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Minimum Processing Beamforming
Adel Zahedi, Michael Syskind Pedersen, Jan Østergaard, Senior Member, IEEE, Thomas Ulrich Christiansen,

Lars Bramsløw, Jesper Jensen

Abstract—Most of the well-known classic beamformers have
resulted from optimization problems that minimize a cost func-
tion such as the mean-square error (MSE) between the noisy
speech and a reference clean speech. The rationale behind these
formulations involves a speech-versus-noise dichotomy, where
anything branded as noise shall be suppressed as much as
possible. While leading to simple closed-form solutions and
reasonably practical beamformers, this rationale has its own
limitations, for instance, when the ambient noise provides context
and is therefore not entirely undesirable. In this paper, we offer a
new rationale, where the output of the beamformer is minimally
processed with respect to a certain reference signal, as long as
a given performance criterion is fulfilled. We provide a case
study where the performance criterion is inspired by the Speech
Intelligibility Index (SII), and the processing penalty is MSE.
Regarding the reference signal, we consider two cases. In the
first case, the reference signal is set to the unprocessed recording
from a reference microphone, giving rise to a beamformer that
limits the processing of the noisy signal to a minimum necessary
for fulfilling the intelligibility requirement. For the second case,
the reference signal is the output of an aggressive beamformer,
yielding a beamformer that essentially eliminates the noise
unless the concomitant distortion of the clean speech violates
the intelligibility requirement. Through simulation studies, we
demonstrate some of the benefits that each of the two cases offer
in relevant contexts.

Index Terms—Beamforming, speech intelligibility index, mul-
tichannel Wiener filter, MVDR beamformer, optimization

I. INTRODUCTION

The multi-channel Wiener filter (MWF) [1] together with
its variations [2]–[10] arguably make up the most commonly
discussed beamformers in the acoustic signal processing com-
munity. The speech distortion weighted generalization of the
MWF proposed in [2] (cf. Section II-B) covers a large and
popular family of beamformers including the minimum vari-
ance distortion-less response (MVDR) beamformer [11] and
the standard MWF. The principle underlying the rationale for
this family of beamformers is the intrinsic undesirability of
noise. The ideal, therefore, is to remove the noise such that
only clean speech is left. This rationale can be limiting, and
in some setups, even unrealistic.

There are numerous real-life scenarios, where noise pro-
vides context in terms of spatial perception, ambient aware-
ness, etc. In such cases, it is desirable to reduce noise only
to the extent that ensures sufficient intelligibility for the target
speech. The above-mentioned rationale is clearly not suitable
for this purpose. Another typical issue with the MWF and its
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generalizations is significant distortions of speech as a price
for high levels of noise suppression.

In this paper, we propose a new rationale that allows for
more general and flexible formulations, while covering the
classic rationale as a special case. The proposed rationale is
based on minimizing the distance between the beamformer
output and a given reference signal subject to a certain
performance constraint. In particular, we make a case study,
where the distance measure is based on the mean-square
error (MSE) and the performance criterion is an intelligibility
estimator inspired by the speech intelligibility index (SII) [12].
Depending on the choice of the reference signal, the proposed
rationale can lead to ambient-preserving beamformers or ag-
gressive noise suppressing beamformers, or simply reduce to
the existing family of MWF beamformers.

It should be noted that in addition to the MWF family
of beamformers, which is the main focus of this paper,
alternative approaches to beamforming have been proposed.
Examples include robust beamforming [13], sparsity-based
beamforming [14], DNN-based beamforming [15], and echo-
aware beamforming [16]. Furthermore, this work is primarily
focused on beamforming for human end users, e.g. hearing
assistive devices. Other applications of beamforming such as
automatic speech recognition (cf. [17] and references therein)
are outside the scope of this work.

The motivation for this work and potential advantages of
the new rationale in comparison to the existing one can
be most easily understood in its native language; i.e. in
signal processing symbols. For that reason, we start from the
notations and signal model, followed by an overview of the
existing beamformers, and finally the proposed concept.

II. PRELIMINARIES

A. Notation and Signal Model
We denote matrices and vectors by boldface uppercase

and lowercase letters, respectively. Covariance matrices are
denoted by the letter C followed by an appropriate subscript
as for example in Cxk for the random vector xk. Similarly,
variances of random variables are denoted by the symbol σ2

with an appropriate subscript. Sets and functionals are denoted
by Blackboard Bold and Calligraphic symbols, respectively, as
in A and F . The M×M identity matrix is denoted by IM , and
er denotes a vector which is zero everywhere except for its rth

component, which is unity. We use the superscript H to denote
the Hermitian transpose. For complex conjugate of scalars, we
use the superscript ∗, not to be confused with the superscript ?,
which we use to mark the solutions to optimization problems.
We denote the statistical expectation operation by E[·].

In this work, speech and noise signals are represented in
the time-frequency domain. A frequency bin index k and a
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time frame index l are thus needed to address a certain time-
frequency tile. In this work, however, we drop the time frame
index l to avoid confusing notation. It is therefore assumed by
default, that we are considering a certain time frame l, unless
otherwise is stated.

Denoting the number of microphones by M , without loss of
generality, we arbitrarily select microphone r, 1 ≤ r ≤ M as
the reference microphone. Suppose that K = {1, ...,K} is the
set of all frequency bin indices. Stacking the signals acquired
by all the microphones in one vector x̃k ∈ CM for frequency
bin k, we use the following speech in noise model:

x̃k = s̃kdk + ṽk, (1)

where all the variables are in general complex-valued. The M -
dimensional random vectors ṽk and x̃k respectively represent
the noise and noisy signals collected by the M microphones,
and the random variable s̃k denotes the clean speech signal
at the reference microphone. The M -dimensional vector dk
represents the relative transfer function [18] for the M micro-
phones (with respect to the reference microphone), and its rth

component is therefore unity. We thus have eHr dk = 1
In some applications of beamforming, e.g. in some hearing-

assistive devices, the signal needs to be amplified or attenuated
depending on the application. This means that the speech to
be delivered to the listener’s ear will be subject to an insertion
gain gk. Therefore, in ideal conditions, the clean speech at the
output of the device is given by:

sk = gks̃k. (2)

Obviously gk = 1, when no gain is applied. Corresponding to
(2), we define xk , gkx̃k and vk , gkṽk. Therefore, without
any change in the form, (1) can be rewritten as:

xk = skdk + vk. (3)

As common practice in the speech processing literature, we
assume independence across the frequency bins, which is
approximately valid, when the correlation time of the signals
involved is short compared to the time-frequency analysis
window size [19], [20]. Moreover, we assume that speech and
noise signals are uncorrelated and zero-mean. Combining these
assumptions, the covariance matrix Cxk of xk is given by:

Cxk = Csk + Cvk = σ2
sk
dkd

H
k + Cvk . (4)

More generally, we define C
(µ)
xk as:

C(µ)
xk

= Csk + µCvk , (5)

where µ is a real-valued non-negative constant. We call C(µ)
xk

the generalized covariance matrix of xk.
Throughout this work, we make the common assumption

that Cvk is invertible. Consequently, we exclude the rare case,
where noise is only composed of less than M point sources.1

In addition to Cvk , we will frequently refer to σ2
vk

, which is the
variance of the component of vk at the reference microphone.

The proposed concept heavily relies on perceptually driven
performance criteria, e.g. intelligibility or quality predictors.

1In practice, even in this case, the microphones add small uncorrelated
noise terms, that ensure a full-rank covariance matrix.
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Fig. 1. A simple diagram of the signal model in a two-microphone beam-
forming system. The reference microphone is chosen to be microphone 1.

The most well-known examples of these predictors, such as
PESQ [21], STOI [22] and ESTOI [23], HASPI [24] and
HASQI [25], and SII [12] and ESII [26] are defined in
subbands that are deliberately defined for compliance with the
human perception of sound. Critical bands, octave bands, and
fractional octave bands are a few examples. On the other hand,
beamformers are typically derived and analyzed in the time-
frequency domain using easy-to-invert time-frequency trans-
formations such as the short-time Fourier transform (STFT).
For the sake of generality, we make a distinction between
the two: For the perceptually driven subband divisions in
which a certain performance criterion is defined, we use the
term subband, while for the time-frequency tiles where the
beamformer weight vector is derived/applied, we use the term
frequency bin. The case where the two are chosen to be the
same is a special case of this general framework. Depending
on how the subbands and frequency bins are defined, there may
be multiple frequency bins contributing to the same subband
and/or multiple subbands contributing to the same frequency
bin, each with certain weights. Throughout this work, we use
i to index subbands, and k to index frequency bins.

Suppose that we have n subbands, and Bi for i = 1, ..., n
is the set of all frequency bins k that contribute to subband
i. As an example of how we use the correspondence between
the subbands and frequency bins, the clean speech spectrum
level for subband i is defined as:

Psi ,
1

βi

∑
k∈Bi

ωi,kσ
2
sk
, (6)

where βi is the bandwidth for subband i, and ωi,k is a weight
that specifies the contribution of frequency bin k to subband
i (cf. Appendix A for more details).

Fig. 1 shows a simple diagram of a linear beamformer with
our signal model for the special case of M = 2 microphones.
Denoting the beamformer weight vector at frequency bin k by
wk, the output of the beamformer is given by:

yk = wH
k xk. (7)

B. Multi-channel Wiener Filter

The standard form of MWF results from solving a minimum
MSE problem which minimizes the following cost function:

MSE(sk, yk)=E
[
|sk − yk|2

]
(8)

=(er−wk)HCsk(er−wk) + wH
k Cvkwk, (9)
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where (9) follows from (7) and the assumption that speech
and noise are uncorrelated. The solution is given by [1]:

wMWF
k = C−1xkCsker. (10)

The first term on the right-hand side of (9) formulates the dis-
tortion introduced to the clean speech due to the enhancement,
and the second term is the residual noise power. As seen in
(9), the MSE criterion equally penalizes speech distortion and
residual noise. A natural generalization of this cost function is
to allow for different weights for these two terms. As proposed
in [2], one such generalization is to use

MSEµ(sk, yk),(er−wk)HCsk(er−wk)+µwHk Cvkwk, (11)

with µ being a non-negative constant, resulting in the follow-
ing generalized MWF:

wµMWF
k =

(
C(µ)
xk

)−1
Csker. (12)

It is well-known that MWF can be restated as a cascade of
the MVDR beamformer and a Wiener postfilter [27]. It can
be shown (cf. Appendix B), that the µMWF beamformer in
(12) can similarly be restated as the cascade of the MVDR
beamformer and the following generalized Wiener postfilter:

g
(µ)
k =

ξk
µ+ ξk

, (13)

where ξk , σ2
sk
dHk C−1vk

dk is the SNR at the output of the
MVDR beamformer. Fig.2 shows the plot of g(µ)k as a function
of ξk for µ = 1, µ < 1 and µ >1. For µ = 1, it reduces to
the well-known single-channel Wiener filter (SWF), leading
to a beamformer that is optimal in MSE sense. For µ<1, the
postfilter incurs a lower level of speech distortion compared to
the standard Wiener filter at the cost of higher residual noise.
In the limit when µ→ 0, the µMWF beamformer reduces to
the MVDR beamformer. On the contrary, µ > 1 leads to an
aggressive postfilter that suppresses more noise compared to
the standard SWF in price of higher levels of speech distortion.

All the beamformers introduced so far are formulated with
the aim of reconstructing the clean speech, i.e. complete
suppression of noise as an ideal. In [4], [5], it was suggested
that one may be interested in preserving a fraction of the noise
in addition to the target speech, for instance to better preserve
the spatial characteristics of noise in addition to the target
speech. For that purpose, instead of the cost function in (8),
one can minimize MSE(sk + αvk, yk) for a given positive
constant α, which leads to the following solution [5]:

wMWF-N
k = wMWF

k + αer. (14)

In effect, the MWF-N beamformer takes the output of an
MWF beamformer, and adds a fraction of the unprocessed
noisy speech from the reference microphone to it.

Finally, one can combine the µMWF and MWF-N beam-
formers to obtain the following generalized beamformer [5]:

wµMWF-N
k = wµMWF

k + αer. (15)

This is especially useful when a large µ is chosen for the
µMWF part; i.e. an aggressive beamformer with a high level
of speech distortion. In this case, the resulting distortion of
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Fig. 2. Postfilter gain g
(µ)
k as a function of the SNR ξk for the µMWF

beamformer with three different values of µ.

the clean speech can be partially compensated for by adding a
fraction of the unprocessed signal to the output of the µMWF
beamformer. The µMWF-N beamformer in (15) is the most
general of the above-mentioned beamformers. All the other
beamformers can be seen as special cases of (15) for certain
choices of the parameters µ and α.

III. MINIMUM PROCESSING BEAMFORMING

A. Proposed Concept

Suppose that sR
k is a given reference signal (not to be

confused with the clean speech at the reference microphone).
Consider a certain subband i. We stack all sR

k for k ∈ Bi in a
vector denoted by sR

i . Similarly, we stack all yk, sk and vk for
k ∈ Bi into vectors yi, si and vi, respectively. Also, consider
the two finite non-negative functionals D(·, ·) and I(·, ·). We
define the minimum-processing beamformer in subband i as
the solution to the following optimization problem:

min
wk,k∈Bi

D(sR
i ,yi) s.t. I(yi, si) ≥ I ′i, (16)

where D(sR
i ,yi) measures the distance (processing penalty)

between the reference signal and the beamformer output,
I(yi, si) is an estimator of performance for the beamformer
output in subband i in a certain sense, e.g. speech intelligibil-
ity, sound quality, etc. The term I ′i in (16) is defined as:

I ′i , min (Ii, I
max
i ) , (17)

where Ii is a given minimum requirement on the beamformer
performance I(yi, si), and Imax

i is the maximum achievable
performance which is obtained when the processing penalty
D(yR

i ,yi) is disregarded, and the performance I(yi, si) is
maximized in an unconstrained manner.

In (16), dependency of I(yi, si) on the clean speech si
is implied by the notation for generality. In many practical
situations, performance is estimated from the beamformer
output alone, and we have I(yi, si) = I(yi).

A special case of (16), where sR
i = si+αvi, the processing

penalty D is chosen to be the MSEµ defined in (11), and
the constraint is annihilated by setting Ii = 0, leads to the
generalized µMWF-N beamformer in (15). This demonstrates
the generality of the formulation in (16). In this paper, we
make a case study, where the processing penalty D is similar
to theMSEµ criterion, and the performance criterion I(·, ·) is
an intelligibility estimator based on the SII [12]. We solve the
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problem analytically for any given reference signal sR
k . Next,

we study two special cases:
1) Ambient-preserving mode: In this mode of operation, the

unprocessed signal from the reference microphone eHr xk is
chosen as the reference signal sR

k . This leads to a beamformer
that attempts to retain as much of the clean speech and noise
as possible by keeping the processing of the noisy speech
to the minimum amount necessary for achieving the given
intelligibility requirement.

2) Aggressive mode: In this mode, the reference signal sR
k

is the output of a reference beamformer wR
k . This leads to a

beamformer that inherits the (presumably desirable) properties
of the reference beamformer, except for the situations, where
this violates the intelligibility requirement. In particular, we
study the case where the reference beamformer is the aggres-
sive form of the µMWF beamformer.

B. Motivation

Existing research [28], [29] (as well as our experience) show
that directional hearing aids in some situations tend to over-
suppress the natural ambient noise, leaving the users with
a feeling of isolation or exclusion. While not downplaying
the crucial role of sufficient speech intelligibility, it seems
reasonable that if any suppression of the ambient noise takes
place, it should be limited to the minimum necessary amount
that precludes any compromise of speech intelligibility. This
can be formulated by setting the reference signal in (16) equal
to the unprocessed signal at the reference microphone, and
choosing a speech intelligibility estimator as the performance
criterion I(·, ·). In other words, we apply a minimum process-
ing principle to modify the noisy signal as little as possible
in order to obtain a desired level of intelligibility. This was
indeed our initial motivation for this work, as evident from the
title of this paper. The concept was later generalized from the
noisy signal at the reference microphone to any given reference
signal as in (16). An example of special interest is when the
reference signal is the output of a certain beamformer wR

k . This
can be useful when the reference beamformer wR

k , within a
certain context or for a certain application, has particularly
desirable properties that are compromised by pronounced
drawbacks. As an example, the µMWF beamformer in (12)
with aggressive noise suppression properties (µ � 1) can
effectively suppress noise at the cost of distorting speech. By
choosing it as the reference beamformer in (16), while opting
for a speech preserving performance criterion I(·, ·), we obtain
a beamformer that does an outstanding job of suppressing the
noise, whenever it would not harm the speech to more than a
certain extent.

IV. THEORY

A. Processing Penalty

Our starting point for defining the processing penalty D(·, ·)
is the MSE criterion. Writing it in subbands rather than fre-
quency bins for the sake of compatibility with the formulation
in (16), it takes the following form:

D̂(sR
i ,yi) =

1

βi

∑
k∈Bi

ωi,kE
[∣∣sR

k − yk
∣∣2] . (18)

Let us define the vectors rk and uk as:

rk , E
[
xk
(
sR
k

)∗]
, (19)

uk , C−1xk rk. (20)

Expanding the terms in (18) and subtracting and adding
rHk C−1xk rk on the right side, we obtain:

D(sR
i ,yi) =

1

βi

∑
k∈Bi

ωi,k

(
σ2
sR
k
− rHk C−1xk rk

)
+

1

βi

∑
k∈Bi

ωi,k (wk − uk)
H
Cxk (wk − uk) . (21)

The first term on the right-hand side of (21) is independent of
the weight vectors wk. It thus has no impact on the solution
to the optimization problem (16). Discarding this term, and
substituting Cxk with C

(µ)
xk in (21) for more generality, we

obtain the final form of our processing penalty as follows:

D(sR
i ,yi) =

1

βi

∑
k∈Bi

ωi,k(wk − uk)
H
C(µ)
xk

(wk − uk) . (22)

B. Performance Criterion

For the performance criterion, we use an estimation of
speech intelligibility based on the SII. It is evaluated on a
per-frame basis, making it similar to the ESII [26]. Assuming
normal vocal effort and thus no speech level distortion, the SII
is given by a weighted sum of the so-called band audibility
functions over all the subbands [12]. Since (16) is defined for a
certain subband, we define a band audibility constraint for each
subband instead of setting one single intelligibility constraint
for the entire signal. Moreover, we disregard the spectral mask-
ing effects [12] to avoid unnecessary complications, as our
experience suggests that for most cases of practical interest, it
has an insignificant effect on the resulting score.

With ζi being the speech to disturbance ratio for subband
i, the audibility function Ψ(ζi) for subband i is given by the
following function [12]:

Ψ(ζi) =


0, if (10 log ζi) < −15
1, if (10 log ζi) > +15
10 log ζi+15

30 , otherwise.
(23)

This function is plotted in Fig. 3. With the performance
estimator chosen to be I(yi, si) = Ψ(ζi), the performance
criterion in (16) is given by:

Ψ(ζi) ≥ I ′i. (24)

To calculate ζi, we first obtain the total error power in subband
i at the output of beamformers wk, k ∈ Bi. This is calculated,
in a manner similar to (11), as the sum of the speech distortion
and noise power:

Ni=
1

βi

∑
k∈Bi

ωi,k(er−wk)
HCsk(er−wk)+µωi,kw

H
kCvkwk, (25)

where normalization by bandwidth βi is in accordance with
the ANSI standard [12]. Let Λi denote the equivalent internal
noise level (cf. [12]) for subband i, modelling the threshold
of hearing. For normal-hearing listeners, Λi follows from
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Fig. 3. ANSI recommendation for the relationship between band audibility
and speech-to-disturbance ratio [12].

the threshold of hearing in quiet for the average normal-
hearing person. For the hearing-impaired, the threshold must
be elevated based on the individual’s pure-tone audiogram.
Using Ni and Λi, the equivalent disturbance spectrum for
subband i is calculated as [12]:

Di = max (Λi, Ni) . (26)

Finally, we calculate the speech to disturbance ratio ζi using
the following formula:

ζi =
P ′si
Di

, (27)

where P ′si is defined as

P ′si , Psi −∆i, (28)

with Psi given in (6), and ∆i modelling a possible loss of
the clean speech power at the output of the beamformer. We
elaborate on this issue in Section V-B.

The fact that the threshold of hearing Λi, as well as the
insertion gain gk (cf. (26) and (2), respectively) are taken into
account, makes our framework suitable for hearing-impaired
as well as normal-hearing users.

C. Problem Formulation and Solution

Combining the results in Sections IV-A and IV-B, the
optimization problem (16) can be written as follows:

min
wk,k∈Bi

1

βi

∑
k∈Bi

ωi,k (wk − uk)
H
C(µ)
xk

(wk − uk)

s.t.

{
max (Λi, Ni) ≤ P ′si10−3(I

′
i− 1

2 ),

Psi10−
3
2 ≤ max (Λi, Ni) ≤ P ′si10

3
2 ,

(29)

where the first constraint reflects the third condition in (23),
and the second constraint is corresponding to the first two
boundary conditions in (23). Before presenting the solution,
we first need to make a number of definitions. In particular,
we define the two parameters NR

i and hi as follows:

NR
i ,

1

βi

∑
k∈Bi

ωi,k(er−uk)HCsk(er−uk)+µωi,ku
H
kCvkuk,

(30)

hi ,
1

βi

∑
k∈Bi

ωi,k

(
uk−wµMWF

k

)H
C(µ)
xk

(
uk−wµMWF

k

)
. (31)

We will show later, that these parameters can be interpreted
depending on the choice of the reference signal. In addition,

we define the two constants Imin
i and Imax

i as follows (details
can be found in Appendix C):

Imin
i , min

(
1,

1

2
+

1

3
max

(
−3

2
, log

P ′si
max(NR

i ,Λi)

))
, (32)

Imax
i , min

(
1,

1

2
+

1

3
max

(
−3

2
, log

P ′si
max(NR

i −hi,Λi)

))
.(33)

Finally, we define the constant αmin
i :

αmin
i ,

√
max

(
0, 1− NR

i − Λi
hi

)
. (34)

In Appendix C, we prove the following results:
1) The minimum processing beamformer; i.e. the solution

wMP
k,i to (29) is given by:

wMP
k,i = αiuk + (1− αi)wµMWF

k , (35)

where αi (henceforth called the combination weights) are
calculated as follows: If NR

i ≤ Λi, then αi = 1; otherwise
we have:

αi=


αmin
i , if Ii ≥ Imax

i

1, if Ii ≤ Imin
i√√√√max

(
0, 1−max

(
0,

NR
i −P ′si10

−3(Ii−1
2)

hi

))
, otherwise.

(36)
2) Maximum performance (in terms of band audibility),

which is obtained by disregarding the processing penalty
D(sR

i ,yi) and maximizing I(yi, si) = Ψ(ζi), is given by (33).
3) Minimum performance, which is obtained by disregard-

ing the performance constraint Ψ(ζi) ≥ I ′i and minimizing the
processing penalty D(sR

i ,yi), is given by (32).
Depending on the type of correspondence considered be-

tween the frequency bins and subbands, there can be overlap
between the subbands; i.e., a single frequency bin can con-
tribute to more than one subband. For that reason, we have
assumed dependency both on the frequency bin index k and
the subband index i in the beamformer weight vector wMP

k,i .
Let Fk denote the set of all subbands to which the frequency
bin k contributes, and ηi,k be the weight that accounts for the
impact of this contribution on the beamformer weight vector.
The beamformer weight vector at frequency bin k is given by:

wMP
k ,

∑
i∈Fk

ηi,kw
MP
k,i . (37)

In Appendix A, we provide more details on the calculation
of ηi,k and other considerations related to the correspondence
between the subbands and frequency bins.

D. Reference Signal

For the sake of case study, we confine ourselves to two
choices of the reference signal with two different goals in
mind. Obviously, for any other relevant scenario, one has to
define the reference signal that suits the application.
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1) Ambient noise preserving mode: In applications, such
as hearing assistive devices, when sounds other than the
target speech potentially convey useful information (e.g. traffic
noise alarms, etc.) or are of interest (e.g. background music),
it is desirable to preserve them fully or in part, with the
criterion being an uncompromised level of intelligibility for
the target speech. Setting the reference signal sR

k equal to
the unprocessed signal from the reference microphone eHr xk
allows for this mode of operation. Substituting in (19) and the
result in (20), we obtain:

uk = er. (38)

Following (35), we thus have:

wMP
k,i = αier + (1− αi)wµMWF

k . (39)

This beamformer is similar to (15), with the important dif-
ference that here the coefficient αi is signal dependent. More
particularly, αi adapts to the situation depending on how noisy
the speech is in the given time frame and subband, cf. (36).

Substituting (38) and (39) in (30), we have:

NR
i =

1

βi

∑
k∈Bi

ωi,k
(
µσ2

vk

)
. (40)

In other words, NR
i is the noise power in subband i. Similarly,

substituting (38) and (39) in (31), and using (12), we obtain:

hi =
1

βi

∑
k∈Bi

ωi,ke
H
r (µCvk)

H
(
C(µ)
xk

)−1
(µCvk) er. (41)

Using (5), applying the Sherman-Morrison formula [30], and
simplifying the result, (41) reduces to the following:

hi = NR
i −

1

βi

∑
k∈Bi

ωi,kµσ
2
o,vk

g
(µ)
k , (42)

where g(µ)k is the generalized Wiener postfilter given by (13),
and σ2

o,vk
, dHk C−1vk dk is the noise variance at the output of

the MVDR beamformer.
2) Aggressive mode: This mode of operation is suitable

for circumstances, where maximum suppression of noise is
desired, without severely damaging the target speech. The
reference signal is chosen to be the output of a reference
beamformer wR

k . We thus have sR
k =

(
wR
k

)H
xk. Substituting

in (19) and the result in (20), we obtain:

uk = wR
k . (43)

Consequently, (35) takes the following form:

wMP
k,i = αiw

R
k + (1− αi)wµMWF

k . (44)

One viable choice of the reference beamformer is the
µMWF beamformer (12) with µ � 1. This beamformer can
do an outstanding job of suppressing the noise, but at the
same time, it significantly distorts the target speech. In time
frames and subbands where the SNR is not particularly high,
these distortions will be very severe, giving rise to an overall
output speech that is more audibly distorted than desired.
We attempt to obtain a performance as close as possible to
the µMWF beamformer (with µ � 1) in terms of noise

suppression by choosing it as the reference beamformer. On
the other hand, for the second term on the right-hand side of
(44), we set µ� 1 to obtain a speech-preserving beamformer
that precludes excessive distortions of speech in unfavourable
conditions. This yields:

wMP
k,i = αiw

µ1MWF
k + (1− αi)wµ2MWF

k , (45)

where µ1 � 1 and µ2 � 1.
Next, we calculate NR

i and hi for the present case. Substi-
tuting (43) in (30) yields:

NR
i =

1

βi

∑
k∈Bi

ωi,k
(
er−wR

k

)H
Csk
(
er−wR

k

)
+µωi,k

(
wR
k

)H
Cvkw

R
k

= NR
s,i + µNR

v,i. (46)

It thus becomes clear that NR
i is the total error at the output of

the reference beamformer in subband i, and can be written as
the sum of the noise power µNR

v,i and speech distortion NR
s,i at

the output of the reference beamformer. To calculate hi using
(31), we rewrite the two µMWF beamformers in (45) as the
series of the MVDR beamformer and a generalized Wiener
postfilter to obtain:

hi =
1

βi

∑
k∈Bi

ωi,k

(
g
(µ1)
k − g(µ2)

k

)2 (
wMVDR
k

)H
C(µ2)
xk

wMVDR
k

=
1

βi

∑
k∈Bi

ωi,k

(
g
(µ1)
k − g(µ2)

k

)2 (
σ2
sk

+ µ2σ
2
o,vk

)
, (47)

where (47) follows from C
(µ2)
xk = σ2

sk
dkd

H
k + µ2Cvk and

wMVDR
k = C−1vk dk/σ

2
o,vk

.

V. PRACTICAL CONSIDERATIONS

There are practical matters that are crucial for optimal
operation of the proposed beamformers in real-life scenarios.
In this section, we address these considerations.

A. Time Averaging for Combination Weights

The value of αi given by (36) can change abruptly across
the time frames, leading to audible distortions of the speech.
To avoid this, we perform a recursive averaging of αi across
the time frames as follows:

ᾱi(l) = (1− b) ᾱi(l − 1) + b αi(l), (48)

where l and l− 1 index the current and previous time frames,
respectively, and b is calculated from a time constant τ using
the following formula:

b = 1− e− 1
Rτ , (49)

where R is the frame rate.

B. Target Loss Effects

Applying a beamformer to a noisy signal xk generally
results in a suppression of the target signal sk at the output,
i.e., a target loss. Formulation of the target loss requires a
model for the speech distortion that is introduced by the
beamformer. The simplest model is the additive noise model,
i.e. speech distortion treated as additive noise uncorrelated
with both speech and noise. With the additive noise model,
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the target loss ∆i in (28) is zero, and speech distortion is
accounted for by adding it to the residual noise power as in
(25). An alternative is to subtract the speech distortion from
the clean speech power in addition to treating it as residual
noise power. In this case, we have:

∆i =
1

βi

∑
k∈Bi

ωi,k (er −wk)
H
Csk (er −wk) , (50)

which suggests that ∆i depends on the weight vector wk. This
renders the resulting optimization problem in (16) difficult to
solve analytically. To mitigate this problem, we notice that due
to the averaging with a large time constant (cf. Sections V-A
and VI), we have ∆i(l) ≈ ∆i(l − 1), making it independent
of wk(l). In practice, we did not observe any significant
difference in the performances between the additive noise and
the subtractive models. For the rest of this paper, we use the
latter, and thus provide an analysis of it in the sequel.

Substituting (35) in (50) and using Csk = σ2
sk
dkd

H
k yields:

∆i=
1

βi

∑
k∈Bi

ωi,kσ
2
sk

∣∣∣∣1−αiuHk dk − (1−αi)
(
wµMWF
k

)H
dk

∣∣∣∣2
=

1

βi

∑
k∈Bi

ωi,kσ
2
sk

∣∣∣(1−αi)(1−g(µ)k )+αi(er−uk)Hdk
∣∣∣2, (51)

where in (51), we have made use of the facts that wµMWF
k =

g
(µ)
k wMVDR

k and
(
wMVDR
k

)H
dk = eHr dk = 1. As seen in (51),

dependency of ∆i on the weight vector is reflected by the
presence of αi. From (51) and (28), one needs the knowledge
of αi to calculate P ′si . On the other hand, P ′si has to be known
in order to calculate αi in (36). As suggested above, to cope
with this, we make use of the approximation ᾱi(l) ≈ ᾱi(l−1),
i.e. we use ᾱi(l− 1) to calculate ∆i(l) and P ′si(l) in (51) and
(28), respectively, and then update ᾱi(l) using P ′si(l).

1) Ambient-preserving mode: In this mode of operation, we
have uk = er. Substitution in (51) yields:

∆i =
(1− αi)2

βi

∑
k∈Bi

ωi,kσ
2
sk

(
1− g(µ)k

)2
. (52)

2) Aggressive mode: In the aggressive mode, we have uk =

wR
k = g

(µ2)
k wMVDR

k . Substituting in (51), we obtain:

∆i =
1

βi

∑
k∈Bi

ωi,kσ
2
sk

∣∣∣(1−αi)(1−g(µ1)
k

)
+αi

(
1−g(µ2)

k

)∣∣∣2.
(53)

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the minimum
processing beamformer in the aggressive mode (45) as well
as the ambient preserving mode (39) in a hearing aid setup.
Although there is no theoretical barrier to apply the proposed
beamforming framework in a binaural setting [31], [32], we
prefer to confine ourselves to the monaural case in order to
keep the evaluation simple and intuitive.

A dummy head with a hearing aid equipped with M = 2
microphones is placed at the center of a measurement room
with arrays of loudspeakers. We measure the head-related
transfer functions (HRTFs) from each loudspeaker to each one

of the microphones [33]. The measured HRTFs are then used
for calculating the relative acoustic impulse responses dk. We
thus assume in all the simulations, that dk are known, and the
target speaker is frontal (zero degree azimuth) and in the same
plane as the center of the dummy head (zero degree elevation).

The speech material is composed of excerpts of speech,
each a few seconds in duration, randomly chosen from a
database of recordings of 29 Danish speakers (15 females),
reading through randomly selected excerpts of Danish news.
The original database is calibrated to ensure a long-term
spectrum that matches the ANSI standard speech spectrum
level at normal vocal effort (cf. Table 3 in [12]).

At each trial, a speaker is chosen randomly. Next, two
excerpts are randomly cut out from his/her speech, ensuring
that each excerpt starts with and ends in at least 0.3 seconds
of silence to avoid cutting the words. Finally, the two excerpts
are united to form the speech material for the current trial.
Evaluation of the beamformer performance will, however, be
only based on the second of the two excerpts in order to ensure
that transient behaviours will not distort the evaluation.

For creating the noise fields, we use both synthetic and
realistic setups. For the synthetic setup, we measure the HRTFs
from each loudspeaker to each hearing aid in a room where
the dummy head is located at the center of a planar circular
array of 24 equally distanced loudspeakers. We use this setup
to create approximately isotropic multi-talker babble noise
fields by playing independent speech realizations from each
loudspeaker [33]. For the realistic setup, we use recordings
of sound fields from a spherical array of 32 microphones in
Oticon headquarters cafeteria in Denmark during the lunch
hours. The sound field is then recreated in the measurement
room with the dummy head located at the center of three
circular arrays with 6, 16, and 6 equaly-distanced loudspeakers
at elevations of -45, 0, and 45 degrees, respectively, measured
from the center of the dummy head.

Speech and noise are transformed to the time-frequency
domain using the STFT with a modified Hann window of size
128 samples with 50 percent overlap at a sampling frequency
of 20 kHz. For the subband filters, we use a set of n = 18
one-third octave band Butterworth filters. Throughout all the
experiments, the value of the time constant τ in (49) is kept
fixed at τ = 2 seconds, and the target audibility is set to
Ii = 0.8 for all subbands, unless otherwise is stated. For the
ambient-preserving mode (39), we set µ = 1, and for the
aggressive mode (45), we set µ1 = 5 and µ2 = 0.

In order to estimate the spectra of speech and noise, we
used the maximum likelihood estimation technique in [34],
[35], assuming that an ideal voice activity detector is available.
We compare the proposed beamformer with the following
beamformers: the µMWF-N beamformer in (15) with µ = 5
and α = 0.2,2 the standard MWF, and the MVDR beamformer.
For comparing the quality of the beamformer output sounds
we use the perceptual evaluation of speech quality (PESQ)
[21]. For speech intelligibility, we use the short-term objective
intelligibility (STOI) [22], even though the proposed method is

2Although these values (taken from [4]) are originally meant for binaural
beamforming, we have observed that they are also reasonable for the monaural
case.
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based on SII, the reason being the general agreement on STOI
as a more general predictor of speech intelligibility [23].

A. Idealized Case

To validate the solution offered in Section IV-C with regard
to the theoretical framework of processing penalty-versus-
performance, it is desirable to study the behaviour of the
beamformer under idealized situations. The SII-based perfor-
mance criterion and MSE-based processing penalty introduced
in Section IV are based on statistical expectations. In order
to make a reasonable estimation of the actual performance
and processing at the output of the beamformer, one needs
to average across a large number of time frames. For that
reason, the ideal condition for evaluating the behaviour of
the beamformer is when the “speech” and “noise” signals are
stationary processes drawn from known distributions. For this
purpose, we create stationary Gaussian signals and use them
as speech and noise. To keep the simulations minimalistic and
intuitive, we shape the spectrum of the noise in a manner
that matches the spectrum of the speech after having been
convolved with the HRTFs. We then adjust the SNR by scaling
the noise. This rules out any impact due to the differences
between the subbands, and thus “audibility” per subband will
be equal to the overall “intelligibility”. Moreover, we set the
hearing threshold (modelled by Λi) to zero to further simplify
the simulations. We focus on the ambient-preserving mode of
operation, since it more naturally lends itself to interpretation.

Fig. 4 shows the plots of the achieved “intelligibility”
and the corresponding processing penalty versus SNR at
the reference microphone for different values of the target
intelligibility. The two extreme cases with Ii = 0 and
Ii = 1 are particularly informative, since they correspond to
no processing and full processing (since Λi = 0). As seen
in the top panel of Fig. 4, for Ii = 0 (target SII = 0), the
psychometric function in Fig.3 is reproduced as expected. For
Ii = 1, the achieved “intelligibility” is greater than that of the
unprocessed noisy speech (Ii = 0) in a wide range of SNRs.
This is in price of a higher processing penalty as seen in the
lower panel of Fig.4. Note that we do not achieve a processing
penalty of −∞ in dB for Ii = 0 due to round-off errors. For
0 < Ii < 1, as long as the target Ii is not achievable even with
full processing, the plots coincide with that of Ii = 1. Once
Ii is achieved, there will be a transition, where as the SNR
increases, we move from full processing to no processing.

B. Aggressive Mode

Figs 5 and 6 plot STOI and PESQ scores as a function of
the global input SNR for the proposed beamformer as well as
three existing beamformers for approximately isotropic multi-
talker babble and cafeteria noises, respectively. In addition to
the conventional PESQ score, we have also calculated the so-
called speech PESQ score, which is the PESQ score when the
clean speech part of a given beamformer output is compared to
the clean speech at the reference microphone. Hence, speech
PESQ quantifies processing distortions imposed on the target
speech signal. The conventional PESQ score is penalized both
by the existence of residual noise and distortion of target
speech. However, in a beamforming setup, the residual noise is
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Fig. 4. Achieved SII and the corresponding processing versus input SNR
for the idealized stationary Gaussian case for various choices of the target
intelligibility. The legends on the top panel apply to both panels.

by far the dominating part in a wide range of input SNRs, such
that the distortion of the clean speech is unlikely to be clearly
represented by the conventional PESQ score. For that reason,
we have also plotted the speech PESQ scores versus SNR to
exclusively focus on distortion of the speech, regardless of the
residual noise. Moreover, we have also shown difference plots,
where the horizontal axes represent the scores for the standard
MWF.

As seen in Figures 5 and 6 (and as expected), the MVDR
beamformer does not distort the speech in price of relatively
poor performance in terms of noise reduction, as clear from
the PESQ scores. On the contrary, the standard MWF achieves
a higher level of noise reduction compared to the MVDR
beamformer in price of severely distorting the speech. The
µMWF-N beamformer achieves a slightly higher PESQ score
compared to the standard MWF, especially at higher SNRs,
supposedly because of the aggressive noise reduction with
µ = 5. The distortion of the clean speech is also less severe
compared to the standard MWF (beacuse of adding a portion
of the unprocessed signal to the beamformer output), but it
is still significant. Moreover, the STOI scores at lower SNRs
(where it matters the most) are slightly lower compared to all
the other methods. Because of the dynamic combination of
the two beamformers in (45), the proposed method seems to
achieve “the best of both worlds”. At lower SNRs, where the
noise impact is so severe that PESQ scores are the same for
all the beamformers, and STOI scores matter the most, the
proposed method achieves the highest STOI scores. At higher
SNRs, where full intelligibility is already achieved, and the
PESQ scores matter the most, the proposed method achieves
the highest PESQ scores. In addition to these, the proposed
method keeps the speech essentially distortionless within a
wide range of SNRs.

C. Ambient-Preserving Mode

Unlike the traditional conception of beamforming, where
noise is to be suppressed as much as possible, the goal here is
to retain noise in addition to speech, whenever a certain level
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Fig. 5. STOI, PESQ and speech PESQ scores in approximately isotropic babble noise for the proposed method in the aggressive mode and the existing
methods. Left panel shows the absolute scores, and right panel shows the difference scores with respect to the standard MWF. Legends on the top panels
apply to the lower panels, too.
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Fig. 6. STOI, PESQ and speech PESQ scores in cafeteria noise for the proposed method in the aggressive mode and the existing methods. Left panel shows
the absolute scores, and right panel shows the difference scores with respect to the standard MWF. Legends on the top panels apply to the lower panels, too.
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Fig. 7. STOI and NSRsig scores versus input SNR for approximately isotropic babble and cafeteria noises.
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Fig. 8. STOI and NSRsig scores versus input SNR for the proposed
beamformer with various choices of the target audibility in approximately
isotropic babble noise.

of speech intelligibility is nevertheless achieved. This implies
that standard evaluation methods used in Section VI-B are not
suitable here. We therefore need to take a different approach,
while trying to keep it as simple as possible to minimize the
inherent unorthodoxy. Since intelligibility is key here, we use
STOI in a similar manner to Section VI-B. At the same time,
we need to quantify the beamformers ability to preserve noise.
Since noise does not necessarily only consist of unwanted
speech, it is not clear how one can quantify noise quality

using the existing measures. A simple choice is the segmental
noise to signal ratio (NSRseg), which is calculated during
speech present intervals in a similar manner to segmental SNR,
but with swapping the roles of speech and noise. The plots
are shown in Fig. 7 for approximately isotropic babble and
cafeteria noises. As seen, at lower input SNRs, the proposed
method suppresses noise similar to the other beamformers.
At higher SNRs, where noise does not interfere with speech
intelligibility, the proposed beamformer retains a larger portion
of noise without any loss in the STOI score.

It is important to notice that the target audibility for the
proposed beamformer was deliberately set very high (Ii = 0.8)
to ensure no loss in the STOI scores compared to the existing
beamformers. However, STOI scores have a nonlinear relation-
ship with speech intelligibility [22]. For instance, at a STOI
score of around 0.8, full intelligibility is already achieved
for the Dantale II [36] and IEEE (cf. [20]) databases in the
presence of different types of artifacts [22]. The STOI scores
achieved in Fig. 7 may therefore be unnecessarily high. To
illustrate how one can control the compromise between intel-
ligibility and residual noise by adjusting the target audibility,
we plot the STOI and NSRseg scores as a function of SNR for
the proposed beamformer with different target audibilities in
approximately isotropic babble noise. The result is shown in
Fig. 8. The plots suggest that sufficient intelligibility may be
achievable with lower target audibilities, therefore preserving
a larger portion of the background noise compared to Fig. 7.
In practice, choice of Ii should depend on the application.

VII. CONCLUSIONS

We proposed a generalized beamforming rationale, where
the beamformer output is optimized to take the minimum
distance (processing) from a given reference signal, with the
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restriction that a certain performance criterion is fulfilled.
We showed that the classic speech-versus-noise beamforming
rationale is covered as a special case of the proposed rationale,
while in general, it goes beyond this dichotomy. We provided
a full analysis of the proposed concept, when the performance
criterion is based on the speech intelligibility index, and the
processing measure is based on the mean-square error. For
the resulting beamformer, we studied two modes of operation,
both theoretically and experimentally: an ambient preserving
mode that keeps the processing of the noisy speech to a
minimum necessary to achieve the desired intelligibility, and
an aggressive mode that maximally suppresses noise as long as
it does not compromise speech quality. Experimental studies
verified the advantages of each mode of operation within its
own relevant context.

APPENDIX A

The simplest way to make a correspondence between the
frequency bins and subbands is to assign all the frequency
bins k whose frequencies fall within the range of a certain
subband i to that subband. This is equivalent to a partitioning
of the set of all frequency bins {1, 2, ...,K} into n disjoint
subsets B1, ...,Bn. In this case, ωi,k = 1, if k ∈ Bi, and
ωi,k = 0, otherwise. The advantage of such a mapping is
that, there is no overlap between the subbands; i.e. each fre-
quency bin contributes to only one subband. In many practical
applications, however, such as in hearing aids, there are strict
limits on the maximum tolerable processing delay. This means
that the time frames must be short, leading to low-resolution
frequency bins. On the other hand, perceptually motivated
subband divisions, such as the critical or fractional octave
bands, tend to have a relatively high frequency resolution in
lower frequency subbands. Consequently, no frequency bins
may be assigned to some of the lower frequency subbands,
when the subbands have a higher resolution than the frequency
bins. This means that such subbands will be ignored altogether.
Moreover, the overall correspondence between the frequency
bins and subbands will be imprecise.

In this work, we have developed and used another corre-
spondence, which does not suffer from the above-mentioned
issue in price of engendering overlap between the neighbour-
ing subbands. A diagram of this method is shown in Fig. 9. A
long sequence of white Gaussian noise 3 is taken to the time-
frequency domain using the same transformation applied to the
microphone signals for representing them in frequency bins.
The component at a certain frequency bin k is then isolated
and returned to the time domain. The resulting sequence uk is
then processed using the filter bank that defines the subbands.
For a given subband i, the variance σ2

k,i of the output of the
subband filter is then estimated. Finally, the contribution ωi,k
of frequency bin k to subband i is calculated as:

ωi,k =
σ2
k,i∑n

j=1 σ
2
k,j

∑K
l=1 σ

2
l,i

σ2
uk

. (54)

3The white noise sequence, in effect, serves as stimulus for measuring the
impulse responses of the subband filters. Alternatively, other types of noise
such as speech-shaped noise can be used, or one can directly use the impulse
responses if available.

The first term in (54) is a normalization to ensure that the
weights ωi,k for i = 1, ..., n give the relative contribution of
the bin k to all the subbands. The second term is the output
to input power ratio for subband filter i, when frequency bin
k in isolation is under consideration. This term takes account
of any power dissipation due to subband filtering.

When the range of frequencies associated to bin k is
essentially outside subband i, the estimated contribution ωi,k
will be very small. In such cases, to avoid unnecessary
computational complexity, ωi,k can be rounded off to zero.
We therefore set to zero values of ωi,k that are below a
certain threshold. As an example, we consider a sampling
frequency of 20 kHz, using an STFT with a frame size
of 128 samples and 50 percent overlap between the frames
for the time-frequency representation, and one-third octave
band filter-banks with n = 18 subbands (nominal midband
frequencies ranging from 0.16 to 8 kHz) for the subband
decomposition. The result is summarized in Table I, where
for each subband i = 1, ..., 18, the contributing frequency
bins k (for the proposed scheme with a threshold of 0.01)
and k′ (for the traditional partitioning method introduced at
the beginning of this section) are listed. The weights ωi,k are
also shown in the table. However, since ωi,k′ = 1 for all the
contributing frequency bins k′, we have not included them in
Table I. As shown in the table, with the traditional partitioning
method, no frequency bin is assigned to subbands 2,3 and
5. This means that these subbands will be ignored. With the
proposed scheme, this issue is clearly addressed by assigning
some of the frequency bins to multiple subbands. Moreover,
it is seen that the distribution of the weights ωi,k with the
proposed scheme has a tapered form rather than the binary
form resulting from the partitioning scheme. This leads to a
more precise account of the contributions that each frequency
bin makes to the given subband.

For the traditional partitioning, the proposed minimum
processing beamformer in (35) leads to one weight vector
per frequency bin. For the procedure described in Fig. 9, if
a frequency bin is associated to more than one subband, one
obtains different weight vectors for the same frequency bin.
To produce a final beamformer output for each frequency bin,
one needs to apply a combination formula such as the one
in (37). The weights ηi,k can be simply calculated using the
first term on the right-hand side of (54). However, we use the
square root of the variances, since the weights are to be applied
to beamformer weight vectors, unlike ωi,k in (54), which are
applied to power spectra.

APPENDIX B

We prove that the µMWF beamformer in (12) can be written
as the cascade of the MVDR beamformer and the generalized
postfilter given in (13). Starting from (12) and substituting (5),
we have:

wµMWF
k =

(
C(µ)
xk

)−1
Csker

=(Csk + µCvk)
−1

Csker

=

(
IM +

1

µ
C−1vk Csk

)−1
1

µ
C−1vk Csker
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Fig. 9. Procedure for estimating the contribution ωi,k of the frequency bin k to subband i.

TABLE I
FREQUENCY BINS k (PROPOSED) AND k′ (PARTITIONING) FOR THE 18

ONE-THIRD OCTAVE BANDS TOGETHER WITH THE WEIGHTS ωi,k

i k′ k ωi,k
1 2 1,2 0.01,0.25
2 - 2,3 0.23,0.05
3 - 2,3 0.10,0.24
4 3 2-4 0.01,0.47,0.02
5 - 3,4 0.22,0.32
6 4 4,5 0.60,0.13
7 5 4-6 0.05,0.80,0.10
8 6 5-7 0.07,0.87,0.21
9 7,8 6-9 0.03,0.79,0.69,0.02

10 9,10 8-10 0.31,0.98,0.55
11 11,12 10-13 0.45,0.99,0.85,0.05
12 13-15 12-16 0.15,0.95,0.99,0.81,0.04
13 16-18 15-19 0.19,0.96,1,0.99,0.54
14 19-23 19-24 0.46,0.99,1,1,0.97,0.22
15 24-29 23-30 0.03,0.78,1,1,1,1,0.94,0.14
16 30-36 29-37 0.07,0.86,1,1,1,1,1,0.99,0.49
17 37-46 36-47 0.01,0.52,0.99,1,1,1,1,1,1,1,0.79,0.04
18 47-58 46-58 0.25,0.93,1,1,1,1,1,1,1,1,1,1,0.55

=

(
IM +

1

µ
σ2
sk
C−1vk dkd

H
k

)−1
1

µ
σ2
sk
C−1vk dk (55)

=

(
IM−

1
µσ

2
sk

1+ 1
µσ

2
sk
dHk C−1vk dk

C−1vk dkd
H
k

)
σ2
sk

µ
C−1vk dk (56)

=
σ2
sk

µ
C−1vk dk −

ξk
µ

1 + ξk
µ

σ2
sk

µ
C−1vk dk (57)

=g
(µ)
k wMVDR

k ,

where (55) follows because Csk = σ2
sk
dkd

H
k and dHk er = 1,

(56) follows from the matrix inversion lemma [37], and (57)
is because the SNR at the output of the MVDR beamformer
is given by ξk = σ2

sk
dHk C−1vk dk.

APPENDIX C

The second constraint in (29) reflects the two boundary
conditions in (23), making sure that the estimated band au-
dibility remains in the interval [0, 1]. While we get back to
this constraint later, for the time being, we disregard it. The
max(·, ·) operator in (29) has to be tackled by a separate
treatment of the two possible cases; i.e. whether the first
argument is greater than the second or otherwise. We start with
assuming that Λi is the smaller of the two arguments of the
max(·, ·) operator. Given these assumptions, the optimization

problem in (29) reduces to the following:

min
wk for all k∈Bi

1

βi

∑
k∈Bi

ωi,k (uk −wk)
H
C(µ)
xk

(uk −wk) s.t.

1

βi

∑
k∈Bi

ωi,k(er−wk)
HCsk(er−wk)+µωi,kw

H
kCvkwk≤P ′si10−3(I

′
i−1

2),

(58)

Writing (58) in Lagrangian form with parameter λi and setting
the derivative with respect to wk (for a certain k ∈ Bi) equal
to zero, we obtain:

C(µ)
xk

(wk−uk) + λi {Csk(wk−er) + µCvkwk} = 0, (59)

Rearranging the terms in (59), using (5) and (12), and solving
for wk yields:

wMP
k,i =

1

1 + λi
uk +

λi
1 + λi

wµMWF
k

= αiuk + (1− αi)wµMWF
k , (60)

where 0 ≤ αi ≤ 1 is defined as:

αi ,
1

1 + λi
. (61)

To calculate αi, we first obtain the optimal processing penalty
D?(yR

i ,yi) by substituting (60) in the cost function in (58):

D?(yR
i ,yi) =

1

βi

∑
k∈Bi

ωi,k
(
uk −wMP

k,i

)H
C(µ)
xk

(
uk −wMP

k,i

)
=

1

βi

∑
k∈Bi

ωi,k (1−αi)2
(
uk −wµMWF

k

)H
C(µ)
xk

(
uk −wµMWF

k

)
= hi (1− αi)2 , (62)

where (62) follows from (31). Next we substitute (60) in the
constraint in (58) to calculate the optimal output error N?

i as:

N?
i =

1

βi

∑
k∈Bi

ωi,k
(
wMP
k,i

)H
µCvkw

MP
k,i

+ ωi,k
(
wMP
k,i − er

)H
Csk

(
wMP
k,i − er

)
=

1

βi

∑
k∈Bi

ωi,k
(
wMP
k,i−uk+uk

)H
µCvk

(
wMP
k,i−uk+uk

)
+

1

βi

∑
k∈Bi

ωi,k
(
wMP
k,i−uk+uk−er

)H
Csk
(
wMP
k,i−uk+uk−er

)
=

1

βi

∑
k∈Bi

ωi,k
(
wMP
k,i − uk

)H
C(µ)
xk

(
wMP
k,i − uk

)
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+
1

βi

∑
k∈Bi

ωi,k
(
wMP
k,i − uk

)H
C(µ)
xk

(
uk −wµMWF

k

)
+

1

βi

∑
k∈Bi

ωi,k

(
uk −wµMWF

k

)H
C(µ)
xk

(
wMP
k,i − uk

)
+

1

βi

∑
k∈Bi

ωi,k

{
µuHk Cvkuk + (uk−er)HCsk(uk−er)

}
= hi (1− αi)2 − 2(1− αi)hi +NR

i (63)

= NR
i − hi

(
1− α2

i

)
, (64)

where (63) follows from (62), (30) and (31).
We now turn our attention to the second case where Λi is

the greater of the two arguments in the max(·, ·) operator in
(29). In this case, the constraint becomes irrelevant, and the
solution to the optimization problem is the sheer minimizer of
the processing penalty; i.e.

wMP
k,i = uk (65)

N?
i = NR

i . (66)

It is easy to see that (65) and (66) are special cases of (60) and
(64), respectively, for αi = 1. In other words, when the error at
the output of the reference beamformer is already below the
threshold of hearing, there is no need to process its output,
since in this case, the error will be inaudible to the listener.

The max(·, ·) operator in (29) can be written as
max(Λi, N

?
i ). Noticing that N?

i in general depends on αi as
seen in (64), one must have the knowledge of αi in order to
calculate N?

i . On the other hand, it appears that to calculate
αi, one has to compare Λi with N?

i in order to evaluate
max(Λi, N

?
i ). Therefore, it may appear that these dependen-

cies prevent an analytical solution. Below, we show that this
is not the case. More precisely, we show that max(Λi, N

?
i )

can be evaluated simply by comparing Λi and NR
i .

Suppose that Λi ≥ N?
i . From (66) it follows that Λi ≥

NR
i . Now suppose that Λi < N?

i . We immediately conclude
that Λi < NR

i , since N?
i = NR

i − hi
(
1− α2

i

)
, and hi ≥ 0

and αi ≤ 1. Combining these two statements, it follows that
max(Λi, N

?
i ) = max(Λi, N

R
i ).

From the argument above, we also derive a lower limit on
αi, when Λi<N

?
i . From Λi<N

R
i −hi

(
1−α2

i

)
it follows that:

α2
i > 1− NR

i − Λi
hi

.

This together with αi ≥ 0 give the lower limit (34) on αi.
Substituting (60) in the third condition in (23), we also

calculate the optimal band audibility:

Ψ?(ζi) =
10 log ζi + 15

30
(67)

=
1

2
+

1

3
log

P ′si
max (Λi, NR

i − hi (1− α2
i ))

. (68)

Applying the first two conditions in (23) to limit the range of
Ψ?(ζi) to [0, 1] in (68), we obtain:

Ψ?(ζi) =

min

(
1,

1

2
+

1

3
max

(
−3

2
, log

P ′si
max (Λi, NR

i − hi (1− α2
i ))

))
.

Setting αi = 1, we obtain the formula for Imin
i in (32).

Similarly, setting αi = αmin
i yields (33). Notice that Imin

i ≥ 0
and Imax

i ≤ 1. Recall that the role of the second constraint
in (29) is two ensure that the estimated audibility will be
limited to the interval [0, 1]. Since the solution obtained above
enforces a stronger constraint, i.e. Imin

i ≤ Ψ?(ζi) ≤ Imax
i , the

original constraint is already satisfied and there is no need
for further check on it. Finally, to complete the proof, we
substitute (60) in the constraint in (58) to obtain the third
condition in (36). This yields:

α2
i = 1−

NR
i − P ′si10−3(Ii−

1
2 )

hi
. (69)

Limiting the range of αi as before, we obtain the statement
in the third condition in (36). This completes the proof.
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[16] I. Dokmanić, R. Scheibler, and M. Vetterli, “Raking the cocktail party,”
IEEE J. Sel. Topics Signal Process., vol. 9, no. 5, pp. 825–836, 2015.

[17] X. Xiao et al., “A study of learning based beamforming methods for
speech recognition,” in Proc. CHiME workshop, 2016.



14

[18] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech,” IEEE
Trans. Signal Process., vol. 49, no. 8, pp. 1614–1626, 2001.

[19] R. Martin, “Speech enhancement based on minimum mean-square
error estimation and supergaussian priors,” IEEE Trans. Audio, Speech,
Language Process., vol. 13, no. 5, pp. 845–856, 2005.

[20] P. C. Loizou, Speech enhancement: theory and practice. CRC press,
2013.

[21] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (pesq)-a new method for speech quality
assessment of telephone networks and codecs,” in Proc. 2001 IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), 2001, pp. 749–752.

[22] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm
for intelligibility prediction of time–frequency weighted noisy speech,”
IEEE Trans. Audio, Speech, Language Process., vol. 19, no. 7, 2011.

[23] J. Jensen and C. H. Taal, “An algorithm for predicting the intelligibility
of speech masked by modulated noise maskers,” IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 24, no. 11, 2016.

[24] J. M. Kates and K. H. Arehart, “The hearing-aid speech perception index
(haspi),” Speech Communication, vol. 65, pp. 75–93, 2014.

[25] ——, “The hearing-aid speech quality index (hasqi),” J. Audio Eng. Soc.
(JAES), vol. 58, no. 5, pp. 363–381, 2010.

[26] K. S. Rhebergen, N. J. Versfeld, and W. A. Dreschler, “Extended speech
intelligibility index for the prediction of the speech reception threshold
in fluctuating noise,” J. Acoust. Soc. Am. (JASA), vol. 120, no. 6, 2006.

[27] K. U. Simmer, J. Bitzer, and C. Marro, “Post-filtering techniques,” in
Microphone arrays. Springer, 2001, pp. 39–60.

[28] T. Piechowiak, J. Udesen, K. Moeller, F. Gran, and A. Dittberner,
“Promoting off-axis listening and preserving spatial cues with binaural
directionality ii,” in Proc. Int. Symp. Auditory, Audiological Research,
2015.

[29] M. A. Akeroyd and W. M. Whitmer, “Spatial hearing and hearing aids,”
in Hearing aids. Springer, 2016, pp. 181–215.

[30] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals
of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.

[31] T. J. Klasen, T. Van den Bogaert, M. Moonen, and J. Wouters, “Binaural
noise reduction algorithms for hearing aids that preserve interaural time
delay cues,” IEEE Trans. Signal Process., vol. 55, no. 4, 2007.

[32] S. Doclo, W. Kellermann, S. Makino, and S. E. Nordholm, “Multi-
channel signal enhancement algorithms for assisted listening devices:
Exploiting spatial diversity using multiple microphones,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 18–30, 2015.

[33] A. H. Moore, J. M. de Haan, M. S. Pedersen, P. A. Naylor, M. Brookes,
and J. Jensen, “Personalized signal-independent beamforming for bin-
aural hearing aids,” J. Acoust. Soc. Am. (JASA), vol. 145, no. 5, 2019.

[34] U. Kjems and J. Jensen, “Maximum likelihood based noise covariance
matrix estimation for multi-microphone speech enhancement,” in Proc.
20th Eur. Signal Process. Conf. (EUSIPCO), 2012, pp. 295–299.

[35] J. Jensen and M. S. Pedersen, “Analysis of beamformer directed single-
channel noise reduction system for hearing aid applications,” in Proc.
IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), 2015.

[36] K. Wagener, J. L. Josvassen, and R. Ardenkjær, “Design, optimization
and evaluation of a danish sentence test in noise,” International journal
of audiology, vol. 42, no. 1, pp. 10–17, 2003.

[37] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas.
Princeton university press, 2009.

Adel Zahedi received the M.Sc. degree from Iran
University of Science and Technology, Iran in 2011,
and the Ph.D. degree from Aalborg University, Den-
mark in 2016. From 2016 to 2018, he was a postdoc-
toral researcher with the Department of Electronic
Systems, Aalborg University. In 2018, he joined
Oticon A/S, Denmark, where he is an Industrial
Postdoc. Adel’s research areas include Statistical
Signal Processing with focus on Audio and Speech
Processing.

Michael S. Pedersen

Jan Østergaard (S’98–M’99–SM’11) received the
M.Sc.E.E. degree from Aalborg University, Aalborg,
Denmark, in 1999 and the Ph.D. degree (cum laude)
from Delft University of Technology, Delft, The
Netherlands, in 2007. He was an R&D Engineer
with ETI Inc., VA, USA. Between September 2007
and June 2008, he was a Postdoctoral Researcher at
The University of Newcastle, NSW, Australia. Dr.
Østergaard is currently a Professor in Information
Theory and Signal Processing, Head of the Section
on AI & Sound, and Head of the Centre for Acoustic

Signal Processing Research (CASPR) at Aalborg University.

Thomas U. Christiansen received the M.Sc. degree
in computer science as a major and linguistics as
minor from the University of Copenhagen, Copen-
hagen, Denmark, in 1999 and the Ph.D. degree in
electrical engineering from the Technical University
of Denmark, Lyngby, in 2004. From 2004 to 2012,
he was Post-doc, Assistant Professor, Associate Pro-
fessor and Senior Scientist with the Centre for Ap-
plied Hearing Research at the Technical University
of Denmark. In 2013 he was employed as Senior
Research and Development Engineer with Oticon

A/S. At present he is still employed at Oticon. His major topics of interests
include models of the normal and impaired auditory periphery and its relation
to phonetics and speech perception.

Lars Bramsløw is a Senior Scientist within the Aug-
mented Hearing Group at the Eriksholm Research
Centre, part of Oticon A/S, Denmark. He holds
an M.Sc. and a Ph.D. degree, both from Technical
University of Denmark. The Ph.D. was carried out
at Eriksholm. Lars has 30 years of extensive experi-
ence in acoustics, hearing science and hearing aid
research and development, including employment
at House Ear Institute in Los Angeles, Eriksholm
and Oticon headquarters in Smørum, Denmark. He
currently works on the applications of deep learning

algorithms in hearing health care.

Jesper Jensen received the M.Sc. degree in electri-
cal engineering and the Ph.D. degree in signal pro-
cessing from Aalborg University, Aalborg, Denmark,
in 1996 and 2000, respectively. From 1996 to 2000,
he was with the Center for Person Kommunikation
(CPK), Aalborg University, as a Ph.D. student and
Assistant Research Professor. From 2000 to 2007, he
was a Post-Doctoral Researcher and Assistant Pro-
fessor with Delft University of Technology, Delft,
The Netherlands, and an External Associate Profes-
sor with Aalborg University. Currently, he is a Senior

Principal Scientist with Oticon A/S, Denmark, where his main responsibility
is scouting and development of new signal processing concepts for hearing
aid applications. He is a Professor with the Section for Signal and Information
Processing (SIP), Department of Electronic Systems, at Aalborg University.
He is also a co-founder of the Centre for Acoustic Signal Processing Research
(CASPR) at Aalborg University. His main interests are in the area of acoustic
signal processing, including signal retrieval from noisy observations, coding,
speech and audio modification and synthesis, intelligibility enhancement of
speech signals, signal processing for hearing aid applications, and perceptual
aspects of signal processing.


