgery. Filtered exhaust 
hoods and suits are used to remove airborne contaminants shed by the 
surgical personnel. Evans [63] reviewed the most research evidence of 
body exhaust suits combined with air cleaning systems, concluding that 
the combined use of body exhaust suits and LAF reduces the prevalence 
of PJI. Evans also mentioned that many of the studies available are not 
high-level perspectives, but are often retrospective from one institution. 
Makovicka et al. [223] studied the impact of positive-pressure exhaust 
suits on personal protection for the surgeon and assistants compared to 
other types of protecting equipment. The results showed that the 
positive-pressure exhaust suits provided better personal protection than 
the other examined clothing systems and protective equipment. Han-
selman et al. [224] studied the effect of filtered-exhaust helmet systems 
to limit intraoperative contamination, finding that the helmet airflow 
system’s activation resulted in a substantial spread of BCPs from the 
helmet to the surroundings. The author recommends complete surgical 
gowning before activation of the helmet airflow system. 

2.6. Emission rate and clothing systems 

2.6.1. Characteristics of airborne particles in the ORs 
The transport mechanisms of airborne bacteria from the human body 

are conducted to particles carrying these viable units. Skin scales are 
produced by the skin’s friction with the clothing and transmitted with 
air into the room due to pumping effects. The size distribution of skin 
particles dispersed into the air during activity was discussed extensively 
in a research study by Mackintosh et al. [225]. The release rate of BCPs 
from an individual is dependent on several factors [226] and directly 
proportional to the number of staff presented in the OR [133]. Clothing 
systems are directly associated with source strengths (the mean BCP 
value emitted from one person per second – CFU/s) and have been 
discussed extensively in many clinical [227–230] and numerical [140, 
231] studies. It is generally agreed that a lower source strength resulted 
from a clothing system with a high protective capacity reduces the OR 
particle concentration. 

Davies and Lidwell [232] and Hughes [233] found a correlation 
between the number of skin fragments and bacteria counts (between 400 
and 1700 CFU). Tang et al. [234] determined the size distribution of 
airborne particles in conventional ORs in which t size distribution bio-
logical particles had the characteristic of a logarithmic normal distri-
bution. The aerodynamic diameter ranged in size from 1.7 to 30.2 μm 
(average 7.2 μm). The two most frequently occurring germs, Staphylo-
coccus Epidermidis and Micrococcus, were registered in a study by 
Pastuszka et al. [235]. The size of the viable particles with the most 
significant frequency was 3.3–4.7 μm. 

Kim et al. [236] sampled the OR air and found Staphylococci in over 
50% of all airborne germs. Although most CFUs were detected in a size 
range of 1.1–2.1 μm, viable particles in similar quantities were regis-
tered in all other size classes (0.65–7 μm and >7 μm). Nasir et al. [237] 
reported a size distribution of 3.3–4.7 μm in conventionally ventilated 
ORs, while a size range of 2.1–3.3 μm in ORs supplied by LAF 
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dominated. Airborne BCPs were also transported on saliva drops emitted 
during sneezing, breathing, or speaking activities. Although OR 
personnel wear face masks, this mostly catches larger saliva drops (>10 
μm) produced when coughing or speaking loudly [238,239]. Measure-
ments on the emission rates of respiratory droplets and the size distri-
bution showed more than 80% of the particles were smaller than one 
μm, and more than 99.9% were smaller than five μm [240]. The mean 
values of the emission rates for breathing (134 particles/s), speaking 
(195 particles/s), and coughing (13 709 particles/cough) were 
measured. 

The size distribution of exhaled saliva droplets and their correlation 
to the final droplets size have been recently investigated by Lieber et al. 
[241]. The equilibrium size correlates to 20% of the initial diameter for 
a relative humidity between 6 and 65%. For particles with an initial 
diameter of 50 μm and smaller the airborne lifetime is mostly inde-
pendent of the relative humidity. These particles can stay airborne for 
10 min and much longer with further decreasing initial size. 

Pasquarella et al. [242] investigated the concentration of CFU in ORs 
at rest (12 CFU/m3) and during operation (80 CFU/m3). Landin et al. 
[243] found values of 0–38 CFU/m3 with no correlation with microbi-
ological level and the particle counts. 

Woods et al. [244] estimated that microorganisms colonized only 
10% of all human-emitted particles; however, Tarvainen et al. [245] 
reported a lower rate of 0.5–5%. Racoczy [246] reported numbers for 
the total emission of human-emitted particles of about 102 #/s up to 105 

#/s, depending on the activity and clothing system. The value for a 
one-piece cleanroom suit with headgear and facemask with slight 
physical movement was given as 350 #/s. A recent investigation by 

Moschner [247] showed quite similar values. Table 6 summarizes 
research studies related to the size distribution of BCPs in OR 
environments. 

2.6.2. Influence of clothing on the microbial room air contamination 
Surgical clothing acts as a filter to limit the number of particles 

released from the OR staff [249,250]. Thus, surgical team members must 
wear clothing systems suitable for their specific activities. Ljungqvist 
and Reinmüller [251] conducted a comprehensive examination of 
different ORs’ clothing systems, finding that clothing systems are the 
most critical factor controlling the personnel source strength. 

Two different types of gowns (disposable spun-bonded polyester 
gown and reusable woven polyester gown) were investigated by 
Lankester et al. [252]. However, Whyte et al. [253] found no difference 
between cotton and disposable gowns in the number of SSI. 

Significantly fewer bacteria were measured on the disposable gown 
than on the reusable gown. Tammelin et al. [227,228] conducted a se-
ries of laboratory tests and reported no significant performance change 
with reuses. 

Hottner [254] suggested that cleanroom clothes be worn in ORs and 
showed a reduction in particle emission. Air pressure under the clean-
room gowns (between the body and gown) is usually higher than the 
ambient air due to the cloth airtightness. Thus, the contaminated air can 
easily escape into the room through openings, so tight sleeves and col-
lars are recommended. 

During 30 min of simulated operations, Hubble et al. [255] measured 
the number of bacteria in ORs with LAF and conventional ventilation. In 
the conventional ventilated OR, no significant influence of the clothing 
was reported. In the LAF OR, by contrast, the number of BCPs increased 
if parts of the clothing were left (for example, no headgear, 15-fold in-
crease; no mask, 4-fold; no mask and no headgear, 22-fold increase; 
cotton cloth, 6-fold increase compared to using both mask and 
headgear). 

Mitchell et al. [256], Webster et al. [257], as well as Tunevall [258] 
reported no significant differences in BCP counts if the non-scrubbed 
staff were wearing face masks. Friberg et al. [259] found a significant 
reduction of the BCPs using headcover, while Humphreys et al. [260] 
suggested using headcover just for scrubbed staff near the wound field. A 
recent study by Stapleton et al. [261] examined the influence of change 
in the clothing regulation to long-arm, disposable jackets as well as 
covering of head, hair, ears, and facial hair with disposable heads in 
restricted and semi restricted areas. Results confirmed that such mea-
sures would potentially lower the SSI rate, although, no statistically 
significant change has been found. 

The transmission of pathogens from the personnel’s hands is a con-
tact transmission, and the gloves’ perforation was found to be the 
essential problem [262]. In contrast, Whyte et al. Report no significant 
increase in the number of BCPs with perforated gloves [253]. In addi-
tion, no influence of the ventilation was found for gloves. These results 
are summarized in Table 7. 

The different clothing showed a different influence on the emission 

Table 5 
Effect of air cleaner technology to main types of pollutants.  

Authors (year) Capacity Performance Efficiency 

Curtis et al. 
(2018) [219] 
On UVC units 

UVC units are 
capable of 
significantly 
reducing the total 
and viable particle 
counts 

Compared to 
controls, the cases 
with the C-UVC 
unit at 4 m had 
significantly lower 
particle levels. 

Not mentioned. 

Casagrande and 
Piller (2020) 
[40] 
On Mobile 
LAF 

The Mobile LAF 
has a marginal 
impact on the 
distribution of the 
vertical velocity 
1.4 m above the 
floor, except near 
and above the 
principal 
instrumentation 
table. 

The local changes 
in the airflow 
pattern induced by 
the Mobile LAF 
might cause 
significant 
differences in the 
concentration of 
BCPs. 

The portable air- 
cleaning device 
maintains sterile 
conditions on the 
principal 
instrumentation 
table over a range 
of flow rates of 
the general 
ventilation 

Cook et al. 
(2019) [222] 
On HEPA +
ultraviolet 

The use of 
intraoperative 
supplemental air 
decontamination 
significantly 
reduced the overall 
risk of PJI. 

The rate of PJI was 
documented to be 
1.9% in the 
traditional group, 
and no infections 
were documented 
in the cohorts 
operated under 
UV-C air 
decontamination. 

Not mentioned. 

Hi et al. (2019) 
[221] 
On Gas filter 
+

built-in-filter 
port 

Built-in-filter ports 
have the potential 
to reduce the 
exposure of 
surgical smoke to 
surgeons and OR 
personnel 

Built-in-filter ports 
significantly 
reduced the 
concentration of 
five volatile 
organic 
compounds and 
two aldehydes but 
not that of 
formaldehyde, 
acetaldehyde, and 
propionaldehyde. 

Formaldehyde 
concentration 
decreased by 50% 
after filtration.  

Table 6 
Summary of key factors of contamination strength in ORs.  

Reference 
number 

type of 
particle 

Discovered 
size 

Concentration Remarks 

[232,233, 
244, 
245] 

Skin 
scales/ 
particles 
and 
bacteria 

Data not 
provided 

1:400 up to 
1:1700 bacteria 
per skin sales, 
10%, 0.5–5% 
colonized 

Depends on the 
investigated 
situation 

[234,235, 
242,243, 
248] 

Airborne 
bacteria 

1.7–30.2 
μm 

12 CFU/m3 

(rest), 80 CFU/ 
m3 (operation) 

Measurements 
with Andersen 
cascade impactor 
in ORs 

[240] Particles <5 μm 134–195 
particles/s 

Different 
activities  
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of BCPs; however, thermal and wearing comfort have to be considered, 
as discussed in previous sections of the current review study. 

3. Conclusions 

It is hard to make technical recommendations based on what is 
summarized in the current study, other than that surgical site infections 
have a massive cost to both patients and society. SSI cost is associated 
with a significant economic burden in terms of an extended length of 
stay, increased treatment costs, patient disabilities, mortality, and 
morbidity. Most studies agree that a higher BCP level in the OR air is 
associated with a higher SSI rate, although there are still many un-
certainties and controversies that need to be clarified. 

The lack of a mutual understanding among design engineers is 
apparent as opposing conclusions are regularly drawn on the same 
topics. For example, several articles recommended the implementation 
of LAF ventilation, while others report a higher SSI rate in the presence 
of LAF systems. 

Door opening and passage were also reported to harm OR cleanness 
and ventilation efficiency, while others registered limited or no effect on 
OR contaminant level. 

However, clear consensus can be observed in other aspects, such as 
the positive impact of proper staff work practice or the beneficial effect 
of protective clothing to limit airborne particles’ emission. Overall, 
precise laboratory measurements and advanced numerical simulations 
are required in order to clarify the mentioned controversies. It is even 
more critical to achieve clinically relevant and statistically significant 
results, as most previous research studies have suffered from insufficient 
sample size, replicability, validation, and verification. 

The lack of a universal standard in this area is also evident and, in 
some cases, leads to opposite recommendations provided by different 
standards. Reducing SSI incidence requires an advanced and compli-
cated interdisciplinary collaboration between design engineers, infec-
tion control specialists, surgical staff, and behavioral specialists. Thus, 
developing a mutual language among all involved disciplines is impor-
tant and needs concrete dedication. In the context of OR ventilation, 
WHO recommendations are based on contradicting clinical studies 
underreporting/misreporting ventilation design characteristics that may 
be crucial to the ventilation systems’ effective performance. Thus, data 
on ventilation design conditions must be reported when comparing 
different ventilation systems’ influence on SSI rates in future clinical 
studies. More care should be given to the surgical microenvironment, 
where exposure to surgical incisions occurs. Currently, insufficient 
studies are dedicated to investigating the effect of ventilation solutions 
on surgical microenvironment quality. 

The surgical lamp, surgical equipment, and surgeon posture consti-
tute substantial disruptions of the ventilation airflow, especially in the 
LAF ventilation. The surgical lamps, specially closed-shaped, prevent the 
clean air from reaching the surgical site, weaken the washing effect, and 

even create a recirculation zone underneath the lamp. The contradictory 
evidence in the literature regarding the efficacy of LAF ventilation can 
be partly attributed to the surgical lamp’s negative impact. Innovative 
designs of surgical lamps can, to a large extent, alleviate the detrimental 
effect on the unidirectional airflow. 

In the context of airflow disturbance, the door opening is another 
important topic that has been discussed extensively in the literature. In 
LAF-ventilated ORs, a broad LAF diffuser coverage seems highly effec-
tive in reducing the LAF sensitivity to the door opening disturbances. In 
ORs equipped with mixing, however, preoperative planning and 
communication should be improved to reduce unnecessary door open-
ings. Since the SSI incidence is complex and multifactorial, there is no 
clear evidence to demonstrate an association between door openings 
and SSIs. Depending on the studied surgery’s SSI rate, thousands to tens 
of thousands of patients would be required in order to achieve statisti-
cally/clinically reliable results. Simply put, epidemiological studies on 
this topic have a statistical power problem. 

The surgical staff are the primary source of BCPs, and clothing sys-
tems have been reported to be effective at minimizing the contaminants’ 
release rate. Along with discussing ventilation performance, infection 
control, and clothing, thermal comfort represents one of the ORs’ 
fundamental challenges. Air distribution strategies and specific envi-
ronmental parameters, along with local solutions, need to be further 
investigated in order to offer optimal thermal comfort for all the medical 
staff categories and patients at the same time. 
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