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Background: Electroconvulsive therapy (ECT) is one of the most effective treatments

for major depressive disorder. Recently, there has been increasing attention to evaluate

the effect of ECT on resting-state functional magnetic resonance imaging (rs-fMRI).

This study aims to compare rs-fMRI of depressive disorder (DEP) patients with healthy

participants, investigate whether pre-ECT dynamic functional network connectivity

network (dFNC) estimated from patients rs-fMRI is associated with an eventual ECT

outcome, and explore the effect of ECT on brain network states.

Method: Resting-state functional magnetic resonance imaging (fMRI) data were

collected from 119 patients with depression or depressive disorder (DEP) (76 females),

and 61 healthy (HC) participants (34 females), with an age mean of 52.25 (N = 180)

years old. The pre-ECT and post-ECT Hamilton Depression Rating Scale (HDRS) were

25.59 ± 6.14 and 11.48 ± 9.07, respectively. Twenty-four independent components

from default mode (DMN) and cognitive control network (CCN) were extracted, using

group-independent component analysis from pre-ECT and post-ECT rs-fMRI. Then,

the sliding window approach was used to estimate the pre-and post-ECT dFNC of

each subject. Next, k-means clustering was separately applied to pre-ECT dFNC and

post-ECT dFNC to assess three distinct states from each participant. We calculated

the amount of time each subject spends in each state, which is called “occupancy

rate” or OCR. Next, we compared OCR values between HC and DEP participants. We

also calculated the partial correlation between pre-ECT OCRs and HDRS change while

controlling for age, gender, and site. Finally, we evaluated the effectiveness of ECT by

comparing pre- and post-ECT OCR of DEP and HC participants.

Results: The main findings include (1) depressive disorder (DEP) patients had

significantly lower OCR values than the HC group in state 2, where connectivity between
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cognitive control network (CCN) and default mode network (DMN) was relatively higher

than other states (corrected p = 0.015), (2) Pre-ECT OCR of state, with more negative

connectivity between CCN and DMN components, is linked with the HDRS changes (R=

0.23 corrected p= 0.03). This means that those DEP patients who spent less time in this

state showed more HDRS change, and (3) The post-ECT OCR analysis suggested that

ECT increased the amount of time DEP patients spent in state 2 (corrected p = 0.03).

Conclusion: Our finding suggests that dynamic functional network connectivity (dFNC)

features, estimated from CCN and DMN, show promise as a predictive biomarker of

the ECT outcome of DEP patients. Also, this study identifies a possible underlying

mechanism associated with the ECT effect on DEP patients.

Keywords: major depressive disorder, electroconvulsive therapy, dynamic functional network connectivity,

resting-state functional MRI, prediction, default mode network, cognitive control network

INTRODUCTION

Major depressive disorder is a debilitating brain disorder
(Tsuchiyagaito et al., 2021), which is characterized by impaired
cognitive functioning, such as inattention and inability to focus,
somatic abnormalities, and neurovegetative symptoms, such as
sleep and appetite disturbance (Liu et al., 2021; Luo et al.,
2021). Based on the global burden of a disease report from
the World Health Organization, depression is the third rank
cause of disability and has been estimated to be the first-rank
cause of burden before 2030 (World Health Organization, 2008;
Ebneabbasi et al., 2021). There are effective treatments accessible
such as psychotherapy and chemical antidepressants, but about
30 percent of patients suffering from major depressive disorder
(MDD) do not respond to these treatments (Rush et al., 2006).
Therefore, there is an essential need for advanced therapies,
such as deep brain stimulation (DBS), transcranial magnetic
stimulation (TMS), and electroconvulsive therapy (ECT), which
are indicated for treatment resistant depression (Settell et al.,
2017; Mo et al., 2020; Williams et al., 2021).

Among all mentioned therapies, ECT can be considered
as one of the most effective treatments for pharmacological
resistant MDD (Enneking et al., 2020) due to its faster action and
higher remission rate than typical medicine-based treatments
(UK ECT Review Group, 2003). One hundred thousand annual
ECT treatments in the U.S revealed that the success rate of
this treatment is around 75%, with typical remission rates
within 3–4 weeks (Hermann et al., 1995; Weiner and American
Psychiatric Association, 2001). Moreover, pretreatment clinical
and demographic characteristics are poorly associated with
eventual treatment response (Haq et al., 2015). Therefore,
understanding the underlying neural and cognitive mechanisms
behind the mechanism of action of ECT, potentially, could
increase the efficacy of treatment, and pretreatment biomarkers
that are associated with eventual response are needed.

In recent years, functional network connectivity (FNC) data
obtained from resting-state functional magnetic resonance
imaging (rs-fMRI) time series has demonstrated highly
informative about the underlying brain connectivity patterns in
mental disorders, such as MDD (Mulders et al., 2015; Yan et al.,

2019; Liu et al., 2020; Luo et al., 2021). Recently, studies have
shown that ECT resets and stimulates the formation of the brain
regions/networks connectivity (Wang H. et al., 2018; Wang J.
et al., 2018; Bai et al., 2020). Investigations of the whole-brain
FNC of the patients with depression showed a reduction in the
left dorsal lateral prefrontal cortex connectivity corresponded to
ECT therapeutic course (Perrin et al., 2012; Abbott et al., 2013).
Several recent studies have reported functional and structural
connectivity changes occurred in the amygdala and anterior
cingulate cortex (ACC) after ECT (Wang et al., 2017; Takamiya
et al., 2018; Gryglewski et al., 2019; Qiu et al., 2019; Sartorius
et al., 2019). Another study declared that the cognitive control
network (CCN) and the default mode network (DMN) play
a vital role as the most effective brain network in regulating
brain connections after ECT (Menon, 2015). Moreover, ECT-
mediated connectivity changes include increased intra-network
connectivity in CCN (Wang H. et al., 2018; Wang J. et al.,
2018), decreased dorsolateral prefrontal cortex global functional
connectivity (DLPFC) as a part of CCN (Perrin et al., 2012), and
connectivity changes in the DMN (Mulders et al., 2016; Wei
et al., 2018; Bai et al., 2019).

In the aforementioned studies, FNC estimated from CCN and
DMN is often assumed to be static over time. However, this
assumption runs contrary to the dynamic nature of brain FNC.
Dynamic FNC (dFNC) has been recently introduced to overcome
this limitation (Allen et al., 2014; Zendehrouh et al., 2020; Sendi
et al., 2021c). Dynamic FNC refers to brain connectivity within
subintervals of the time series, as opposed to static FNC, which
reflects averaged brain connections over an entire scan (Calhoun
et al., 2014). In recent years, dFNC estimated from rs_fMRI time
series has been highly informative about the underlying different
brain regions connectivity patterns in various brain disorders,
including schizophrenia, MDD, and Alzheimer’s disease (Sendi
et al., 2020, 2021a,c). As a result, we hypothesized that looking at
the effect of ECT on dFNC might reveal how and to what extent
ECT affects dynamic connectivity changes in the DMN and CCN.

In this study, we used rs-fMRI data from 119 patients
with depression (DEP), who experienced a series of ECT
and 61 HC controls to find the neural mechanisms behind
the improvement after ECT and find associations with the
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effectiveness of ECT before applying it. To this aim, we used
group independent component analysis (ICA) and extracted
independent components from DMN and CCN and estimated
dFNC in these two networks by applying a sliding window
approach and clustered dFNC into a few brain states, using
k-means clustering. Finally, we compared the occupancy rate
(OCR) estimated from a state vector, an output of k-means
clustering, between HC and DEP in both pre- and post-ECT.
Moreover, correlating OCR with clinical data, we assessed
pre-ECT rs-fMRI dFNC patterns associated with post-ECT
depression outcomes.

MATERIALS AND METHODS

Participants and Clinical Outcome
This study used neuroimaging, clinical, and demographic
information of 119 patients (76 females) diagnosed with
depression (called “DEP” hereafter) and 61 healthy (HC) subjects
(34 females) from either University of New Mexico (UNM) or
the University of California Los Angeles (UCLA). Exclusion
criteria were as follows: (1) Having any neurodegenerative and
neurological disorders, such as Alzheimer’s disease or psychiatric
conditions, such as schizophrenia; (2) Having alcohol or drug
addiction, pregnancy; and (3) potential dangers under magnetic
resonance imaging (MRI), such as using a pacemaker.

Hamilton Depression Rating Scale-17 items (HDRS) were
used to assess the symptom severity of the patient group before
and after the ECT (Heijnen et al., 2010). Initial and final
assessments were given to the participants before ECT started
and within a week of completing ECT series, respectively. UNM
subjects received concurrent psychotropic, but UCLA subjects
discontinued psychotropic medications before the ECT outset.
Demographical information and clinical measurements can be
seen in Table 1. Finally, all the participants signed the consent
form, and this study has been approved by the institutional
review boards at UNM and UCLA.

ECT Procedure
In the UNM site, Thymatron System IV (Somatics, Lake Bluff,
IL, USA) was used, and the ECT procedure was initiated with
a right unilateral d’Elia (ultra-brief pulse width of 0.3ms, a
stimulus dosage at 6 × threshold) placement of electrodes.
All the participants started the first ECT session with the
right unilateral electrode placement. The ECT non-response
subjects, then, received bitemporal electrode placement (brief
pulse width of 1ms (UNM) or .5ms (UCLA), a stimulus dosage
at 2 × threshold). At both sites, a Mecta 5000Q (MECTA
Corp., Tualatin, OR, USA) was used for ECT administration.
Treatments were applied three times a week until obtaining a
stable clinical response or psychiatrist decision to stop treatment
in the context of nonresponse. ECT implementation procedure
followed the clinical standards announced by the APA ECT Task
Force Report and was not manipulated for the goal of this study.
During the treatment process, the patients were oxygenated and
received adequate induction (methohexital or etomidate) and
relaxation (succinylcholine). Clinical measures such as blood
pressure were monitored during the treatment.

TABLE 1 | Demographic and clinical details of the participants for each site.

DEP HC P-value

UCLA Number 45 33 NA

Age 41.22 ± 13.51 39.03 ± 12.21 0.46

Gender(M/F) 20/25 15/18 0.99

Pre-ECT HDRS 25.17 ± 6.15 NA NA

Post-ECT HDRS 16.22 ± 9.33 NA NA

Number of treatments 8.84 ± 3.40 NA NA

Antidepressants (%) 0/45 (0.0) NA NA

UNM Number 74 28 NA

Age 64.99 ± 9.09 60.22 ± 8.02 0.02

Gender(M/F) 23/51 11/16 0.62

Pre-ECT HDRS 25.85 ± 6.13 NA NA

Post-ECT HDRS 16.90 ± 6.70 NA NA

Number of treatments 8.92 ± 2.86 NA NA

Antidepressants (%) 14/74 (0.18) NA NA

Total Number 119 61 NA

Age 55.94 ± 15.87 48.56 ± 14.90 0.008

Gender(M/F) 43/76 26/34 0.99

Pre-ECT HDRS 25.59 ± 6.14 NA NA

Post-ECT HDRS 11.48 ± 9.07 NA NA

Number of treatments 8.89 ± 3.07 NA NA

Antidepressants(%) 14/119 (0.11) NA NA

M, Male; F, Female; ECT, Electroconvulsive therapy; HDRS, Hamilton depression rating

scale; DEP, Depression; HC, Healthy control.

fMRI Data Acquisition
At the UNM site, a 3-T Siemens Trio scanner (Siemens
Healthcare, Malvern, PA, USA) was used to collect MRI
data. Parameters of the whole-brain gradient-echo echo-planar
imaging sequence are as follows: echo time (TE) = 29
milliseconds (ms), repetition time (TR) = 2 s (s), voxel size =

3.75 × 3.75 × 4.55mm, ip angle (FA), 75◦, and 154 volumes. At
UCLA, a 3-Tesla MAGNETOM Allegra MRI scanner (Siemens,
Erlangen, Germany) was used to collect MRI data. Parameters of
functional images are as follows: TE= 30ms, TR= 2 s, voxel size
= 3.4 × 3.4 × 5mm, FA = 70◦, and 180 volumes. The duration
of resting-state scans was a minimum of 5min and 16 s, and the
participants were guided to passively keep their concentration on
the fixation cross during the scan.

Data Pre-processing
The standard preprocessing steps for fMRI data, using statistical
parametric mapping (SPM12, https://www.fil.ion.ucl.ac.uk/
spm/), include the following: (1) to address longitudinal
relaxation effects, five initial fMRI scans were removed; (2) time
differences in slice acquisition were corrected; (3) motion was
corrected, using SPM; (4) imaging data were spatially normalized
based on an echo-planar imaging (EPI) template in standard
Montreal Neurological Institute (MNI) space and was resampled
to 3 × 3 × 3 mm3; and (5) a 6-mm full-width half-maximum
(FWHM) Gaussian kernel for spatial smoothing is applied to
the data.
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The Neuromark fully automated group ICA pipeline, using
GIFT (http://trendscenter.org/software/gift), is implemented to
extract reliable CCN and DMN-independent components (ICs).
In this method, previously derived components maps were used
as priors for spatially constrained ICA. Considering group-level
spatial maps from two large-sample HC datasets, replicable
components were identified and used for the spatial priors
(Du et al., 2020). Prior to the dynamic functional connectivity
method, we implemented de-noising and artifact rejection steps
as follows: (1) linear, quadratic, and cubic de-trending; (2) use
of six realignment parameters and their temporal derivatives
for multiple regression; and 3) outlier removal and band-pass
filtering (from 0.01 to 0.15Hz). Identified components in the
cognitive control network (CCN) and default mode network
(DMN) can be seen in Table 2.

Functional Network Connectivity
A sliding window is a convolution of a rectangle (window size =
20 TRs= 40 s) with a Gaussian (σ= 3 s). Thismethod was used to
localize the dataset per time point, and the procedure can be seen
in Figure 1, Step 1. Next, we used the Pearson correlationmethod
to calculate dFNC between 24 sub-nodes of DMN and CCN.
Then, we obtained 276 connectivity features (Figure 1, Step 1).
Calculated dFNC for each window was concatenated for each
subject as a form of C × C × T array (where C is the number
of ICs and equals 276, and T represents total windows and equals
610). Finally, all arrays for all subjects were concatenated to show
brain connectivity changes between ICs as a function of time
(Figure 1, Step 2) (Allen et al., 2014; Sendi et al., 2021a,b).

Clustering and dFNC Latent Features
We implemented a K-means clustering method on the output of
the previous step, which is a concatenated dFNC between 24 ICs
for all subjects, to separate the data into different clusters (Allen
et al., 2014; Sendi et al., 2021c). We used the elbow criterion to
calculate the optimum number of clusters (optimum k in the
k-means method), a clustering analysis standard (Sendi et al.,
2021c). This method defines the optimization equation as the
distance of within-cluster and between clusters as a ratio and
tries to minimize this ratio. We found the optimal number of
clusters is 3, searching from k = 2 to 8. We used the L1 norm
as our distance metric with 1,000 iterations. This process yielded
three distinct states for the group of the participants and the state
vector for each individual. The state vector shows the state of each
brain and any given time. Subsequently, based on the state vector,
we calculated the time interval of each subject (the number of
time windows that each participant was in a specific state), andwe
call this feature the occupancy rate (OCR) of each state (Figure 1,
Step 3). Thus, considering three states, we have three OCRs for
each individual. Finally, we calculated the traveled distance for
each subject, using Euclidean distance. To determine the traveled
distance, we calculated the distance between any subsequent
window of dFNC matrix and then summed up distance of all
possible window pairs. Each subject has one traveled distance,
which is a state-independent metric.

TABLE 2 | Component labels.

Component

name

Peak coordinate (mm)

1 CCN Inferior parietal

lobule ([IPL], 68)

45.5 −61.5 43.5

2 Insula (33) −30.5 22.5 −3.5

3 Superior medial

frontal gyrus

([SMFG], 43)

−0.5 50.5 29.5

4 Inferior frontal

gyrus ([IFG], 70)

−48.5 34.5 −0.5

5 Right inferior

frontal gyrus ([R

IFG], 61)

53.5 22.5 13.5

6 Middle frontal

gyrus ([MiFG], 55)

−41.5 19.5 26.5

7 Inferior parietal

lobule ([IPL], 63)

−53.5 −49.5 43.5

8 Left inferior parietal

lobue ([R IPL], 79)

44.5 −34.5 46.5

9 Supplementary

motor area ([SMA],

84)

−6.5 13.5 64.5

10 Superior frontal

gyrus ([SFG], 96)

−24.5 26.5 49.5

11 Middle frontal

gyrus ([MiFG], 88)

30.5 41.5 28.5

12 Hippocampus

([HiPP], 48)

23.5 −9.5 −16.5

13 Left inferior parietal

lobue ([L IPL], 81)

45.5 −61.5 43.5

14 Middle cingulate

cortex ([MCC], 37)

−15.5 20.5 37.5

15 Inferior frontal

gyrus ([IFG], 67)

39.5 44.5 −0.5

16 Middle frontal

gyrus ([MiFG], 38)

−26.5 47.5 5.5

17 Hippocampus

([HiPP], 83)

−24.5 −36.5 1.5

18 DMN Precuneus (32) −8.5 −66.5 35.5

19 Precuneus (40) −12.5 −54.5 14.5

20 Anterior cingulate

cortex ([ACC], 23)

−2.5 35.5 2.5

21 Posterior cingulate

cortex ([PCC], 71)

−5.5 −28.5 26.5

22 Anterior cingulate

cortex ([ACC], 17)

−9.5 46.5 −10.5

23 Precuneus (51) −0.5 −48.5 49.5

24 Posterior cingulate

cortex ([PCC], 94)

−2.5 54.5 31.5

Statistical Analysis
The occupancy rate (OCR) feature and the traveled distance
between DEP and HC group are compared, using two
sample Kolmogorov–Smirnov (ks-test), as a non-parametric test,
because the distribution of estimated OCR was not normally
distributed. This comparison was made on three features of
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FIGURE 1 | Analytic pipeline: The time-course signal of 24 components of the CCN and DMN networks has been identified, using group-independent component

analysis (ICA). In step 2, a taper sliding window was used to segment the time-course signals and then calculated the functional network connectivity (FNC). After

vectorizing the FNC matrixes, we have concatenated them, and then k-means clustering, k = 3, was used to group FNCs into three distinct states (Step 2). Elbow

criteria were used to find the optimal k. In addition, the L1 distance metric is used in this clustering. Then, based on the state vector of each subject, the occupancy

rate or OCR features-in total, three features-were calculated from the state vector of each subject. Then we compared the OCR among the groups by using a ks-test.

Then, we adjusted all p-values by the Benjamini-Hochberg false discovery rate (FDR) correction in each analysis (Step 3).

OCRs and one traveled distance. Moreover, to see whether
there is a link between pretreatment dFNC and the behavioral
outcome, partial correlations assessed pre-ECT OCR and
Hamilton Depression Rating Scale (HDRS) change accounting
for age, gender, number of treatments, and a scanning site. All
p-values were adjusted by the Benjamini-Hochberg method for a
false discovery rate or FDR (Benjamini and Hochberg, 1995).

RESULTS

This section discusses the results obtained from dFNC analysis
and the comparison between DEP and HC groups. It consists of
dFNC states, resulting from clustering analysis, the correlation of
OCR with HDRS scores, comparison between DEP and HC in
OCR both in pre-ECT and post-ECT, and the traveled distance
between the two groups.

Clinical Results
The clinical and demographical information of the participants
is provided in Table 1 separately for DEP and HC groups. The
DEP pre-ECT HDRS was 25.6 (±6.1), and the post-ECT HDRS
score was 11.5 (±9.1). Using a two-sample ks-test, we found a
significant difference (p < 0.001) between HDRS values of pre-
and post-ECT values.

Dynamic Functional Network Connectivity
States for Pre-ECT and Post-ECT
We found three separate clusters (states), applying the k-means
clustering method to dFNC of all subjects (both DEP and HC
groups). We applied the clustering method to pre-ECT and

post-ECT dFNC data separately. Figures 2A,B show these three
distinct states pre-ECT and post-ECT, respectively. We found
pre-ECT and post-ECT rs-fMRI generate similar brain states.
To assess this similarity across corresponding states, we used
Fisher correlation coefficients (state 1: R = 98.47%; state 2: R
= 87.5%; state 3: R = 97.67%). Additionally, we calculated the
average of dFNC values of CCN, DMN, and CCN/DMN (i.e., the
connectivity between DMN and CCN) as shown in Table 3.

We found that both state 2 and state 3 have higher within-
CCN connectivity than state 1 in pre-ECT (states 1– 2: corrected
p = 0.02, and states 1–3: corrected p = 0.04). While state 1 had
more increased within-DMN connectivity than the other two
states in both pre-ECT and post-ECT (in pre-ECT: corrected
p (states 1–2) <0.00, and corrected p (states 1–3) <0.00. In
post-ECT: corrected p (states 1–2) <0.00 and corrected p (states
1–3) <0.00), only state 2 showed positive functional connectivity
between DMN and CCN in both pre-ECT and post-ECT data (all
the corrected p-values for all combinations are <0.00).

Comparison of OCR and Traveled Distance
Between HC and DEP in Pre-ECT and
Post-ECT
Figures 3A,B show the OCR values of HC and DEP groups
in different states for pre-ECT and post-ECT, respectively.
Only OCR of state 2, with relatively higher CCN/DMN
functional connectivity, shows a significant difference between
DEP and HC. We found pre-ECT DEP spent less time in
state 2 relative to HC (FDR corrected p = 0.015), while
the pattern reversed after ECT and patients with depression
spent more time in state 2 (FDR corrected p = 0.03).
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FIGURE 2 | Dynamic functional connectivities in three identified states, using the clustering method, the input of clustering is combined with dFNC of all individuals

(both HCs and DEPs). Each state consists of a 24 × 24 matrix where the positive connectivities are shown by hot color and negative connectivities are shown with

cold colors. The values in parentheses show the overall percentage of time the participants spent in each specific state. (A) States resulted from clustering analysis of

pre-ECT dFNC. (B) States resulted from clustering analysis of post-ECT dFNC.

TABLE 3 | The state-specific dFNC average.

CCN DMN CCN/DMN

PRE-ECT State 1 0.02 ± 0.16 0.27 ± 0.09 −0.03 ± 0.19

State 2 0.05 ± 0.13 0.17 ± 0.08 0.05 ± 0.12

State 3 0.04 ± 0.08 0.08 ± 0.08 −0.01 ± 0.07

Post-ECT State 1 0.02 ± 0.15 0.28 ± 0.08 −0.01 ± 0.19

State 2 0.10 ± 0.16 0.14 ± 0.09 0.04 ± 0.11

State 3 0.03 ± 0.08 0.09 ± 0.08 −0.00 ± 0.07

ECT, Electroconvulsive therapy; DMN, Default mode network; CCN, Cognitive

control network.

Moreover, we compared the traveled distance between DEP
and HC groups in pre-ECT and post-ECT (Figure 3C). The
results showed that, in pre-ECT, the HC group traveled
significantly more distance compared with the DEP group
(p = 0.04). In post-ECT, again, the traveled distance of the
HC group is higher than the DEP group, but this difference is
not significant.

The Link Between Pre-ECT OCR and the
Effectiveness of ECT
To find associations to investigate whether applying ECT would
be effective, we correlated the calculated OCR of 119 patients

with their associated HDRS change (post_HDRS-pre_HDRS) by
controlling the age, gender, a scanning site, and the number
of treatments. As shown in Figure 4, which is the correlation
of just pre-ECT OCR with HDRS, only the OCR of state 1
is the significant predictor (R = 0.22, FDR corrected p =

0.03). In more detail, we found those patients who spent more
time in state 1, with relatively lower CCN/DMN functional
connectivity, showed less reduction in their HDRS. We did not
find a significant link between the pre-ECT traveled distance and
the HDRS change.

DISCUSSION

This study used rs-fMRI of 119 subjects with a depressive episode
and received ECT and 61 healthy subjects to assess longitudinal
changes of brain dynamics associated with treatment response.
We used dFNC features extracted from CCN and DMN and
clustered them into three different states. Using a data-driven
method of analyzing dFNC in CCN and DMN, we demonstrated
that these brain networks are highly dynamic in both pre-
and post-ECT states. This finding agrees with previous studies
on MDD that have provided evidence of dynamism in CCN
and DMN (Repple et al., 2020; Yang et al., 2020; Chen et al.,
2021; Sendi et al., 2021a). Previous studies differentiated MDD
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FIGURE 3 | (A) The OCR comparison between DEP and HC in three distinct states of pre-ECT. Red bars indicating the average OCR for a healthy group in each

state, and blue bars are for the OCR of the DEP group in each state. OCR features are extracted from dFNC of just pre-ECT (significant difference in state 2, corrected

p = 0.015). (B) OCR features extracted from dFNC of just post-ECT (significant difference in state 2, corrected p = 0.03). In state 2, ECT had significantly changed

the OCR value of HC and DEP before applying ECT (HC > DEP) compared with after applying ECT (HC < DEP). (C) It shows the traveled distance between the DEP

and HC groups in pre-ECT and post-ECT. In pre-ECT, the traveled distance of the HC group is significantly higher than the DEP group (p = 0.04). After applying ECT,

the HC group has higher traveled distance than the DEP group, but this difference is not significant. The significant difference that passes the multiple comparisons is

marked by asterisks.

FIGURE 4 | Correlation between OCR values from just pre-ECT and reported HDRS change (Pre-post) in three states. Blue dots are referred to 119 DEP individuals.

The bold black line is the fitted curve. R indicates the fitted line slope in each state. As it is shown, state 1 (the state with the lowest CCN/DMN connectivity)

significantly predicts the change of the HDRS based on OCR values; less OCR value corresponds to more change of HDRS.
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from the HC group, focusing on within-DMN and within-
CCN functional connectivity. For example, by focusing on sFNC
information, one study reported an increase in within-DMN
connectivity for MDD (Posner et al., 2016), while another
study reported a decrease in this connectivity of the network
(Li et al., 2020; Wang J. et al., 2020). Additionally, recent studies,
using rs-fMRI, have suggested an association of depression with
abnormal functional connectivity in CCN network (Schlösser
et al., 2008; Vasic et al., 2009; Sheline et al., 2010; Veer et al.,
2010; Alexopoulos et al., 2013; Clasen et al., 2014). Other studies
focusing on the CCN network reported attenuated connectivity
of that network in remitted MDDs (Stange et al., 2017; Jiao et al.,
2020). Finally, a study tried to predict the antidepressant response
in MDDs focusing on within-CCN and within-DMN networks
and reported low- and high-resting functional connectivity
within-CCN and within-DMN, respectively (Alexopoulos et al.,
2012). While previous studies mainly focused on within-DMN
andwithin-CCN functional connectivity, the current studymight
provide new evidence about the role of CCN/DMN connectivity
in depression. Elaborating more on this, our results show that the
state with significantly higher CCN/DMN connectivity plays an
important role in discriminating between DEP and HC groups
both in pre-ECT and post-ECT conditions.

We also investigated the effect of ECT on evaluating the
temporal dynamic activity of the brain after implementing
ECT in post-ECT conditions. We found that the OCR of
DEP is significantly higher than the HC participants in
this condition. This means that, after ECT, the patients
with depression spent more time in state 2 than the HC
group. Similar to pre-ECT state 2, post-ECT state 2 shows
the highest CCN/DMN connectivity than other states. That
might provide new insight into the effect of ECT on the
CCN/DMN connectivity by regulating the temporal dynamics
of these brain networks. Moreover, post-ECT state 2 has
relatively higher within-CCN connectivity. This is in contrast to
previous studies that reported reduced within-CCN connectivity
associated with the antidepressant state in a relatively small
dataset (N = 16) (Alexopoulos et al., 2012). While this
inconsistent result could partially be due to the small number
of patients, we assume that this inconsistent result is driven
by the focusing of sFNC, estimated by averaging from
the entire time series. In the current study, we showed a
disrupted (i.e., both increase and decrease) pattern within CCN
connectivity might provide an explanation for this inconsistent
result and might provide a good reason for analyzing dFNC
information (Sendi et al., 2021a).

Evaluating the effectiveness of ECT, i.e., identifying patients as
potential remitters or non-remitters before implementing ECT,
would be valuable from the clinical perspective (Van Waarde
et al., 2015). On the one hand, many studies have correlated
baseline clinical characteristics with an MDD status outcome
(Perlman et al., 2019; Kennis et al., 2020). Such analyses are
based on group-level analysis rather than individual patient-
level aspects (Ozomaro et al., 2013). There is a need for new
metrics, which are associated with ECT outcomes. On the
other hand, selecting a feature among many MRI metrics is
difficult because they focus on non-overlapping aspects of brain

function (Leaver et al., 2018). Although some metrics are based
on functional connectivity of fMRI data, they are focused on
static brain region connections (Leaver et al., 2018). Therefore,
the use of metrics based on dFNC and using the correlation
analysis of such metrics with behavioral and clinical data could
link with an ECT outcome. In this study, we were able to find
associations between the effectiveness of ECT before applying it
and HDRS scores. To this aim, we correlated the HDRS change
with just pre-ECT OCR of DEPs and found that brain dynamics
in state 1 is the predictor (Figure 4). We found a significant
correlation between OCR and HDRS change with a positive
slope, which means that the more OCR in pre-ECT state 1,
with relatively less CCN/DMN, equals fewer HDRS changes.
Therefore, DEPs who spent more time in pre-ECT state 1 are less
likely to respond to ECT. Interestingly, the main characteristic
of state 1 is that this state has the lowest connectivity between
CCN/DMN relative to state 2 and state 3 (Figure 2A and
Table 3). Also, the results of the effect of ECT showed that ECT
had increased the amount of time that DEPs were spending
in post-ECT state 2, with higher CCN/DMN connectivity. As
such, we can conclude that the results of this finding are in line
with the result of the effect of ECT, since spending time in the
state with the minimum CCN/DMN correlation is not good, and
ECT increased the amount of time DEPs spending in the state
where the CCN/DMN correlation is maximum. Moreover, while
previous studies focused on the sFNC to find a link between rs-
fMRI data and an ECT outcome (Wei et al., 2018; Hill et al.,
2020; Wang D. et al., 2020; Sinha et al., 2021), the current
study is the first attempt, using dFNC information to predict the
ECT outcome.

Finally, we extracted the total traveled distance metric from
pre- and post-ECT dFNC, using Euclidean distance. This
metric shows the dynamic of the brain since it measures the
distance traveled (i.e., changes in FNC over time) between
each subsequent dFNC window. In the pre-ECT condition, we
found that DEP traveled distance is significantly lower than
HC one. This means that DEP FNC changes less than HC
FNC or DEP patient rs-fMRI is less dynamic than HC rs-
fMRI. This is consistent with the previous finding that shows
functional connectivity estimated from rs-fMRI of patients
with MDD is less dynamic than the HC group (Kaiser
et al., 2016). But this difference is not significant between
DEP and HC after ECT. In other words, ECT decreases the
traveled distance difference between HC and DEP. Therefore,
we can conclude that ECT makes the brain activity of DEPs
more dynamic.

Limitations
There are a few limitations in the current study. First, we did
not directly measure whether the participants were awake or
closed their eyes during the scanning. Concerning this issue, we
used the questionnaire and self-reports provided by subjects after
the scanning finished. Based on the literature, this issue might
affect our results (Agcaoglu et al., 2019). To address this, it is
possible to extend the dynamic functional connectivity approach
to assess when the eyes of the participants were closed, or they
were exhibiting aspects of drowsiness (Allen et al., 2018). dFNC
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approaches have already shown promise in predicting measures
of drowsiness (Damaraju et al., 2020). Moreover, our data were
collected in two different sites, and the ECT protocol, including
the number of treatments and the use of concurrent psychotropic
medications, was different in these two sites. Addressing this
issue, we tried to consider these differences by including sites as
a covariate in our analysis to control their effect on the results.
Despite the fact that HDRS is generally utilized in scaling the
depression symptom severity, this score relies upon the skill and
knowledge of the interview (Sharp, 2015). Since the data in this
study come from two separate sites, each with its own set of
raters, this may cause values of HDRS to vary and be inaccurate
across sites.

CONCLUSION

This study evaluated dynamic functional network connectivity of
DMN andCCN, using rs-fMRI data of DEP patients experiencing
ECT treatment. Focusing on CCN and DMN networks and
clustering the brain dFNC to three different states, we found
brain activity in these networks is highly dynamic. Comparing
the OCR feature extracted from dFNC of these two networks
between DEP and HC groups, we found that HC group prefers to
spend more time in a state where the connectivity between CCN
and DMN is the maximum. Moreover, we found that ECT causes
an increase in the amount of time DEP patients spend in the state
in which the CCN/DMN functional connectivity is maximum.
In addition, we could significantly find associations with the
effectiveness of the ECT, using just pre-ECT brain activity. We
found that the more time the participants spend in the state
in which the correlation of CCN/DMN is minimum, the less
HDRS change they have, and the less effectiveness of ECT they
would experience. Finally, we found that the distance that the
DEP patients travel before ECT is significantly lower than the
distance they travel after ECT compared with the HC group.
While this difference was not significant after ECT, this suggests
an increase in brain dynamics after implementing ECT. In brief,
this study provides a focus on functional connectivity dynamics

of CCN and DMN network of the DEP patients and introduces
CCN/DMN connectivity as a biomarker, which is associated with
the effectiveness of ECT.
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