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Learning-Based Predictive Control with Gaussian Processes:
An Application to Urban Drainage Networks

Krisztian Mark Balla1,2,Deividas Eringis1, Mohamad Al Ahdab1, Jan Dimon Bendtsen1,
Carsten Skovmose Kallesøe1,2, Carlos Ocampo-Martinez3,

Abstract— Many traditional control solutions in urban
drainage networks suffer from unmodelled nonlinear effects
such as rain and wastewater infiltrating the system. These
effects are challenging and often too complex to capture through
physical modelling without using a high number of flow sensors.
In this article, we use level sensors and design a stochastic
model predictive controller by combining nominal dynamics
(hydraulics) with unknown nonlinearities (hydrology) modelled
as Gaussian processes. The Gaussian process model provides
residual uncertainties trained via the level measurements and
captures the effect of the hydrologic load and the transport
dynamics in the network. To show the practical effectiveness of
the approach, we present the improvement of the closed-loop
control performance on an experimental laboratory setup using
real rain and wastewater flow data.

I. INTRODUCTION
Real-time control in Urban Drainage Networks (UDNs)

allows for the systematic mitigation of water volumes, typi-
cally exploiting the available sensor measurements, weather
forecasts, and, in some cases, the available physical de-
scription of the network. In an urban drainage context,
sensors typically measure flow and level, furthermore, the
most common actuators are pumps and gates. In combined
UDNs, the disturbances are considered as the meteorological
and human waste water loads. In this article, we focus
on combined UDNs, where the actuators are pumps and
both rain and wastewater gravitate from station to station
in open pipes until reaching the Waste Water Treatment
Plant (WWTP). To predict the volumes, e.g., avoid overflows
and utilize the system capacity equally, it is essential to
measure levels and flows. Here, we distribute only easy-
accessible level sensors in the network and use a Gaussian
Process (GP)-based system identification. The proposed ap-
proach uses water level residuals to capture the nonlinearities
coming from the behavior of the pipes and the infiltration
of the disturbances. Furthermore, the approach captures the
uncertainties in modelling and the disturbance forecasts.

Modelling UDNs for control is a complex task, given the
delays and nonlinearities imposed by the flow transport be-
tween pumping stations. The flow-to-level translation inside
the sewers requires either a High Fidelity (HiFi) model or a
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large number of flow measurements, often economically out
of reach for smaller water utilities. Traditional techniques on
conceptual modelling are reported in [1] and [2], where the
capacity of pipes are collectively modelled as virtual buffers,
and in [3], where the flow-to-level translation is modelled
by polynomials. Grey-box modelling for level propagation
in open pipes has been reported in [4], [5] and [6].

Model Predictive Control (MPC) for UDNs has been
reported in [3], [2], [1] and [7], where the operational
constraints and the weather forecasts have been considered
deterministic. Taking into account disturbance uncertainties
with ensemble forecasts has been reported in [5], while
[8] reported on using chance constraints to track the daily
demands of drinking water consumption.

GP regression has been widely used in machine learning
[9] for applications where an unknown system is given with-
out structural information. A systematic framework for un-
certainty propagation in real-time control of dynamic systems
has been proposed in [10], while in [11], flow forecasting has
been done with the use of GPs in drinking water applications.
Learning with data via GPs and using a nominal model
allows identifying the nonlinearities and provides a measure
of uncertainty without any prior knowledge.

The contribution of the article is the following. A model
and control methodology is proposed for UDNs that can
characterize the uncertainty along with the predictions and
reject the meteorological disturbances. To this end, we utilize
level sensors to generate residuals between the unknown
part (pipe dynamics, model, and disturbance uncertainty)
and the nominal part (storage tanks). We incorporate the
topological structure between the GP outputs and select the
regressors based on prior process knowledge. To show the
practical feasibility of the problem in UDNs, we carry out
experimental tests on a scaled laboratory setup, where the
dimensionality of the uncertainty propagation via the GPs is
reduced by actively selecting the points used for prediction.

The article is organized as follows. In Section II, an
overview of the operation of UDNs is presented. Section
III-A first presents the GP regression, followed by the
formulation of the uncertainty propagation. In Section IV,
the stochastic MPC design is presented, whereupon the
point selection algorithm is introduced. In Section V, the
experiment on the laboratory setup is detailed and results are
presented, using disturbance data from a real-world network.
This is followed by Section VI, where conclusions, and
future research directions are drawn.



Nomenclature: Let R,Rn,Rm×n denote the field of real
numbers, the set of real column vectors of length n and
the set of m × n matrices composed of entries in the real
numbers, respectively. The superscript ᵀ denotes transposi-
tion and I is the identity matrix of suitable dimensions. A
normally distributed vector x with mean µ and variance σ
is denoted by x ∼ N (µ, σ), and the expected value of a
random variable by E{}.

II. UDN MODEL

A. Network representation

We consider stations, where pumps are placed in tanks
acting as the actuators. Moreover, the main piping layout
defines the topology of the network. In UDNs, the tree
topology is the most common in practice [12], where the
collected wastewater, rain, and groundwater are pumped from
station to station until they reach the root of the network. The
root is an outlet point, where the water is discharged either
to a WWTP or to the environment. An illustration of main
transport lines in a UDNs are shown in Fig. 1.
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Fig. 1. Tree topology of UDNs, where filled nodes represent storage tanks.

Disturbances represent the meteorological load on the
sewer network. In this work, we use forecasts of runoff
flow due to rain combined with the wastewater produced
by households. These disturbances enter the piping network
through the nodes representing storage tanks or manholes.
Note that our representation of the network takes into account
only the main pipelines, which connect the pumping stations.

Remark 1: To measure level variation in both tanks and
pipes, we distribute level sensors along the network nodes.
The location of the level sensors is based on the high-level
piping layout, meaning that we aim to deploy sensors at
network nodes where the disturbances act on the network,
e.g., where urban areas or catchments are discharging.

B. Physical component model

Flow propagating in open-channel pipes is most com-
monly approximated by the Saint-Venant nonlinear PDEs,
describing the mass and the momentum of the fluid [2]:

∂A(x, t)

∂t
+
∂Q(x, t)

∂x
= q̃(x, t), (1a)

∂Q(x, t)

∂t
+
∂

∂x

(
Q(x, t)2

A(x, t)

)
+gA(x, t)

(
∂h(x, t)

∂x
+Sf−Sb

)
=0,

(1b)

where Q(x, t) is the flow propagating inside the pipe at
location x and time t and q̃(x, t) = q(x, t)/dx is the lateral
inflow per unit length, where we refer to q(x, t) lateral
inflow as a disturbance. A(x, t) is a function describing the
wetted pipe area while h(x, t) is the level of water inside
the channel. Besides, Q(x, t), q(x, t), A(x, t) and h(x, t) are
functions from (0, L) × R+ → R+, and L, Sb and Sf are
the length, slope and friction parameters, respectively.

The stored volumes in the network are modelled by linear
tanks, for which the change in level per time unit is computed
as the sum of all in- and outflows, i.e.,

τ
dht(t)

dt
= qt(t) +Q(t)−Qu(t), (2)

where Qu(t) denotes the sum of flows generated by pumps,
ht(t) is the level in the tank, qt(t) is disturbance inflow
to storage tanks, while Qt(t) is the incoming gravitated
discharge from upstream stations. Besides, τ is the tank
parameter, representing the geometry and size of the tank.

C. Data-driven model

The first-principle dynamics of transport pipes in (1)
are coupled by means of boundary conditions and the full
PDEs can be computationally expensive to solve for complex
network topology. As an alternative to [10], we consider a
discrete-time representation of the entire UDN in the form,

x(k + 1) = f(x(k), u(k), d(k))

+Bd
(
g(x(k), u(k), d(k)) + w(k)

)
,

(3)

where the model is composed of a nominal part f , describ-
ing integrators, i.e., the discrete-time storage tanks in (2),
whereas the remaining part defined by g represents the time
and spatially discretized dynamics, i.e., the transport model
for pipes in (1). Besides, x(k) ∈ RNx , u(k) ∈ RNu and
d(k) ∈ RNd are the system state, input and disturbance at
time step k, respectively. The process noise w ∼ N (0,Σw)
is considered independent identically distributed, with Σw

being a diagonal variance matrix. Besides, Bd is a matrix
mapping states corresponding to the pipe dynamics from the
full state vector x. Furthermore, we consider the nominal
dynamics to be linear in the standard state-space form:

x(k+ 1) = f(x(k), u(k), d(k)) = Ax(k) +Bu(k) +Ed(k),
(4)

where A,B,E are constant matrices of suitable dimensions.

III. GAUSSIAN PROCESS REGRESSION

Similarly to [10], we use GPs to identify the unknown
dynamics g and the uncertainty w in (3). A GP model is
a probabilistic, non-parametric framework, most commonly
used in supervised machine learning for predicting the dis-
tribution of output variables [9]. In order to formulate output
data (or target points) for the GPs, we create residuals
between our measurements and the output of the nominal
model dynamics, using the formulation in (3). We assume
that state measurements xi are available at time step i:

yi , g(xi, ui, d̂i) + wi = B†p
(
xi+1 − f(xi, ui, d̂i)

)
, (5)



where d̂i ∈ RNd is the vector of forecasted disturbances and
B†p is the Moore-Penrose pseudo-inverse. The training set D
is constructed from the inputs z and outputs y by collecting
data with a nominal controller

D = {y = (y1, . . . , yM )
ᵀ ∈ RM×Ny

z = (z1, . . . , zM )
ᵀ ∈ RM×Nz

}
,

(6)

where zi , [xᵀi uᵀi d̂ᵀi ]ᵀ, Nz = Nx + Nu + Nd and M
denotes the number of collected data points. Note that we
use the GPs not only for capturing the model uncertainties w
but to take care of the error between the forecasted and actual
disturbances (di and d̂i) as well. Furthermore, we assume that
the residuals for each state are independent, and therefore,
we perform a GP regression for each residual ya with a ∈
{1, . . . , Ny}. Since each finite collection of ya is normally
distributed, we can write, for each ya,

ya ∼ N
(
µa(z),Ka

zz + Iσ2
a

)
, (7)

where ya is the ath column of y and σ2
a is the process

noise variance. Besides, µa(z) is the mean and Ka
zz is the

Gram matrix such that Ka
ij = ka(zi, zj), with ka(zi, zj)

being a kernel function [9]. We use the kernel function to
describe the prior of the GP distribution, e.g., the covariance
K between the points belonging to set D in (6). The choice
of the kernel function ka is determined based on knowledge
of the physical process. The squared exponential kernel
function is chosen assuming dynamics that exhibit smooth
and continuous behavior [13], i.e.,

ka(zi, zj) = σ2
f,aexp

(
−1

2
(zi−zj)ᵀSᵀ

aΛ
−1
a Sa(zi−zj)

)
, (8)

where the hyper-parameter σf,a is the signal variance and
Λ−1
a = diag (σ−2

L,1, ..., σ
−2
L,Nz

) is the length scale matrix.
Note that different length-scale parameters are used on each
dimension of z, thereby determining the relative importance
of the contributions made by each input.

Remark 2: Mapping matrices Sai1,...,in ∈ Rn×Nz are
introduced for each output dimension a, picking states xi,
inputs ui and disturbances d̂i for each residual yi. The
mapping is determined based on the structure of the net-
work, i.e., based on the physical network model in (1) and
(2). This allows to reduce the training set for each output
dimension, thereby easing the computational cost due to the
high dimension of the training set D.

Given a testing point z∗, we aim to predict the residual
y∗ = (g(z∗) + w∗) given the training set D, i.e., we aim to
find the distribution of p(ya∗ |ya). The joint distribution is(

ya

ya∗

)
∼ N

(
µa,

[
Ka
zz + Iσ2

a Ka
zz∗

Ka
z∗z Ka

z∗z∗

])
, (9)

where [Ka
zz∗ ]i = ka (zi, z

∗), Ka
z∗z = (Ka

zz∗)
ᵀ, and Ka

z∗z∗ =
ka (z∗, z∗). The conditional distribution of the residuals is
Gaussian [14], where the mean and variance are given as

ya∗ |ya ∼ N (µpa(z∗),Σpa(z∗)), (10a)

µpa(z∗) = Ka
z∗z

(
Ka
zz + Iσ2

a

)−1
ya, (10b)

Σpa(z∗) = Ka
z∗z∗ −Ka

z∗z

(
Ka
zz + Iσ2

a

)−1
Ka
zz∗ , (10c)

where µpa and Σpa are the mean and variances of the GP for
output dimension a, respectively. By stacking the predicted
residuals ya∗ in a single vector p(z∗), we can write

p(z∗) ∼ N (µp(z∗),Σp(z∗)) , (11)

with mean µp(z∗) = [µp1(z∗), . . . , µpNx
(z∗)]ᵀ, and variance

Σp(z∗) = diag(Σp1(z∗), . . . ,Σp
Nx

(z∗)).

A. Uncertainty propagation

The iterative, multi-step ahead prediction with the GP
model is done by feeding back the mean and the variance of
the predicted states, making each input a Gaussian random
variable. Hence, the prediction of the states is in general
non-Gaussian [14], as the probability distribution of the GP
needs to be propagated through the nonlinear kernel function
in (8). In this work, the states and the GP are approximated
as jointly Gaussians, where the predicted mean µxi and
covariance Σxi of the states are given by

µxi+1 = f(z̃i) +Bdµ
p
i , (12a)

Σxi+1 =[∇xf(z̃i) Bp]Σi[∇xf(z̃i) Bp]
ᵀ, (12b)

where z̃i , (µxi , ui, d̂i), the mean µp and variance Σp

are given by (10), and Σi is the covariance of the jointly
Gaussian approximation of the states and the GP. Note that
the inputs are assumed to be known and therefore treated as
deterministic variables. The mean µi and the covariance Σi
of the joint distribution are then given by(

xi
pi + wi

)
∼N (µi,Σi)=

([
µxi
µpi

]
,

[
Σxi Σxpi
Σpxi Σpi + Σwi

])
,

where Σpx = (Σpx)ᵀ are the cross-covariances between the
states and the GP. Due to the linear nominal dynamics in
(4), the mean and variance dynamics can be simply written
with the cross-covariances

µxi+1 = Aµxi +Bui + Ed̂i +Bpµ
p
i , (13a)

Σxi+1 =AΣxiA
ᵀ+BpΣ

px
i A

ᵀ+AΣxpi B
ᵀ
p+Bp(Σ

p
i + Σwi )Bᵀ

p .
(13b)

To solve the above approximation of the state distribution in
a tractable way, the dynamics of the Gaussian distribution
in (12) are found through Taylor series expansion of (10)
around the mean µx. The covariance matrix Σpi for each GP
and the cross-covariances Σxpi between the GP and the states
are then updated such that

µpi = µp(z̃i), (14a)

Σxpi = Σxi
(
∇xµp(z̃i)

)ᵀ
(14b)

Σpi = Σp(z̃i)+∇xµp(z̃i)Σxi
(
∇xµp(z̃i)

)ᵀ
, (14c)

where µp(z̃i) and Σp(z̃i) are for each GP dimension a, as
stated in (10). The Taylor approximation used in this work
is detailed in [14]. Different methods for approximating the
posterior of a GP from Gaussian input have been researched,
see for example [9].



IV. STOCHASTIC MPC DESIGN

A. Tractable GP-MPC
Introducing the nonlinear kernel and propagating the un-

certainties with the states following a Gaussian distribution
xi ∼ N (µxi ,Σ

x
i ) adds complexity to the optimization prob-

lem behind the GP-MPC. To solve the optimization problem
in a tractable way, we formulate the problem as follows:

L(k) = E
{ k+Hp−1∑

i=k

||xi − xri ||2Q + ||∆ui||2R + ||ε||2S
}
, (15)

where Hp denotes the length of the prediction horizon, the
∆u term is introduced for integral action on flow control of
the pumps and xr is a reference signal for water level in the
tanks. The reference is introduced in the state penalty term to
show the effectiveness of the closed-loop behavior. Although
this is somewhat unrealistic regarding the application, we
artificially create reference scenarios to push the controller
to its limits when testing under uncertain forecast signals.
The slack variable ε is introduced for state constraint relax-
ation for water level violation in storage tanks, where the
amount of level violation is related to the overflow volumes
escaping the system. Furthermore, the weights Q,R and S
represent a prioritization between the different objectives,
and the individual terms in (15) are normalized, such that
water level and flow terms are comparable in magnitude.
Although the evolution of the states is stochastic, we chose to
implement the optimization problem by simply considering
deterministic state constraints where the slack variables for
overflow provide recursive feasibility to the problem.

Using the approximate distribution of the states and the
expected value of the objective function, we formulate the
deterministic optimization problem behind the GP-MPC as

min
∆ui

k+Hp−1∑
i=k

||µxi −xri ||2Q+tr(QΣxi )+||∆ui||2R+||εi||2S (16a)

s.t. µxi+1 = f(z̃i) +Bdµ
p(z̃i), (16b)

Σxi+1 =[∇xf(z̃i) Bp]Σi[∇xf(z̃i) Bp]
ᵀ, (16c)

∆ui = ui − ui−1, (16d)
Hxµ

x
i ≤ bx +Hεεi, (16e)

Huui ≤ bu, (16f)
µpi , Σi according to (13b), (14), (16g)
µx0 = x(k), Σx0 = 0, (16h)

where i = k, ..., k + Hp − 1, furthermore (16e) and (16f)
are 2Nx and 2Nu dimensional polytopes representing state
and input constraints, respectively, where Hx ∈ R2Nx×Nx,
bx ∈ RNx , Hu ∈ R2Nu×Nu , bu ∈ RNu and Hε ∈ R2Nx×Nx.

The optimization problem in (16) is solved in a receding
horizon fashion where the dynamics f are discretized with
the fixed step, 4th order Runge-Kutta method. Moreover, the
single-shooting method is used in the symbolic framework
CasADI [15] and a primal-dual interior point solver, IPOPT
[16] is used to solve the non-convex optimization problem.
The optimization is solved with warm start at each time step,
given the process is slowly-varying.

B. Subset of data approximation

The computational complexity of solving the optimization
problem presented in (16) is highly influenced by the GP
model representing the unknown pipe dynamics and the
uncertainty of the disturbance load on the network. The
computational burden of propagating the uncertainty depends
on the number of data points M used in (6). To lower the
computational complexity, the data set used for the prediction
needs to be used in a computationally efficient way. Several
sparse methods exist for approximating the distribution of
GPs [17], among which we use the Subset of Data (SoD)
method, where the computation is reduced to O(M̃3) from
O(M3), by using a subset of M̃ < M data points [18].
Similar point selection methods have been used in [19]. The
SoD method is shown in Fig. 2.
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Fig. 2. Conceptual point selection scheme, where S is the selected subset.

As opposed to more advanced sparse approximation meth-
ods, the computation with SoD can be reduced drastically,
however, to the cost of degrading the prediction quality.
Therefore, we spend the extra resources on using a larger
subset M̃ and selecting new points at each sampling time
[20]. The proposed approach is detailed in Algorithm 1.

Algorithm 1: Subset of Data point selection

P = z, i = 0 , I = ∅ ;
while i < M̃ do

for j = 0 to Hp − 1 do
i = i + 1;
r = argminr ||P(r)− ẑj ||2;
I = I ∪ r ;
P = P \ r ;
if i = M̃ then

break
end

end
end
return S = {y(I), z(I)};

The method considers the predictions provided by solving
the finite-horizon optimization problem in (16).

At each time step we choose a subset S of the training
set P , such that all points in S are close to the previously
predicted trajectory ẑ. In Algorithm (1), the index set I is
a set containing the indices r. Here, I is used to index into
the full training data set P , e.g., to find the locations of
the data points closest to the previously predicted trajectory
ẑj , where j = (0, ...,Hp − 1). The SoD method assumes
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that the selected points are close enough to the solution
trajectory calculated at the previous time step such that the
prediction accuracy for the current time step is sufficient.
Using the previous solution trajectory as the selection criteria
is a fair assumption in case of the control of UDNs, as the
dynamics and disturbances are slowly varying with respect
to the sampling time of the controller.

V. CASE STUDY

The experimental setup for testing the GP-MPC in UDN
control is shown in Fig. 3 [21]. This setup of a UDN
represents a 1 : 80 scale model of a section of a real-life
UDN, meaning that the typical resolution and time scale of
the disturbances, control steps, tank emptying, and sampling
times have been scaled down accordingly. An upstream and
downstream pumping station are connected by a gravity-
driven sewer line, most commonly found in real-life pumped
sewer infrastructures [22]. The open-channel pipeline is
equipped with four level sensors equivalent to water levels
measured in manholes in a real network. As shown in Fig.
3, auxiliary tanks are utilized to pump the disturbances to
the points where they act on the system. Note that in our
practical setup we generate these disturbances by pumping
them to the inflow locations, while our controller knows
only the forecast. The level sensor measurements of the pipe
and the two tanks, furthermore the flow of the pumps are
obtained and locally managed at each unit with a Codesys
soft-PLC in real-time [23]. The data acquisition is done at
every 0.5 s, while the control input is applied at every 10
minute. The periodic component of the disturbances is equal
to 17 minutes, which corresponds to one day in real life.

A. UDN model

Following the methodology in Section II, the states, inputs
and disturbances are given by the physical variables

x = [ht1 ht2 hp1 hp4 ]ᵀ, (17)
u = [Qu1 Qu2 ]ᵀ, (18)

d̂ = [qt1 qp3 ]ᵀ, (19)

where the input set z = [x, u, d̂]ᵀ is constructed as in (6),
where Nx = 4, Nu = 2 and Nd = 2, following the notation

shown in Fig. 3. Note that we utilize only hp1 and hp4 at
the up- and downstream end of the pipeline, for the reason
that the input flow Qu1 from station one and the lateral
disturbance flow qp3 in the middle of the pipeline can be
captured indirectly on these two level measurements. Hence,
excluding hp2 and hp3 eases computation.

The nominal dynamics in (4) are given in the form

A=

[
I2×2 02×2

02×2 02×2

]
, B=


Ts

τt1
0

0 Ts

τt2
02×2

, E=

−
Ts

τt1
0

0 − Ts

τt2
02×2


where A ∈ RNx×Nx , B ∈ RNx×Nu and E ∈ RNx×Nd .
Moreover, Ts is the sampling time of the controller. Note
that the nominal dynamics include the two integrator states
ht1 and ht2 , whereas the remaining entries in the state vector
are zeros, meaning that the nonlinear pipe dynamics are not
part of the nominal dynamics. Hence, the GPs are chosen to
take into account the pipe dynamics, the model uncertainty
of the integrator states and the uncertainty of the forecasted
disturbances d̂. As such, the matrix Bp in (3) is an identity
of suitable dimensions. The uncertainty on the forecasted
disturbances d̂ is designed as an additive white noise on top
of the mean of the forecast. Furthermore, due to the scaled
nature of the Smart Water Laboratory setup, uncertainty and
additional dynamics are present due to the pumps.

The mapping matrices defined in (8) are given for each
GP dimension a = 1, ..., 4, respectively:

S1
i1,...,in1

∈ Rn1×Nz , i ∈ {1, 5, 7}
S2
i1,...,in2

∈ Rn2×Nz , i ∈ {2, 4, 6}
S3
i1,...,in3

∈ Rn3×Nz , i ∈ {3, 5}
S4
i1,...,in4

∈ Rn4×Nz , i ∈ {3, 4, 8}

where n defines the total number of dimensions we pick from
the original Nz dimensional data set.
Furthermore, i specifies the number of entry we pick from
z for each output dimension a, respectively.

B. Experimental results

Following the model and data collection methodology in
Section II, the residuals y are constructed between the level
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Fig. 4. Closed-loop control results of the GP-MPC for disturbance rejection with water level reference tracking under uncertain weather forecasts.

measurements x in (17) and the nominal tank dynamics in
(4). The data is collected from the laboratory setup under a
nominal, threshold-based level controller, most commonly
found in practice [12]. The hyper-parameters σ2

f and Λ
are found for each output dimension a = 1, ..., Na, using
Bayesian optimization with the fitrgp toolbox in MAT-
LAB. Moreover, Hp = 25 steps are used for prediction,
corresponding to 5 hours in real life. This is a reasonable
horizon length in UDNs, as rainfall radar predictions can
provide sufficient accuracy only up to 2 − 4 hours. The
point selection is done on a data set, where M̃ = 80 points
are selected at each time step for the residual predictions.
Besides, the full dataset z from which we select the points
for prediction is continuously updated.

The experimental results of the optimization problem in
(16) are shown in Fig. 4. To evaluate the capabilities of the
GP-MPC under uncertainty, n = 10 scenarios of imperfect
rain and wastewater flow forecasts have been created by
adding Gaussian distributed random data on top of the
historic real flow data. The imperfect forecast is provided to
the GP-MPC, whereas the historical flow data is implemented
on the laboratory setup. Note that the pumps at both stations

have a lower constraint different from zero, although in
reality pumps can be shut down completely. This is for
the reason, that below the lower limits the flow-based PI
controllers cannot keep the given reference due to the small
pressure drop in the test setup. As shown in Fig. 4 (c) and (d),
the level references at the two stations are tracked, indicating
that the effect of disturbances and the unknown dynamics are
learned well. As expected, the water level in t2 indicates a
higher spread of the uncertainty in the predictions. This is
partly because we use the GPs to model both the disturbance
uncertainty and the nonlinear pipe dynamics providing the
transport between the two stations.

In Fig. (4) (g-l), we show an event, which we observe at
t = 1500 time steps in Fig. 4 (c) and (d). The pumps at the
upstream t1 tank reduce the flow to the lower limit, aiming
to retent as much volume upstream as possible. Hence, the
load on tank t2 is eased, where at t = 1500 we operate the
station close to its upper constraint. Note that even though the
pumps at t2, shown in Fig. 4 (l), run at full speed, the water
level ht2 is approaching a level, where constraint violation
is likely under the uncertain flow forecasts. The constraint
violation of the upper tank level is highly undesirable, as it



relates to an overflow event, where the slacks ε have to be
used in the optimization to lift the physical upper level of
the tanks. The controller recognizes that the slacks in (16)
need to be used to avoid the infeasibility of the optimization
problem, hence the controller rather violates the tracking of
the reference in the tank t1 and shuts down the pump, as
shown in Fig. 4 (i) and (k). As shown in the left column of
the results in Fig. 4, the GP can learn the uncertainty on the
forecasts and thereby control the pumps to the reference.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed a predictive control approach in
urban drainage networks, where Gaussian process regression
has been used to model the unknown dynamics and the
disturbance uncertainties. For this purpose, we utilized the
Gaussian process regression framework to learn only the
parts where the traditional predictive control lacks a good
first principle modelling approach. To this end, we used
level sensors distributed along the network to learn the
disturbance uncertainty and the pipe dynamics from the level
variation under a rule-based nominal controller. The residual
prediction through uncertainty propagation along with the
deterministic model predictive controller based on the known
dynamics has been solved in a receding horizon fashion
on an experimental laboratory setup, using disturbance flow
forecast data extracted from a real-world waste water utility.
The performance of the reference tracking underpinned the
feasibility of the practical utility of the Gaussian process-
based predictive controller in sewer networks and showed
the robustness capabilities towards uncertain disturbance
forecasts.

An investigation into how the periodic behavior of human
disturbances can be learned from the level sensor data with
Gaussian processes and using rain intensity instead of flow
is a matter of future work.
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