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Abstract: In this study, we present a data processing framework to apply measurements of the Global
Navigation Satellite System (GNSS) technique for analyzing and predicting the movements of civil
structures such as bridges. The proposed approach reduces the noise level of GNSS measurements
using the Kalman Filter (KF) approach and enables the estimation of static, semi-static, and dynamic
components of the bridge’s movements using a series of analyses such as the temporal filtering
and the Least Squares Harmonic Estimation (LS-HE). The numerical results indicate that by using
a RTK-GNSS system the semi-static component is extracted with a Standard Deviation (STD) of
0.032, 0.048, and 0.06 m in the North, East, and Up (NEU) directions, while that of the dynamic
component is 0.004, 0.003, and 0.01 m, respectively. Comparing the dominant frequencies of the
bridge movements from LS-HE with those of the permanent stations provides information about the
bridge’s stability. To predict its deflection, the Neural Network (NN) technique is tested to simulate
the time-varying components, which are then compared with the safety limits, known by its design,
to assess the structural health under usual load.

Keywords: bridge movement modeling; Structural Health Monitoring; GNSS; Kalman Filter (KF);
Least Squares Harmonic Estimation (LS-HE); Neural Network (NN)

1. Introduction

Nowadays, civil structures, such as bridges, have been growing ever faster to support,
e.g., economical activities and attracting tourists. Long-span bridges, such as cable-stayed
and suspension bridges, have been constructed to reduce their overall cost [1]. Lack of
precise information on the health of their structure may lead to incorrect decision-making
in repairing, retrofitting, and strengthening the structure. For example, an inadequate
assessment of the structure’s health may lead to retrofit and replacement, while they are
still healthy. Additionally, bridges are prone to environmental effects leading to their
corrosion. Aktan et al. [2] defined Structural Health Monitoring (SHM) as the measurement
of the operating and loading environment as well as the critical responses of a structure to
track and evaluate the symptoms and operational incidents, anomalies, and deterioration
of damage indicators, serviceability, and safety or reliability of structures. Considering
their slender geometry, bridges can be affected by wind, and loads imposed by vehicles,
pedestrians, etc. In addition, changes in environmental variables such as temperature might
lead to changes in their deflections and corrosions, which result in changing their normal
dynamic characteristics [3,4]. Therefore, it is necessary to perform health monitoring to
guarantee the safety and service life of bridges, for which various techniques and methods
have been proposed (see examples in [5,6]).

Generally speaking, the bridge’s movements are characterized by its static, semi-static,
and dynamic components. Therefore, it is necessary to extract these components precisely
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to be able to model their behavior. The static component does not change over time, in other
words, it shows the trend of movement, and semi-static is referred to as the long-period
component. The short-period component consists of two parts: the dynamic displacements
and noise, where the first changes rapidly in time and is caused by a physical process,
and the latter is randomly distributed.

Among the monitoring systems, the application of the Global Navigation Satellite Sys-
tem (GNSS), which is weather-independent and easy to use, is ever-increasing to monitor
civil structures. GNSS can be used to measure static and dynamic movement components in
real-time, whereas the conventional monitoring system using accelerometers or strain gauges
cannot measure static and semi-static displacements [1]. The movement estimation using
geotechnical sensors such as accelerometers has their own difficulty such as their contamina-
tion with errors, e.g., drift, and the fact that they can only measure relative displacements of
a structure as shown by [5–7]. Furthermore, the rapid advancements in GNSS devices and
processing algorithms can mitigate positioning errors. In addition, integrating GNSS with
supplementary sensors, such as acceleration sensors, strain gauges, and laser displacement
sensors, can improve the accuracy of position estimation (see examples in [8,9]).

From various strategies of GNSS data processing, the application of the Real Time
Kinematic (RTK) GNSS with a high sampling rate (>1 HZ) has already been addressed in
previous studies [1,10–13]. However, the RTK system contains errors and noise of various
statistical distribution (i.e., colored noise and white noise), which needs to be filtered before
the precise displacement/deformation monitoring [14]. This is achieved in previous works
by implementing time series analysis techniques that enable the extraction of semi-static
and dynamic components.

For example, Moschas and Stiros [11] used the Moving Averaging (MA) filter to
extract the semi-static movements of the Global Positioning System (GPS) measurements.
Yu et al. [15] proposed a double filtration method to detect the dynamic movements of
structures. Other processing techniques such as Autoregressive Integrated Moving Average
(ARIMA) and Autoregressive Moving Average (ARMA) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) are investigated in [10,16–21]. Le and Nishio [21]
found that the ARIMA model parameters can be used for evaluating the temporal changes
of the movement components. Kaloop et al. [10] evaluated the behavior of a railway
high-speed bridge and showed that the ARMA and GARCH models can be used to detect
the behavior change of a bridge. Xin et al. [22] provided a new integrated method that
combines the Kalman Filter (KF), ARIMA, and GARCH, where the first KF is applied
on the raw position estimates to reduce the noise. Then, the ARIMA model is used to
analyze and predict the structure deformation, and in the last step, the nonlinear recursive
GARCH model is introduced to improve the accuracy of the prediction. Their evaluation
revealed that the mean absolute error of the prediction using the KF-ARIMA-GARCH
model was 10.2% less than the other time series analysis techniques. In addition to the
linear models (e.g., ARMA, and ARIMA) [3,16,23,24], nonlinear models (e.g., Neural
Network (NN) method, Extreme Learning Machine (ELM), and Ant Colony Optimization
algorithm (ACO)) [18,25–30] have also been applied to predict the structural behaviors.
These studies demonstrated that the monitoring data of huge structures (e.g., dam, bridge,
and tower) contain nonlinear characteristics due to the uncertain environment [29]. As a
result, the linear models represent some limitations, for example, they are only able to
predict stationary (or simple non-stationary) changes. Therefore, their prediction accuracy
is very limited for revealing the dynamic components.

Most of the previous studies have applied their processing approach in the time
domain (see e.g., [13,14,31,32]), while only a few provided their processing steps in the
frequency domain (e.g., [31,33]). The latter is performed mostly by implementing tech-
niques such as Fast Fourier Transformation (FFT) and Wavelet Analysis, where FFT was
used to estimate the natural frequency of structures and to eliminate the positioning noise,
and the wavelet technique was applied to detect changes in the frequency behavior of
structures [33–37]. However, the efficient application of FFT requires an understanding
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of its assumptions and limitations. For example, FFT decomposes a signal into sine and
cosine functions of different frequencies. When these signals cannot be divided into the
predefined cycles, amplitude-scaling errors are expected (see more details in [30]). For the
RTK-GNSS derived position time series, where the signals consist of the “harmonic” and
“noise” part, a more advanced methodology must be considered.

In this paper, we introduce an efficient combination of time series analysis and predic-
tion techniques to model movements of a bridge, which is monitored by the RTK-GNSS
technique. The goal is to extract the full behavior of the bridge (its static, semi-static,
and dynamic components), which is achieved by applying different filtering methods.
The Least Square Harmonic Estimation (LS-HE) [38] and the Neural Network (NN) [18]
methods are applied to estimate the dominant frequency and to obtain the predictive
movement model, respectively.

This paper is organized as follows: In Section 2, we describe the RTK GNSS-based
monitoring system and characteristics of the stations used. The proposed algorithm in
order to extract the bridge displacement components, as well as the displacement model
are presented in Section 3. The evaluation results and numerical experiments are discussed
in Section 4, which are essential for the assessment of the full behavior of the bridge, and
finally, this study is concluded in Section 5.

2. Tabiat Bridge and Structural Health Monitoring System Description

The Tabiat Bridge located in Tehran, Iran is considered as our case study. The bridge
is the longest footbridge in Iran, which was opened in October 2014 to connect two public
parks which are separated by a highway. As shown in Figure 1a, the total length of the
bridge, which consists of four spans, (68, 94, 68, and 39 m from east to west, respectively) is
about 270 m, and its width varies between 6 and 13 m. The bridge has three floors and is
constructed at the height of 40 m above the (Modarres) highway. The main structure is made
up of steel constitutes, but the flooring is made up of lightweight concrete and moisture
insulator layers which are covered by composite wood. As shown in Figure 1b, two GNSS
stations (Stations 1 and 2) are installed on this structure to measure its movements. In this
study, we used one reference station of the real-time positioning system in Tehran (SAMT)
to compare the movement between one permanent station and two monitoring stations
along the bridge. The SAMT system consists of six reference stations for receiving data
from positioning satellites. The raw GNSS measurements are used to estimate kinematic
coordinates using the Bernese software (discussed in Section 4.1). As shown in Figure 1c,d,
the permanent station that we used (M022) is located about 20 km from the bridge.
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Figure 1. (a) Tabiat Bridge plan and position (in Tehran, Iran, latitude: 35◦41′47.75′′ and longitude: 51◦11′45.55′′); (b) GNSS-
based monitoring system along the bridge; (c) permanent station location; (d) distance between the monitoring and
permanent stations.

3. Methodology

To study the bridge’s movements, first the GNSS coordinates time-series are pre-
processed using KF in order to reduce the noise [10,39,40]. A combination of the long-period
(semi-static) and short-period (dynamic + noise) movement components is considered
for the first try as in [39]. In Figure 2, a de-noising procedure is implemented using a
Moving Average (MA) filter (with the window length of 100) [11,39] followed by the mean
of semi-static movement, and a low pass filter (as the Median filter of the 20th order) to
extract the semi-static, static, and dynamic components, respectively. Finally, to simulate
the dynamic behavior of the bridge, the Neural Network (NN) model is used. In the
following, a brief review of these techniques is presented.
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3.1. Time-Series Denoising Using the Kalman Filter (KF) Approach

Taking into account the high sampling rate in the GNSS measurements and environ-
mental factors, time-dependent variations are correlated. In addition, random errors are
always present in these measurements that adversely affect the displacement analysis and
may lead to undesirable results. To reduce these errors in the time-series of coordinates,
as recommended, e.g., by [41], the Kalman Filter (KF) is applied to effectively reduce the
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random noise. In Tables 1 and 2, the equations of KF are provided and can be divided
into two groups: The time update equations and the measurement update equations [42].
The time update equations predict the current state and error covariance, to obtain the a
priori estimates for the next time step. The measurement update equations are responsible
for the feedback. Hence, one can interpret the time update equations as predictors and the
measurement update equations as correctors.

Table 1. Kalman Filter time update equations.

X̂K|K−1 = ΦX̂K−1|K−1
QX̂K|K−1

= ΦQX̂K−1|K−1
ΦT + QP

Here, Xk and Xk−1 are the state vectors of the system at the time steps k and k− 1; Φ is
the state transition matrix of the dynamic model; Qx̂k|k−1

is the estimate error covariance
matrix at the time step k− 1, and QP is the process nois.

Table 2. Kalman Filter measurement update equations.

VK = yK − AKX̂K|K−1

KK = QX̂K|K−1
AT

K

(
AKQX̂K|K−1

AT
K + RK

)−1

X̂K|K = X̂K|K−1 + KKVK
QX̂K|K

= (I − KK AK)QX̂K|K−1

Here, yK is the measurement vector at the time step K; QX̂K|K
is the error covariance

matrix at the time step K; AK is the design matrix which maps the true state space into
the observed space; VK is the residual (the difference between the actual and predicted
measurements for the time step); RK is the measurement error covariance matrix, and KK is
the Gain matrix at the time step k. As mentioned above, the Kalman filter uses a predictor-
corrector algorithm to estimate XK, at the first step, X̂K|K−1 is determined based on the
value of X̂K−1|K−1. Then, to obtain X̂K|K, the measured value of yK is used to correct the
value of X̂K|K−1 [40–43]. In the present study, the Continuous Wiener Process Acceleration
(CWPA) KF method was implemented (see the details in [43]).

3.2. Extracting the Movement Components
3.2.1. Semi-Static Component

The Moving Average (MA) filter has been commonly applied for smoothing short-
period fluctuations and highlighting long-term trends or cycles in the time series [11,15].
However, selecting an appropriate threshold to distinguish between the short-period
and long-term components depends on the application [44]. The moving average filter
calculates the average of several sequential values of the input signal to produce each point
of the output signal. From the mathematical point of view, the MA can be applied by
convolution [44] as follows:

y[i] =
1
M ∑M−1

j=0 x[i + j] (1)

where x [] is the input signal/time-series, y [] is the output signal/time-series, and M is
the number of points used in the moving average, which is selected to be M ≈ 1 h since,
in this window length, the long-term component can be simulated with a high correlation
to the denoised time-series. The semi-static component is extracted as long-term variations
of the North, East, and Up directions.

3.2.2. Static and Short-Period Components

As shown in Figure 2, the mean of the semi-static component is used to extract the
static behavior. In this study, the data sampling rate is 30 s and a mean of 5 min of the
semi-static movement is considered as the static behavior of each point. The optimum
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number of minutes in this step is experimentally found by changing the number of minutes
from 1 to 200 min. The 5 min is the one that yields the maximum similarity. The differences
between the KF-smoothed time series and the static component are considered as the
short-period displacements.

3.2.3. Dynamic Component

Various low pass filters such as Butterworth Filter [45], Standard Average Filter [46],
Median Filter [47], and Gaussian Filter [48] are compared to isolate the dynamic component
from the short-period component. To select the optimal filter, some evaluation criteria such
as the Root Mean Square Error (RMSE), Mean Square Error (MSE), and Normalized Root
Mean Square Error (NRMSE) are used with the formulations which are as follows:

RMSE =

√
1
n ∑n

i=1

(
yi − y′i

)2 (2)

MSE =
‖y′ − y‖2

n
(3)

NRMSE = 1− ‖y− y′‖2

‖y− y‖2 (4)

where y represents the short-period component and y represents the reference data and the
mean of vector y, respectively; y′ is the test data (dynamic component); n is the number of
data, and ‖y‖ indicates the L2-norm of a vector y and the optimum filter can be defined by
the minimum RMSE and MSE, and maximum NRMSE.

3.3. Neural Network (NN) for Prediction

The Neural Network method has been used in previous studies to determine the
dynamic model of bridge movements [22,23,27,29,40]. The Multi-Layer Perceptron (MLP)
network is one of the most commonly NNs, which is formed by the interconnection of
some processing units known as neurons (nodes). Neurons receive information from
neighboring neurons (input data) and assign weight parameters to each input. This unit is
also responsible for sending the neural response of the input data using the transfer function
and then sending the calculated response to the activation function of the network [49].
The MLP network consists of at least three layers: Input layer, intermediate (hidden) layer,
and output layer. There is no systematic way to determine the number of hidden layers and
neurons, and many factors may affect this. In this network, the input data is considered as
the information of the input layer. Then, the data which are multiplied by weight factors
and are added by bias, are forwarded to a hidden layer [50]. In the next step, the transform
function is applied to the hidden layer information, and finally the results are considered
as the input of the output layer [51]. From a mathematical point of view, neuron k can be
described by Equations (5) and (6) as follows:

Uk = ∑m
j=1 WkjXj (5)

yk = ϕ(uk + bk) (6)

where x1, x2, . . . , xm are inputs; wk1, wk2, . . . , wkm are the weights of neuron k; and Uk
represents the linear combiner output of input parameters. In addition, bk is the bias; ϕ is
the activation function; and yk is the output of the k-th neuron [50]. The input parameter
is the dynamic component of the North, East, and Up, and the Neural Network predicts
these components for the next 30 steps (15 min).

3.4. Least Squares Harmonic Estimation (LS-HE) Method

The Least Square Harmonic Estimation (LS-HE) is a spectral analysis technique, which
is used here to compare the behavior of the stations along the bridge with the permanent
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station [38]. This method can improve the functional part of the observations in the
frequency domain [52]. In LS-HE, the coordinates time-series are modeled as:

y = y0 + rt + ∑q
k=1 ak cos wkt + bk sin wkt (7)

y = AX + ∑q
k=1 AkXk (8)

where Equation (8) is the matrix form of Equation (7). In both equations, the time-series y
(short-period component) is modeled by fitting a linear trend and a total of q triangular
terms; where t is the time; y0 is the initial location of the station; r is the rate of linear
variation of the time-series; wK is the angular velocity; and aK, bK and k denote the unknown
coefficients of cosine and sine term, and the number of frequencies, respectively. In the
matrix form, A and AK are the design matrixes and X represents the vector of unknowns.
In order to detect the periodic contributions, two columns of sine and cosine terms (AK)
are added to the previous design matrix. It should be noted that adding an additional
frequency must be statistically acceptable according to the following hypothesis testing:{

H0 : y = AX + ∑
q−1
k=1 AkXk

Ha : y = AX + ∑
q
k=1 AkXk

(9)

where H0 and Ha are null and alternative hypotheses, respectively. This statistical test is
used repeatedly to detect different frequencies. Once each wK is accepted, the correspond-
ing sine and cosine terms are added to the null hypothesis and the test will be performed
for the subsequent frequencies. The hypothesis testing statistic at each step follows the
Fisher-distribution, presented in Equation (10) as follows:

T =
P
(
wj
)

2σ2
a

σ2
a =

eT
a Q−1

y ea

d f
T ≈ F(2. m− n− 2i) (10)

where T is the test statistic; m and n are the numbers of observation and unknowns,
respectively; i is the number of detected frequencies in each step; and σ2

a is the estimated
variance. In addition, wK is calculated from Equations (11)–(14) at each step as follows:

wk = argmaxP
(
wj
)

(11)

P
(
wj
)
= eT

0 Q−1
y Aj

(
AT

j Q−1
y P⊥A Aj

)−1
AT

j Q−1
y e0 (12)

e0 = P⊥A y (13)

P⊥A = I − A
(

ATQ−1
y A

)−1
ATQ−1

y (14)

where P
(
wj
)

is the power spectrum, P⊥A is the orthogonal projection matrix; Q−1
y is the

inverse of the observations covariance matrix; and A is the design matrix according to
Equation (15). When the statistical test of the detected frequency is confirmed, two terms
of this frequency will be added to the design matrix according to Equation (16). In these
equations, m denotes the number of observations.

A =

 1 t
...

...
1 tm

 (15)

A =

 1 t . . .
...

...
...

1 tm . . .

coswkt1 sinwkt1
...

...
coswktm sinwktm

 (16)
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In practice, numerical methods such as the periodogram diagram and its visual
inspection are used to extract the existing dominant frequencies, due to the complexity
of these equations. A periodogram diagram presents the relation between the power
spectrum and the frequency. In the next step, this diagram is used to compare the power
spectrum of each frequency with its neighboring frequencies. Finally, the frequencies with
a higher power spectrum will be considered as the dominant frequencies.

4. Results and Discussions

I In this section, the results of the bridge’s movement components are described, the
performance of the proposed dynamic model is discussed, and the behavior of the stations
along the bridge is also compared with a permanent station.

4.1. Data collection and Preparation

In this study, GNSS measurements of the Tabiat bridge (latitude: 35◦45′16.15′′ and
longitude: 51◦25′13.64′′) and M022 (a permanent SAMT station, latitude: 35◦45′56.97′′ and
longitude: 51◦11′45.55′′) are collected during 28–29 November 2018 with a 30 s sampling
rate in order to examine the capability of the proposed algorithm. The X-direction refers to
the east of the bridge (Taleghani Park), the Y-direction is perpendicular to the X-direction
and is stretched along the Modares highway, and the Z-direction represents the vertical
direction movement, as shown in Figure 1b. The Bernese software in a double-difference
mode was utilized to process the GPS raw data of these three stations. The processing
strategy is summarized in Table 3. It is worth mentioning that we used the result of the
kinematic station coordinates derived from Bernese. These time-series are expressed in
the local geodetic reference frame (i.e., North, East, and Up local directions). Figure 3
shows the coordinates time-series of three stations (1 fixed and 2 monitoring stations) in
the Universal Transverse Mercator (UTM) grid system.
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Table 3. An overview of the observation, models and processing strategy used for the network of this study.

GNSS System(s) GPS Only

Basic observable carrier phase with an elevation angle cutoff of 7◦ and a sampling rate of 30 s.
Modelled observable Double differences of the ionosphere-free linear combination.

Ground antenna phase center calibrations IGS08 absolute phase-center variation model is applied.
Tropospheric Model A priori model is the GMF mapped with the DRY-GMF.

Tropospheric Mapping Function GMF

Ionosphere First-order effect eliminated by forming the ionosphere-free linear combination of
L1 and L2. Second and third effect applied.

Center orbit time final

Station coordinates Coordinate constraints are applied at the Reference sites with standard deviation
of 1 mm and 2 mm for horizontal and vertical components respectively.

Ambiguity

Ambiguities are resolved in a baseline-by-baseline mode using the Code-Based
strategy for 180–6000 km baselines, the Phase-Based L5/L3 strategy for 18–200 km
baselines, the Quasi-Ionosphere-Free (QIF) strategy for 18–2000 km baselines and

the Direct L1/L2 strategy for 0–20 km baselines.

Terrestrial reference frame IGS08 station around Iran (ankr, artu, drag, nico, polv, tehn, zeck) coordinates and
velocities mapped to the mean epoch of observation.

4.2. Data Pre-Processing

The KF method is used to de-noise the random errors of coordinates time-series de-
rived from Section 4.1. The vector of coordinates time-series has an average accuracy of
0.019, 0.016 and 0.039 m during 24 h in the North, East, and Up component, respectively,
which are estimated by the variance-covariance matrix of the Bernese software. After im-
plementing the KF, the accuracy of unknown parameters reduces to 0.0013, 0.0012 and
0.0019 m in the N, E, and U directions, respectively.

4.3. Bridge Movement Evaluation

To assess the bridge movements, the semi-static movement is considered as the first
component that can be extracted by applying the MA filter to the de-noised time-series.
The accuracies of semi-static components in the North, East, and Up are 0.013, 0.012, and
0.019 cm, which are determined using the Error Propagation Law. Figure 4 represents the
semi-static component of stations 1, 2, and M022. The results indicate that the correlation
between the semi-static component and de-noised time-series is 99% at each station for the
N and E components and 98% for the U component.

To assess the semi-static movement, the maximum and Standard Deviation (STD)
of this component for the bridge monitoring stations are presented in Table 4. Based on
Figure 4 and Table 4, the maximum movement of the stations is detected in the Up direction
(0.2553 and 0.1934 m at Stations 1 and 2, respectively). Moreover, the STD value of Stations
1 and 2 in the Up direction (0.057 and 0.058 m, respectively), which is higher than in the East
and North directions. The movement variations along the Up direction can be related to the
load factor. In the semi-static component of the permanent station (M022), the maximum
value of movement (0.1948 m) and STD (0.065 m) are found in the Up direction.

The statistical assessments provide similar results for Stations 1 and 2, which indicates
that both stations have a safe semi-static behavior due to changing in the loads. Figure 5
illustrates the correlation between Stations 1 and 2, in the North, East, and Up directions.
The correlation between the North and East was found to be −18.5% at Station 1 and 4.2%
at Station 2. However, in Figure 5, we found that the correlation between the movements
of Stations 1 and 2, in three directions is high for the same directions (e.g., the correlation
between the North of Station 1 and North of Station 2 is 73.1%), which indicates that the
structure movements are controlled.
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Table 4. Statistical analysis of semi-static component (unit in meter).

Statistical Parameter
Station 1 Station 2

N E U N E U

MAX 0.1133 0.1465 0.2553 0.1145 0.1001 0.1934
STD 0.03 0.05 0.057 0.035 0.045 0.058
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As a second component, the static movement of stations is extracted using the mean
of 5 min of the semi-static movement, which is also shown in Figure 4. The static behavior
of Stations 1 and 2, in the East versus the North, is presented in Figure 6a, which reveals
horizontal displacements. Although the static responses are found to be similar and
correlated, the magnitude of this component in Station 1 is exhibited higher than those of
Station 2. As Figure 6a indicates, the static response of the points is approximately similar
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at the end of the monitoring time, which can be associated with the negligible effect of
traffic load on the bridge.
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the Up direction.

Similarly, according to Figure 6b, the static behavior of the two stations in the Up
was found to be almost the same. The maximum static deviation in Station 1 (0.231 m)
and Station 2 (0.167 m) occurred at time 28.59 (unit in day), which indicates the correlated
behavior of two stations. Since Stations 1 and 2 are located on the left and right sides of
the bridge, the situation in the location can counteract the effect of the correlated behavior.
Therefore, the rigidity of the bridge structural under the traffic load effect can be concluded.

After removing the semi-static components using the MA filter from the de-noised
time-series, the short-period component can be extracted which includes the dynamic
component and the residual noise.

Following the description in Section 3.2.3, a low-pass filter is applied to estimate the
dynamic behavior from the short-period component. In order to select the optimal filter,
the evaluation criteria are evaluated, as shown in Figure 7. In this figure, it is obvious that
the Median filter is the optimal method to estimate the dynamic component due to the
high NRMSE and low RMSE. The dynamic behavior of the monitored points which are
derived from the Median filter is presented in Figure 8.
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The correlation between the dynamic components in Stations 1 and 2 are found to be
1.22%, 2.31%, and 10.28% in the North, East, and Up directions, respectively, which indicate
that this component is most correlated with the Up compared to the other directions.
The maximum values of dynamic movement in the Up direction are found to be 0.0464
and 0.0389 m for Stations 1 and 2, respectively. From these results, it can be concluded that
the monitored points are characterized by small dynamic components, which means that
the bridge is safe under the traffic loads.

4.4. Frequency Domain Evaluation

In this section, the LS-HE method is used to evaluate the time-series response of the
monitored points in the frequency domain. The short-period component is employed and
LS-HE is applied to extract the dominant frequencies. The dominant frequency magnitudes
for the stations along the bridge and the permanent station during the monitoring period
are summarized in Table 5.

Table 5. Dominant frequencies for the monitoring points (unit in Hz).

Point N E U

Station 1 0.00052 0.00028 0.00022
Station 2 0.00035 0.00027 0.00022

Station M022 0.00031 0.00026 0.00024

From Figure 9, it can be seen that the investigation of the short-period movement
component in the time domain cannot provide any specific information. Therefore, the
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evaluation of this component in the frequency domain can be interesting. A comparison
between the dominant frequencies derived from the three stations is shown in Figure 9,
in which the log-log plot is used for the power spectrum versus frequency. Periodogram
diagrams in Figure 9 and dominant frequencies values in Table 5 illustrate the similar
pattern in frequencies between the station along the bridge and permanent station, which
can be considered as a proof that the bridge does not show an irregular high-frequency
dynamic behavior.
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According to the results, we found that the mean deflections of the bridge (the mean
of semi-static and short-period components) are 4.2, 3.2, and 5.2 cm in the North, East,
and Up directions, respectively, and the norm of three component displacements is 7.4 cm.
Therefore, the full behavior of the Tabiat bridge using GPS measurements is within the
safety limits of the bridge design ([−22–22] cm).

4.5. Evaluation of the Bridge Movement Prediction Model

As mentioned in Section 3.3, the NN method is used to determine and predict the
bridge movements. In the present study, a repetitive process is applied to determine the
number of hidden layers and delay, and finally, the parameters with the highest level
of fitting and least error was selected as the most optimal model. As a result, a neural
network with five hidden layers and five delays is considered to stimulate the semi-static
and dynamic components. In this study, to perform the NN method, the data set is divided
into three parts randomly: Training, validation, and test data. In addition, 80%, 10%,
and 10% are regarded as the training, validation, and test data set, respectively. For the
semi-static component, the RMSEs between the model and the actual values in station 1
are found to be 3.78 × 10−7, 2.945 × 10−7, and 3.108 × 10−7 m in the North, East, and
Up directions, while these values for Station 2 are found to be 7.623 × 10−7, 2.651 × 10−7,
and 6.425 × 10−6 m. For the dynamic component, the RMSEs calculated between the
model and the actual dynamic component, in Station 1, are found to be 2.478 × 10−6 m
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in the North direction, 1.983 × 10−6 m in the East, and 4.2 × 10−6 m in the Up direction.
For Station 2, the dynamic model is fitted with 2.335 × 10−6, 2.19 × 10−6, and 3.477 × 10−6

m errors in the North, East, and Up direction, respectively. The abilities of the NN model
in the prediction of semi-static and dynamic components are estimated with the RMSE
values, which are summarized in Table 6. We also simulate the semi-static and dynamic
components of the M022 station using this NN. The results of fitting in the prediction mode
demonstrate the RMSEs of 3.894 × 10−5, 6.98 × 10−5, and 2.727 × 10−4 m in the North,
East, and Up directions, respectively.

Table 6. The assessment of semi-static and dynamic components in the prediction mode using the
neural network technique (NN).

Semi-Static Dynamic

N E U N E U

RMSE
Station 1 4.736 × 10−5 2.676 × 10−5 0.0012 7.940 × 10−5 3.490 × 10−5 7.807 × 10−5

Station 2 9.772 × 10−5 4.371 × 10−5 0.0002 0.0001 6.616 × 10−5 0.0002

5. Conclusions

The present study evaluates the movement of a bridge using short-period monitoring
by applying the RTK-GPS measurement technique. Here, we introduce a collection of signal
processing techniques, which can be used for evaluating bridge movements. Our approach
consists of five steps: Processing the raw GPS data, smoothing the coordinates time-series
using the Kalman filter process, extracting the movement components using the moving
average and median filter, determining the dominant frequencies using the least squares
harmonic estimation method, and modeling the dynamic behavior by the neural network
prediction technique. The concluding remarks can be summarized as follows:

• The Kalman filter technique can be considered as a precise technique to de-noise the
coordinates time-series. This method improves the uncertainty of data approximately
from 0.024 to 0.0013 m.

• The least squares harmonic estimation method was found to be efficient for extracting
dominant frequencies of the dynamic component of the bridge movement, especially
the step-wise statistical test avoids extracting non-meaningful dominant frequencies.
The numerical results obtained from this method indicate that the bridge performance
is natural under the load effect during the monitoring time.

• Using the neural network method can be considered as an appropriate technique
to forecast the dynamic and semi-static components of the bridge for 15 min. Here,
the prediction model obtained an accuracy of about 6 × 10−5 and 4 × 10−5 m in the
dynamic and semi-static components.

Finally, our evaluations of the static, semi-static, and dynamic behavior of the bridge
indicates its safe performance under the usual loads. These findings, in the present study,
can serve as a basis for an advance warning in the bridge health monitoring systems
depending on the GNSS measurement technique.
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