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Buildings account for a large portion of the total energy consumption and they might serve as a signifi-
cant thermal storage capacity that can be advantageous for the future energy grid. To utilise this capacity,
it is necessary to characterise the thermal dynamics in buildings using methods that are general enough
to be applicable to a significant share of the building stock. This work proposes a data-driven method to
characterise thermal dynamics of thermostatically controlled buildings with night setback. The method
includes 1) using Hidden Markov Models to systematically select data periods when the indoor temper-
ature decays steadily during night; 2) model reduction of a Stochastic Differential Equations model of
heat transfer to a discrete linear model which is fitted by utilising the selected night-time data; and 3)
computing one short time constant and one long time constant, which allows to categorise buildings
according to their thermal response. This method is applied to 39 different Danish residential buildings
and the results reveal that this simplified model captures the main processes governing the heat transfer:
the one-step predictions for the indoor air temperature return 95% of the residuals 2 �0:05 �C;0:05 �C½ �.
For all buildings, the short time constants are lower than an hour, and the long time constants range from
20 h to 100 h. Finally, this method is used in simulated data to validate that the time constants provide
insight about the energy flexibility potential of a building. The results show that dynamic thermal
response of buildings can be discovered using limited data.

� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In order to successfully transition from fossil fuel to renewable
energy based supply at a large scale, it is necessary to understand
buildings’ thermal dynamics as they will be a key asset in the
future flexible energy systems [1].

A main contributor to this green transition, will be the deploy-
ment of Demand-Response (DR) strategies [2], i.e., altering the
demand-side of the buildings energy load to match the require-
ments of the grid. These requirements range from, balancing fre-
quency, maximising the renewable energy share, or reducing
energy peaks [3].

Space heating takes a major part of the energy load in buildings,
specially in colder regions. Then, in order to use DR strategies,
buildings need to be prepared to store and release heat when
needed, without affecting severely the comfort of their users. Res-
idential buildings in particular, can be used as thermal storage units
(TES), and heavy buildings are specially suited for that task without
risking indoor comfort [4]. In addition, the DR potential of residen-
tial buildings can be increased through adequate retrofitting [5].
Thus, there is a need for tools that can assess how buildings are
able to store and release heat. Moreover, these tools need to be
general, considering the existing variety of residential buildings
in place [6].
1.1. Literature review

There are several approaches for estimating the main indicators
of the building energy performance: the heat loss coefficient (or its
inverse, the thermal resistance) and the thermal capacity [7]. The
approach will depend on the chosen model for the energy flow in
the building. In their review, Foucquier et al., separated the main
modelling methods for buildings in three categories:
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Nomenclature

Variables
Ti Indoor air temperature, K
Tm Thermal mass temperature, K
Ta Outdoor air temperature, K
Uh Space heating, kW
Ig Solar irradiation, kW/m2

m ið Þ
t white noise term 8i; j 2 1;2½ �, –

Parameters
Ri Thermal resistance: indoor air $ thermal mass, K/kW
Ra Thermal resistance: indoor air $ outdoor air, K/kW
Ci Thermal capacity of the indoor air, kWh/K
Cm Thermal capacity of the thermal mass, kWh/K
Aw Effective window area, m2

r1 Incremental variance of Ti, K
r2 Incremental variance of Tm, K

hi Auto-regressive parameter of order i8i 2 1;2½ �, –
Cij Parameter of the discrete inputs matrix 8i; j 2 1;2½ �, –
/ij Parameter of the discrete design matrix 8i; j 2 1;2½ �, –

Acronyms
SDE Stochastic Differential Equation
DR Demand Response
FI Flexibility Index
FF Flexibility Function
AR Auto-Regressive
ARX Auto-Regressive with eXogenous inputs
HMM Hidden Markov Model
OLS Ordinary Least Squares
WLS Weighted Least Squares
TES Thermal Energy Storage
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physics-based methods (white box), purely statistical methods
(black-box) and hybrid methods (grey-box) [8].

In the first category, it is possible to find numerical tools, such
as the finite volume methods (FVM) [9]. This approach is computa-
tionally expensive, and relies either on simulated data or complex
experimental assemble. Often, these methods require going into
detail to component level to gain insight about the building’s ther-
mal characteristics, such as the outer wall structure and its compo-
sition [10,11]. A different approach, was presented as the co-
heating method [12]. This method is based on simplified heating
dynamic equations describing the heat transfer inside a building.
The co-heating method showed accurate results assessing the
energy performance of buildings; however, it needs a meticulous
experimental set up to control and measure the temperature, and
the experiment can take multiple days. In addition, the measure-
ments are bound to the external conditions during the experimen-
tal period. Finally, due to the necessary infrastructure for the
assessment, it can only be performed in empty houses. Alterna-
tively, Alzetto et al. introduced a new method that could evaluate
the building thermal response in a two days experiment [13]. This
represents an improvement from the traditional co-heating
method. Nevertheless, it still requires an extensive experimental
set up. In addition, there often exists a performance gap between
the model prediction using thermal parameters estimated with
the above methods and the real operational energy performance
of the building [14,15].

Black-box methods have been commonly applied for predicting
energy consumption of buildings. For example, D’Amico et al. used
Multi Criteria Decision-Making to compare three different methods
when forecasting energy demand [16], and Finck et al. trained Arti-
ficial Neural Networks models in their simulation and demonstra-
tion work [17,18]. Nevertheless, these methods are not used for
characterisation purposes, as their outputs are difficult to interpret
physically. Thus, they have been omitted from this review.

For existing buildings, the grey-box model approach is often
used, as it takes into account building physics in data-driven mod-
elling. Bacher and Madsen studied multiple variations of the
lumped resistance-capacity (RC) model are presented [19]. In their
work, it is shown that such models make it possible to estimate the
heat resistance and capacity for different components of the house.
This method allows the use of in situ measures of operative houses.
However, this approach still needs a considerable amount of data
to decouple the different processes that are part of the energy flow.
Also, the complexity of these models can easily grow, burdening
2

the computation. For this reason, and specially when working with
large data sets, it is important to use strategies to reduce the order
of the models, as Goyal and Barooah suggested [20]. Even with high
quality data, it could be difficult to gain insights into the building
dynamics. For instance, during the periods where the building is
thermostatically controlled, the impact of external variables over
the indoor air temperature might be masked by the effects of the
controller, which makes it impossible to estimate the thermal
capacities.

The thermal characteristics of buildings, can also be computed
statically, by using daily averages of the consumption and outdoor
temperature. Nielsen et al. and Rasmussen et al. studied the impact
of weather conditions in a set of danish residential buildings
[21,22]. These approach relies on having consumption data. In
addition, by using daily values, they omit the dynamic nature of
using buildings thermal mass as TES.

1.2. Work description

In this study, we suggest a simple and efficient method to scan
residential buildings and retrieve their thermal characteristics
using only indoor and outdoor temperature measurements. Specif-
ically, we compute the time constants of the two main dynamic
processes that govern the heat loss in buildings.

Most of the characterisation work presented in the literature
review rely on complex model configurations that try to fit in many
building components taking part in the heat transfer of buildings.
Such studies are based on data sets with a large number of vari-
ables, e.g. temperatures of all components, which are not com-
monly measured in existing buildings. In this work, in an effort
to pursue generality, we take the opposite direction to build simple
models that can capture energy dynamics of buildings using scarce
data that is easy to measure. Moreover, this method does not
require a particular experimental set-up as it is developed based
on the data that is available in many existing dwellings in
Denmark.

We focus the study to data periods that are following a night set-
back schedule; i.e., periods with no heat input, where the indoor
temperature decays steadily. This schedule is a commonly used
strategy to decrease the energy consumption during night with a
lower temperature setpoint than during daytime. During night, it
can be assumed that there is no significant influence on the indoor
temperature from the users as they most likely are asleep. There is
also no solar irradiation affecting the indoor temperature. Thus, the
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pattern of decreasing temperature can be understood as a finger-
print that explains the energy storage performance of the building.

There are multiple methods to identify decaying behaviours.
One example is the use of statistical change point detection of
the signal of interest [23]. In the present work, a Hidden Markov
Model (HMM) of the indoor temperatures to identify the decaying
periods. The same method was used byWolf et al. to detect various
human activities using CO2 concentration data [24]. The relevant
data is selected and it is used to fit an auto-regressive model. This
model is derived from a Stochastic Differential Equation system
describing the thermal dynamics in buildings.

Ourmethod is general and can be applied to a significant portion
of the current building stocks. Moreover, the method presented in
this work is easily scalable and can be used to identify groups of
buildings with similar energy response. Grouping buildings into
clusters where the energy response is known, can be specially rele-
vant since it could reduce the uncertainty of DR policies [25].

This study is divided into three sections, followed by a conclu-
sion. In Section 2, the mathematical background of the applied
method is explained; the model structure and its physical interpre-
tation are discussed, and the method for data selection and the
concepts used in the flexibility analysis are described. Section 3
describes the data used in the study. Section 4 shows the modelling
results, an interpretation of the system dynamics and the esti-
mated values of time constant for a number of buildings. In Sec-
tion 5, a simulation framework is used to show how the building
intrinsic parameters affect the time constants, and how the time
constants provide information about the flexibility potential of
the building.
2. Method

In this section, it is shown how an auto-regressive model is
derived from a stochastic RC model. The purpose of this approach
is to offer a physical interpretation of the parameters. Then, it is
explained how the time constants are computed using the transfer
function form of the auto-regressive model.

Our proposed method only works for specific periods of time;
here, the method to select the relevant data periods is presented.

Finally, the concepts of flexibility index (FI) and flexibility function
(FF) that we use in Section 5 are presented.

2.1. Building as a second order dynamical system

Eq. (1) describes a general continuous time model for heat
dynamics inside of a building. It tracks the temporal evolution of
two main variables inside the building: the indoor air temperature,
Ti, and the thermal mass temperature, Tm. The model is repre-
sented as a second order linear stochastic differential equation
(SDE) system. This system has three main external inputs: the out-
door temperature, Ta, the global solar irradiation, Ig , and the space
heating input, Uh. This model has five parameters Ri;Ra;Ci;Cm;Awf g
that are described in the nomenclature section. The uncertainty in
the system is captured by the stochastic term, dxi8i 2 1;2½ �. This
term represents a Wiener process with incremental variances
r2

i 8i 2 1;2½ �.
The external inputs affect only the indoor air temperature; in

turn, there is a heat transfer between the indoor air and the ther-
mal mass. Madsen described this model in detail [26].

dTi ¼ 1
Ci

1
Ri

Ti � Tmð Þ � 1
Ra

Ti � Tað Þ þUh þ IgAw

� �
dt þ r1dx1

dTm ¼ 1
RiCm

Tm � Tið Þdt þ r2dx2

8<
: ð1Þ

Since the system in Eq. (1) is linear, it can be re-written using
the following matrix form,
3

dTi
dt
dTm
dt

 !
¼

1
RiCi

� 1
RaCi

þ 1
RiCi

� �
�1
RiCm

1
RiCm

0
@

1
A Ti

Tm

� �
þ

1
RaCi

1
Ci

Aw
Cm

0 0 0

 ! Ta

Uh

Ig

0
B@

1
CA

þ r1 0
0 r2

� � dx1
dt

dx2
dt

 !
:

ð2Þ
Now, the model variable is a vector: T tð Þ ¼ Ti tð Þ; Tm tð Þð Þ>, and

U tð Þ ¼ Ta tð Þ;Uh tð Þ; Ig tð Þ� �> is the vector of external inputs. We can
write Eq. (2) in a compact form as

d
dt

T tð Þ ¼ AT tð Þ þ BU tð Þ þ R
d
dt
x tð Þ; ð3Þ

where A is the design matrix describing the dynamic characteristics
of the building, and B describes how the input variables enter the
system. Finally, x tð Þ ¼ x1 tð Þ;x2 tð Þð Þ> is the stochastic term, and
R is the matrix of incremental variances.

In this work, only the indoor air temperature, Ti is observed. It is
important to notice that the system described in Eq. (1) has no
measurement equation. Thus, we assume that the error measure-
ments for Ti are small enough to be disregarded.

2.2. From SDEs to auto-regressive

The system in Eq. (3) can be discretized by integrating over a
sample interval, t; t þ s½ Þ, where s is the sampling time of the sys-
tem. Then, assuming that the input (U tð Þ) is constant in the sam-
pling interval, the system can be re-written as

T t þ sð Þ ¼ U sð ÞT tð Þ þ C sð ÞU tð Þ þ m t; sð Þ: ð4Þ
If the sampling time is small enough, the discrete time model

structure will capture the relevant dynamics described in the con-
tinuous case. We can fix the sampling time to an arbitrary time
unit, s ¼ 1, and find he explicit expression for the elements
describing Eq. (4):

U s ¼ 1ð Þ ¼ exp A � 1ð Þ ¼ /11 /12

/21 /22

� �
ð5Þ

C s ¼ 1ð Þ ¼
Z s¼1

0
exp A � rð ÞBdr ¼ C11 C12 C13

C21 C22 C23

� �
ð6Þ

m t; s ¼ 1ð Þ ¼ m 1ð Þ
t

m 2ð Þ
t

 !
with m ið Þ

t ¼ N 0; 12i
� � 8i 2 1;2½ �: ð7Þ

In this case, U describes the discrete dynamics of the system and C
the effect from the external inputs. The vector m is normally dis-
tributed white noise with zero mean and variance 12i 8i 2 1;2½ �,
and it accounts for the stochastic part of the system.

This study is focused on the dynamics of buildings with a night
heating setback. Thus, if there is no solar irradiation and the space
heating is turned off, the input term can be simplified to
U ¼ Ta;0;0ð Þ>. It is then possible to write discrete explicit expres-
sions for the indoor air temperature and the thermal mass:

Ti
tþ1 ¼ /11T

i
t þ /12T

m
t þ C11T

a
t þ m 1ð Þ

t

Tm
tþ1 ¼ /21T

i
t þ /22T

m
t þ C21T

a
t þ m 2ð Þ

t ;

(
ð8Þ

where the notation has been changed to highlight the discrete nat-
ure of the expression. Notice that the terms from the matrices
described in Eqs. (5)–(7), appear now in the transformed difference
equation system (8).

Now, we want to remove the thermal mass variable from the
model, since we do not have access to its associated temperature
measurements. In order to do this, the equations from Eq. (8) have
been merged, adjusting the index t,



Fig. 2. Flowchart describing the method to transform the initial SDE system into a
reduced discrete linear model.
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Ti
tþ1 ¼ /11T

i
t þ /12

� /21T
i
t�1 þ /22T

m
t�1 þ C21T

a
t�1 þ m 2ð Þ

t�1

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Tmt

þC11T
a
t þ m 1ð Þ

t : ð9Þ

For houses with regular heating schedules that have not been ven-
tilated recently, the temperature of the thermal mass should be
very similar to the temperature of the indoor air [27]. Assuming

that Ti
t�1 � Tm

t�1, it is possible to reduce the expression to Eq. (10),
where all variables are observed.

Ti
tþ1;¼ /11T

i
tþ /12/21þ/12/22ð ÞTi

t-1þC11T
a
tþ/12C21T

a
t-1;

þ m 1ð Þ
t þ/12m

2ð Þ
t-1:

ð10Þ

In Denmark, the cold weather conditions of winter, present
slow outdoor temperature variations during night, as shown in
Fig. 1. For a small enough time step, there is little change from
one measurement to the next one, i.e. Ta

t � Ta
t�18t. This simplifica-

tion allows us to reduce the system complexity:

Ti
tþ1 ¼ /11

z}|{h1

Ti
t þ /12/21 þ /12/22ð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{h2

Ti
t�1 þ C11 þ /12C21ð Þ

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{x

Ta
t

þm 1ð Þ
t þ /12m

2ð Þ
t�1;

ð11Þ
where the final model parameters, h1; h2;xf g, have been
introduced.

Finally, a new stochastic variable is defined, mt ¼ m 1ð Þ
t�1 þ /12m

2ð Þ
t�2.

Since m 1ð Þ
t and m 2ð Þ

t are independent and normally distributed with
zero mean 8t; the new variable, mt , is also normally distributed
with zero mean. Thus, it is possible to write the final model as
the following auto-regressive model,

Ti
t ¼ h1T

i
t�1 þ h2T

i
t�2 þxTa

t þ mt ; ð12Þ
where the time index, t, has been adjusted for clarity. Fig. 2 summa-
rizes the process leading from Eq. (1) to Eq. (12), highlighting the
necessary assumptions.

2.3. A system with two time constants

In order to study the heat loss between the indoor air and the

outdoor air, we focus on the interaction between Ti
t and Ta

t from
model (12) using the transfer function as shown in Eq. (13),

Ti
t ¼

x
1� h1B� h2B

2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H Bð Þ

Ta
t ; ð13Þ
Fig. 1. The lattice on the left shows the temporal evolution of the outdoor
temperature for 4 randomly selected nights. On the right, the temperature hourly
differences for all winter nights is shown.

4

where B is the backshift operator defined as BjXt ¼ Xt�j for an arbi-
trary dynamic random variable Xtf g, and H Bð Þ is the transfer func-
tion of the system (12). As described in [28], in order to compute
the time constant of the system (12) it is necessary to find the roots
of the denominator of H Bð Þ, i.e., the poles of the system. In this case,
there are two poles, q1 and q2, as the polynomial in the denominator
is order two. Finally, each pole has an associated time constant
which can be computed as:

sj ¼ s
ln jqjj

8j 2 1;2½ �: ð14Þ

Hence, in this case there are two different time constants that
characterize the heat flow between indoor air and outdoor air. Each
of these time constants has time units and they reveal information
about the two processes described by the initial system (2) as illus-
trated in Fig. 3. In general, when the heating is shut down, there is a
quick heat transfer between the indoor air and the thermal mass
due to the low thermal capacity of the air. The initial heat transfer
is captured by the parameter s1. The heat transfer between indoor
air and outdoor air is the second process, which is characterized by
s2, is slower and will dominate the dynamics as indoor tempera-
ture keeps decreasing [26].
2.4. Identification of night setback temperature curves

Hidden Markov Models consist of two components: an
observed sequence of states and a corresponding hidden state
sequence. The current state only depends on the state of the previ-
ous observation. The states change according to a fitted transition
matrix, which is a matrix providing the probability of a state
change. For each state, the observations are Gaussian, and the
mean and variance depends on the state.

All studied houses showed a temperature decay of the indoor
air during night hours. The goal, was to identify the state where
the temperature is decaying constantly. In order to identify it, a
new variable was created to be used as an input for the model:

dt ¼ Ti
t � Ti

t�1: ð15Þ
When temperature is continuously dropping, the data points of

dt are distributed differently from the rest, as can be seen in Fig. 4.
The Viterbi algorithm [29] was used to find the most likely
sequence of states given a sequence of observed dt .



Fig. 3. This figure shows a schematic of the two main processes governing the heat
flow between indoor air and outdoor air. First, the heat transfers from the indoor air
to the thermal mass, characterized by s1. Meanwhile, s2 characterises the heat
transferred from the indoor air to the outdoor air.
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For some houses, the selected periods are not only the long
night decaying periods, but also shorter decays during the day time
due to the dead-band of the controller. The long night decays are
selected with a threshold. This threshold was computed by cluster-
ing all dt data points into two based on the length of the period. In
general, it is concluded that this process is sufficient to reveal the
natural split between short daytime decays (unwanted) and long
night decays, although the time spans vary from house to house
because of their different time constants.

2.5. Flexibility Index (FI) and Flexiblity Function (FF)

In order to gain insights into the relationship between the time
constant and the flexibility of a building, the concepts of the Flex-
ibility Index (FI) [30] and the Flexibility Function (FF) [31] are used.
The FI quantifies the savings caused by allocating energy consump-
tion in a flexible way. This is done by comparing the cost of the
consumption adapted to a flexible control signal (flexible cost)
and the cost of the consumption if the system was unaware of
the price signal (ignorant cost). The idea behind the FI can be seen
in Eq. (16). FI ¼ 1 characterizes a building with an extreme flexibil-
ity potential, and FI ¼ 0 the opposite.
Fig. 4. An example of the distribution of decay points for one arbitrary building
with night setback. The figure on the left shows that the decay states distribute
different from other states. The figure on the right shows the indoor temperature of
a day with the thicker curve indicating the decay period identified using the HMM
method.

5

FI ¼ 1� Flexible cost
Ignorant cost

ð16Þ

The flexibility function (FF) describes the energy that is available
at a particular moment, or state of charge; and the resources it can
allocate and how it can allocate them before reaching the system
limits. This function provides information about how an energy
system would adapt to changes in the control signal or changes
in its state of charge. Moreover, an energy system has limited
resources that can be turned on/off in case of need, and the rate
at which it is able to move those resources depends on the
dynamic characteristics of each system. The FI and FF used in this
work are based on the work introduced by Junker et al. [30,31].

When calculating the FI and FF in this work, the energy systems
are buildings that have their indoor air temperature controlled
with an MPC controller. Then, the state of charge translates into
the room temperature: the building is completely charged when
the indoor temperature reached its daily maximum inside the
comfort boundaries and vice versa. The heating input is controlled
by a price signal which is built using the wind speed data. This
price signal can also be based on other data and be used for other
purposes such as peak shaving, or lowering CO2 emissions.
3. Data description

This study is based on measurements from a set of 39 Danish
single family houses in the Middelfart region in Denmark. None
of the studied buildings was built after 1980s, and their construc-
tion years vary as described in Fig. 5. They also vary in size and
plant blueprint: the built area ranges from 80 to 226 m2. Most of
the houses are detached family houses, although there are also,
semi-detached houses, town–houses and a few farms. In this work,
these details have been omitted as the focus is set on characteris-
ing the buildings solely based on how they lose heat.

There are two data sets. The first data set contains the indoor
temperature measurements from December 2014 to December
2015. We used only the winter data between December 2014
and March 2015 and with a 10 min resolution. The second data
set consists of hourly outdoor temperature values. This data set
has been selected to match the dates of the indoor temperature
data. In order to compensate the lower resolution, the hourly val-
ues are interpolated using linear interpolation. This interpolation
are carried under the assumption that, during winter nights the
fluctuations in outdoor temperature are slow.

For better presentation and visualisation of the work, the rest of
this work focuses on three buildings with characteristic decay pat-
terns, as shown in Fig. 6. The three buildings have been chosen due
to they present qualitative differences in their continuous heat loss
pattern. It can be noticed that building B shows a sharp decay at
the beginning and then a slower decaying trend; building A has a
fast temperature drop; and building C has a shorter decay curve,
Fig. 5. Summary description of the studied set of 39 buildings. Almost half of the
buildings were built before 1950.
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but still steeper than the curve in B. For all the three example
buildings, the decaying patterns are consistent during different
nights. For instance, it can be noticed that in building C, the decay-
ing trend is similar in every case even though the initial indoor
temperature varies.

4. Results and discussions

This section presents the results from the modelling process.
These results are also discussed to understand how the thermal
dynamics are captured. Afterwards, this section offers a classifica-
tion of the buildings based on their time constants.

4.1. Model validation

The parameters from the model in Eq. (12) were estimated
using Ordinary Least Squares (OLS) method in the first place, since
the model is linear and the noise is supposed to be normally dis-
tributed. This revealed that the term related to the outdoor tem-
perature, x, was not significant in most of the tested buildings.
However, as presented in Section 2, the outdoor air temperature
affects the heat loss dynamics. This impact is more noticeable at
the end of the decaying curve, when the heat exchange with the
outdoor air is more significant than the heat exchange with the
thermal mass. In addition, at the beginning of the decay trend,

the assumption that Ti
t � Tm

t is less accurate, since in reality both
temperatures converge over time. Lastly, at the beginning of the
decaying curve there is a higher chance than the users might be
awake. All these reasons suggest that the noise over time, mtf g,
might not be independent. In fact, the system noise is expected
to be at its maximum at the beginning of the decay and then con-
tinuously decrease over time. In order to cope with this, the
weighted least squares (WLS) method was used, where the models
is fitted giving a specific weight to each observation. These weights
are proportional to the time since the temperature decay started,
given that the observations become more reliable as time moves
forward. The following equation was used for the weighting
process,

w kð Þ ¼ 1� 1
aþ 1� að Þk with 0 6 a 6 1; ð17Þ
Fig. 6. On the left, 4 day period for the three example households (A, B, C). On the
right, the lines corresponding to all decay periods present in the data are shown.
Each building has its clear decay pattern.

6

where k is an integer counting the number of measurements since
the beginning of the decay period and a is a tuning parameter.
Notice that w 2 0;1½ �, it is minimum right at the beginning of the
decay period, w 1ð Þ ¼ 0, and then grows monotonically. The param-
eter a defines how fast is this growth; i.e. how the weights are dis-
tributed along the decay period. Notice that this parameter depends
on the time constants of the building and it could be fine-tuned in a
recursive method in order to fit a particular building. Thus, it is
important to remark that this weighting function is not unique
and it could be adapted to each case.

Table 1 compares the results after fitting the model with OLS
and WLS. Notice how, after using WLS, the p-values of the param-
eter estimates are below 0.1, confirming that the parameters are
highly significant. It can also be noticed that the estimate of the
contribution of the outdoor temperature, x̂, increased significantly
using the WLS, especially for houses A and C, which confirms the
influence of the external conditions.

Fig. 7 reveals that the ordinary residuals, after using the WLS,
behave like white noise regardless of the outdoor conditions. It also
can be seen that most of the residuals are in the �0:1; 0:1½ � range,
which show the accuracy of the one-step prediction. The values
that fall outside of this range are from the beginning of the decay-
ing periods when it is expected to be noisy, as explained previ-
ously. The distribution of residuals can be seen in Fig. 8, which
shows that the errors are small and centered around zero.

In Figs. 7 and 8 it is not possible to see if the residuals are biased
on a daily basis. For this reason, the evolution of residuals are plot-
ted for 3 arbitrary days picked at random for each example build-
ing in Fig. 9. It can be seen from this figure that in all cases the
prediction follows the same pattern. At the beginning of the decay
period, the model is over-predicting so the residuals are negative

and larger. This bias comes from the simplification Ti
t � Tm

t , since
it forces the stochastic part to account for the changes in Tm

t . How-
ever, shortly after the start the residuals converge to white noise,

since Ti
t ! Tm

t quickly [26]. These transient periods are the cause
of the larger residuals seen in Fig. 7.

4.2. Time constant of 39 houses

The time constants of the three example buildings are shown in
Table 2; it is important to notice that s1 is expressed in minutes,
whereas s2 is expressed in hours. These results can be compared
with the qualitative behaviour observed in Fig. 6. In comparison
with the other two, building B shows a flatter decay trend at the

end of each night. This translates into having s Bð Þ
2 > s Cð Þ

2 > s Að Þ
2 . In

addition, the numerical results in Table 2 reveal that building B
loses energy swiftly at the beginning of the decay, which is differ-
ent from house A where the heat transfer between the indoor air
and thermal mass also has a significant contribution to the decay
period.

Moreover, the results of house A were compared with the
results computed using a different method presented in [32],
where a more complex auto-regressive model (including heating
data) was fitted using a time span of 11 days. The difference
between results were smaller than an 8%. In addition, it is impor-
tant to remark that it is possible to further reduce the difference
between the results by fine-tuning the weighting function (17),
specifically for house A.

The simplicity and generality of this method has allowed us to
use it in the total pool of 39 buildings and to categorize their
parameters s1 and s2. Fig. 10 shows the distribution of the time
constants for all 39 buildings. It can be observed that: i) the long
time constant, s2, has the same order of magnitude as the time
constant one would expect from Danish family houses [33,34]; ii)
for the short time constant, s1, all values are shorter than one hour,



Table 1
Table comparing the parameter estimates for each example building. The table compares the results using WLS (weighted with the function in (17)) and using OLS.

Estimate Std. error p-value

OLS WLS OLS WLS OLS WLS

ĥ1 1.768 1.779 0.016 0.017 < 1E�16 < 1E�16

A ĥ2 �0.769 �0.781 0.016 0.017 < 1E�16 < 1E�16

x̂ 4.3E�4 3.3E�4 2.5E�4 2.9E�4 0.09 0.26

ĥ1 1.111 1.273 0.024 0.023 < 1E�16 < 1E�16

B ĥ2 �0.113 �0.275 0.024 0.023 < 1E�16 < 1E�16

x̂ 1.8E�3 1.5E�3 2.4E�4 2.6E�4 < 1E�16 < 1E�16

ĥ1 1.624 1.707 0.015 0.015 < 1E�16 < 1E�16

C ĥ2 �0.625 �0.708 0.015 0.015 < 1E�16 < 1E�16

x̂ 2.8E�4 1.3E�4 1.4E�4 1.7E�4 0.05 0.45

Fig. 7. The figure compares the outdoor temperature and the residuals using the
WLS model. The residuals from the first hour of each decay are marked with an x.
The trend of all residuals is plotted as a dashed line. All residuals are centered
around 0 and evenly spread across all temperature range.

Fig. 8. Distribution of residuals after using the WLS model. The figures include all
the decays in the time span of interest ignoring the first hour of each decay. For each
building a smooth curve was plotted for better visibility.

Fig. 9. Temporal evolution of the residuals during each decay period. Only 3 decays
are plotted for better visibility. It can be seen that the ordinary residuals are larger
at the beginning of the decay period, but shortly after there is no observable trend.

Table 2
Results for the example houses.

A B C

s1 [min] 38.8 4.6 21.5
s2 [hour] 36.7 65.6 49.7
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which highlights the importance of a small time step to capture
this part of the dynamics. From Fig. 10 it can be seen that the 39
buildings are clustered in groups. K-means clustering method
[35] was used and as the result three clusters are marked in the fig-
ure. Note that each of the three selected buildings falls in different
categories, confirming the qualitative differences in their heat loss
dynamics spotted at the beginning of this work.

In Fig. 10, one can get a clear picture at the available classes
of buildings in the studied set. On the short time constant axis,
s1, the time values are mostly scattered, contrarily to the s2
where most of the values lie around the bottom half of the plot.
Furthermore, it can be seen how the main driver for clustering
comes from the long time constant s2, i.e., the three main
regions reveal three different steps along the y-axis. The differ-
ence among three clusters could be due to the difference in insu-
lation level, house size, the amount of thermal mass, etc.
However, to investigate this level of detail would require more
information about these houses which we do not have, thus it
was left out of the current study.
7

5. Flexibility assessment

This section uses simulated data to show that the computed
time constants of a building reveal information about its energy
potential.

The simulations are based on the model described in (2) and
carried out using different parameter values to gain an overview
of their impact. Specifically, the parameters of the indoor air heat
resistance, Ri, and the capacity of the indoor air, Ci, were fixed;
while the heat resistance between the indoor and outdoor air, Ra,
and the capacity of the thermal mass, Cm, were changed in each
simulation. The first two parameters depend on intrinsic magni-
tudes of the air; meanwhile, the last two parameters are easier



Fig. 10. Scatter plot of the two time constants for 39 buildings. As the result of a K-
means clustering, three regions are marked in the figure. In each cluster, the
example house is highlighted.
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to interpret and they characterize magnitudes from a building that
are easier to correct through renovation. Finally, the only external
output of the model, the outdoor temperature, follows an arbitrary
pattern that matches the order of magnitude of danish winter time.

For each combination of parameters, a time series of four days
was simulated with a night-setback schedule. Using those values,
the time constants were computed, and the results can be seen
in Fig. 11. It can be seen that both parameters are directly propor-
tional to the value of the time constants, as expected. Three cases
have been highlighted (H1, H2 and H3) to represent three buildings
with a different parameter combination. These have been chosen
to further assess the effects of the parameters on the building ther-
mal performance.

For each combination of parameters shown in Fig. 11, we simu-
lated four days using two different control strategies: one ignores
the price signal and only tries to keep the indoor temperature
inside a defined comfort region. In the other simulation, the heat-
ing system is controlled using Model Predictive Control (MPC),
where the control signal is the price of energy. The MPC controller
tries to minimize the operation cost using the aforementioned
price signal, while also keeping the indoor temperature within
the comfort region. These two strategies represent the Ignorant
Cost and Flexible Cost as described in Section 2.

For the simulations, we created a price signal that depends on
the wind speed during an arbitrary period of time, to simulate a
Fig. 11. Resulting time constant values for different values of Cm and Ra . The
increase of Ra yields higher values of both time constants. The increase of Cm

benefits only s2. H1, H2 and H3 represent three different houses with different
characteristics.
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system powered by wind energy. The energy price decreases as
the wind speed increases, assuming that energy supply is always
sufficient.

The results of the controlled simulation for the three high-
lighted cases (H1, H2, H3) are presented in Fig. 12. It can be seen
that when the price is low, the heating is switched on and when
the price increases the heating is turned off until the temperature
approaches the lower boundary. It can be noticed that the heating
in H3 could be turned off for a longer time due to the building’s
higher time constants. The indoor air temperature in building H2
never reached the upper boundary of the comfort region due to
higher heat losses.

It can be seen in Fig. 13 that the resistance Ra is the key param-
eter to increase savings using the flexibility of the building.

Lastly, the results of the flexibility function of the three houses
can be seen in Fig. 14. This figure summarizes how the three differ-
ent houses react to a change in the two main drivers of the energy
consumption: the room temperature and the energy price. This
reaction is presented as the deviation from the ignorant consump-
tion; i.e. the consumption of the system ignoring the flexible price
signal. The three houses display a similar response to the state of
charge: a flat section, where the system ignores the variations of
the indoor temperature, and two steep curves at the ends of the
temperature range. When the room temperature reached the low
boundary, the systemwas forced to increase consumption to main-
tain comfort; similarly, the system decreases consumption when
the room temperature reached the high boundary. It can be noted
that H3 is able to stay on the flat region for a wider temperature
range than the other two. This suggests that H3 is more resilient
to changes in the room temperature than the H1 and H2.

The response to energy price follows a decreasing curve for the
three houses. For lower prices, the power demand of H1 is below
H2 and H3. As the price increases, H3 consumption gets below
H1 and H2. This result is in line with the results in Fig. 13, and con-
firms that the high value of the FI of H3 is the result of avoiding
expensive prices. The savings of H1 compared to H2 come mainly
from decreasing consumption during cheaper hours.
Fig. 12. Simulation of the flexible control scenario for the representative houses.
The indoor temperature follows the heat supply, which is controlled by the price
signal. It can be seen that H3, is able to keep indoor temperature within the comfort
region with the heating system running for a shorter time comparing to H1 and H2.



Fig. 13. Resulting Flexibility Index value for different values of Cm and Ra. It can be
noticed that the main driver for the FI is the thermal resistance. H1, H2 and H3
represent three different houses with different characteristics.

Fig. 14. The figure shows that the energy demand is affected by changes on the
state of the system (room temperature) and the variations in the control signal
(energy price). The curve above the dashed line means that the consumption is
increased, and vice versa. It can be seen that H3 is more resilient to changes in the
room temperature, and it is able to consume less during the most expensive hours.
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6. Conclusions

This study shows how one can obtain insights from the thermal
characteristics of a building with limited data. First of all, Hidden
Markov Models were used to select the relevant periods to extract
measurements from the periods with a night-setback. By focusing
on these long decaying periods, it has been possible to transform a
complete physical system to a simple auto-regressive structure.
This model structure only uses the indoor air temperature and
the outdoor air temperature, which are normally easy to measure.

It is important to use a high resolution sampling to capture the
fast dynamics inside the building. In this study, 10-min time inter-
val data was used. This small time step made it possible to reduce
the model structure by taking advantage of the slow changes and
small variations of the outdoor temperature. Additionally, the
resulting time constants highlighted the importance of choosing
a small time step. The only external input of our model, the out-
door temperature, was measured hourly and was transformed to
10-min data using linear-interpolation taking advantage of its slow
dynamics. The linear interpolation is expected to represent accu-
rately the real outdoor temperature, without affecting the poste-
rior analysis.

It is critical to understand the physical meaning of the model. In
order to fit the model, it was necessary to take into account the
decreasing trend of the system noise during the night by using
the WLS method. Only by doing this, all parameters in the model
became significant. This is important because the temperature
decay inside of a building could potentially be caused by other fac-
tors: such as the air mixing in the same room, or a heat transfer to a
9

much colder contiguous room. The significance of the parameter
corresponding to the outdoor air confirms that the indoor air
decreases due to a heat loss to the outdoor air, which validates
our model assumptions.

This method offers a general and computationally light model
that can be scaled to a large portion of the existing building stocks.
By visualising the two time constants for all 39 buildings as shown
in Fig. 10, three clusters of buildings with similar characteristics
could be easily found. In this study, we used a simple clustering
method to identify those building clusters.

The usability of each time constant depends on the specific
problem. The long time constant is the one that gives a clearer pic-
ture of buildings’ characteristics for thermal storage and it is also
closely related to the classical time constant used in building phy-
sics. However, the short time constant could be relevant for study-
ing short term flexibility and indoor comfort.

Finally, it is confirmed that there is a clear connection between
the time constants and the flexibility potential of buildings. It is
shown that the long time constant dominates the potential usage
of a house as an energy storage unit in a flexible energy grid. More-
over, using the FF, it is possible to assess qualitatively the flexible
response of the simulated houses. In conclusion, the results show
that a house with higher values of s1 and s2 can implement more
flexible strategies.
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