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Abstract—The increase in connected device, linked with the
evolution of IoT and cellular networks with 5G and towards 6G
makes crucial the limitation of the interference impact. Devices
in networks (like LoRa, SigFox and even WiFi) or in different
networks are not necessarily coordinated to optimize their com-
munication scheme and reduce interference. As a consequence,
it is essential to characterize the interference statistics in order
to assess its impact on the network performance and define the
appropriate access policies. With a theoretical approach, a large
number of studies have tackled this characterization question.
However, much less is available from an experimental point of
view. In this paper, we address this key gap. Measurements were
performed in Aalborg, Denmark, in the unlicensed 863 − 870
MHz. We show that the heavy tailed behaviour of the inter-
ference, predicted by theory, is indeed appropriate. We also
show that the α-stable distribution can be a good model for
interference in IoT networks.

Index Terms—IoT, Interference, α-stable distributions

I. INTRODUCTION

The coming years should see an ever increasing density of
wirelessly connected devices as the Internet of Things (IoT)
emerges. This increase implies several facts:

• To cope with the expected lifetime requirements of
devices, signaling has to be minimized and it is difficult
to envision a scheduled channel access protocol. Grant
free access are consequently an option to be explored -
it is nowadays an option chosen by LoRa and SigFox.

• To meet the expected high number of devices, non
orthogonal multiple access schemes are to be imple-
mented.

• And to face the growing application demand, several
solutions will be available implying a high heterogeneity
in both devices and networks (architectures and proto-
cols).

These facts will result in highly uncoordinated transmis-
sions with a large number of devices sharing the same fre-
quency band. It has been shown in theory and experimentally
[1] that the generated interference will, in such situations,
exhibit an impulsive nature. It is essential to take into account
the interference statistical properties, for instance to design
robust receivers [2].

Characterizing the interference is a non-trivial issue. In
this paper, a complement to [1], we further analyze mea-
surements of interference in the 864 to 870 MHz band
in Aalborg, Denmark, first reported in [3]. We previously
showed that the empirical distribution of the interference

from the measurement data is heavy tailed. In this work, we
investigate the specific family of statistical models known as
α-stable distributions. It arises as the interference distribution
when interferers are distributed according to an homogeneous
Poisson point process with no guard zone. We provide
evidence that suggests these models are consistent with
the measurement data and give indications about adequate
parameters.

II. THEORETICAL INTERFERENCE MODELS

We consider a transmission model where the received
signal Y ∈ RK is

Y = sh+ I+N, (1)

where s is the unknown transmitted symbol, h ∈ RK is the
block fading channel coefficients, I ∈ RK is the interference
and N ∈ RK is the thermal noise with its elements Nk

i.i.d.∼
N (0, σ2).

Specifying the Probability Density Function (PDF) of the
interference is an important issue, for instance when deriving
the likelihood for designing an optimal receiver. In many
previous papers, it has been shown that the interference
term is not adequately modelled with a simple Gaussian
distribution assumption.

This is the case in the works from Middleton [4], [5] who
obtained quite general expressions based on series expan-
sions assuming Poisson distributed interference sources. This
popular model remains however challenging to work with
due to the infinite sums. Approximation models have been
proposed, considering only the most significant terms leading
to a Gaussian mixture [6] or the ϵ-contaminated noise [7] if
only two terms are considered. In this case the interference
PDF is P(x) = (1 − p)N

(
0, σ2

)
+ pN

(
0, κσ2

)
, where p

denotes the probability to have an impulse, distributed from a
Normal with variance κσ2 while (1−p) gives the probability
to only have the Gaussian noise with variance σ2. The Class
B model can also be approximated by an α-stable distribution
[5].

More recently, many works concerning Time Hopping
Ultra Wide Band (TH-UWB) [8] introduced some empir-
ical distributions justified by simulations, observations of
the estimated PDF and/or gains in BER: Gaussian-Laplace
mixture [9], Generalized Gaussian [10], Gaussian mixtures
[11] or Cauchy-Gaussian mixture [12]. In this last paper it
is mentioned that the heavier tail of the Gaussian Mixture
allows better performance than the Laplace approach.



Another class of model of direct relevance to interference
modelling is the α-stable. It has often been used in the UWB
context [13], [14]. But on the contrary to the previously
discussed approaches, it relies on a theoretical derivation,
finding its foundation in stochastic geometry [15]–[17].

In a network, we can express interference as

I =
∑
i∈Ω

l(di).Qi, (2)

where di is the distance between interferer i and the destina-
tion and l(d) the attenuation as a function of the distance; a
classical model is lγ,ϵ(d) = d−γ1r≥ϵ,d ∈ R+ where γ is the
channel attenuation coefficient; ϵ is a guard zone, meaning
no interferer can be closer than ϵ from the receiver; Qi

includes the propagation effects (multipath, shadowing) and
the physical layer characteristics; Ω is the set of interferers.
If applied in an ad hoc network, an unbounded received
power assumption makes the interference fall in the attraction
domain of a stable law. This unbounded assumption means
taking the limit as ϵ → 0;

Interference power: in the case of the interference power,
a detailed study has been carried out by Haenggi and Ganti
[18]. In particular for interferers located according to a
Poisson point process, they showed that the distribution is
heavily dependent on the path loss attenuation coefficient γ.
For example, also shown by Win and Pinto [15], in a network
with infinite radius and no guard zone (ϵ = 0), the inter-
ference power has the totally skewed α-stable distribution,
where α depends on γ.

III. STATISTICAL REPRESENTATION OF IMPULSIVENESS

A. Heavy tailed distributions

Impulsiveness is characterized by large values that rarely
appear. This can be modeled with heavy tail distributions,
meaning distribution having tails heavier than the exponential
distribution. Such a behavior can be related to the moment
generating function (MGF) as one often considers heavy
tailed models as those with non-finite mean or variance or
higher order moments. Hence, one may characterize heavy
tailed distributions or processes with impulsive realizations
as those distributions which have tails which fail to satisfy
the following bound on the complementary cumulative dis-
tribution function F (x) = P(X > x) [19]: for some positive
real numbers M and t, F (x) ≤ M exp(−tx), ∀x > 0. For
instance the Middleton or the α-stable can be characterized
as sub-families of the sub-exponential class on the entire real
line.

B. Non-Gaussian α-Stable Distributions

The α-stable distributions are a special case of heavy tailed
distributions with infinite variance (fat tail distributions)
when 0 < α < 2. The Gaussian case also belongs to
this family and is obtained with α = 2. The distribution
function of an α-stable random variable is described by four
parameters: the characteristic exponent 0 < α ≤ 2; the scale
parameter γ ∈ R+; the skew parameter β ∈ [−1, 1]; and the
shift parameter δ ∈ R. As such, a common notation for an α-
stable random variable X is X ∼ Sα(γ, β, δ). In general, α-
stable random variables do not have closed-form porbability

Density Functions (PDFs), but are usually represented by
their characteristic function given by [20, Eq. 1.1.6].

E[eiθX ]=

{
exp

{
−γα|θ|α(1−iβ(signθ) tan πα

2 )+iδθ
}
, α ̸=1

exp
{
−γ|θ|(1+iβ 2

π (signθ) log |θ|)+iδθ
}
, α=1

(3)

As noted in Section II, the α-stable distributions arise as
the interference distribution for Poisson point process models
with no guard zones (ϵ = 0).

The parameters of the α-stable can be estimated using
classical methods, such as fitting the four parameters to
the empirical characteristic function estimated from data as
proposed by Koutrouvelis [21] The quality of the fit between
the measurement data and the estimated α-stable distribution
can be evaluated by generating samples from an α-stable
distribution based on the estimated parameters. The quantiles
of the measurement samples are then plotted against those
of the generated samples, i.e. a quantile-quantile (QQ) plot.
If the measurement data and the generated samples are from
the same distribution, the QQ plot will be close to the line
y = x.

IV. MEASUREMENT DATA ANALYSIS

A. Measurements

First reported in [3], received power measurements were
performed at five distinct locations within Aalborg: three
downtown measurements in a shopping area, a business park
with office buildings, and a hospital complex with multiple,
large hospital buildings and some single family houses; an
industrial area consisting of industrial production facilities
and office buildings; and a residential area with single-family
houses. All measurements were performed while static in a
parking lot or at the roadside; that is, at street level. The
measurement data set consists of power measurements on
a frequency grid from 863 MHz to 870 MHz with 7 kHz
bins. The sampling time was 200 ms and measurements were
conducted over a period of two hours. Further details of the
setup and measurements can be found in [3].

All samples falling in the chosen time-frequency
window—corresponding to non-overlapping windows of
200 ms and 126 kHz (to fit a LoRa scheme)—give a
sequence of interference samples I1,1, . . . , INt,Nf

, with Nt

and Nf being the number of time and frequency samples,
respectively. One example in a given frequency band as a
function of time is presented in Fig. 1.
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Fig. 1. Example of interference samples measured in the industria area.



B. Heavy tail

In [1] we tested the heavy tail properties of the data, firstly
with the converging variance test, secondly with a log-tail
test. In this second approah, given observations I1, . . . , In,
to test for a subexponentially decaying tail the empirical
distribution function F̂ is first estimated via

F̂ (x) =
1

n

n∑
k=1

1{Ik≤x}. (4)

The logarithm of the empirical survival function is then given
by log

(
1− F̂ (x)

)
and plotted as a function of log x. For sub

exponentially decaying F̂ , the curve is a straight line with
slope − 1

γ , while for exponentially decaying distributions γ
will be 0 leading to an abrupt decrease in the curve as
log x increases. Both tests gave evidence og the heavy tail
behaviour of the interference, as illustrated in Fig. 2 for the
shopping area with the log-tail test.

-23 -20 -17 -15

log(x)

-10

-6

-2

lo
g

 S
(x

)

Shopping area

Shopping area

=1.4

=1.6

=1.8

Gaussian

Fig. 2. Survival function as a function of log x in the case of the shopping
area. Comparison with Gaussian and α-stable distributions.

C. Alpha-Stable

The parameters of α-stable distributions can be estimated
using classical methods, such as fitting the four parameters
to the empirical characteristic function estimated from data
as proposed by Koutrouvelis [22].

The quality of the fit between the measurement data
and the estimated α-stable distribution can be evaluated by
generating samples from an α-stable distribution based on
the estimated parameters. The quantiles of the measurement
samples are then plotted against those of the generated
samples, known as a quantile-quantile (QQ) plot. If the
measurement data and the generated samples have the same
underlying distribution, the QQ plot will be the line y = x.

Fig. 3 to 7 illustrate the fit between the measurement
data (power samples over time/frequency intervals) and the
α-stable samples generated from the estimated model. The
estimated parameters value for the α-stable distributionsin
the different cases are given in Tab. I.

First we mention that in all cases but one, β is estimated
to one, which is expected due to totally skewed distributions.
Further investigation is needed to understand the value found
in the business scenario. However the QQ plots tend to show
that the stable assumption is reasonable in most cases.

We also notice that the estimated α can significantly vary.
• It is found between one and two when the homogeneous

Poisson point process (without guard zone) leads to an α

0.8 1.4

Quantiles from measurements 10
-10

0.8

1.4

2

Q
u
a
n
ti

le
s 

(S
ta

b
le

)

10
-10 Residential area

Fig. 3. Quantile-quantile plot of interference samples from the residential
area.
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Fig. 4. Quantile-quantile plot of interference samples from the industrial
area.
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Fig. 5. Quantile-quantile plot of interference samples from the shopping
area.
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Fig. 6. Quantile-quantile plot of interference samples from the shopping
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Fig. 7. Quantile-quantile plot of interference samples from the shopping
area.

TABLE I
THE α-STABLE DISTRIBUTION PARAMETERS ESTIMATED IN THE

DIFFERENT AREAS.

Area α
Residential 1.80 1 0.13.10−10 0.88.10−10

Business 1.82 0.4 0.12.10−9 0.36.10−9

Shopping 1.78 1 0.069.10−9 0.33.10−9

Industrial 1.84 1 0.098.10−10 0.69.10−10

Hospital 1.25 1 0.05.10−9 0.26.10−9

smaller than 1. However, this difference is in accordance
with the results in [23]. The presence of a guard zone
around the receiver, where no transmitter can be, impact
the value of α. The larger this guard zone, the closer
to 2 is the α meaning that we are getting closer to
a Gaussian distribution. The study was made fo the
amplitude statistics but is probably also valide for the
power.

• It is close to 1.8 in four of the five cases and significantly
lower (1.25) in the last one. Again a further analysis is
needed to really understand this fact. It can come from
the environmental specificity (and especially the radio
channel attenuation coefficient). But it can also be due
to the presence of interferers at a closer distance or to
the presence of strong interferers in the considered area.

V. CONCLUSIONS

While there is an abundance of theoretical studies of
interference statistics, the measurements in Aalborg are—
to the best of our knowledge—the first to clearly validate
the heavy tailed nature of the interference in the context of
IoT communications. Interference models are key to design
efficient coding and decoding strategies as well as efficiently
adapting channel access and network topology. As such, the
measurement data suggests that there is a need to reconsider
the utility of Gaussian models in network design for the IoT.
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