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ABSTRACT

The continued spread of electric vehicles raises new challenges for
the supporting digital infrastructure. For example, long-distance
route planning for such vehicles relies on the prediction of both
the expected travel time as well as energy use. We envision a two-
tier architecture to produce such predictions. First, a routing and
travel-time-prediction subsystem generates a suggested route and
predicts how the speed will vary along the route. Next, the expected
energy use is predicted from the speed profile and other contextual
characteristics, such as weather information and slope.

To this end, the paper proposes deep-learning models that are
built from EV tracking data. First, as the speed profile of a route is
one of the main predictors for energy use, different simple ways to
build speed profiles are explored. Next, eight different deep-learning
models for energy-use prediction are proposed. Four of the models
are probabilistic in that they predict not a single-point estimate
but parameters of a probability distribution of energy use on the
route. This is particularly relevant when predicting EV energy use,
which is highly sensitive to many input characteristics and, thus,
can hardly be predicted precisely. Extensive experiments with two
real-world EV tracking datasets validate the proposed methods. The
code for this research has been made available on GitHub.
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1 INTRODUCTION

Transportation is currently undergoing a transformation driven by
the emergence of new automotive technologies, such as electric
and autonomous vehicles, as well as the continued digitalization of
all aspects of transportation. For example, the efficiency of a fleet of
autonomous electric vehicles will be highly dependent on effective
routing and scheduling algorithms. Such algorithms will, in turn,
depend on data-driven predictions of travel time and energy use.

Modern routing and mapping systems, such as Google Maps, use
large amounts of geo-positioning data to maintain a dynamically up-
dated time-dependent graphs as representations of road networks.
Based on this data, the systems suggest optimized routes according
to a set of criteria. Furthermore, travel time can be predicted. For
electric vehicles, in addition to travel time, energy consumption
prediction is equally important. This is essential for longer trips
which involve planning of where and how much to recharge.

As the predictions are made based on historical data, the process
usually benefits greatly from large amounts of such data. While
travel-time predictions can be made on data from all kinds of vehi-
cles, energy consumption predictions can benefit only from electric
vehicle data. Further, only data concerning the specific model of
the vehicle can be readily used. This further amplifies the scarcity
of EV data due to the current limited spread of such vehicles.

Thus, we argue for a two-tier architecture to produce energy
consumption predictions. First, routing and travel-time-prediction
sub-system generates a suggested route and predicts how the speed
will vary along the route. This can benefit from large amounts of
data from all kinds of vehicles and other telematic sources. Next, the
route, its predicted speed profile and other contextual characteristics,
such as the current weather as well as the slope of the road, are used
to predict the expected energy use along the route. The prediction
is based on machine learning models built on relevant smaller EV
datasets.

The focus of this paper is to explore deep-learning methods for
such predictions. As the speed profile of a route is one of the main
predictors for energy use of EV [11] and it itself is a prediction, the
important question is how accurate the speed profile should be to
predict energy use effectively.

The second, related challenge stems from the fact that EV energy
use is highly sensitive to many input characteristics, not all of
which may be known at the time of prediction and/or recorded
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in historical data used to train the prediction models. Consider an
example in Figure 1, which is taken from the dataset used in the
experimental study. It shows how energy use (or recuperation due
to regenerative braking) varies for different trips on the same nine
consecutive segments of the road network. Each point in the figure
corresponds to a traversal of a segment and horizontal spacing of
the points is used to separate them visually.

0.04-
~c 0.02-
E ol :
[ 0004 ¢ P @ e ¥ :
~0.02

Segment id

Figure 1: Variation of energy used/gained in consecutive seg-
ments under similar conditions of air temperature 12-16°C,
speed 50-60 km/h, and travel direction

Motivated by such energy-use variability, we propose proba-
bilistic prediction methods that, for a given route, predict not just
a single-point estimate but a probability-distribution parameters,
which can then be used, for example, to derive a confidence inter-
val for a given confidence threshold. Such confidence intervals of
energy can be used to calculate minimum and maximum charging
times when planning longer trips.

The contributions of this paper are twofold. First, to the best of
our knowledge, it presents the first in-depth exploration of a set of
deep-learning models for EV energy use prediction that are learned
from the GPS tracking data. As mentioned, some of the models
predict not just point estimates but the parameters of predicted
probability distributions. Next, the paper contributes with the in-
sights from the extensive testing of the models on two different
real-world EV tracking datasets.

The remainder of the paper is structured as follows. First, Sec-
tion 2 briefly surveys related work. Section 3 describes different
versions of machine-learning problems. Deep-learning models are
covered in Section 4. Finally, Section 5 reports on the experimental
study and Section 6 concludes the paper.

2 RELATED WORK

Using machine learning and related methods in the area of EV
energy use has not yet gained a lot of attention. We distinguish two
classes of studies: those related to EV charging infrastructure and
those related to the energy use by the vehicles themselves.

The modeling of EV infrastructure starts from modeling the
energy use of the charging stations [27]. Such studies are also
extended to optimize scheduling of the charging times using actor-
critic learning [32]. While the total energy use is proportional to
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the number of EVs within some region, the energy use prediction
for individual charging stations is more complicated [25].

Other type of problems concern modeling the individual energy
use for a specific EV instance. Various management strategies are
proposed using reinforcement learning to transfer efficient energy
management from expected velocity to automated system control
[6, 12]. The authors model the vehicle energy consumption in terms
of the state-of-charge by minimizing the so-called Q-function using
reinforcement learning. In contrast, we predict the energy consump-
tion based on the data from many EVs. We view the optimization
of driving as the next possible step that would benefit from the
accurate energy-use predictions. Similar to our work, Liu et al. con-
sider the speed profile as input to predict the state-of-charge (SOC)
as output [13]. Deep learning applied on increased quantities of
historical data enables modeling of EVs based on driver’s history
[2, 30], and on predetermined fixed routes [33].

The probabilistic energy prediction approach [22] was investi-
gated by creating statistical models. We use probabilistic models
on sequence data inspired by the works that concern with time-to-
event churn prediction [15] or asset management [24]. We combine
this approach with the recurrent models which are successfully
used on spatio-temporal data in predicting extreme condition traffic
[31] or origin-destination forecasting [8].

3 MODELING EV ENERGY USE

First, the notation and modeling of EV energy-use prediction is
presented, then it is formalized as different machine learning prob-
lems.

3.1 Problem modeling

We assume the vehicles travel in a road network that is modeled
as a directed weighted graph. A weight of an edge consists of a set
of attributes, such as the length, the road type, and the slope (the
difference of altitudes at the beginning and at the end of the edge).
A planned route, r, is then a sequence of route segments, each of
which corresponds to a planned traversal of an edge of the road
network.

Similarly, we assume that there is a historical database of N
map-matched trips. As a planned route, each trip rj,j = 1,...,N
from the database consists of trip segments Sry. ks k=1,...,Ny.
Figure 2 illustrates such a trip and its segments as well as the speed
and cumulative use of energy along the trip.

In addition to the attributes inherited from the road network,
the segments of trips (and planned routes) inherit many other trip-
specific attributes such as time of day, day of week, weather condi-
tions, and most importantly travel time, which is either a recorded
travel time (for a trip) or a time derived from a predicted speed
profile (fro a planned route), as described in the next section. The
totality of all such attributes, both road-specific and trip-specific is
called the characteristics or input covariates of a segment.

An important attribute of a historical trip segment is the recorded
energy use which can be both positive (a loss of energy) and nega-
tive (a gain of energy). Energy use is modeled as a function of all
other input covariates.
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Figure 2: The route r;, its segments Sty ko speed profile, and
energy prediction

We consider the EV energy-use prediction as a supervised learn-
ing problem to learn a mapping from above-mentioned charac-
teristics x; of an individual segment of a route to energy use on
that segment g4 : X C R — E C R, or, more generally, a
mapping from the characteristics of all segments of a route to
the total energy-use on a route g4 : X C RNrXdx _, C c R.
The mapping should be learned from a given training dataset
Dyr = {(x),1-€j,1)|1 <1< Ny, 1 <j < N}, where ej; is energy
consumed on segment i of trip j and x;j,; are its characteristics. In
our main experimental study, the number of characteristics dx = 30
and the maximum number of segments per trip N, = 550. We also
denote M = 3N 1 Nr;, the total number of segments in a training
dataset. Finally, ¢ are the learned internal parameters of model g.

As suggested above, there are two different formulations of the
learning problem. In the first version, called segment-level predic-
tion, the model predicts energy use separately for each segment of
a route. Thus, it is either applied on each segment, or, alternatively,
it takes the characteristics of all segments as inputs and has N,
outputs. Finally, the predictions are summed to get the prediction
of the total consumed energy on the route. For a trip rj, ¢,; denotes
the predicted total consumption of energy, while ¢,; denotes the
corresponding ground-truth value in the training dataset:

Ny

Crj = § €rj,i»

i=1

Ny,
er = § er]‘,i'
i=1

In the second version of the problem, termed accumulated predic-
tion, the model predicts ¢r; as its single output. Experimental study
explores the benefits of the two approaches in terms of prediction

1)

accuracy.
Note that the granularity of the division of planned routes and
recorded trips into segments depends on how the road network is
subdivided into edges. The experimental study of this work bene-
fits from Open Street Map (OSM) [23] and its rather fine-grained
division of roads into multiple edges to capture differing topology
of roads and variances of other attributes in the recorded trips and
predicted routes. While out of scope of this work, the granularity
can be adjusted by splitting/joining edges of the road network.
Figure 3 illustrates one trip from the main training dataset used
in the experimental study. The average speed and energy use on
each of the segments of the trip as well as the cumulative energy
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use are shown demonstrating the fine-grained subdivision of a trip
into its segments.
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Figure 3: A speed profile and the corresponding energy use
on a real trip

3.2 Speed profiles

As EVs convert the stored energy into kinetic energy very effi-
ciently, and air resistance grows non-linearly with the increase
in speed, average speed on a segment is one of the most impor-
tant input charactersitics for predicting energy use. Further, the
speed-energy dependency is further complicated by averaging over
accelerations and decelerations inside the segments. Finally, in con-
trast to other charactersitics, it can not be known precisely at the
time of prediction.

With this in mind, we propose four simple ways to generate the
speed profile of a route. The speed profile is defined as a sequence
of average-speed predictions—one for each segment of the route.

Very often the speed limits of segments are known [14]. Thus
the first type of the speed profile, the speed-limit profile, sets the
speeds to be equal to the speed limits of the road-network segments
traversed by the route. While trivial to compute such a prediction is
useful as a fallback option when other type of data is not available.
It has been successfully used to optimize fuel use [16].

When historical data is available, likely speeds on segments
can be predicted [10]. In the simplest form, for each segment, the
average speed of all historical traversals of that segment is used as
a prediction. This is the second type of the speed profile, which we
term the average profile.

The third type of the speed profile is similar to the second, but
it averages only over the historical trips that happened during
the same day-of-week type (weekend vs. workday) and the same
time-of-day category. Figure 4a) shows the rationale behind this,
demonstrating that, in the main experimental dataset, the number
of trips is quite different on weekends vs. on workdays and when
considering different times of day. Thus, the global average would,
for example, drown the higher speeds of the uncongested weekend
traffic in large amounts of workday traffic data. We suggest three
time-of-day categories: rush hour (7:00-9:00 and 15:00-17:00),
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Figure 4: (a) The distribution of the number of segment traversals over different times of day and weekends vs. workdays; (b)
Four types of speed profiles for an example trip; (c) Probabilistic prediction scheme: deep neural network predicts distribution
parameters ¢ where energy e is modelled probabilisticly at each segment r; ;.

night (22:00-6:00), and the rest of the day. The three categories
combined with the binary day-of-week type gives a total of six dif-
ferent time-of-travel categories according to which average speeds
on each segment are computed to get what we term a time-specific
average profile.

The fourth type of the speed profile is the ideal speed profile
that matches the real future traversal of the route perfectly. Such a
profile is obviously not possible in a real system but can be used as
an evaluation baseline. The four types of speed profiles for the trip
from Figure 3 are illustrated in Figure 4b).

3.3 Machine learning problems

With the descriptions of data in place, the energy-use prediction
problem is formalized as different variants of machine learning.

3.3.1 Regression problem. We denote X as the input space and E
as the target (used energy) space. Here, xj,; € X C R% s an obser-
vation of trip j at segment i, and ej,; € E C R is the used/gained
energy. A simple regression model predicts energy consumption
éj,; for each segment Sryi independently: é; = (&;,1, ..., €, Ny ). The
independent predictions can then be summed up to get the cumula-
tive prediction of energy use for the whole route (see Equation (1)).
The unknown parameters of a regression-like model are estimated
by minimizing the mean square error loss (MSE):

1 M
Lreg= 7 > (e = &), @
Jj=1

where M is the total number of trip segments in the training
dataset.

3.3.2  Sequential regression problem. Since the observations in seg-
ments are spatially-dependent, it is natural to consider sequential
models [28]. The problem can be modeled as a sequence-to-sequence
(seg-to-seq) task and we employ the long short-term memory net-
work (LSTM) [7] as a model. For each trip rj, the model takes
characteristics of all the segments Sry. k> k=1,.., N,j and predicts
the energy use for each of them. The unknown internal parameters
for LSTM can also be estimated by minimizing the MSE.

3.3.3 Deep probabilistic problem. As illustrated in Figure 1, the
energy use of EVs is sensitive to many input characteristics such as
the data granularity, various (unknown) external conditions, the
driving style of the driver, the load of the car, or the equipment
turned on. This makes precise predictions hard and point estimates
can be misleading. In order to estimate and reduce the uncertainty
in prediction we consider the probabilistic approach.

Suppose that target data are independent random variables ey, . . . , eps.

Denote by Fj(e|0) the c.d.f. of e;. Let
Fo = {F(e|0),0 € © c R?}

be a parametric family of absolutely continuous cumulative distri-
bution functions with continuous unimodal densities f.

Let us assume that distribution parameters 6; ; depend on ex-
planatory variables x;j,;: 0j,; = g(xj, :|¢). We choose the operator
g(x|¢) to be a deep neural network with unknown parameters ¢.
The model is trained on the training data {x;,;, €j i };=1,. ANy =1 N
and the output of the model is 6} ;. Differently from regression-like
problem formulation (see Section 3.3.1) the e;, ; is just a realization
of Fi(y|0). Thus, a deep neural network is trained to predict the
parameters of the distribution

6),i = g(xj,il$) ®3)
s.t. e~ F(el0)

Figure 4c) illustrates the probabilistic problem formulation, where
¢ are the parameters of a normal distribution.

Next, we discuss how to optimize probabilistic deep neural net-
works. In contrast to the point-estimate problem formulation where
the loss functions like MSE, L1, L2 or similar can be used, these func-
tions do not fit probabilistic problem formulation since the model
predicts distribution parameters and not energy point estimates.
Instead, we can use maximum likelihood estimation:

M
Ly = I—[ f(eil6;).
i=1

In practice £(0|e) is rarely applicable due to stability problems;
thus, negative log-likelihood is used instead:

M
Liog-mr == ), log(f(eil6:)).

i=1
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Since parameters 6 = 6(¢, x) have a functional form, we can
also use this loss function and gradient-based methods to estimate
model parameters ¢. With given training data, we can learn both the
network parameters ¢§ and the predicted distribution parameters 0.

3.3.4 Deep sequential probabilistic problem. Similarly to Section 3.3.2,
the probabilistic energy-use prediction problem can be formulated
as a seq-to-seq task, but instead of predicting the energy consump-
tion sequence e, ... e Ny the model predicts the distribution pa-
rameters 01, ..., 0y, for all segments of the route r;.

The sequential probabilistic model, in contrast with the simple
probabilistic model, produces the sequence of N, predictions of
parameters for each route. Similarly the negative log-likelihood can

be used for optimisation.

3.3.5 Confidence intervals. The main benefit of the probabilistic
models is that they can estimate not only the most likely energy use
but also provide information about the uncertainty of the decision,
which can be expressed as a confidence interval for some given
confidence threshold. To understand how such intervals are com-
puted, consider the properties of the sum of normally distributed
random variables. Let e; ~ Fi(e|0) = N(e|u, 02). Then the sum ¢ of
the random variables at a given segment N; (consumed energy of
the trip) have the distribution:

Nr; Nr; Ny
2
vy = St Yo D).
i=1 i=1 i=1

Thus, the (1 — @)-100% predicted confidence interval at segment
Ny, can be expressed as:

N,
Ch-aN,, = (Zﬁi —Zi_q/2
=1

where /i and 6 represent the estimated parameters of the normal
distribution of the energy use in the segment, and z;_/; is the
a-level critical value of the normal distribution.

Figure 5 summarizes the inputs and the outputs of the discussed
problem formulations. The number of input characteristics for each
vertex is shown as 30 which corresponds to our main experimen-
tal study. Considering the outputs, note that both point-estimate
and probabilistic problem formulations come in two versions: the
accumulated and the segment-level.

Input space:

Point Accumulated

Travel time in Weather estimate / R
segment info R c
1 Segment

L, Z1 level

Model é1,..,€n,

e = f([6,¢)

Segments Variables

TN ¢
Distribution Segment
T estimate level

6 e R? €1,..,€n,

Speed profile

Figure 5: Inputs and outputs of the models.
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4 DEEP-LEARNING MODELS

In the following, deep learning models are proposed to solve the
different versions of ML problems formulated in the previous sec-
tion. More specific technical implementation details are provided
in Section 5.

4.1 Deep neural network

The deep neural network (DNN) implements an operator function
fo:Xc R% — E c R% [5]. The composition of L non-linear
transformations are applied in fully connected networks where
L — 1 are hidden layers and the last one is the output layer. The
input can be defined as X° = X ¢ R3’. Then the I-th layer has
n; unknown parameters ¢ C R™-1*1 receives an input vector
X!=1 € R™-1, and transforms it into vector X! € R™ by applying a
linear transformation, followed by a component-wise (non-linear)
activation or transformation function o

x'=o(@'x",

where ¢! e R"*m-1t1 1 < | < M and X! is the input for the
(n + 1)-th layer [5]. To construct DNNs, the batch normalization as
non-linear transformation is employed [9].

4.2 Long short-term memory model

One of the most commonly used models for sequential-data prob-
lems is the LSTM [7] model which relies on the combination of
the gate mechanism and the state updates. The state of LSTM is
described as a pair of vectors (c;, h;) which is interpreted as long-
and short-type memory, respectively. The time/sequence in our
case is the segment order t = 1,..., N,. Getting the new input
xt, the LSTM updates h;—1 to new candidate memory ¢; and gate
variables iz, f;, and oz, which denote input, forget, and output gates,
respectively. The input gate i; controls the integration of candi-
date ¢; into c;, allowing activation of certain gates. The forget gate
ft controls integration or previous memory c;—1, and the output
gate o; transforms c; into new hidden state h;:

ir = o(dr,ixt + ¢2,ihs—1 + by),

fo = oy pxe + Gy phe-1+bp),
ot = o(p1,0Xt + P2,0ht-1 + bo),

¢ = tanh(dy,cxe + P2, che-1 + be),
ct = f[tOc—1+ir 0%,

hy = oy O tanh(cy),

where © denotes element-wise multiplication, o denotes sigmoid,
and tanh denotes hyperbolic tangent activations. We use two stacked
LSTM modules, such that the inputs for the second LSTM model
are the outputs of the first module: xl(fz) = ht. The output for
the classification model is selected to be a fully connected layer
er = ¢;o§2) + bgz) . As in other models, the dimension of the output
depends on whether we are predicting a point estimate or distribu-
tion parameters.

4.3 Other approaches

Apart from the models described above, we experimented with
the Transformer NNs [29] which have become the state-of-the-art
technique in natural language processing and, recently, in vision [4].
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Figure 6: Normalised energy use for different average speeds
and temperatures. Each point is a trip segment.

However, as our data is non-homogeneous, the positional encoder
becomes meaningless. After discarding the positional encoder and
adapting a vision transformer [4] to our problem, the experiments
seem to indicate that the model is inferior to other, simpler models,
thus we do not report these results and leave further investigation
of the potential of these types of models as an interesting future
research direction.

5 EXPERIMENTAL STUDY

5.1 Data

The primary EV dataset was collected in Denmark throughout 2012
[11] and involved tracking a fleet of 164 almost identical EVs. This
study uses a version of the original data that is map matched to the
OSM road network, and where the characteristics are aggregated
per segment. The EV data is joined with the weather data from
NOAA [20], as well as digital elevation data with a resolution of 1
arc-second [19] is used to calculate the altitude differences of the
ends of segments. Finally, observations with missing values are
removed. The dataset contains 442963 segment trips from 11908
unique trips. We split the data to 70/10/20(%) or 8335, 1191, 2382
trips for training, validation and testing datasets, or 305867, 47315,
89781 segments respectively.

Table 1 provides the main descriptive statistics of the data and
Figure 6 illustrates the volatility of the energy used/gained, espe-
cially at lower speeds. This is explained by the fact that a lot of the
short and slow trip segments in the data correspond to inner city
stop-and-go traffic with many accelerations and decelerations. It is
interesting whether the proposed models can capture this volatility.

Special attention has to be taken to prepare the speed-limit data
used to generate the speed-limit speed profiles of routes. Multiple
speed-limit values are missing in the OSM road-network data (zero
values). To compensate, we first compute the median speed values
for each OSM road type in the dataset. Then, each missing speed
limit is replaced by the median speed of the corresponding road

type.

90

Petkevicius, Saltenis, Civilis, and Torp

Table 1: Descriptive statistics of the main characteristics of
segment traversals

Speed Time Driven Air Wind Altitude E

(ms) (s) (m) temp. C speed diff (m) (kwh)
mean 48.64 1246 168.01 8.49 4.83 -0.06 0.03
std  21.63 18.10 278.54 7.50 2.57  3.69 0.07
min 0.11  0.03 0.02 -16.00 0.00 -56.00 -1.48
25% 32.92 3.00 35.99  3.00 3.00 -1.00 0.00
50% 47.75 7.01 84.27  8.00 5.00 0.00 0.01
75% 61.93 15.02 181.40 14.00 7.00 1.00 0.04
max 169.08 1400.64 9626.21 27.00 16.00 43.00 4.48

After pre-processing, 30 trip-segment characteristics are used as
the input for the models (see Table 2).

The EV data covers a wide range of scenarios from long trips
to city routes (see the left map in Figure 7). Most importantly, it
covers wide range of weather conditions [(—16, 27)]°C and winds
up to 16 m/s.

The second EV dataset is extracted from the Vehicle Energy
Dataset (VED), a large-scale, open dataset of fuel and energy data
collected in Ann Arbor, Michigan, USA [21]. The data was col-
lected from Nov, 2017 to Nov, 2018 and captures GPS trajectories
of vehicles along with the time-series data of their speed as well
as fuel, energy, and auxiliary power use. Only a small portion of
the data was used as only three fully electric vehicles are present
in it and just one vehicle data with most data was used. The data is
map-matched to OSM road network using the pgMapMatch pack-
age [17]. Only tracks with successful map matchings are chosen
(match score of more than 70%). Tracks are split into sub-tracks if
the time gap between two consecutive GPS points is longer than
17sec. Each data point is augmented with the weather data from
NOAA [20]. As for the main dataset, digital elevation data [19] is

Table 2: The characteristics of a trip segment

Characteristic Comment # Var.
Speed Speed profile data 1
Time (s) Time of traversal 1
Air temperature | Weather info 1
Wind speed (ms) | Weather info 1
Altitude diff Segment start and end altitude 1
difference (m)
Travel time The day-time category 1
Weekend The weekend indicator 1
Road conditions | Indicator of 'drifting’, 'dry’, ’fog’,
"freezing’, ‘none’, ’snow’, "thunder’ 8
Road type Indicator of ’living_street’
> ’primary’, ‘residential’, ’secondary’
’secondary_link’, ’service’, ’tertiary’ 14
’track’, "trunk’, "trunk_link’,
‘motorway_link’, 'unclassified’,
‘unpaved’, "'wet’, ‘'motorway’
Total characteristics (dy) 30
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Table 3: The selected model architectures and the total number of unknown model parameters. The number of last layer

outputs O is one for regression models and two for probabilistic.

DNN segment-level

DNN accumulated

LSTM segment-level LSTM accumulated

Layers from Dense (B, 16)

Dense (B, Ny, 16)

LSTM (B, Ny, 40)  LSTM (B, Ny, 40)

input (top)
to  output BatchNormalization (B, 16)  BatchNormalization (B, Ny, 16) LSTM (B, N, 40) LSTM (B, Ny, 40)
(bottom)
Dense (B, 64) Dense (B, Ny, 64) LSTM (B, Ny, 40) LSTM (B, 40)
BatchNormalization (B, 64)  BatchNormalization (B, Ny, 64) Dense (B, Ny, O) Dense (B, O)
Dense (B, 64) Dense (B, Ny, 64)
BatchNormalization (B, 64)  BatchNormalization (B, N, 64)
Dense (B, 256) Flatten (B, 35200)
BatchNormalization (B, 256) Dense (B, 256)
Dense (B, 8) BatchNormalization (B, 256)
Dense (B, O) Dense (B, 8)
Dense (B, O)
Num. of 26049 9020865 37321 37321
parameters
(MSE)
Num. of pa- 26058 9020874 37362 37362

rameters (11)

used to calculate the slopes of segments. We split the data to 300
trips for training and 182 trips for testing.

5.2 Software and hardware

Experiments are carried out using the high-level deep-learning
framework Keras [3] version 2.4 with Tensorflow [1] version 2.4.1
as a back-end. Computations are performed on a computer with
NVIDIA GTX 1080 Ti. The parameter optimisation is carried out

0 10 km

Figure 7: The EV data coverage. Line thickness represents a
number of trip segments on a road segment
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using the Adam optimiser with learning rate 0.01 and batch size of
128.1

5.3 Models

Eight different neural networks are constructed combining the ML
problem formulations from Section 3 and models from Section 4.
The details of the architectures are provided in Table 3. The number
of input covariates is relatively small dy = 30. Thus, we try to
avoid the dropout transformation since there are multiple critical
covariates like speed or seconds traveled. Instead, we use the batch
normalization layers [9], and set the batch size B = 128 in our
experiments.

Each of the configurations listed in Table 3 are considered in
two versions: 1) as a regression model, with MSE as a loss function
and the output dimension of one; 2) as a probabilistic model with
the negative log-likelihood (ll) as a loss function and the output
dimension of two, corresponding to the two distribution parameters
of the normal distribution.

For probabilistic models, the parameters of the distribution are
0 = (1,0)T € Rx(0,00) c R% Thus, variance ¢ must be positive
at all times. To achieve this, we employ the Softplus activation [34]
in connection with our loss function. This results in the positive
but unbounded range for the variance parameter.

In order to have a unified data structure for all the different
models, all of the trips with the length Ny; < 550 are converted to
a fixed size of N, = 550 using zero padding as is usually done for
LSTM models [18].

The LSTM models are constructed by stacking of the recurrent
neural networks. Two stacking layers are used (see Table 3).

! The repository of the experiments can be found online at https://github.com/linas-
p/EVDPEP (accessed on 01 July 2021).
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Table 4: The statistics of investigated models on unseen test-data trips. The last three columns present the normalised statistics

where energy use is divided by the traveled distance (kWh/km).

Model Loss Speed profile Acc. RMSE ‘ MAPE MAE MSE EVS | RMSE n-107% MAE n-10® MSE n-1071°
dnn mse ideal 0 0.50 0.57 017 025 0.87 3.47 1.61 1.20
dnn mse ideal 1 0.90 1.76 045 0.81 0.73 21.48 4.16 46.14
dnn mse  speed-limit 0 0.55 0.52 0.17 031 0.3 3.12 1.59 0.97
dnn mse  speed-limit 1 1.03 3.67 065 106 048 50.14 4.86 251.40
dnn mse  time-specific 0 0.72 0.68 019 051 0.73 5.26 1.83 2.77
dnn mse time-specific 1 0.65 0.68 021 042 0.77 8.56 1.97 7.32
dnn mse average 0 0.56 062 018 031 0.84 3.84 1.77 1.48
dnn mse average 1 0.89 1.70 033 080 0.58 22.65 2.76 51.32
dnn I ideal 0 1.10 1.45 045 121 051 8.70 4.83 7.57
dnn 1 time-specific 0 0.96 1.26 038 092 0.58 7.64 3.96 5.83
dnn il average 0 0.90 1.18 0.35 0.80 0.62 7.22 3.62 5.21
Istm mse ideal 0 0.76 1.41 0.26 0.57 0.68 15.90 2.79 25.28
Istm mse ideal 1 0.54 0.52 0.16 0.29 0.84 4.26 1.57 1.81
Istm mse  speed-limit 0 0.77 1.80  0.29 059 0.67 23.02 2.67 52.98
Istm mse  speed-limit 1 0.65 0.64 0.17 0.42 0.77 4.26 1.73 1.81
Istm mse  time-specific 0 0.81 3.27 0.52  0.65 0.70 40.97 4.40 167.83
Istm mse  time-specific 1 0.55 0.65 017 031 0.83 4.50 1.61 2.02
Istm mse average 0 0.77 068 020 0.59 0.69 6.12 2.02 3.75
Istm mse  average 1 0.56 0.75 0.18 032 0.82 5.72 1.74 3.27
Istm 1l ideal 0 0.50 083 018 0.25 0.86 6.45 1.68 4.15
Istm il ideal 1 1.34 5.76 0.83 1.80 0.01 77.17 4.51 595.46
Istm 1l speed-limit 0 0.58 098 0.22 0.34 0382 13.25 2.10 17.55
Istm 1 speed-limit 1 1.34 5.60 0.82 1.80 0.01 74.62 4.48 556.80
Istm il time-specific 0 0.75 0.91 0.26 0.56 0.72 6.08 2.52 3.70
Istm 1l time-specific 1 1.34 558 083 1.79 0.02 73.95 4.48 546.81
Istm il average 0 0.78 2.94 0.53 0.60 0.77 41.38 3.76 171.20
Istm 1 average 1 1.35 5.24 0.77 182 0.02 70.89 4.35 502.52
e el 5 o
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Figure 8: (a) Visualization pf 95%-confidence intervals (@ = 0.05) for various trips of the test set using the LSTM probabilistic
model; (b) Error (in terms of MAPE) of predictions against the length of the trips; (c) Number of trips in the test set which fall
in the predicted CIs at significance level o = 0.05 and @ = 0.3 respectively.

Table 3 shows that a simple DNN accumulated model is rather
complicated if the input data covers the hole trip information.

All of the models are trained for 50 epochs, as the learning curves
reach stability at around 25 epochs.

54

To have a broader view, a number of various metrics are used to
compare the accuracy of the investigated models:

Model comparison metrics
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MSE: The mean square error, which is used as a loss function

and is defined in Equation (2).

RMSE: The root mean square error or residuals.
MAPE: The mean absolute percentage error:

1

Lmape = M

o lej — 41
2
F=
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Figure 9: Predictions of LSTM probabilistic models when changing average speed in segments and air temperature, around the
fixed value from real trip. Color indicates the amount of training trip segments with similar speed and temperature values.

MAE: The median absolute error.
EVS: The explained variance score:

Var(ej — éj)
Leps=1— ——2
Var(e;j)
where Var is variance. All of the metrics are calculated using the
scikit-learn library [26].

5.5 Model comparison results

First, we present the results of the investigated models on the pri-
mary dataset. The four probabilistic models and one DNN model
trained with MSE is not included in the comparison to avoid dis-
tortion of the aggregated results. These models were not able to
learn reasonable neural-network parameters and returned NaN
(not-a-number) values or large errors similarly to the investigated
Transformer models.

Table 4 shows that threre are some LSTM models that perform
very well (for example, the accumulated model with the ideal speed
profile), but on average simple DNN models perform up to 10%
better than sequential LSTM models. However, it should be noted
that DNN models are 240x larger than LSTM models (see Table 3).

The table also confirms that the ideal speed profiles provide the
best models as expected see, for example, the thirteen line of the
Table 3. On the other hand, we do not see the significant difference
between the time-specific profiles and the speed-limit or average
profiles based on RMSE, but speed-limit profile is significantly worse
on MAPE metric. This can be best seen in the aggregated results
shown in Table 5.

To summarize, the experiments show that the best results on
realistic (not ideal) speed profiles are provided by the DNN model
trained with point estimates using time-specific speed profiles and
segment-level outputs. On the other hand, the best probabilistic
models are learned using the LSTM-based architecture (see the
highlighted lines at the bottom of Table 4).

The next set of experiments investigates the scalability of the
models in terms of the length of the routes. Figure 8b) shows that
the accuracy of predictions behaves as a linear dependency on the
log-log scale. Surprisingly, the prediction error decreases as the
length of the route increases. This can be explained by the fact
that the training data includes more of such relatively long trips
(the blue solid line in the graph). In addition, shorter trips mainly
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Table 5: Model accuracy aggregated according to the speed
profile types

RMSE MAPE MAE MSE
speed_type
ideal 0.755  1.809 0.342 0.660
average 0.830 1.874 0.363 0.750
time-specific  0.824  1.862 0.366 0.736
speed-limit 0.821  2.201 0.386 0.753

correspond to inner city driving with stop-and-go traffic, the energy
consumption of which is harder to predict.

5.6 The benefits of probabilistic models

The results show that the models predicting point estimates provide
slightly better accuracy than probabilistic models. Nevertheless, as
mentioned in the introduction, the predicted level of uncertainty
of prediction can be useful especially when planning charging on
longer EV trips. In the following we explore the confidence intervals
computed from the parameters returned by the probabilistic models
(see Section 3.3.5). Figure 8a) visualizes such confidence intervals
for the evaluation routes showing both the actual consumed energy
and the predicted confidence interval as it changes along each of
the routes.

To evaluate the generated confidence intervals, we investigate
how often the recorded consumption falls in the predicted confi-
dence interval (CI) varying the length of the route (see Figure 8c).
The graph shows that the amount of training data has a significant
impact on the CI predictions. Further, if a trip is short, small vari-
ations may lead to falling out of the CL. On the other end of the
spectrum, the small number of long trips does not provide sufficient
variability for the deep learning model to see enough cases during
training.

5.7 Exploring the learned models

One of the benefits of having mathematical prediction models is
the ability to model various unseen situations. Figure 9 shows
how one of the learned models behaves around three of the trips
from the dataset. For each graph, we start from a single trip (its
characteristics and energy consumption are given at the top of
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Table 6: The accuracy of the investigated models on the un-
seen test trips of the VED dataset

Method loss Speed profile RMSE MAE
0 Istm 1l ideal 1035  2.11
1 Istm 1l speed-limit 11.99 534
2 lstm 1 time-specific 9.85  1.76
3 Istm 1l average 10.44  1.97
4 Istm mse ideal 7.78  1.47
5 lIstm mse speed-limit 1146  3.13
6 Istm mse time-specific 9.72 275
7 lstm mse average 11.29  2.27
8 dnn 1 ideal 4937  26.64
9 dnn 1l speed-limit 1372 3.59
10 dnn il time-specific ~ 25.93 12.66
11 dnn 1l average 1192 152
12 dnn mse ideal 9.91 233
13 dnn mse speed-limit 13.20  5.13
14 dnn mse time-specific 11.51  4.82
15 dnn mse average 10.66  3.77

the graphs). Then, we change the speed characteristic of all the
segments by scaling it in interval [0.6, 2]. Similarly, the temperature
characteristic is scaled in interval [0, 3]). For visualisation of the
amounts of trips in the dataset the speed and temperature space was
divided into a uniform grid and the number of trips in each grid cell
was normalised to unit interval dividing by the maximal value in
the grid. The coloring of the graphs show that the dataset has only
limited coverage in the generated speed and temperature ranges,
but the model predicts non-linear change of energy consumption
with respect to the decreasing temperature and high/low speeds.
Rather smooth predictions indicate that the model is not overfitted.

5.8 Modeling the state of charge

To stress test the models we train them and evaluate on the very
small second EV dataset (VED). In contrast to the Denmark dataset,
this data does not explicitly contain information about the energy
consumption. Instead, the data records the state of charge as an
output (similarly to the experiments reported by T.Liu [13]).

Thus, in our models we replace the target e; with s; = SOC; —
SOCj-1 as a difference of SOC on a segment of a trip. Table 6 reports
the results of the experiments with the segment-level models.

In contrast to the experiments with the primary dataset, the
LSTM models provide the best results. The variation in the accu-
racies of the methods is due to the very small size of the dataset
covering a relatively large geographical area (see Figure 7). This, as
well as the results in Figures 8b) and 8c) demonstrate the importance
of the amount of training data.

6 CONCLUSION

Motivated by the spread of electrical vehicles, we propose a suite of
deep-learning models for EV energy-use prediction. In particular,
we propose not only models that predict a point estimate but also
models that predict a probability distribution. As the speed is a very
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important energy-use predictor, we investigate different speed-
profile types. The experiments show that the time-specific speed
profile or even the data-agnostic average speed profile are preferable
to the speed-limit speed profile. Further, doing forecasting at the
segment level and summing later seems to be preferable to the
so-called accumulated models.

The primary dataset used for this study is chiefly from urban
driving and concerns a single model EV. It would be interesting to
train the proposed models on wider datasets. While the transformer
models seem to be promising, its current adaptation is not perform-
ing better than the simpler models. Further work and experiments
are needed to understand the suitability of these types of models
for the problem of EV energy-use forecasting.
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