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Preface

Preface

This thesis is intended for biostatisticians, health data scientists, and clinicians with a
special interest in biostatistics and machine learning. This work was conducted at the
Department of Clinical Medicine, Aalborg University, and the Department of
Haematology, Aalborg University Hospital, between January 2019 and December 2021.
It was affected, as nearly all activities across the world, by the SARS-CoV-2 pandemic
that led to multiple lockdowns in 2020. This hindered the possibility of close
collaboration and networking. However, this work was based on registry data that were
readily available, which allowed me to conduct this work with limited disruption during
this period, even allowing me to focus more on my work. This was also a good occasion
to reflect on our busy lives.

On a professional level, after 10 years in start-ups, I was close to innovation but far from
science. Joining the Department of Haematology and starting this thesis was a great
opportunity for me to dive into the academic world. A PhD is an often-solitary
endeavour, but it is a great learning experience in terms of methods and mindset and
brings a large panel of transferable skills.

First and foremost, this work would not have been possible without Martin Begsted,
who together with the late Hans E. Johnsen initially trusted me to be part of the research
unit and later worked with Ursula G. Falkmer to define the scope of this PhD. His
support and feedback have been invaluable throughout this journey.

This work allowed me to dive into complex topics within health data science, notably
machine techniques applied to health registry data. Alongside Martin Bogsted, Rasmus
F. Brondum was a great support for the biostatistics and machine learning aspects, as
well as a friendly companion.

This work also gave me the occasion to better understand cancer and its intrinsic
complexity. This understanding was made possible thanks to the precious input from
Karen Dybkar based on her expertise in molecular biology and from Ursula G. Falkmer
based on unique clinical experience.

I would also like to thank all of my colleagues from the Department of Haematology and
Department of Oncology for their support and help, as well as Chloé-Agathe Azencott
and the members of her discussion group for our online collaboration.

Finally, such a project also requires the support of one’s family; I would like to thank
them from the bottom of my heart, especially my wife, Trine, for her love, support, and
patience and my father for showing the way. I dedicate this work to my children, Sofia,
Oscar, and Victor, as an ode to curiosity.

Charles Vesteghem
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English abstract

English abstract

Systemic anticancer therapies (SACTs) often have severe short- and long-term side
effects. Some patients with limited remaining survival time will only experience the short-
term side effects with no clinical benefit. Therefore, SACT's should be avoided in these
cases to limit the negative impact on their health-related quality of life near death. In
Denmark, there are a variety of digital and national health registries that can be coupled
and leveraged to monitor the last SACT administrations, including the Danish National
Patient Registry (DNPR), which contains administrative data from all hospitals in
Denmark (e.g., diagnosis and procedutre codes), and clinical databases, such as the
histopathological and laboratory registries.

To quantify the frequency of late SACT administration, Eatle et al. proposed two widely
used indicators that consider the patients who died from cancer. However, these
indicators are only applicable in hindsight, as they require information about the cause
of death, which limits their clinical applicability. Another approach proposed by
Wallington et al. looks at the 30-day mortality following SACT, but it is also conditioned
on future events, as it only considers the last SACT within a predefined observation
petiod. In Paper I, we proposed an adapted version based of Wallington et al. that avoids
conditioning on future events. This approach allowed us to calculate risk factors more
reliably and avoided the potential sampling bias that arises from conditioning on future
events. We analysed the data from more than 10,000 cancer patients treated at the
Department of Oncology, Aalborg University Hospital, during 2009-2019. We reported
differences between malignancies and treatment intent, as well as a downward trend in
the frequency of the 30-day mortality following SACT during the study period.

To facilitate implementation of such a monitoring tool on a national level, the indicator
must be easily and reliably calculated using available health data. One of the main data
sources used in Paper I was the prescription database MedOnc used at the Department
of Oncology, Aalborg University Hospital. This database contains information on drug
administration to cancer patients, but it is not available nationally. However, the DNPR
is available nationally and contains similar information, though, as it contains
administrative data, its clinical validity could be questioned. To confirm the validity of
this registry for SACTs, in Paper II, we conducted a validation study comparing the
DNPR to MedOnc, confirming DNPR’s high validity and paving the way for the
implementation of a national indicator.

A strategy to limit the frequency of late SACT administration is to help clinicians better
assess the risk of eatly mortality among cancer patients. In Paper I1I, we compared
various machine learning techniques to dynamically predict the 30-day mortality of
patients with advanced cancer. In line with other studies, tree-based models
outperformed simpler or neural network-based models, and our results showed that most
of the information for accurate prediction lies in the biochemical results.

In this thesis, our aim was to tackle late SACT administration in cancer patients through
better monitoring and machine learning approaches using extensive health data. We have
proposed beneficial improvements that could be implemented nationally in tools for
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monitoring and the dynamic prediction of 30-day mortality after these results are
confirmed in prospective studies.
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Dansk résumé

Dansk résume

Systemisk anticancerbehandling (SACT) har ofte alvorlige kort- og langtidsbivirkninger.
Nogle patienter med begrenset resterende ovetlevelsestid vil derfor kun opleve
bivirkninger uden at opné en klinisk fordel. SACT bor derfor undgis i disse tilfxlde for
at begranse negativ pavirkning af den sundhedsrelaterede livskvalitet tet pa livets
afslutning. Der findes i Danmark en lang rekke nationale sundhedsregistre, som kan
kobles sammen og udnyttes til at danne sig et overblik over SACT-administrationer, som
er givet tet pa livets afslutning. Disse omfatter Landspatientregisteret (LPR), som
indeholder administrative data fra alle sygehuse i Danmark sisom diagnose- og
procedurekoder og kliniske databaser sisom patologi- og laboratoriedatabasen.

For at kvantificere hyppigheden af sene SACT-administrationer har Earle et al. foreslaet
to populere kvalitetsindikatorer, som betragter patienter, der er dode af kraeft. Disse
indikatorer kan dog kun bruges retrospektivt, da de krever information om dedsarsagen,
hvilket begraenser deres kliniske anvendelighed. En anden tilgang, foresldet af Wallington
et al,, kigger pa 30-dages dedeligheden efter SACT. Men denne indikator betinger ogsa
pd fremtidige begivenheder, da den kun betragter den sidste SACT inden for et
foruddefineret observationsvindue. I Artikel 1 foresldr vi en tilpasset version af
Wallington et al., der undgir at betinge pa fremtidige begivenheder. Denne tilgang giver
os mulighed for at beregne risikofaktorer mere palideligt og undgd den potentielle
sampling bias, der opstir som folge af at betinge pa fremtidige begivenheder. Vi har
analyseret data fra mere end 10.000 kreftpatienter behandlet pd Aalborg
Universitetshospital i perioden 2009-2019. Vi fandt forskelle i administrationen af SACT
tet pd livets afslutning mellem krafttyper og behandlingsintentioner samt en
nedadgiende tendens hen over perioden.

For at muliggere implementeringen af en indikator pa nationalt plan skal indikatoren
kunne beregnes let og palideligt ved hjelp af tilgeengelige sundhedsdata. En af de vigtigste
datakilder, der blev brugt i Artikel I, var ordinationsdatabasen MedOnc, der bliver brugt
pd Onkologisk Afdeling, Aalborg Universitetshospital. Denne database indeholder
information om SACT-administration til kraeftpatienter, men denne database er ikke
tilgengelic nationalt. LPR er dog tilgengeligt nationalt og indeholder lignende
oplysninger, men da LPR indeholder administrative data, kan man overveje LPR’s
validitet. For at validere dette register mht. SACT har vi i Artikel II gennemfort et
valideringsstudie, der sammenligner LPR med MedOnc. Studiet bekrefter LPR’s hoje
validitet og baner derved vejen for implementeringen af en national indikator.

En strategi til at begraense hyppigheden af sen SACT-administration er at hjzlpe
klinikerne til bedre at vurdere risikoen for tidlig ded efter SACT. I Artikel III
sammenligner vi forskellige maskinlaringsteknikker til dynamisk forudsigelse af 30-dages
dodeligheden for patienter med fremskreden cancer. Vores resultater viser, pa linje med
andre undersogelser, at trabaserede modeller udkonkurrerer mere simple eller neurale
netvark-baserede modeller og det meste af den pradiktive vaerdi ligger i de biokemiske
resultater.

I denne afhandling var det milet at kunne foresla en forbedring af hindteringen af sen
SACT-administration  til  kreftpatienter gennem  bedre  overvignings-  og
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maskinleringstilgange baseret pd omfattende sundhedsdata. Vi mener at have foreslaet
gavnlige redskaber, der potentielt kan implementeres nationalt i vaerktojer til overvagning
og dynamisk forudsigelse af 30-dages dedeligheden efter SACT, efter disse resultater er
blevet bekraftet i prospektive studier.
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Résumé en francais

Résumeé en francais

Les thérapies anticancéreuses systémiques (SACTSs) sont connues pour avoir des effets
secondaires souvent graves a court et long terme. Certains patients en fin de vie sont
victimes de ces effets secondaires sans bénéfice clinique. Les SACT's doivent donc étre
évitées dans ces cas pour limiter leur impact négatif sur la qualité de vie liée a la santé de
ces patients. 1l existe au Danemark un grand nombre de registres nationaux contenant
des données de santé numérisées qui peuvent étre couplés, notamment pour analyser
P'usage de SACT en fin de vie. Cela inclut le Registre National Danois des Patients
(DNPR) qui contient des données administratives de tous les hopitaux danois, telles que
les codes pour les diagnostics et procédures et des bases de données cliniques contenant
pat exemple des résultats d’analyses anatomopathologiques ou biochimiques.

Pour quantifier la fréquence d’administration SACT en fin de vie, Eatle et al. ont proposé
deux indicateurs fréquemment utilisés qui prennent en compte uniquement les patients
ayant décédés par cancer. Ces indicateurs ne sont cependant applicables que de fagon
rétrospective car ils nécessitent des informations sur la cause du déces, ce qui limite leur
applicabilité clinique. Une autre approche proposée par Wallington et al. examine la
mortalité a 30 jours apres une SACT. Mais cette approche nécessite aussi de conditionner
sur des événements futurs, car il ne considére que la derniere SACT dans une fenétre
d'observation prédéfinie. Dans l'article I, nous proposons une version adaptée de
Wallington et al. qui évite ce type de conditionnement. Cette approche nous permet de
calculer les facteurs de risque de maniere plus fiable et évite le biais d'échantillonnage
potentiel du fait du conditionnement sur des événements futurs. Nous avons analysé les
données de plus de 10 000 patients atteints de cancer traités au Département d'Oncologie
de I'Hopital Universitaire d'Aalborg au cours de la période 2009-2019. Nous avons
identifié des différences entre types de cancer et selon l'intention du traitement ainsi
qu'une tendance 2 la baisse au cours de la période d'étude.

Pour faciliter la mise en place d'un outil de suivi au niveau national utilisant cette
approche, l'indicateur correspondant doit pouvoir étre calculé de maniere simple et fiable
a partir des données de santé facilement accessibles. L'une des principales sources de
données utilisées dans I'article I était la base de données de prescription MedOnc utilisée
au Département d'Oncologie de 'Hopital Universitaire d'Aalborg. Cette base de données
contient des informations sur 'usage de traitements anticancéreux, mais elle n'est pas
disponible au niveau national. En revanche, le DNPR est disponible au niveau national
et contient des informations similaires. Cependant, s’agissant d’un outil administratif, sa
validité clinique pourrait étre remise en question. Pour confirmer la validité de ce registre
pour les SACTs, nous avons mené dans l'article II une étude de validation comparant le
DNPR a MedOnc, confirmant la haute fiabilité du DNPR, ouvrant ainsi la voie a la mise
en ceuvre d'un outil de suivi national.

Une stratégie pour limiter la fréquence d'administration de SACT en fin de vie est d'aider
les médecins a mieux évaluer le risque de mortalité précoce des patients cancéreux. Dans
l'article III, nous comparons diverses techniques d'apprentissage automatique pour
prédire de maniere dynamique la mortalité a 30 jours des patients atteints d'un cancer
avancé. Nos résultats montrent, conformément a d'autres études, que les modeles basés
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sur des arbres de décision surpassent les modéles plus simples ou basés sur des réseaux
neuronaux et que la plupart des informations nécessaire a une bonne prédiction résident
dans les résultats d’analyses biochimiques.

Dans cette these, notre objectif était d’améliorer la gestion des SACT's chez les patients
cancéreux en fin de vie grice a un meilleur suivi et a des méthodes d’apprentissage
automatique, en utilisant une large variété de données de santé. Nous avons proposé des
solutions qui poutraient étre mises en ceuvre au niveau national dans des outils de suivi
de la mortalité a 30 jours et d’aide a la décision, une fois ces résultats confirmés dans des
études prospectives.
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Introduction

Introduction
1. Background

1.1. Cancer

Cancer is currently one of the leading causes of death worldwide!, and the most common
cause of death in people below 65 years of age in Europe?. Cancer includes a wide variety
of disease types with uncontrolled multiplication and dissemination of neoplastic cells,
creating tumours. Death is typically due to tumours developing in other organs, called
metastases, which can impair the functioning of these organs. The organs affected by
metastases are generally the liver, lungs, brain, and skeleton. Cancer is a genetic disease
in the sense that it is primarily caused by alterations in the genetic material of the cells.
The DNA contained in the nucleus of the cell is read by an enzyme, RNA polymerase,
which generates messenger RNA from regions of the DNA marked by specific
sequences of nucleotides. These regions are called genes (see Figure 1). The generated
messenger RNA is used by the ribosome as instructions to produce a protein. This
process was described in the Central Dogma of Molecular Biology by Francis Crick?.
Once generated, the protein folds into a specific form based on the amino acids
composing this protein. Once folded, the protein can play a role in transport/storage ot
as a structural component, messenget, enzyme, or antibody.

mRNA  Protein
Transport/storage
e.g. hemoglobin

Ribosome Structural component

e.g. actin
Messenger
e.g. insulin
Enzyme
T e.g. phenylalanine hydroxylase
Folded proteif™~.  Antibody

e.g. immunoglobulin G
Nucleus

Affected cell ' 2 _/Altered Altered Protein

mRNA '

Ribosome

/— Disrupted function

Mutation '

Different folding

Figure 1. Protein generation from DNA and impact of a mutation on the folding and, therefore, function of the
protein.
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A mutation in a gene can be passed along to the messenger RNA. This altered RNA can
be used to produce a protein in which the composition and shape, and therefore
function, is disrupted. The original protein could have been part of some control
mechanism that is then affected by the mutation. Fortunately, many control mechanisms
are present in the cell life cycle to avoid uncontrolled growth.

To circumvent these mechanisms and become malignant, a cell must progressively
incorporate changes in its DNA, typically induced by carcinogens. There ate three types
of carcinogens: physical, chemical, and biological. Physical carcinogens ate ionising
radiation, such as high-energy UV, which can lead to malignant melanoma. Benzene or
arsenic are common examples of chemical carcinogens. Benzene, for example, increases
the risk of developing leukaemia. Biological carcinogens are viruses, bacteria, and
parasites, such as the human papillomavirus that leads to cervical cancer or the bactetia
Helicobacter pylori that leads to stomach cancer. Most of these induced genetic alterations
are corrected in normal cells, but, in rare occasions, slip through, especially in individuals
with genetic predispositions to deficient DNA damage repair mechanisms. A natural
selection process is initiated in which some mutations provide a competitive advantage
for affected cells, such as by allowing easier and faster division through the disruption of
control mechanisms. The required phenotypes of changes for a cell to become malignant
were summarised in 10 hallmarks by Hanahan and Weinberg* (see Figure 2).

Sustaining Evading
proliferative growth
signalling suppressors

Enabling Activating
replicative invasion &
immortality v ¥ metastasis
R}

»
-4

Resisting
cell death

Inducing
angiogenesis

w
R @ Deregulating

Genome f
instability & cellular
mutation @ energetics
Tumor- Avoiding
promoting immune
inflammation destruction

Figure 2. Updated hallmarks of cancer. The blue hallmarks are the major hallmarks as introduced in the first
version of their categorisation. The red ballmarks are two emerging hallmarks, and the orange hallmarks are enabling
traits. Based on Hanaban and W einberg.

Major progtess has been made in the last few decades in the treatment of malignancies,
with drastic improvement in prognosis for certain diseases, including breast cancer.
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However, even in Western countries, most patients will relapse and die from their cancer.
Notably, patients with lung or pancreatic cancer have 5-year survival of less than 30%S.

1.2. Systemic anticancer therapies
Systemic anticancer therapies (SACTSs) are treatments for malignancies that have a
systemic effect on the patients (i.e., they affect the whole body) as opposed to local
anticancer therapies, such as radiotherapy and surgery. SACT's have been used to treat
patients for more than 50 years, with the first positive results in the 1940s for
haematological malignancies’. For solid tumours, these therapies were not considered by
most clinicians treating cancer until the 1960s, when they improved the remission rate in
combination with local anticancer therapies. This was notably thanks to fluorouracil,
which is still currently one of the most widely used drugs (see Table 1).
SACTs rely on drugs that can be administered orally or injected into the patients. Oral
drugs must be absorbed first via the digestive system before they can reach the
bloodstream. They are also often metabolised in the liver. Once in the bloodstream, the
drugs reach all cells in the body, affecting both normal and cancer cells. Notably, due to
the brain-blood batrier, some drugs based on larger molecules cannot reach the
intracerebral space, complicating the treatment of brain cancers.
As normal cells are also exposed to the drugs used in SACTS, these drugs, depending on
type and dose, can have severe short-term and long-term side effects, affecting the
health-related quality of life (HRQoL) of patients.

1.2.1. ATC classification

Many different types of drugs for SACT have been developed and manufactured by
various pharmaceutical companies under different commercial names. To facilitate the
unique identification of drugs, an international classification was put in place by the
WHO: the Anatomical Therapeutic Chemical Classification System® (ATC). This system
assigns a code to the active compound of a drug based primarily on its indication. SACT
drugs can primarily be found in the antineoplastic agent category, coded LO1. However,
endocrine therapy (L02) is also used to treat specific cancer types, notably hormone-
sensitive breast cancer. Supportive drugs used to limit the side effects of the SACT drugs
are often included in the SACT regimen, such as immunostimulants (L03), antiemetics,
and antinauseants (A04). Most frequently used drugs in the “Antineoplastic and
immunomodulating agents” category (ATC code L) at the Department of Oncology,
Aalborg University Hospital, between 2008 and 2019 are presented in Table 1.



Table 1. Top 30 “1.” drugs used at the Department of Oncology, Aalborg University Hospital, between 2008
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and 2019.
Name ATC Records* Main indication(s) Type
Fluorouracil L01BCO02 24 583 Colorectal, Pancreatic, Breast Cytotoxic
Paclitaxel L01CDO01 19 499 Breast, Ovarian Cytotoxic
Vinorelbine LO1CA04 19 348 Lung, Breast Cytotoxic
Carboplatin LO1XA02 17 228 Lung, Ovarian Cytotoxic
Trastuzumab LO1XC03 16 025 Breast, Gastro-oesophageal Immunotherapy, active
Irinotecan LO1CEO02 15 866 Colorectal, Brain Cytotoxic
Bevacizumab LO1XC07 14 504 Colorectal, Ovarian Cytotoxic
Oxaliplatin LO1XA03 13 899 Colorectal, Gastro-oesophageal Cytotoxic
Capecitabine L0O1BCO6 12163 Colorectal, Breast Cytotoxic
Docetaxel L01CD02 10 868 Breast, Prostatic Cytotoxic
Gemcitabine L01BCO5 10 211 Pancreatic, Urinary Cytotoxic
Epirubicin L0O1DB03 8968 Breast, Gastro-oesophageal Cytotoxic
Cyclophosphamide LOTAAO1 6924 Breast Cytotoxic
Pegfilgrastim LO3AA13 5278 All Supportive (neutropenia)
Cetuximab LO1XC06 5013 Colorectal Immunotherapy, active
Etoposide LO1CBO1 4848 Lung Cytotoxic
Cisplatin LO1XAO01 4233 Lung Cytotoxic
Fulvestrant L02BA03 3173 Breast Cytotoxic, targeted
Letrozole L02BG04 2962 Breast Cytotoxic, targeted
Lipegfilgrastim LO3AA14 2876 All Supportive (neutropenia)
Temozolomide LO1AX03 2622 Brain Cytotoxic
Pemetrexed LO1BAO4 2284 Lung Cytotoxic
Pembrolizumab LOIXC18 1681 Lung, Urinary Immunotherapy, passive
Nivolumab LO1XC17 1625 Lung Immunotherapy, passive
Palbociclib LO1EF01 1591 Breast Cytotoxic, targeted
Pertuzumab LO1XC13 1560 Breast Cytotoxic, targeted
Eribulin LO1XX41 1475 Breast Cytotoxic
Panitumumab LO1XC08 1364 Colorectal Cytotoxic, targeted
Etlotinib LO1EB02 1354 Lung Cytotoxic, targeted
Doxorubicin LO1DBO1 1324 Opvarian, Endometrial Cytotoxic

* The number of prescriptions of the corresponding drug as recorded in the prescription software MedOnc (see Datasets

section).
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1.2.2. Cytotoxic drugs

1.2.2.1. Non-targeted drugs
Different classes of drugs can be found among the antineoplastic agents (LO1).
Historically, the first SACT' to be introduced relied on drugs that were toxic to cells and,
thus, are referred to as cytotoxic’. These drugs were initially non-targeted, affecting all
growing cells in the body. They typically have a cytotoxic effect by blocking the cell cycle
at different phases (see Figure 3).

New cell
a2 Mitolfs GO
Gap 2 - Growth Resc,atﬁ%%t_ate
and preparation
for mitosis
Checkpoints G1
Gap'1 - Growth
/’/ and preparation
= for/DNA synthesis
DNA synthesis

Figure 3. The cell cycle. During the multiplication process, the cell goes through four stages: G1, S, G2, and M.
The cycle has two main outcomes: copying of the DNA (8) and cell division (M). Specific control mechanisms are
activated at each checkpoint represented by a red line on the figure.

The cell cycle is composed of four active phases and a resting phase (see Figure 2)°. The
resting phase is called Gap 0 (GO). In this quiescent state, the cell cycle does not progress
towards cell division. Instead, the cell waits for a stimulus to be reactivated, such as in
the case of tissue-specific stem cells when an injury occurs or differentiates into a
structural component (e.g., myoblasts). The Gap 1 (G1) phase corresponds to the growth
phase when the cell prepares for DNA synthesis. Synthesis (S) is the phase in which
DNA is replicated. The Gap 2 (G2) phase is a phase of cell growth after DNA synthesis
when the cell prepares for mitosis. Mitosis is the phase in which the cell divides into two
cells, which both then enter the G1 phase, continuing the cycle. Checkpoints atre
milestones in the cell cycle when some control mechanisms are activated to ensure the
cell is ready to continue the cycle. For example, the G2/M checkpoint checks for etrors
in the DNA to prevent potential errors from being passed to daughter cells. It stops the
cell cycle as long as the detected errors are not repaired!.

Blockade of the cell cycle is typically achieved by preventing copying of the DNA (e.g.,
fluorouracil, gemcitabine, carboplatin), preventing cell division (e.g., paclitaxel,
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vinorelbine, eribulin), or damaging the DNA with double-stranded DNA breaks, leading
to cell death (e.g., irinotecan, topotecan)!-13. For example, fluorouracil inhibits the
synthesis of a nucleotide, the pyrimidine thymidylate, which is needed for DNA
replication, whereas paclitaxel prevents the destruction of microtubules, structures that
are needed for mitosis but must be destroyed for mitosis to finish.

Blocking the cell cycle has a major impact on the fast-dividing tumour cells.
Unfortunately, many types of normal cells, such as epithelial cells in the gastrointestinal
tract or blood stem cells, are also fast dividing. Therefore, they are also impacted, leading
to potentially severe side effects, such as vomiting, diarrhoea, rashes, or acute peripheral
neuropathy, as well as life-threatening conditions. As such, a major concern during
treatment is infections due to neutropenia. In addition, cancer treatment drugs often
induce long-term complications, including cardiac toxicity and an increased risk of
secondaty cancets.

1.2.2.2. Targeted drugs
To circumvent the drawbacks from non-targeted drugs, great effort has been made to
develop drugs that more specifically affect cancerous cells. These drugs affect a specific
hallmark of the cancer, stopping its growth or reducing the tumour size. These types of
treatments have less of an impact on normal cells but are only usable in specific types of
cancer depending on the targeted hallmark. They are typically protein kinase inhibitors
(LO1EF); protein kinases ate enzymes that alter proteins and, thus, their function.
Preventing this alteration can suppress the targeted hallmark, forcing cancer cells into a
less malignant state. Examples of such drugs are palbociclib and erlotinib, which are
primarily used to treat breast and lung cancer, respectively'®!5. Nevertheless, they still
have an effect on different normal cells that rely on these kinases for growth and, thus,
also generate side effects. Alongside classical mild chemotherapy-related side effects
(nausea, diarthoea, headache...), they are often associated with more severe side effects,
such as neutropenia and stroke.
Another more recent strategy for targeted treatment is to use antibody-drug conjugates,
such as trastuzumab emtansine (L01XC14). This type of treatment usually combines an
antibody, trastuzumab in the mentioned example, with a cytotoxic compound. The role
of the antibody is to preferentially bind a receptor on the cancer cells, triggering the
internalisation of the cytotoxic compound and leading to cell death. Typical mild and
severe chemotherapy-induced side effects are still present!®. Notably, the antibody is also
often used alone in active immunotherapy (see below).
Endocrine therapies could also be considered as targeted cytotoxic drugs because they
impact the growth and multiplication of cells in a targeted manner, but they typically have
fewer as well as less severe side effects.

1.2.3. Immunotherapy
Immunotherapy relies on an indirect mechanism to treat cancer. As opposed to cytotoxic
therapy, which directly hinders the growth and multiplication of cells, immunotherapy
aims at mobilising the immune system against malignant cells. In normal conditions, the
immune system recognises cancerous cells and destroys them. To evade the immune
system, cancerous cells must either overload the immune system or stay invisible to it.
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Thus, immunotherapy has the potential to cute even malignant metastatic disease by
leveraging the patient’s own immune defences.

1.2.3.1. Active immunotherapy

There are currently two categories of immunotherapy: active and passive. Active
immunotherapy forces the patient’s own immune system to attack the cancer, such as by
using antibodies that bind to cancer cells and then flag these cells to be destroyed by the
immune system. Examples of drugs following such a strategy are trastuzumab and
cetuximab, which are monoclonal antibodies, highlighted by the “mab” ending in their
name. This approach has been extended to molecules that can bind to two binding sites,
for example on a T cell and on a cancer cell to force the T cell to attack the cancer cell.
These drugs are called bispecific antibodies!”.

Other approaches for active immunotherapy are cancer vaccines, which help the immune
system recognise cancer cells, and chimeric antigen receptor T cell (CAR-T cell)
therapies. T cells are major components of the immune system. To implement the CAR-
T cell approach, T cells need to be extracted from the patient and modified to recognise
and attack cancer cells before being reinjected into the patient.

1.2.3.2. Passive immunotherapy
Passive immunotherapy works by either stimulating the immune system (i.e., cytokines),
ot by disabling defence mechanisms in cancer cells. One such defence mechanism is the
presence of programmed death-ligand 1 (PD-L1) at the surface of certain cancer cells.
This ligand prevents lymphocytes from attacking the cell. Drugs such as pembrolizumab
or nivolumab, as well as monoclonal antibodies, can block this mechanism by rendering
lymphocytes insensitive to this ligand.

1.2.3.3. Side effects
Immunotherapies, passive immunotherapies in particular, come with side effects. By
altering the general behaviour of the immune response, they can provoke potentially life-
threatening auto-immune reactions in patients. They also provoke more common side
effects, such as nausea, diarrhoea, or fatigue.

1.2.4. Dynamics of the side effects

In conclusion, all SACT's come with a trade-off between antitumoral benefits and side
effects. These side effects affect the HRQoL of patients and can even be linked in some
cases to eatly mortality. Patients with a generalised tumour burden who respond pootly
to the treatment and with degraded performance status are at high risk of short-term
mortality with or without SACT administration. They will also still experience the short-
term side effects of the SACT if given, potentially further reducing their HRQoL (see
Figure 4).
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Figure 4. A model of health-related quality of life for a patient with limited survival.

Therefore, late SACT administration should be avoided in some cases to limit the risk of
negatively impacting the HRQoL of patients close to death.

1.3. Aims of this work

This work had two aims. The first aim was to characterise late SACT usage through a
monitoring indicator, as described in Paper I, and investigate the validity of SACT
reporting in a national registry to assess the feasibility of implementing this indicator
nationally, as described in Paper II. The second aim was to build and compare dynamic
predictive models of 30-day mortality that could potentially be implemented in a decision
support tool. This decision tool, once validated in a prospective study, would be intended
to help clinicians prevent late SACT to limit the risk of harming patients near the end of
life due to unnecessary SACT, as well as limit drug spending, as desctibed in Paper I11.

2. Materials and methods

2.1. Monitoring indicators for short-term mortality of cancer
patients following SACT

The first part of this work was to define late SACT administration and investigate its
prevalence and associated risk factors, as described in Paper 1. Different monitoring
indicators using different definitions for late SACT administration have been proposed,
leading to heterogenous results throughout the literature.
2.1.1. Literature review

To draw the landscape of the vatious monitoring indicators used in similar contexts, we
conducted a literature review. We searched in PubMed for articles published between Jan
01, 2010, and Dec 31, 2020, investigating short-term mortality after SACTs. We used the
keywords (“30-day mortality” or “30 days mortality” or “eatly mortality” or “end of life”)
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and (“anticancer” or “anti-cancer” or “chemotherapy”). From this search, we identified
98 publications. After further filtering to remove duplicates (n=3), articles not focussed
on solid tumours (n=18), that were not accessible (n=11), or reported qualitative results
(n=26), we found 40 publications.

The corresponding indicators differed mostly in three ways: the inclusion criteria, the
time point of interest in the treatment before death, and the threshold of delay between
the time point and death. Concerning the inclusion criteria, there were two main
strategies: one considered only the dead patients, which was promoted by Eatle et al.’8,
and the other included all patients treated during a period, typically a calendar year,
regardless of whether they were dead'?-26. The first strategy can be further subdivided
into three subcategories based on the circumstances of death: patients who died from
any cause, considering if they received a treatment close to death?7283729-36_ for example
in the last 6 months, or not33:4849,40-47; or patients who died from cancer, often in a
palliative context®->*. For the second strategy, as defined by Wallington et al.?3, patients
can theoretically be included multiple times in different periods if they ate treated over
more than one period.

Regarding the time point of interest in the treatment, most of the publications considered
the last administration or start of the last cycle (36/40, see Table 2). A cycle was
commonly a few days long, and these two time points led to similar results in terms of
short-term mortality. Concerning the threshold on the delay between the time point and
death, 30 days (ot 1 month) was used most frequently (39/40).

Table 2. Distribution of references per time point and delay used.

Time point All Last SACT administration Start of SACT
Delay

All 40 36 8

14 days 20 20 3

30 days 39 35 7
Other 23 21 2

The definition of SACT drugs can influence the time point, as it is based on drug
administration or treatment start, and potentially also the cohort if only patients treated
with these drugs are included. In some cases, a wide variety of drugs used in cancer
treatment were considered, including supportive medications®, whereas other studies
only considered cytotoxic drugs®.
2.1.2. Conditioned on the future

When the time point and delay have been defined, the cases of late SACT are easily
identified, but problems arise when trying to define the cohort for compatison. In other
words, the goal is to define a ratio at which the number of late SACTs is the numerator
but the denominator can be defined in different ways, as illustrated by the diversity of
inclusion criteria found in the literature review. All reviewed articles included one record
per patient, which is a common practice in medicine but leads to bias if the inclusion
criteria rely on future events.
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As introduced in Paper I, the main limitation of the approaches proposed by Eatrle et al.
and Wallington et al. is that they are conditioned on future events. This is a kind of
selection bias that can lead to improper assessment of risk factors. Defining a risk factor
profile for a patient implies that this patient is evaluated when first seen and not when
the outcome is known. In the case of Eatle et al., because only patients who died from
cancer are included, the risk factors ate only applicable for patients who will die from
cancer. However, when a patient starts a SACT, dramatically different outcomes atre
possible, from long-term remission to short-term death due to unsuccessful treatment.
The clinician may be able to predict the outcome correctly from known risk factors and
experience but cannot be sure of it. To define appropriate risk factors that are usable in
a clinical context, all patients should be included. Not considering the patients for whom
it went well will create bias toward non-responders.

In addition, an increasing number of patients receive multiple treatments throughout the
course of their disease and, using the Eatle et al. approach, only the last one is considered.
This means that the risk factors that are calculated will only be appropriate for the last
treatment. The same limitation is present for Wallington et al.’s approach, as only the last
SACT in a period is considered. Figure 5 illustrates different patient trajectories and
which SACTs are considered in both cases. A bias toward later treatments is present in
both.

Death from cancer

Patient A —-—-—0/
Included in Earle et al.’s approach
Patient B -
Death from other cause
Patient C -
SACT Included in Wallington et al.’s approach
Patient D - -

Patient E ———=—m

Time

Figure 5. Examples of SACTs included in Earle et al. and Wallington et al.’s approaches. The black rectangle
represents the treatments that each patient actually received. The red overline and blue underline indicate which
SACTs would be taken into account in the calenlation of Earle et al.’s and Wallington et al.’s indicators,
respectively.

A clinician wants to assess the risk profile of the individual patient before starting SACT

to avoid late treatment, which means that each SACT should be considered, but this is
not the case, as illustrated in Figure 5.
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2.2. Datasets

To charactetise the prevalence of late SACT administration, evaluate corresponding risk
factors, and build predictive models for the short-term mortality of cancer patients,
retrospective data were obtained from a number of registries. In the last few decades,
Denmark has invested in solutions to digitise health care data across the country. While
some hurdles are still present, notably for clinical work with the lack of a national
electronic patient journal, this investment has enabled unique research projects and put
Denmark at the forefront of epidemiological studies>. The present work was based on
registry data from five different sources.

2.2.1. CPR dataset
In Denmark, each citizen is given a number, their Danish civil registration number, which
is systematically used across all administrative and health care systems. This number
facilitates the coupling of datasets. The corresponding dataset from the Danish Civil
Registration System (CPR dataset) also contains information on the individual’s sex, date
of birth, and date of death, which were used in this work. To improve the security of this
data, the CPR numbers were encrypted to enforce pseudo anonymisation in all datasets.

2.2.2. PAS
The five Danish regions manage the hospital system in Denmark. In the North Denmark
Region, all interactions of patients at the hospitals ate recorded in the Patients
Administrative System (PAS). Such systems are in place in all regions and are primarily
used to obtain funding from the government to finance the healthcare system. The
structure of the PAS data can be decomposed into either in-patient or out-patient
contacts and health care procedures. Each procedute is connected to a contact, which
typically contains multiple procedures. A contact has associated data, notably the start
and end dates and the associated diagnosis. A contact can potentially last for years,
especially for chronic diseases. A procedure is defined by the start and end dates and a
procedure code. Procedures can be diverse, such as treatment-related (e.g., surgery and
chemotherapy) or clinical consultations. All codes used in PAS follow the Danish
Healthcare Classification System®” (SKS). Diagnosis codes in the SKS are similar to codes
from the ICD-10 classification® developed by the WHO. These diagnosis codes can be
used to infer comorbidities, side effects, and the patient’s cancer trajectory.

2.2.3. MedOnc
To prescribe, administer, and register the SACTSs, clinicians at the Department of
Oncology, Aalborg University Hospital, use the prescription software ARIA OIS for
Medical Oncology v13.7 (Vatian Medical Systems Inc., Palo Alto, CA, USA) (MedOnc).
The data contained within this solution includes detailed information on the type of drug
used, the frequency of administration, the dose administered, the PRN (Pro Re Nata =
as needed) status, the corresponding regimen name, and cycle number. It also contains
information on the height and weight used to calculate doses. Most of the information
concerning drug administration was only available as text, including the commercial
name of the product used with occasional misspellings and the frequency of
administration. Reporting issues could also be detected in this dataset. Therefore,
extensive data management was needed to extract usable data.

11
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2.2.4. Patobank
The Danish National Pathology Registry (Patobank) dataset contains data on
histopathological results. These data inform on the cancer subtype based on topography,
motphology, and/or biomarkets. The morphology coding is similat to the International
Classification of Diseases for Oncology, 34 Edition® (ICD-O-3). Histopathological
information, such as the subtype and biomatkers, can be used to select the appropriate
treatment. Examples of biomarkers are PD-L1 expression in lung cancer and BRAF
mutation in colorectal cancer.

2.2.5. LABKA
The results of biochemical analyses are collected in the Clinical Laboratory Information
System (LABKA). This dataset primarily contains blood test results, such as blood cell
counts or ion concentrations. To ensure comparability across Denmark, the
Nomenclature, Properties, and Units®® (NPU) classification is used. Biochemical results
are used to monitor the health status of the patients, notably to detect neutropenia or to
monitor inflaimmation.

2.2.6. The DNPR and its validation
The Danish National Patient Registry (DNPR) is a national registry containing
information from the patient administrative systems from all five regions in Denmark
and, therefore, includes most of the data stored in PAS. All of the datasets that are used
are available at the national level or at least in more than just the North Denmark Region
apart from MedOnc. The PAS and DNPR contain some information on treatment as
procedutres, but MedOnc was considered a more reliable data source because it is used
by medical personnel, where the DNPR is fed by administrative personnel. However,
using MedOnc prevents implementation of the proposed indicator on the national scale.
To investigate the validity of the DNPR data for SACTSs, we conducted a validation study
of this dataset in Paper II.

2.3. Predictive modelling

The main challenge in limiting late SACTS is the ability to accurately predict when it is
“late” (i.e., how close to death the patient is). Clinicians tend to be overoptimistic
concerning patient survival®l. In Paper I1I, we built and compared dynamic predictive
models for 30-day mortality in patients with advanced lung cancer with the intent to use
these models in a decision support tool. Dynamic refers to the fact that these models
should be able to predict the 30-day mortality at any time point in the patient’s trajectory.
The corresponding outcome is binary (i.e., will the patient die within 30 days or not). The
aim was to help clinicians better assess the short-term mortality of their patients at the
individual level and make treatment decisions accordingly.

Similar studies from the literature did not investigate the use of artificial neural network-
based approaches or used a limited set of covariates®>-%. However, one similar study
focussed on predicting 6-month mortality for another intent®’.

12
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2.3.1. Measure of performance

When working with binary outcomes, a prediction can be either positive or negative and
either true or false. Therefore, there are four possible cases: true-positives, true-negatives,
false-positives, and false-negatives (see Figure 6). Performance is typically evaluated using
functions of these numbers. The most commonly used metrics are the sensitivity, also
called recall or the true-positive rate, and the specificity. In some contexts, the precision,
also called the positive predictive value, is also used. The sensitivity is the ratio of true-
positives among positives and informs on how good the predictions are at identifying
the positive cases. The specificity is the ratio of true-negatives among negatives and
informs on how good the predictions were at avoiding false-positives. The precision is
the ratio of true-positives among the cases predicted as positive (i.e., how likely is a
positive prediction to be correct). The Fy score is the harmonic mean of the sensitivity
and the precision and, thus, summarises these two mettics.
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Figure 6. 1llustration of true-positives, false-positives, true-negatives, false-negatives, and associated popular metrics.

In practice, predictive models for binary outcomes produce probabilities for being
positive. The outcome is predicted to be positive if it is above an arbitrary threshold of
this probability, and the predictions are used to compute the various performance
metrics. To evaluate the overall performance of a model, a classical approach is to
calculate the sensitivity and specificity for different values of the threshold and to plot
them against each other. In practice, the sensitivity is plotted against 1-specificity, also
called the false-positive rate (FPR). This results in a plot called the receiver operating
characteristic (ROC) curve. The area under the ROC curve (ROC AUC) is a popular
approach for evaluating the predictive power of such models (see Figure 7). One
limitation of this approach is that it is sensitive to unbalanced datasets (i.e., if one
outcome is much more frequent that the other). In the case of a frequent negative
outcome, the model will tend to be very good at predicting true negatives.
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Figure 7. Example of receiver operating characteristic and precision-recall curves. ROC AUC, area under the
ROC curve; AP, average precision

Therefore, adding more negatives will decrease the FPR for a given threshold while
mostly maintaining the sensitivity, leading to an artificial increase in the ROC AUC and
making results difficult to compare. To circumvent this limitation with unbalanced
datasets, another metric has been proposed, the average precision (AP), which represents
the area under the curve of the precision-recall curve®. This precision-recall plot displays
the precision (ot the positive predictive value) against the recall (ot sensitivity) for various
values of the threshold and calculates the area under the curve. In practice, the values of
the threshold used to plot both the ROC and precision-recall curve are chosen based on
predictions for each data point, to incrementally vary the sensitivity (or TPR or recall)
and calculate the corresponding FPR or precision to plot a new point of the cutve.

2.3.2. General learning theory

There are two approaches in statistical learning: supervised and unsupervised learning®.
In supervised learning, the aim is to build a model capable of predicting an outcome
given a number of covariates based on training data for which the covariates and
outcome are known. The performance of the model is evaluated based on its ability to
predict the outcome. In unsupervised learning, the model is expected to learn from the
data without any outcome or label. This is typically used for clustering analyses, in which
the model groups the data points into clusters based on a similarity metric. In this PhD
study, we exclusively worked with supervised learning with a binary outcome, denoted
as 0 or 1, where 0 is considered negative and 1 positive.

The goal of a predictive model is to predict as accurately as possible the outcome Y
based on a set of covariates, X, for the k™, k = 1, ..., m data point (e.g., a patient). The
outcomes are collectively referred to as y and the sets of covariates as x. This is done by
formulating a predictive function f, taking X, as input and returning the outcome Y.
The function is supposed to depend on a set of parameters, 8, that need to be optimised
to maximise the performance of the model. A loss function, L, is defined that measures
a distance between the predictions and the known outcomes. A classical function for the
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loss function is the residual sum of squares (RSS) used to measure the distance between
outcome Y and prediction P,. The prediction P is a value of functon f of the
covatiates (x;) and the model patameters (B). Letting m denote the number of data
points, this can be stated as:

Ly, B) = RSSGY.B) = ) O =9 = ) (e~ fC D)’
k=1 k=1

Optimisation is achieved by finding the f that minimises Lt

g = argmingL(x,y, B).

A more general approach to calculating a loss function is based on maximising the
likelihood function, where the likelihood function £ is the density of getting the outcome
¥y knowing the sets of covariates x and the set of parameters 8, and € is the likelihood
for each datapoint. In the case of a binary outcome, it can be stated as:

ey f) = [ e
k=1

where

(X, Yo B) = 1y = DPr(y, = 1| B,x) + 1y = 0)Pr(y, = 0] B, xp).

In practice, the log-likelihood is used, allowing us to work with a sum instead of a
product. The log function is increasing, therefore maximising the log-likelihood is
equivalent to maximising the likelihood. As the goal is to minimise the loss function, a
negative sign is added:

m

L(x,y,8) = ~log (L0, ) = ) —10g (£(t0yiu B).

k=1

2.3.3. Overfitting
A key aspect in machine learning is the ability of the models to predict the outcome based
on a new set of covariates. The models can become so specific to the training data used
for learning, that it will perform pootly when presented with new data. This is called
overfitting.
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Figure 8. lllustration of overfitting with three different models. Se, sensitivity; Sp, specificity.

In Figure 8, three different models were trained on the same data set, with different
petformances. The first and simplest model performed worst on the training data and
the more complex model the best. However, when presented with new data, the first two
models maintained their performance while the last model underperformed because it
was too specific to the original training data (i.e., this model was not generalisable).
Therefore, to propetly evaluate the performance of a predictive model, the performance
must be evaluated on different data. Typically, this is achieved by splitting the data into
the training data and the test data, where only the training data is used for training and
the performances are evaluated on the test data.

2.3.4. Hyperparameter optimisation
Most predictive models can be configured to limit overfitting, but this gives a risk of
underfitting, with the model not learning sufficiently from the data. This configuration
is done through hyperparameters, such as by using a coefficient to penalise the size of
parameters used in the model through a loss function. The difference between
hyperparameters and parameters is that the hyperparameters are set before the learning
phase starts, whereas the parameters are optimised during the learning phase. To find the
optimum values for the hyperparameters, the performance of the models for the tested
hyperparameter combinations must be evaluated. The test set could be used, but this will
also lead to overfitting because the hyperparameters are then optimised based on the
same data set that will be used to evaluate the performance of the model. The final
evaluation of the performance of the selected model should be made on a data set that
was not used in either the learning phase or for the selection of the hyperparameters to
achieve a better assessment of the generalisability of the model. Ideally, an external data
set should be used, but this is not often available. To solve this problem, the test set can
be split into a validation set and a final test set. The validation set is used to optimise the
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hyperparameters, and the final performance of the model is assessed using the final test
set.

Different methods are available for finding the best hyperparameters. A naive approach
would be to systematically explore the hyperparameter space for the best combinations.
This approach is called a grid search. A more sophisticated and effective approach is
Bayesian optimisation, which is based on Bayes’ rule?. Bayes’ rule states how to update
the current probability of proposition A, Pr(A4), called the ptior probability based on
observed evidence B, leading to a new probability called the posterior probability,
Pr(A|B).

Pr(A4) Pr(B|A)
Pr(A|B) = —————
(4]B) Pr(B)
This approach can be extended to a version of Bayes’ rule involving a prior distribution
T on an unknown variable, z, leading to a posterior distribution on the unknown value
z, given the set of observations o.

n(z)L(0|2)

n(zlo) = [ m(2)L(o|z)dZ
z

where L the likelihood of observing 0 given z.
In Bayesian optimisation of hyperparameters, the first step is to define a prior
distribution on the loss function by a Gaussian process (GP) on the hyperparameter
space. In practice, a selection of points, by, k = 1,...,Nj, is used as indices for the
Gaussian process, where Nj is the number of indexed points. For each indexed point, a
Gaussian distribution of mean p and covariance function X is initially defined. The
mean [ is typically a constant over the hyperparameters, and covariance function % is
assumed to be a smooth function of the distance between a pair of points in the
hyperparameter space and zero for points where the loss function was observed. Using
Bayes’ rule, a new GP is calculated on the indexed points as the posterior distribution on
the loss function given all the observed losses. The approximate loss function, i.e., the
mean function of the posterior GP, is called the surrogate function™. Next, we use the
maximum of an acquisition function defined from the posterior GP to decide the set of
hyperparameters for which the loss function should be evaluated. As an acquisition
function, one could, for example, choose the variance function of the GP because this
will push the point away from already explored areas. However, more sophisticated
approaches exist based on the expected improvement or maximum entropies’. Once a
new data point for the loss function is observed, an updated posterior is generated,
leading to a new acquisition function and, therefore, a new set of hyperparameters for
which the loss function should be evaluated. This process is repeated until a specific
number of iterations is reached or when a convergence critetion is met (see Figure 9).
This will eventually lead to a concentration of hyperparameters around the minimum
value of the loss function. Compared to the grid search, which can realistically only
handle a few dimensions, Bayesian optimisation is capable of handling higher
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dimensional spaces, in practice up to 20%70, This approach has been implemented in the
Python library keras-tunet’.

Computed losses  Unknown loss

function \ New computed loss

Update posterior
distribution

Loss
Loss

Surrogate function

h h
Infer acquisition Infer new acquisition
. Se[ef:ted functior 5 function
3 5 point h 3 5
85 N 85
o > H L >
o8| -3
o Q.
Y E - :
h h

Figure 9. Example of an iteration in Bayesian optimisation of hyperparameters. Confidence intervals (Cls) describe
typical realisations of the prior on the loss function and maximum variation. b is a value in the hyperparameter

Space.

2.3.5. Predictive models
In this work, we benchmarked five different machine learning techniques to build
predictive models for the 30-day mortality.

2.3.5.1. Logistic regression with elastic net regularisation
Logistic regression is a regression technique in which the logit-function of the probability
of getting the outcome 1 for the k th data point is calculated as a linear combination of
N covariates Xy, i = 1,...,n, with corresponding coefficients ; and fy, where fy is
an offset independent of covariates.

n
logit(Pr(y, = 1| B,x,)) = Bo + Z:Bixik'
i=1
where

logit(x) = log (1xTx)

The coefficient f used in the linear combination is selected to minimise the negative log-
likelihood function L, which aims at maximising the probability of outcome y given the
coefficient f§ and sets of covariates X.

m

B = argming (L(x,y,£))) = argming ( " ~log (¢(t i £))

k=1

The main issues with this type of model are potential overfitting when many covariates
are used and interpretability when correlated or multicollinear covariates are present. To
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solve these problems, regularisation mechanisms have been proposed, such as ridge
regression, addressing most instabilities due to correlation or multicollinearity, and the
least absolute shrinkage and selection operator (LASSO), tackling the overfitting by
enforcing covatiate selection. The regularisation mechanism in the Ridge regression
comes from a penalty added in the loss function L based on the sum of the squares of
the values of the coefficients, with A being the regularisation coefficient.

106y, 8,2 = ~log (LCx,y, ) +2 ) B’

i=1

The regularisation in LASSO is achieved by applying a penalty proportional to the sum
of the absolute values of the coefficient.

16, ,8,2) = —log (LGx,y, £) + 2 ) 1]

i=1

These two methods address two different issues and have been combined into one
regularisation, the elastic net regularisation. The corresponding hyperparameters are the
regularisation strength, 4, and the elastic net mixing parameter between the Ridge
regression and LASSO, a.

1(x,7,8,2,@) = ~log (L(x,y, B) + 4 (aZﬁf +(1- a)Zw)

2.3.5.2. Random forest classifier

A classical approach in predictive modelling of binary outcomes is to use decision trees.
The idea is to initially find the covariate and the corresponding threshold for continuous
variables, or the value for categorical variables, that best separates the positives and
negatives, and then repeat the process in each branch. This separation criteria can be
stated as a question with a “Yes” or “No” answer; for example, “Is the value for the
covariate age above 65?” or “Is the patient a male?” A tree is characterised by its depth,
corresponding to how many times the splitting procedure is performed. The splitting
procedure can be stopped at any time point based on the performance criteria. An
example of a decision tree based on two covariates giving a probability of being positive
is presented in Figure 8. Each covariate can be reused multiple times for splitting in the
same tree. A decision tree for a binary outcome does not have to provide a binaty
prediction, but can also generate a probability of being positive or negative.

As seen in Figure 10, the predictive function based on a decision tree, f, splits the
covariate space into Np domains: R;, j = 1,..., Np with a corresponding probability b;
of belonging to R;.
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£ = ) byI(x € R))
=1

Importantly, Np, and therefore R; and bj, depends on the hyperparameters used to build
the tree, which are principally stopping criteria, such as the maximum tree depth.

var1 < 0.4?

var2 < 0.15? var2 < 0.5?

var1 < 0.55?
23/24

No

110

3/4 1/4

Figure 10. Example of a decision tree with two covariates, varl and var2. In the covariate space on the left, the
positive cases are represented by white circles and the negative cases by black circles. In the decision tree on the right,
grey circles are decision nodes. The end nodes, also called leaves, are represented by white or black circles based on the
probability of being positive using a 50% threshold.

A problem with decision trees is that they tend to overfit if their depth is too large, but
they learn very little with a low depth. To circumvent this limitation, ensemble

approaches that create multiple trees and aggregate the results have been proposed (see
Figure 11).
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Data point

Max tree
depth

L Tree 1 Prediction\\ Tree 2 A Tree3
fromtree2
Prediction ™™=+ =+«seeeeeeeeeeeeens Aggregating PR Brediction
from tree 1 : from tree 3

+
Model prediction

Figure 11. Example of the prediction process for a tree-based ensemble model with three trees and a maximum
depth of 3.

The prediction function for the whole model, f, is a function g, often the mean, of the
outcomes of each tree, f]-, Jj=1,...,Np, where Ny is the number of trees.

1<
£ = 9, o, fi3) = = ) £
j=1

One famous tree-based ensemble technique is called random forest (RF)74. A RF model
generates an ensemble of trees, also known as a forest, for which covariates and records
are randomly selected from the dataset to train each tree. This type of model is primarily
optimised on the number of trees and the maximum depth of these trees.

2.3.5.3. Gradient boosting classifier
Another tree-based ensemble approach that has gained traction in recent years is tree-
based gradient boosting”™ (GB). In contrast to the RF, covariates and data are not
removed randomly; instead, this approach follows an iterative process in which the
difference between the outcome and the predictions, called residuals, is used to build a
new tree that will be included in the ensemble model (see Figure 12).
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Var1 | Var2 | Outcome | Residual
) 01306 | 1 0.53 )
Fit new tree on 012 | 01 0 047 Repeat with new
residuals residuals
085 09| 0 -047

Var1 | Var2 | Outcome| Residual | Prediction | New residual
0.13 | 0.6 1 0.53 0.82 0.18
012 | 01 0 -0.47 0.11 -0.11
085 0.9 | 0 0.47 005 | -0.05

Integrate new tree in

the whole model Calculate new

residuals

Generate Var1 | Var2 | Outcome | Residual | Prediction
predictions 0.13 | 0.6 1 0.53 0.82

0.12 | 0.1 0 0.47 0.11
' 0.85 | 0.9 0 0.47 0.05

Figure 12. Iterative learning process for a tree-based gradient boosting classifier.

The process is started by calculating the mean of the outcomes as the function for the
first fitted model Fy. From the previous model function, F;_4, residuals are calculated as
the difference between the outcomes and the predictions. These residuals are used to fit
a new tree with predictive function f} After this new tree is fitted, a weighting coefficient,
¥, is calculated for fj to minimise the loss function, L, on the function for the whole
model, F;, combining Fj_; and f;j.

F(xy) = F_1 (i) + v f; ()

m

with y; = argmin,, Z L (yl-,Fj_l(xk) +vf; (xk))

k=1

Typically, the weighted residual predictions for each tree function, y;fj, are further
weighted by the learning rate, A, before the new tesiduals ate calculated to facilitate
convetgence.

F}'(xk) = Fj—1(xk) + /h’jfj(xk)

where the predictive function, f, is the output of the last iteration, and Ny is the number
of trees.

f(xk) = FNT(xk)
Like the RF, this type of model can primarily be optimised on the number of trees and

the maximum depth of these trees, but also on the leatning rate A. The number of trees
represents the number of times the iterative process is performed.
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2.3.5.4. Multilayer perceptron

Artificial neural network methods have gained considerable traction in the last decade
due to exceptionally good results in the fields of image and voice recognition and natural
language processing, which were made possible by improvements in processing speed.
The corresponding models rely on programmatic neurons that apply a linear or non-
linear function to a linear combination of inputs to generate an output. This function,
called an activation function, is often of a sigmoid type, such as the one used in the
logistic regression:

n]-_l

Njk(yj—l) =0 Bjko + Z Biki Yij-v1 | = Yjio
=1

where j is the layer number, k the neuron number in the layer, Nj, the output function
for the corresponding neuron, ¢ the activation function, n; the number of neurons in
layer j, ¥; the output vector of dimension n; from layer j composed of the values yjy,
Bjko the bias, and By, the weight used in the corresponding neuron. These neurons are
organised in layers, with each layer feeding into the next (see Figure 13).

In predictive modelling with binary outcomes, the final layer contains only one neuron
that outputs a probability (i.e., the predictive function f). The model leatns by back-
propagation; the prediction is compated to the actual outcome and the weights and bias
for each neuron updated going backwards in the network. This back-propagation is
handled by an algorithm called the optimiser. Different versions of this algorithm are
available’. The size of this update is regulated by the learning rate.

A simple architecture for an artificial neural network model is multilayer perception
(MLP) as shown in Figure 13.

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer
Covariate 1 @\ Q
Covariate 2 @ Q% \/_\
@: @ / Prediction
Covariate 3 @ UE : S@ //
Covariate 4 @/

Figure 13. Example of a multilayer perception with three hidden layers with 4, 3, and, 3 neurons, respectively.

These types of models contain many hyperparameters, including the number of layers,
the number of neurons and activation method at each layer, the learning rate, and the
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optimiser. In addition, a dropout step can be placed between each layer to randomly
remove some covariates to avoid too much overfitting, adding an additional
hyperparameter to regulate the number of covariates being removed. These
hyperparameters can typically be determined by Bayesian optimisation.
2.3.5.5. LSTM

One of the main limitations of the MLP for natural language processing or voice
recognition is their lack of memory. Understanding a text and recognising words in
speech are typically dependent on the context and, thus, keeping track of the previous
data (i.e., words in the case of natural language processing) can help dramatically improve
petformance. To tackle this issue, recurring neural networks have been developed in
which the prediction is calculated from a sequence of data points, with the output at each
data point in the sequence being dependant on the data for the new data point but also
the output data at the previous data point. However, naive implementation of such
networks leads to instability in the fitting process. The long-short term memory (LSTM)

model””

was proposed to limit this problem. It is based on the idea of an internal state
that helps select the information to be kept while going through the sequence (see Figure
14).

The layers comprising this model are similar to the layers used in the MLP and, thus, lead
to similar hyperparameters (i.e., the number of layers, the number of neurons, the
activation method at each layer, the learning rate, and the optimiser). Dropout
mechanisms can also be included. Furthermore, the output of the LSTM can be fed into

an MLP, further complexifying the model.

® ©

Bsis T

|Forget layer Ilnput activation Iayer" Input layer |

) ) )

Figure 14. Example of an 1.STM model. The red block is for the management of the internal state s, and the
green block is for the generation of the output y,, x; is the data for the event at time t in the sequence.

Sl

Xt
| Output activation layer

Output layer

2.3.6. Explainability
In medical research, understanding how covariates affect predictions is of particular
interest. Clinicians usually require understanding the reasons behind a clinical decision,
and decision support tools should be able to provide that in some form’. Therefore,
tree-based ensemble and artificial neural network models can be challenging to
implement in a clinical context due to their lack of interpretability. An approach based
on game theory aims to make the predictions from any model more interpretable. In
game theory, Shapley values provide an estimate of the marginal contribution of each
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player to a result so it can be allocated faitly to all players. The marginal contribution is
the difference between the result with or without the considered player. This approach
can be applied to a predictive model by considering covariates as players contributing to
the outcome.

This approach has been implemented in a Python library that calculates SHapley Additive
exPlanation (SHAP) values for each covariate. SHAP values ate local estimations of the
marginal effect of each covariate on the prediction of each data point.

Prediction = 0.15

vari

: ? +— Probability
Mean outcome = 0.47

Figure 1. Decomposition of the difference for one data point between the mean outcome and the prediction in
contributions from each covariate in a predictive model with two covariates.

One of the main advantages of this approach is that it is model agnostic (i.e., it can be
applied to any predictive model). For a specific data point, it decomposes the difference
between the mean outcome and the prediction in contributions from each covariate (see
Figure 15). By calculating these SHAP values for all data points or a random sample of
them, it is possible to estimate the overall contribution of each covariate. Though the
SHARP approach is considered to be the standard, the explainability of machine learning
models is a subject of ongoing research, with alternative strategies being developped’s.

25



Introduction

References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19.

TARC/WHO. Cancer. https:/ /www.who.int/news-room/ fact-
sheets/detail/cancer. Published 2021. Accessed October 6, 2021.

Eurostat. Causes of death statistics.

Crick F. Central Dogma of Molecular Biology. Nazure. 1970;227(5258):561-563.
doi:10.1038/227561a0

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Ce/.
2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Ce/.
2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013

Arnold M, Rutherford MJ, Bardot A, et al. Progress in cancer survival, mortality,
and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-
2): a population-based study. Lancet Oncol.  2019;20(11):1493-1505.
doi:10.1016/S1470-2045(19)30456-5

DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res.
2008;68(21):8643-8653. doi:10.1158/0008-5472.CAN-07-6611

WHO Collaborating Centre for Drug Statistics Methodology. Anatomical
Therapeutic Chemical (ATC) classification system.
https:/ /www.whocc.no/atc/structure_and_principles/. Accessed Matrch 3,
2021.

Cooper GM. The Cell: A Molecular Approach, 2nd Edition. Sundetland; 2000.
Cuddihy AR, O’Connell MJ. Cell-cycle responses to DNA damage in G2. Inf Rev
Cytol. 2003;222:99-140. doi:10.1016/s0074-7696(02)22013-6

Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action
and clinical strategies. Na# Rev Cancer. 2003;3(5):330-338. doi:10.1038/n1c1074
Drugs.com. Paclitaxel. https://www.drugs.com/monogtaph/paclitaxel. html.
Accessed November 9, 2021.

Pommier Y. Drugging Topoisomerases: Lessons and Challenges. ACS Chem Biol.
2013;8(1):82-95. doi:10.1021/cb300648v

XuH, YuS§, Liu Q, et al. Recent advances of highly selective CDK4/6 inhibitors
in breast cancet. | Hemato! Oncol. 2017;10(1):1-12. doi:10.1186/513045-017-0467-
2

Raymond E, Faivre S, Armand JP. Epidermal Growth Factor Receptor Tyrosine
Kinase as a Target for Anticancer Therapy. Drugs. 2000;60(1):15-23.
doi:10.2165/00003495-200060001-00002

Wolska-Washer A, Robak T. Safety and Tolerability of Antibody-Drug
Conjugates in Cancer. Drug Saf. 2019;42(2):295-314. doi:10.1007/s40264-018-
0775-7

Fan G, Wang Z, Hao M, Li J. Bispecific antibodies and their applications. |
Hematol Oncol. 2015;8(1). doi:10.1186/s13045-015-0227-0

Earle CC, Neville BA, Landrum MB, et al. Evaluating claims-based indicators of
the intensity of end-of-life cancer care. Int | Qual Heal Care. 2005;17(6):505-509.
doi:10.1093/intghc/mzi061

Jones GS, McKeever TM, Hubbard RB, Khakwani A, Baldwin DR. Factors

26



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Introduction

influencing treatment selection and 30-day mortality after chemotherapy for
people with small-cell lung cancer: An analysis of national audit data. Eur |
Cancer. 2018;103:176-183. doi:10.1016/j.¢jca.2018.07.133

Wilson M, Mak W, Firth M, Deva S, Findlay M. Mortality within 30 days of
systemic anticancer therapy at a tertiary cancer centre: Assessing the safety and
quality of clinical care. N Z Med ]. 2017;130(1460):63-72.

McCracken JA, Dabscheck A, Coperchini M, et al. Prospective analysis of 30-
day mortality following palliative chemotherapy at a tertiary cancer centre. Cancer
Rep. 2018;1(1):e1135. doi:10.1002/cnt2.1135

Burgers JA, Damhuis RA. 30-Day Mortality After the Start of Systemic
Anticancer Therapy for Lung Cancer: Is It Really a Useful Performance
Indicator? ER] Open Res. 2018;4(1):00030-02018. doi:10.1183,/23120541.00030-
2018

Wallington M, Saxon EB, Bomb M, et al. 30-day mortality after systemic
anticancer treatment for breast and lung cancer in England: a population-based,
observational study. Lancet Oncol. 2016;17(9):1203-1216. doi:10.1016/S1470-
2045(16)30383-7

Gibson AJW, Li H, D’Silva A, et al. Factors associated with early mortality in
non-small cell lung cancer patients following systemic anti-cancer therapy: A 10
year population-based study. Lung Cancer. 2019;134(February):141-146.
doi:10.1016/j.lungcan.2019.06.003

Yoong J, Seah JA, Hamilton K, Teo LN, Chong G. Mortality within 30days of
receiving systemic anti-cancer therapy at a regional oncology unit: What have we
learned? Asia Pac | Clin Oneol. 2012;8(4):325-329. doi:10.1111/§.1743-
7563.2011.01498.x

Silverman R, Smith L, Sundar S. Benchmarking 30 Day Mortality After Palliative
Chemotherapy for Solid Tumours. Clin Oncol (Royal Coll Radiol. 2014;26(1):236.
doi:10.1016/j.clon.2013.12.005

Andreis F, Rizzi A, Rota L, Meriggi F, Mazzocchi M, Zaniboni A. Chemotherapy
use at the End of Life. A Retrospective Single Centre Experience Analysis.
Tumori. 2011;97(1):30-34. doi:10.1177/030089161109700106

Colla CH, Morden NE, Skinner |S, Hoverman JR, Meara E. Impact of payment
reform on chemotherapy at the end of life. Aw | Manag Care. 2012;8(3S):e6s-
el13s. doi:10.1200/jop.2012.000539

Jung D, Hwang S, You HJ, Lee J. The realities and associated factors of palliative
chemotherapy near the end of life in the patients enrolled in palliative care unit.
Korean | Fam Med. 2012;33(1):44-50. doi:10.4082/kjfm.2012.33.1.44

Ortiz JS. Chemotherapy at the end of life: Up until when? Clin Trans! Oncol.
2012;14(9):667-674. doi:10.1007/512094-012-0847-6

Karim SM, Zekti |, Abdelghany E, Dada R, Munsoor H, Ahmad I. Time from
last chemotherapy to death and its correlation with the end of life care in a
referral hospital. Indian | Med Paediatr Oncol. 2015;36(1):55-59. doi:10.4103/0971-
5851.151792

Taberner Bonastre P, Taberner Bonastre MT, Soler Company E, Pérez-Serrano

27



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43

44,

45.

Introduction

Lainosa MD. Chemotherapy near the end of life; assessment of the clinical
practise in onco-hematological in adult patients. Farz Hosp. 2016;40(1):14-24.
doi:10.7399/£h.2016.40.1.8918

Rautakorpi LK, Seyednasrollah F, Mikeld JM, et al. End-of-life chemotherapy
use at a Finnish university hospital: a retrospective cohort study. Actz Oncol
(Madr). 2017;56(10):1272-1276. doi:10.1080/0284186X.2017.1332424

Massa I, Nanni O, Foca F, et al. Chemotherapy and palliative care near end-of
life: examining the appropriateness at a cancer institute for colorectal cancer
patients. BMC Palliat Care. 2018;17(1):86. doi:10.1186/512904-018-0339-8
Zhang 7, Chen M-L, Gu X-L, Cheng W-W. Use of palliative chemotherapy near
the end of life: a retrospective cohort study. Ann Palliat Med. 2020;9(5):2809-
2816. doi:10.21037 /apm-20-273

Hiramoto S, Tamaki T, Nagashima K, et al. Prognostic factors in patients who
received end-of-life chemotherapy for advanced cancer. Int | Clin Oncol.
2019;24(4):454-459. doi:10.1007/s10147-018-1363-7

Urvay S, Civelek B, Ozaslan E, Siirel AA. Chemotherapy at the End of Life. |
Palliat Care. 2020. doi:10.1177/0825859720946505

Greer JA, Pitl WF, Jackson VA, et al. Effect of early palliative care on
chemotherapy use and end-of-life care in patients with metastatic non-small-cell
lung cancet. | Clin Oncol. 2012;30(4):394-400. doi:10.1200/JC0O.2011.35.7996
Goksu SS, Gunduz S, Unal D, et al. Use of chemotherapy at the end of life in
Turkey. BMC Palliat Care. 2014;13(1):51-56. doi:10.1186/1472-684X-13-51
Adam H, Hug S, Bosshard G. Chemotherapy near the end of life: A retrospective
single-centre analysis of patients’ charts. BMC Palliat Care. 2014;13(1):26-30.
doi:10.1186/1472-684X-13-26

Lee HS, Chun KH, Moon D, Yeon HK, Lee S, Lee SH. Trends in receiving
chemotherapy for advanced cancer patients at the end of life. BMC Palliat Care.
2015;14(1):4-9. doi:10.1186/s12904-015-0001-7

Huo J, Du XL, Lairson DR, et al. Utilization of Surgery, Chemotherapy,
Radiation Therapy, and Hospice at the End of Life for Patients Diagnosed With
Metastatic ~ Melanoma.  Aw ] Clin Oncol.  2015;38(3):235-241.
doi:10.1097/COC.0b013e31829378(9

Zerillo JA, Stuver SO, Fraile B, Dodek AD, Jacobson JO. Understanding oral
chemotherapy prescribing patterns at the end of life at a comprehensive cancer
center: Analysis of a Massachusetts payer claims database. | Omco/ Pract.
2015;11(5):372-377. doi:10.1200/JOP.2015.003921

Kempf E, Tournigand C, Rochigneux P, Aubry R, Morin L. Discrepancies in
the use of chemotherapy and artificial nutrition near the end of life for
hospitalised patients with metastatic gastric or oesophageal cancer. A
countrywide,  register-based  study. Ewr |  Cancer.  2017;79:31-40.
doi:10.1016/j.¢jca.2017.03.029

Mathew A, Achkar T, Abberbock S, et al. Prevalence and determinants of end-
of-life chemotherapy use in patients with metastatic breast cancer. Breast ].
2017;23(6):718-722. doi:10.1111/tbj.12905

28



46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

Introduction

Low D, Merkel EC, Menon M, et al. Chemotherapy use at the end of life in
Uganda. | Glob Oneol. 2017;3(6):711-719. doi:10.1200/]JGO.2016.007385
Rochigneux P, Raoul JL, Beaussant Y, et al. Use of chemotherapy near the end
of life: What factors matter? Awn  Omcol.  2017;28(4):809-817.
doi:10.1093/annonc/ mdw654

Edman Kessler L, Sigfridsson ], Hatzidaki D, et al. Chemotherapy use near the
end-of-life in patients with metastatic breast cancer. Breast Cancer Res Treat.
2020;181(3):645-651. doi:10.1007/s10549-020-05663-w

Sanchez-Cuervo M, Garcia-Basas L, Gémez de Salazar-Lépez de Silanes E,
Pueyo-Lopez C, Bermejo-Vicedo T. Chemotherapy Near the End of Life in
Onco—Hematological Adult Patients. A | Hosp Palliat Med. 2020;37(8):641-647.
doi:10.1177/1049909119901133

Zhu'Y, Tang K, Zhao F, et al. End-of-life chemotherapy is associated with poor
survival and aggressive care in patients with small cell lung cancer. | Cancer Res
Clin Oneol. 2018;144(8):1591-1599. doi:10.1007/s00432-018-2673-x

Massard V, Salleron |, Krakowski I, Conroy T, Weber B. Chemotherapy at the
end of life: Factors of prescription. | Palliat Med. 2015;18(8):658-659.
doi:10.1089/jpm.2015.0134

Fang P, Jagsi R, He W, et al. Rising and falling trends in the use of chemotherapy
and targeted therapy near the end of life in older patients with cancer. | Clin
Oneol. 2019;37(20):1721-1731. doi:10.1200/JCO.18.02067

Sheng J, Zhang Y, He X, et al. Chemotherapy Near the End of Life for Chinese
Patients ~ with  Solid = Malignancies. Oncologist.  2017;22(1):53-60.
doi:10.1634/ theoncologist.2016-0013

Liu TW, Chang WC, Wang HM, et al. Use of chemotherapy at the end of life
among Taiwanese cancer decedents, 2001-2006. Acta Onco! (Mady).
2012;51(4):505-511. doi:10.3109/0284186X.2011.653440

Earle CC, Park ER, Lai B, Weeks JC, Ayanian |Z, Block S. Identifying potential
indicators of the quality of end-of-life cancer care from administrative data. |
Clin Oneol. 2003;21(6):1133-1138. doi:10.1200/]JCO.2003.03.059

Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Serensen
HT. The Danish National patient registry: A review of content, data quality, and
research potential. Clin Epidemiol. 2015;7:449-490. doi:10.2147 /CLEP.S91125
Sundhedsdatastyrelsen. Disease Classification System - SKS (in Danish).
https://sundhedsdatastyrelsen.dk/da/rammer-og-retningslinjer/om-
klassifikationer/sks-klassifikationer/klassifikation-sygdomme. Accessed Match
3,2021.

WHO. ICD-10  Version:2016.  https://icd.who.int/browse10/2016/en.
Published 2016. Accessed March 26, 2020.

IARC/WHO. International Classification of Diseases for Oncology.
http://www.iact.com.fr/index.phproption=com_content&view=category&lay
out=blog&id=100&Itemid=577. Accessed March 26, 2020.

Joint Committee on Nomenclature P and U (C-S-N of the I and I, Pontet F,
Magdal Petersen U, et al. Clinical laboratory sciences data transmission: the NPU

29



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.

76.

Introduction

coding system. Stud Health Technol Inform. 2009;150(1):265-269.

Amano K, Maeda I, Shimoyama S, et al. The accuracy of physicians’ clinical
predictions of survival in patients with advanced cancer. | Pain Symptom Manage.
2015;50(2):139-146.e1. doi:10.1016/j.jpainsymman.2015.03.004

Simmons CPLL, McMillan DC, McWilliams K, et al. Prognostic Tools in
Patients With Advanced Cancer: A Systematic Review. | Pain Symptomr Manage.
2017;53(5):962-970.¢10. doi:10.1016/j.jpainsymman.2016.12.330

Hamano J, Takeuchi A, Yamaguchi T, et al. A combination of routine laboratory
findings and vital signs can predict survival of advanced cancer patients without
physician evaluation: a fractional polynomial model. Exr | Cancer. 2018;105:50-
60. doi:10.1016/j.¢jca.2018.09.037

Adelson K, Lee DKK, Velji S, et al. Development of imminent mortality
predictor for advanced cancer IMPAC), a tool to predict short-term mortality
in hospitalized patients with advanced cancer. | Oncol Pract. 2018;14(3):¢168-
e175. doi:10.1200/JOP.2017.023200

Renfro LA, Goldberg RM, Grothey A, et al. Clinical Calculator for Eatly
Mortality in Metastatic Colorectal Cancer: An Analysis of Patients From 28
Clinical Trials in the Aide et Recherche en Cancérologie Digestive Database. |
Clin Oneol. 2017;35(17):1929-1937. doi:10.1200/]JCO.2016.71.5771

Uneno Y, Taneishi K, Kanai M, et al. Development and validation of a set of six
adaptable prognosis prediction (SAP) models based on time-seties real-world big
data analysis for patients with cancer receiving chemotherapy: A multicenter case
crossover study. PLoS One. 2017;12(8):1-13. doi:10.1371 /journal. pone.0183291
Parikh RB, Manz C, Chivers C, et al. Machine Learning Approaches to Predict
6-Month Mortality Among Patients With Cancer. JAMA Netw open.
2019;2(10):¢1915997. doi:10.1001 /jamanetworkopen.2019.15997

Tomasev N, Harris N, Baur S, et al. Use of deep learning to develop continuous-
risk models for adverse event prediction from electronic health records. Nat
Protoc. May 2021. doi:10.1038/s41596-021-00513-5

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical 1earning. Vol 26.
New York, NY: Springer New York; 2009. doi:10.1007/978-0-387-84858-7
Mockus J. On Bayesian Methods for Seeking the Extremum. Optim Tech.
1974:400-404.

Frazier PI. A Tutorial on Bayesian Optimization. 2018;(Section 5):1-22.
O’Malley T, Bursztein E, Long J, et al. Keras-tuner. https://github.com/keras-
team/keras-tuner. Published 2019.

Zou H, Hastie T. Regularization and variable selection via the elastic net. | R S7az
Soc  Ser B Stat  Methodol.  2005;67(2):301-320.  doi:10.1111/§.1467-
9868.2005.00503.x

Ho TK. Random decision forests. Proc Int Conf Doc Anal Recognition, ICDAR.
1995;1:278-282. doi:10.1109/ICDAR.1995.598994

Friedman JH. Greedy function approximation: A gradient boosting machine.
Ann Stat. 2001;29(5). doi:10.1214/20s/1013203451

Chollet F, Others. Keras. https://keras.io/. Published 2015.

30



77.

78.

79.

Introduction

Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput.
1997;9(8):1735-1780. doi:10.1162/nec0.1997.9.8.1735

Belle V, Papantonis I. Principles and Practice of Explainable Machine Learning.
Front Big Data. 2021;4(July):1-25. doi:10.3389/fdata.2021.688969

Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions.
NeurIPS' Proc. May 2017.

31



Introduction

32



Paper I: Thirty-day mortality following systemic anticancer therapy: Evaluating risk
factors without selection bias in a real-world, population-based cohort from 2009 to
2019

Paper |: Thirty-day mortality following
systemic anticancer therapy: Evaluating
risk factors without selection bias in a
real-world, population-based cohort
from 2009 to 2019

Submitted to Clinical Oncology, September 2021

Authors
Charles Vesteghem!23, Rasmus Froberg Brondum!->?, Mette Thune Mouritzen!3#, Heidi
Segaard Christensen!?3, Martin Bogsted!?3, Ursula G Falkmer'34, Laurids Ostergaard
Poulsen!.3#

Affiliations

! Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

2 Department of Haematology, Aalborg University Hospital, Aalborg, Denmark

3 Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
4 Department of Oncology, Aalborg University Hospital, Aalborg, Denmark

Description

In this paper, we analysed the 30-day mortality following SACT using an adapted
indicator, avoiding selection bias from arising by conditioning on future events present
in similar studies. Conditioning on future events means that the inclusion criteria rely on
data that are not available at the actual time of inclusion. Similar studies included patients
conditioned on not getting subsequent SACT in a specific timeframe or before death.
Our indicator considering each individual SACT circumvents this issue. We compared a
large variety of malignancies over an 11-year period using both our adapted indicator and
a reference indicator subject to selection bias.
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1. Introduction

Systemic anticancer therapies (SACTs) often require lengthy drug administration
procedures at hospitals and frequently induce severe side effects'~*. Patients with limited
residual life expectancy may not benefit from the treatment and only experience the
short-term side effects, thus, reducing the patients’ quality of life>. SACT should be
avoided in these cases®.

To monitor the usage of SACT near the end of life, primarily two approaches have been
used. One, proposed by Earle et al.”, considers exclusively patients who die from cancer
. While the criterion on the cause of death is not an issue for monitoring, it becomes a
problem when calculating risk factors. Indeed, including only patients who died from
cancer leads to a selection bias in the cohort definition by conditioning the inclusion on
future events®. Conditioning on death from cancer will for example exclude long term
survivors who died from other causes.

Another approach was proposed by Wallington et al.. It suggests examining 30-day
mortality from the start of the last SACT cycle in a calendar year. Their indicator, referred
to as Wallington’s indicator in the following, does not condition on death or its cause
and, thus, allows for more prospective studies. As Wallington’s indicator only considers
the last SACT given within a chosen observation interval for each patient, there is a
selection bias towards inclusion of later lines. This selection bias may thus lead to
unreliable calculation of risk factors for use in a clinical context.

This study aimed to adapt the endpoint of Wallington’s indicator to improve the clinical
applicability. A second aim was to compare risk factors found with both indicators in the
same dataset. The final aim was to obtain standard values for 30-day mortality following
SACT for the improved indicator, over the period 2009-2019 for the most common
solid cancers in the North Denmark Region.

2. Materials and methods

2.1. The improved indicator

SACT is defined as treatment including antineoplastic agents (i.e., Anatomical
Therapeutic Chemical [ATC] classification!'” code LO1). A cycle is defined as a set of drug
prescriptions given on consecutive days. A SACT regimen is defined as a treatment based
on the drugs used and the administration protocol. Consecutive cycles with the same
regimen were grouped as one SACT, if the interval between two consecutive cycles was
less than 60 days. SACTs were characterized using the regimen names, e.g., FOLFOX,
to obtain their intent, palliative, or curative. The line number represents the number of
palliative SACT's administered to the patient. Some regimens can be chosen with either
a curative or palliative intent and were referred to as multi-intent regimens.

For each SACT, a dichotomous outcome is considered, describing whether the patient
died within 30 days of the start of the last cycle of this SACT. Thus, the value for the
improved indicator in a given observation interval is the average of the 30-day mortality
outcomes for all SACT's that ended in this interval (see Figure 1).
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Study period

. Observation interval
Long observation intervals

Short observation intervals

30 days
Patient A ————u—

Patient B ——F ———F
Death

Patient ¢ —————HHHHHHHHHHHHHHHE

Patient D —HES—H-HHHHIES———————————— I

Patient E -

Patient F — ——

Patient G —-— ———— R —--E

Patient H

Long observation interval
Death within 30 days 1
Last SACTs 5
SACTs 7
Wallington’s indicator 1/5=20% 2/5=40%
Improved indicator 1/7=14% 2/7=28%

s

IRV

Short observation intervals
Death within 30 days 0 1 1 1
Last SACTs 3 3 3 3
SACTs 4 3 4 3

Wallington’s indicator 0/3=0% 1/3=33% 1/3=33% 1/3=33%

Improved indicator 0/4=0% 1/3=33% 1/4=25% 1/3=33%

Figure 1. An example of a calenlation of the improved indicator compared to Wallington’s indicator using two
different lengths for the observation interval on the same study period for 8 patients receiving 14 SACTS.

The impact of the duration of the observation interval is illustrated in both cases using two interval lengths, the long
observation interval length being twice the short observation interval one. The limits of the observation intervals are
represented with vertical dashed lines. A SACT is considered for an observation interval if it ends in this interval.
The last SACTs value represents the number of SACTS ended in an observation interval when considering for each
patient only the last SACT. 1t is equal to the number of patients who ended a SACT in the considered observation
interval. The difference between the values for the last SACTs and the SACTs illustrates the exclusion of some
SACTs and therefore the selection bias.

2.2. Study design and participants

All patients from the North Denmark Region diagnosed with solid tumors before
31/12/2019 and alive after 01/01/2009 (N=29,937) were screened using the Patients
Administrative System (PAS) from the North Denmark Region based on the diagnosis
codes. Among these patients, 24,496 had one of the included malignancies (see
Supplementary Table 1). In the period 2009-2019, 10,672 patients received SACT's
without being referred to other regions. Among these patients, 459 were excluded due
to their participation in clinical trials. The final cohort of 10,213 patients received 16,622
SACTs (see Supplementary figure 1).

The clinical data were extracted from the PAS, and the treatment data were obtained
from the prescription software ARIA OIS for Medical Oncology v13.7 (Varian Medical
Systems Inc., Palo Alto, CA, USA) (MedOnc). The PAS data consisted of all diagnoses
and procedures coded according to the Danish Disease Classification System!!. This
classification system is similar to the ICD-10 classification for diagnoses. Dates of death
wete obtained from the Danish Civil Registration System (CPR). Data for each SACT
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consisted of sex, age, comorbidities according to Chatlson’s Comorbidity Index!? (CCI),
current malignancy, treatment intent (curative or palliative), regimen, year at the start of
treatment, line number, and death within 30 days of the start of the last cycle. The
comorbidities were extracted from the diagnosis codes found in the PAS (see
Supplementary Table 2) and updated at each SACT.

2.3. Statistical methods

The improved and Wallington’s indicators were both calculated over the 11-year period
per diagnosis and treatment intent as well as for all diagnoses per year and treatment
intent. Wallington’s indicator was calculated with an observation interval of one year,
taking into consideration only the last cycle of the last SACT for each patient who ended
a SACT in each interval. To estimate the effect of the observation interval, Wallington’s
indicator was also calculated with an observation interval of a quarter and compared to
the yearly values. Additionally, the improved indicator for palliative treatments was
calculated over the 11-year period per line number and per drug combination.

A multivariate logistic regression was performed for both indicators using period, age,
sex, comorbidities, number of treatment lines, and type of malignancy as independent
variables to identify potential risk factors. Death within 30 days of the start of the last
cycle of either each SACT or last SACT in a given observation interval was used as the
dependent variable for the improved and Wallington’s indicators, respectively. The
corresponding effect estimates are presented as odds ratios (ORs). A threshold of 0.05
was used to define the statistical significance of p-values, and 95% confidence intervals
(Cls) were used for the ORs and survival estimates.

30-day mortality per diagnosis, line number, and regimen were also calculated, for which
only SACTSs given in first or second line were considered.

Data management and statistical analyses were performed using SAS Enterprise Guide
8.3 (SAS Institute Inc., Cary, NC, USA) and Python 3.8 in Jupyter notebooks!3. The
Python library statsmodel v0.11'* was used for the regressions.

3. Results
3.1. Study population

The characteristics of the study population are presented in Table 1. The majority of the
10,213 patients included in this study were women (60%) due to the size of the female
cancer cohorts (breast, ovarian, and uterine cancers, n = 3331).

37



Paper I: Thirty-day mortality following systemic anticancer therapy: Evaluating risk
factors without selection bias in a real-world, population-based cohort from 2009 to
2019

Table 1. Study population characteristics (overall and based on the cancer diagnosis) and the improved and
Wallington’s indicators per diagnosis and SACT intent.
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N, number of patients; Males, percentage of male patients; Age, average age at diagnosis in years; N-y survival. %o,
the overall survival percentage from diagnosis for patients treated with SACTs in N years, as in 2, 5, and 10 years;
T, total number of SACTs given; Palliative Tx, number of SACTs given with palliative intent; 1ines, the number
of palliative SACTs given to patients treated with at least one palliative SACT. Values between parentheses show
the range for the ‘Age’ and Lines’ columns, the 95% confidence interval for the survival columns, and the proportion
in the percent of palliative SACTSs given among treatments with known intent for the ‘Palliative T column.

Patients treated for advanced or metastatic disease received an average of 1.7 SACT lines.
On average, prostate cancer patients received only 1.3 lines, while breast cancer patients
wete treated on average with 2.3 lines. For lung, pancreatic, and prostate cancet, patients
were predominantly given palliative SACTs (87%, 88%, and 98%, respectively). In
contrast, breast cancer patients mainly received curative SACT's (59%).

3.2. The improved indicator compared to Wallington’s

indicator

3.2.1.  Perdiagnosis and intent
As seen in Table 2, the 30-day mortality following SACT was higher for palliative SACT's
than for curative SACT's across malignancies (10.3% vs 1.3% for the improved indicator,
13.1% vs 1.5% for Wallington’s indicator).

38



Paper I: Thirty-day mortality following systemic anticancer therapy: Evaluating risk
factors without selection bias in a real-world, population-based cohort from 2009 to
2019

Table 2. The improved and Wallington’s indicators per diagnosis and SACT intent.
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The values shown for the improved and Wallington’s indicators are in %o. The ‘Multi-intent’ colunmn contains the
vatues for SACT regimens that can be used for both curative and palliative intents. The values between parentheses
show the corresponding ratio. For the improved indicator, the numerator is the number of SACTS followed by the
death of the patient within 30 days of the start of the last cycle, and the denominator is the total number of SACTSs
over the 11-year period. For Wallington’s indicator, the denominator is the total number of patients who ended a
treatment in a year, and the numerator is the number of these patients who died within 30 days of the start of their
last cycle in the same year.

Considering all intents, there were large disparities between malignancies, ranging from
below 3.5% for breast and uterine cancer SACTs (2.8% and 2.9% for the improved
indicator, respectively and 3.4% and 3.3% for Wallington’s indicator, respectively) to
above 12% in 30-day mortality for lung and pancreatic cancer SACTs (12.5% and 13%
for the improved indicator, respectively, and 15.3% and 15.5% for Wallington’s
indicator, respectively).

For palliative SACTs, the 30-day mortality was above 14% for lung, gastroesophageal,
and pancreatic cancers (14.3%, 15%, and 14.8% for the improved indicator, respectively
and 17.8%, 18.9%, and 17.8% for Wallington’s indicator, respectively), while it was less
than 4% for prostate cancer (3.6% for the improved indicator, 3.9% for Wallington’s
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indicator). For curative SACTs, the 30-day mortality was less than 2%, except for brain,
ovarian, and prostatic cancers (5.5%, 5.4%, and 7.7% for the improved indicator,
respectively and 8.8%, 8.8%, and 9.1% for Wallington’s indicator, respectively).

Overall, the 30-day mortality with Wallington’s indicator was consistently higher than
with the improved indicator, especially for palliative SACT's given to gastroesophageal
cancer patients (18.9% vs 15%).

3.2.2.  Peryear and treatment intent

Over time, the improved indicator showed an overall downward trend for the 30-day
mortality from 8.0% in 2009 to 3.8% in 2019 (see Figure 2A).

A B

—— Improved —e— Palliative —— Quarterly difference | —e— Improved
/\\ —— Wallinglon's | —e— All - Mean difference | —— Wallington's

—e— Curative

30-day mortality

Difference in 30-day mortality

% 8%
2009 2010 2011 20012 2013 2014 2015 2016 2017 2018 2019 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year of SACT Year of SACT

Figure 2. 30-day mortality per SACT intent and year (A) and the difference in 30-day mortality between the
quarterly values and corresponding yearly values for palliative SACTs (B). The mean difference shows the mean of
all differences between the quarterly and corresponding yearly values.

This decline is notable for palliative SACTSs, decreasing from 13.6% in 2009 to 5.7% in
2019, while the 30-day mortality following curative SACT's remained low over the study
period. A similar pattern was seen for Wallington’s indicator with a downward trend,
especially for palliative SACT's, which ranged from 15.8% in 2009 to 7.2% in 2019.

The mean difference between the quarterly and yearly 30-day mortalities for palliative
SACTSs was below 0.1% and above 2% for the improved and Wallington’s indicators,
respectively (see Figure 2B).

3.3. Logistic regressions

Figure 3 shows the results of multivariate regressions for both the improved and
Wallington’s indicators.

No significant effect on 30-day mortality was found for comorbidities, sex, age group or
line number in neither of the considered indicators. The period 2018-2019 is associated
with a significant decrease in the 30-day mortality for both indicators compated to the
period 2009-2011. A significant decrease was also found for the period 2015-2017 for
the improved indicator. Lung, gastroesophageal, and pancreatic cancer diagnoses had a
significantly worse 30-day mortality than breast cancer using the improved indicator.
Inversely, prostate cancer had a significantly better 30-day mortality compared to breast
cancet.

Overall, no major difference could be found in terms of risk factors between the
improved and Wallington’s indicators. A tentative difference was observed for the 75+
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years age group, with a borderline significantly lower 30-day mortality for Wallington’s
indicator (OR: 0.84, CI: 0.70 to 1.01, p = 0.065), while it was far from significant for the
adapted 30-day mortality indicator (OR: 0.93, CI: 0.77 to 1.11, p = 0.4).

Variable Patient-years Pal. SACTs 0dds Ratio (OR)
Sex
Female 4115 5324 ] Used as reference Used as reference
Male 3612 4482 = =1 116(0.99.136)  0.075 | 1.14(098,1.34) 0099
Year
20092011 1829 2219 ] Used as reference Used as reference
20122014 2051 2585 = LIS(0.97,1.43)  0.090 | 1.09(0.90,131) 0368
20152017 2251 2908 = 089(0.73,1.09) 0252 | 0.79(0.65,097)  0.021
20182019 1585 2083 == e 0.64 (0.51,0.81)  <0.001 | 0.56(0.45,0.71)  <0.001
Age
18-44 251 342 —— 0.81(0.50,131) 0385 | 0.81(051,1.31) 0393
45-59 1383 1864 = S 100(0.83,121) 0990 | 095(0.79,1.15) 0612
60-74 4365 5556 ] Used as reference Used as reference
75+ 1728 2044 = 0.84(0.70,1.01)  0.065 | 0.93(0.77,1.11) 0407
Comorbidities
Myocardial infarction 278 340 = = 098(0.68,142) 0917 | 1.03(0.72,147) 0884
Peripheral vascular discase 381 465 == 110 (0.81,149) 0527 | 1.15(0.86,1.54) 0358
CVAor TIA 532 669 —a— 095(0.72,126) 0718 | 096(0.73,1.27) 078
copPD 609 722 ==} 108(0.84,138) 0554 | 116(0.91,148) 0242
Connective tissue disease 204 256 —— 105(0.69,1.59)  0.833 | 1.02(0.67.1.53) 0941
Peptic ulcer disease 305 370 —— 0.88(0.61,128)  0.505 | 0.88(0.61,127) 0498
Diabetes 232 286 — L1981, 1.75) 0364 | 123(0.84,1.79) 0288
CKD 19 142 [ ——] 109(0.62,191) 0757 | 114(0.66,198)  0.641
Line number
st line 4723 5936 ] Used as reference Used as reference
2nd line 1771 2288 [ =] 1.07(091,1.28) 0410 | 1.06(0.90,126)  0.486
3+ line 1233 1582 ==} 098(0.79.121) 0820 | 1.03(0.83,1.28) 0773
Diagnosis group
Breast 1145 1583 ] Used as reference Used as reference
Brain 305 394 (=] 124(0.79,1.96)  0.348 | 141(0.90,221)  0.136
Lung 2716 3446 ==} 210(162,272) <0001 | 2.26(1.75,2.92)  <0.001
Gastroesophageal 382 478 e 166(1.12,2.46)  0.011 | 1.89(129,2.78)  0.001
Pancreatic 575 690 e 220(1.58,3.06)  <0.001 | 2.59(1.87,3.59)  <0.001
Colorectal 1416 1830 = 085(0.62,1.16) 0312 | 092(0.68,126) 0615
Ovarian 349 451 i 1.00(0.63,158) 0995 | 1.13(0.72,1.77) 0596
Uterine 103 17 = —— 112(0.54,229) 0767 | 140(0.68,2.86) 0362
Prostatic 510 550 0.44(0.26,0.75)  0.002 | 0.58(034,099)  0.045
Urinary 226 267 = 135(0.83,220) 0226 | 1.61(099,2.60) 0055

02 0.5 1.0 20 50

Figure 3. Logistic regression results for palliative SACTS for the improved and Wallington’s indicators. Year,

year range at start of the SACT; Age, age range of the patient at start of the SACT. The comorbidities were defined

as in Charlson’s Comorbidity Index, and the PAS codes used for each comorbidity are available in Supplementary

Table 2. Only comorbidities with a prevalence of >1% in the cohort were considered. Note that using the line number

with Wallington’s indicator is theoretically not appropriate but was included for comparison with the improved
indicator.

3.4. 30-day mortality following palliative SACTs per line number

and drug combination
The 30-day mortality using the improved indicator, shown for specific line number in
Figure 4A, does not reveal any clear shared pattern across malignancies.
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Figure 4. 30-day mortality following palliative SACTs per malignancy stratified by line number (A) and regimen
(B). For each malignancy type, the width of the bar was proportional to the number of corresponding SACTS,
normalized by the number of patients. For line number (A), the treatments after the 4th line were grouped in a 5+
line’ category. For regimen (B), only the two first lines are included, and the corresponding top four regimens are
displayed individually alongside other regimens grouped in the ‘Others’ category. Capecitabine is considered equivalent
to fluoronracil and has thus been grouped with it. The same was true for panitumumab with cetuximab.
Abbreviations: Beva.: bevacizumab, Carb.: carboplatin, Cisp.: cisplatin, Doxo.: doxorobucin, Epir.: epirubicin,
Etop.: etoposide, Fluo.: fluorounracil/ capecitabine, Geme.: gemcitabine, Irin.: irinotecan, Lomn.: lonustin, Oxal.:
oxaliplatin, Pacl.: paclitaxel, Proc.: procarbazin, Tras.: trastuzumab, Vinc.: vineristine, Vino.: vinorelbin. See
Supplementary Table 3 and Supplementary Table 4 for the raw values.

For example, for colorectal and uterine cancers, the 30-day mortality is lower in the first
line than in the second line. Conversely, for brain, prostate, and urinary cancers, the 30-
day mortality was lower in the second line than in the first line. For the remaining
malignancies, the 30-day mortality remained mostly stable between the first and second
lines.

Large differences in 30-day mortality were observed for the four most frequently
administered regimens by diagnosis group and line number (Figure 4B). Patients who
received gemcitabine monotherapy tended to have high 30-day mortality (25.5% in the
first line and 23.5% in the second line for pancreatic cancers, and 24.1% in the first line
for urinary cancers). The highest 30-day mortality (27.1%) was seen for erlotinib, given
to lung cancer patients, with similar values for the first and second lines (24.8% and
27.9%, respectively).
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4. Discussion

4.1. Main findings

We defined a quality indicator describing the 30-day mortality following the last cycle of
SACT based on Wallington et al.’s approach. This indicator is adapted to the clinical
context by avoiding selection bias and summarizes how often a SACT was followed by
death within 30 days. Our proposed indicator allows for a more valid assessment of risk
factors of the patients in a clinical context. However, limited differences were found
between risk factors identified using the improved and Wallington’s indicators for the
present dataset.

Overall, we report a significant downward trend for the 30-day mortality following SACT
using both indicators for palliative SACTSs over an 11-year period. This decrease was not
necessarily expected, despite the increased worldwide attention to close-to-death
treatment of cancer patients. Recent advances in cancer treatment could have led to an
increase in 30-day mortality. For example, in the case of protein kinase inhibitors, some
patients benefit from continued treatment close to death!>!¢. This was illustrated in our
study of etlotinib for lung cancer patients, which had the highest 30-day mortality. The
fact that the 30-day mortality decreased over the period could be due to an increased
attention of the clinicians towards earlier discontinuation of treatment.

Our study also found large differences in 30-day mortality between malignancies and
between treatment intent. Unsurprisingly, treatments administered to patients with
metastatic or advanced cancer had the highest 30-day mortality compared to treatments
given as curative SACTs. The 30-day mortality following curative SACTs was 2% for
some years, which we consider unacceptably high, but the values in recent years have
been consistently low.

The groups with the highest 30-day mortality were those including patients with
metastatic lung, gastroesophageal, and pancreatic cancers, all showing values above 14%.
These values might partly be explained by widely spread tumor, several tumor-related
symptoms, and poor performance status, notably among lung cancer patients!”.

Overall, the number of treatment lines did not seem to have a clear impact on 30-day
mortality, with different patterns observed across malignancies. The 30-day mortality was
expected to be higher in the second line than in the first line due to the progtression of
the disease. However, for brain, prostate, and urinary cancers, this was not the case. One
explanation could be differences in toxicity profiles according to the type of malignancy
and the line number. Another explanation could be that rapidly progressing disease may
hinder the opportunity for second-line treatment, and only patients with less aggressively
growing tumors ate offered subsequent treatments.

Among the regimens, gemcitabine monotherapy and erlotinib monotherapy had the
highest 30-day mortalities. As mentioned above, the high 30-day mortality for etlotinib
could be explained by the maintained clinical benefit close to death. Gemcitabine is
predominantly administered to frail patients with advanced urinary and pancreatic
cancers's, frailty that might not be taken well enough into consideration by clinicians,
notably because this treatment might be the one and only option for these patients.
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The considered comorbidities had no significant impact on 30-day mortality. This could
be explained by their limited role in the 30-day mortality or by appropriate comorbidity
adjustment in the clinical treatment decision making.

4.2. Critical Assessment

4.2.1.  Study population
The main strengths of this study ate the population-based design, coverage of all the
major cancer groups, and extension over a wide timeframe with a high level of detail
from a single-center setting. The single-center setting could also be considered as a
limitation. However, due to the homogeneity of the healthcare system and treatment
guidelines in Denmark, we expect that the conclusions can be extrapolated to the entire
Danish cancer patient cohort. Nevertheless, a national study is required to confirm this
assumption. Additionally, pooling regimens of different types, for example cytotoxic and
targeted, as well as cancer types with significantly different prognoses, such as small cell
and non-small cell lung cancers, may lead to results that are not representative of any of
the regimens or subtypes. Investigating the 30-day mortality for individual regimen types,
cancer subtypes, or rare malignancies (e.g., head-and-neck cancers and sarcomas) would
requite access to a larger cohort. This could be achieved by extending the study to the
entire Danish cancer patient cohort as done with another indicator by Mattsson et al.'%.

4.2.2.  Using healthcare data registries
In this study, the main data sources were electronic health records (EHRs) and
administrative data, which we refer to as healthcare data registries (HDRs). Since such
datasets are susceptible to biases like informed presence bias?’?!, we only considered
actively followed patients, whose data ate less prone to these biases.
One of the main advantages of using HDRs over quality databases is that they do not
require additional reporting from clinicians. This makes it possible to build continuous
quality monitoring tools. A disadvantage is the relative inaccessibility of some clinical
parameters. For example, performance status, which is a known predictor of survival, is
currently only recorded as text in patient journals.
Nevertheless, an increasing amount of healthcare data is currently being digitalized, and
the quality of the stored data has been reported to be good, particularly in Denmark??.
This should facilitate the development of HDR-based and clinically applicable quality
indicators.

4.2.3. Using WHO ATC classification
An international consensus on the definition of a SACT is warranted since differences in
the definition can significantly affect the results and impede the comparison of studies.
We therefore use the WHO ATC classification as reference. We only included
antineoplastic agents as defined by this classification, that is, drugs with an ATC code
starting with LO1. The endocrine therapies (ATC code starting with 1.02) were primarily
excluded due to:

(1) their less severe toxicity profile
(2) oral administration, which implies fewer visits to the hospital, impeding the
assessment of treatment compliance and impair the reporting in HDRs.
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Furthermore, while these treatments are often included in studies following Eatle et al.’s
approach, they were also excluded in Wallington et al.’s study.

4.2.4. Characteristics of the indicator
The “30-day mortality” endpoint is a common endpoint in healthcare systems, notably
in surgery. This endpoint was used by Wallington et al., and we thus decided to use this
approach as a reference to define 30-day mortality. The main strength of our improved
30-day mortality indicator is that it can be used to evaluate risk factors for 30-day
mortality following any SACT and can thus be used prospectively, i.e., to potentially
adapt the quality of the treatment in the clinic. In contrast, risk factors calculated
following Wallington et al.’s approach can only be used adequately for the last SACT,
which is only known in hindsight. By considering every SACT, this indicator also allows
us to investigate the effect of the line number and the type of treatment used on the risk
of treating too close to death without conditioning on future events and thus avoids
selection bias. It is nevertheless important to note that the risk factors are only usable
once the SACT is started and thus cannot be used to decide to start a SACT ot not.
Instead, it is intended to help clinicians better assess the risk of early mortality to stop an
already started treatment in time.
An additional benefit of the adapted 30-day mortality indicator is that it, in contrast to
Wallington’s indicator, remains unbiased across different choices of observation interval;
for example, the 30-day mortality calculated for a quarter, or a month can be directly
compared to the 30-day mortality calculated over a year or a decade (see Figure 2B).

4.3. Comparison with other studies
Older studies have reported an increase?>?* in late chemotherapy administration in cancer
patients. However, in line with recent studies?>2, we report a decrease in 30-day mortality
over time, notably for palliative SACTSs.
Compared to Wallington et al’s original results, we found similar results for breast
cancet, with values of 0.2% compated to 0.3% for curative SACT's and 9.4% compared
to 7.5% for palliative SACTSs. For lung cancer, we found larger differences, with values
for 30-day mortality for Wallington’s indicator of 1.3% compared to 2.9% in Wallington
et al.’s study for curative SACTs and 17.8% compared to 10.0% for palliative SACTs.
This can be partially explained by the difference in the inclusion criteria. This could also
be due to recent developments in the treatment of lung cancer patients, notably the
introduction of protein kinase inhibitor treatments.
Concerning other studies, the differences in inclusion criteria and endpoint definition
limit the comparability with our study. This could explain the large variability in the
results reported?>2¢ and illustrate the need for more standardized definitions, as proposed
here.

4.4, Perspectives
The improved indicator can be used to propetly identify risk factors for high 30-day
mortalities, with the objective of potentially improving the quality of life near the end of
life and better utilizing the available resources in the health care system. This indicator
for 30-day mortality following SACT should ideally be more focused on specific cancer
diagnoses and treatment regimens in order to define recommendations and potential
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prognostic models to support the work of clinicians in daily clinical practice. More
complex models allowing dynamic prediction and leveraging more extensive clinical data
should also be built to help clinicians to decide when to stop an ongoing treatment.

4.5. Conclusions

We defined an improved quality indicator based on the approach followed by Wallington
et al.? to evaluate the 30-day mortality following SACT. This indicator can be used to
identify clinical risk factors for increased 30-day mortality and stays consistent across
different choices of observation intervals. Using this indicator, we noted a significant
downward trend in 30-day mortality following palliative SACT over an 11-year period.
A multicenter study should be performed to define a more reliable benchmark for this
improved indicator.
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Supplementary material

- From CPR registry

Supplementary figure 1. Flow chart of patient inclusion in the study and the corresponding SACTs

SACTs, the number of SACTS given to the corresponding patients; PAS, the Danish Patients Administrative
System; CPR registry, the Danish Civil Registration System registry; 101 drugs, antinegplastic agents as defined
by the Anatomical Therapentic Chemical classification. “Treated with 1.01 drugs” refers to patients treated
excclusively in the North Denmark Region with 1.01 drugs in the study period.
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Supplementary Table 1. Malignancy grouping, inclusion status,

2019

and exclusion criteria

ICD10 Malignancies Inclusion Reason for exclusion
C00-C14, C30-C33 Head and neck No Relatively rare and not primarily treated with SACT
C15-C16 Gastroesophageal Yes

C17 Intestine No Rare

C18-C20 Colorectal Yes

C21 Anal No Rare

C22-C24 Hepato-biliary No Referred to other hospitals
C25 Pancreas Yes

C26, C39, C57, C76, C80 Tll-defined No Tll-defined

C34 Lung Yes

C37-C38 Thoracic other than lung No Rare

C40-C41 Bone and articular cartilage No Rare

C43 Melanoma No Referred to other hospitals
C44 Skin other than melanoma No Not treated with SACT
C45-C49 Connective and soft tissue No Rare

C50 Breast Yes

C51-C52 Vulva and vagina No Rare

C53-C55 Uterine Yes

C56 Opvarian Yes

C58 Placenta No Rare

Co1 Prostate Yes

C64-C68 Urinary Yes

C69-C70 Eye and meninges No Rare

C71 Brain Yes

C72 Nervous system No Rare

C73-C75 Endocrine No Rare

C77-C79 Secondary No Not primary

C81-C96 Haematological No Not solid tumour
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Supplementary Table 2. SKS codes for comorbidities

Comorbidity

SKS codes

Myocardial infarction

DI21, DI22, DI23

Congestive heart failure (CHF)

DI50, DI110, DI130, DI132

Peripheral vascular disease

D170, D171, D172, D173, D174, D177

Cerebrovascular accident (CVA) or
transient ischemic attack (TTA)

DI60, DI61, D162, D163, D164, D165, D166, D167, D168, D169, DG45, DG46

Dementia

DF00, DF01, DF02, DF03, DF051, DG30

Chronic obstructive pulmonary
disease (COPD)

DJ40, DJ41, DJ42, DJ43, DJ44, DJ45, DJ46, DJ47, DJ60, DJ61, DJ62, DJ63, D64,
DJ65, DJ66, DJ67, DJ684, DJ701, DJ703, DJ841, D]920, DJ961, DJ982, DJ983

Connective tissue disease

DMO05, DM06, DM08, DM09, DM30, DM31, DM32, DM33, DM34, DM35, DM36,
DD86

Peptic ulcer disease

DK221, DK25, DK26, DK27, DK28

Liver disease — Mild

DB18 K700, DK701, DK702, DK703, DK71, DK73, DK74, DK760

Liver disease - Moderate to severe

DB150, DB160, DB162, DB190, DK704, DK72, DK766, DI85

Diabetes mellitus - Uncomplicated

DE100, DE101, DE109, DE110, DE111, DE119

Diabetes mellitus - End-organ
damage

DE102, DE103, DE104, DE105, DE106, DE107, DE108

Hemiplegia

DG81, DG82

Moderate to severe chronic kidney
disease

DI12, DI13, DN00, DNO01, DN02, DN03, DN04, DN05, DN07, DN11, DN14,
DN17, DN18, DN19, DQ61

Malignancy - Localized solid tumor

DC00-DC75 not finishing with a 'M', except DC44 (non-melanoma skin cancer)

Malignancy - Metastatic solid tumor

DC76, DC77, DC78, DC79, DC80 or DCO0-DC75 finishing with a 'M'

Malignancy — Leukemia

DCI1, DCI3, DCI3, DCY4, DCI5

Malignancy - Lymphoma

DC81, DC82, DC83, DC84, DC85, DC88, DC90, DC6

AIDS

DB21, DB22, DB23, DB24
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Supplementary Table 3. 30-day mortality following palliative SACTs per line number and diagnosis gronp

Line 1 Line 2 Line 3 Line 4 Line 5+
Brain 25/243 (10.3) 5/88 (5.7) 1/36 (2.8) 1/19 (5.3) 2/8 (25.0)
Lung 302/2166 (13.9) 122/808 (15.1) 41/310 (13.2) 17/93 (18.3) 4/33 (12.1)
Breast 41/727 (5.6) 26/389 (6.7) 19/220 (8.6) 7/126 (5.6) 13/115 (11.3)
Gastroesophageal 54/323 (16.7) 16/99 (16.2) 1/34 (2.9) 0/13 (0.0) 0/4 (0.0)
Pancreatic 76/494 (15.4) 21/156 (13.5) 5/34 (14.7) 0/5 (0.0) None
Colorectal 59/985 (6.0) 44/459 9.6) 14/222 (6.3) 5/97 (5.2) 1/69 (1.4)
Ovatian 17/265 (6.4) 7/92 (7.6) 1/48 (2.1) 2/27 (7.4) 1/18 (5.6)
Uterine 4/87 (4.6) 4/23 (17.4) 0/3 (0.0) 0/2 (0.0) 0/1 (0.0)
Prostate 18/434 (4.1) 2/107 (1.9) 0/5 (0.0) 0/3 (0.0) 0/1 0.0)
Urinary 20/194 (10.3) 4/56 (7.1) 2/14 (14.3) 0/4 (0.0) 0/1 (0.0)

The numerator is the number of SACTs followed by the death of the patient within 30 days of the last
administration. The denominator is the total number of SACTs given. The value between parentheses is the
corresponding 30-day mortality in percentage.

53



Paper I: Thirty-day mortality following systemic anticancer therapy: Evaluating risk

factors without selection bias in a real-world, population-based cohort from 2009 to
2019

Supplementary Table 4. 30-day mortality following palliative SACTs with the top four regimens of each

diagnosis group in the 19 and 2 lines

Brain B-evaclzumab + Temozolomide Lomu. + Vinc. + Lomu§tlne =F Others
Irinotecan Proc. Bevacizumab
1. line 11/79 (13.9) 10/114 (8.8) 0/20 (0.0) 3/19 (15.8) 1/11 (9.1)
2. line 3/49 (6.1) 0/4 0.0) 1/10 (10.0) 0/8 (0.0) 1/17 (5.9)
Vinorelbine + | Etoposide a4 .
Lung Gabophn Cacbophain Pemetrexed Etlotinib Others
1. line 116/1014 (11.4) 124/703 (17.6) 5/27 (18.5) 28/113 (24.8) 29/309 (9.4)
2. line 5/76 (6.6) 8/68 (11.8) 28/236 (11.9) 31/111 (27.9) 50/317 (15.8)
Breast Paclitaxel Fluorouracil Docetaxel Palbociclib Others
1. line 15/215 (7.0) 6/76 (7.9) 2/107 (1.9) 1/74 (1.4) 7/255 (6.7)
2. line 2/34 (5.9) 5/75 (6.7) 0/5 (0.0) 2/30 (6.7) 17/245 (6.9)
Fluorouracil + Fluo. + Epir. + Fluo. + Oxal. + .
Gastroesophageal Oelligiin Oxal. Tras. Paclitaxel Others
1. line 27/133 (20.3) 9/62 (14.5) 5/33 (15.2) 5/15 (33.3) 8/80 (10.0)
2. line 2/17 (11.8) 0/3 0.0) 0/4 0.0) 2/19 (10.5) 12/56 (21.4)
. o Fluo. + Oxal. + Gemcitabine  + Fluorouracil +
Pancreatic Gemcitabine Trin. Paclitaxel Oxaliplatin Others
1. line 61/239 (25.5) 7/138 (5.1) 4/58 (6.9) 3/16 (18.8) 1/43 (2.3)
2. line 12/51 (23.5) 0/10 (0.0) 0/35 (0.0) 7/38 (18.4) 2/22 (9.1)
Fluo. + Beva. + Fluorouracil + Fluo. + Oxal. + Fluorouracil +
Colorectal . . . Others
Irin. Irinotecan Beva. Bevacizumab
1. line 5/170 (2.9) 13/170 (7.6) 4/144 (2.8) 9/108 (8.3) 28/393 (7.1)
2. line 3/64 (4.7) 4/54 (7.4) 5/39 (12.8) 3/54 (5.6) 29/248 (11.7)
. Pacl. + Catb. + .. Carboplatin =F Doxorubicin ~ +
Opvarian Beva. Doxorubicin Bevacizumab Gahophn Others
1. line 2/63 (3.2) 5/34 (14.7) 1/36 (2.8) 0/33 (0.0) 9/99 (9.1)
2. line 0/2 (0.0 2/17 (11.8) 1/10 (10.0) 0/7 (0.0) 4/56 (7.1)
. .. . Doxorubicin ~ + L
Uterine Doxorubicin Carboplatin Cachophan Epirubicin Others
1. line 2/25 (8.0) 1/12 (8.3) 0/11 (0.0) 0/6 (0.0) 1/33 (3.0)
2. line 1/3 (33.3) 0/1(0.0) None 1/2 (50.0) 2/17 (11.8)
Prostatic Docetaxel Cabazitaxel Etoposld§ + Topotecan Others
Carboplatin
1. line 17/415 (4.1) None 0/10 (0.0) 0/1(0.0) 1/8 (12.5)
2. line 0/2 0.0) 1/96 (1.0) 1/1 (100.0) 0/2 (0.0) 0/6 (0.0)
. Gemcitabine ~ + . Gemcitabine ~ + Gemcitabine  +
Uity Cisplatin Cemelrdbing Carboplatin Paclitaxel Ol
1. line 9/82 (11.0) 7/29 (24.1) 1/23 (4.3) 2/18 (11.1) 1/42 (2.4)
2. line 0/3 (0.0) 1/10 (10.0) 1/8 (12.5) 0/3 (0.0) 2/32 (6.2)

The numerator is the number of SACTs followed by

the death of the patient within 30 days of the last

administration. The denominator is the total number of SACTs given. The value between parentheses is the
corresponding 30-day mortality in percentage.
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Description

In this paper, we evaluated the validity of the registration of the SACT procedures in the
Danish National Patient Registry based on data from the prescription software MedOnc.
The MedOnc dataset was used as the gold standard, as it is a clinical tool, whereas the
Danish National Patient Registry is primarily used for administrative purposes. The aim
was to assess whether the DNPR can be used for research and quality monitoring.
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Background: The Danish National Patient Registry is a major resource for Danish epide-
miology. Only a few studies have been conducted to check the validity of the reporting of
systemic anticancer treatments. In this study, we assessed this validity for a range of cancer
types over a long period of time.

Patients and Methods: We extracted systemic anticancer treatment procedures from the
Danish National Patient Registry for patients with solid malignant tumors treated at the
Department of Oncology at Aalborg University Hospital between 2009 and 2019 (12,014
patients with 215,293 drug records). These data were compared to records obtained from the
antineoplastic prescription database used at the department. We estimated the sensitivity,
positive predictive value (PPV), and F1-score defined as the harmonic mean of the sensitivity
and the PPV.

Results: There was an overall high concordance between the two datasets with a sensitivity
and a PPV >92%. Treatments for brain, ovarian and endometrial cancers displayed lower
concordance (81-89%). The validity was stable over the study period, with a slight drop
during 2016-2017. Most drugs had a high validity with F1-scores above 90%. Fluorouracil,
gemcitabine, pemetrexed, pembrolizumab, and nivolumab had F1-scores above 97%. Drugs
that were introduced in the study period, such as lapatinib, palbociclib, erlotinib, pertuzumab,
and panitumumab, yielded lower F1-scores due to the absence of specific registry codes early
after introduction.

Conclusion: The Danish National Patient Registry can be used to reliably obtain informa-
tion about systemic anticancer treatments, keeping in mind limitations for recently intro-
duced drugs and for some types of cancer.

Keywords: antineoplastic agents, registries, Danish National Patient Registry, epidemiology,
sensitivity and specificity, validity

Background

Nordic countries have extensive nationwide healthcare registries." These registries
are notably used for epidemiological studies.? One of the main data sources used to
conduct these studies is the Danish National Patient Registry (DNPR) which has
been shown to have a high validity for cancer diagnoses.> While most of these
studies use the diagnoses recorded in the DNPR to analyze patients’ trajectories,*>
other types of data are available, such as treatment procedure codes. It is of special
interest in oncology to study for example the real-world efficacy of systemic
anticancer treatments.® However, one of the main concerns of studies using the
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DNPR data is the validity of the registration. Some work
has already been published to address this concern for

these treatments,

reporting high validity in terms of
positive predictive value and sensitivity, but these studies
were focused on colorectal cancers and included less than
500 patients. Thus, it remains unknown whether this high
validity could be extrapolated to other solid malignant
tumor types.

The aim of this study was to investigate the validity,
using the same metrics, of systemic anticancer treatment
procedure registration over a wide range of solid malig-
nancies and over a long period of time.

Patients and Methods

A retrospective cohort study was conducted on patients
with solid malignant tumors treated in the North Denmark
Region.

Data Sources
The DNPR is encoded using the Danish Health Care
Classification System (SKS)’ and was used to obtain pri-
mary diagnoses and procedure information for both in- and
outpatients containing the patient identifier, the admission
and discharge dates, and the diagnosis or procedure code.
For category-level diagnoses, the SKS encoding is identi-
cal to the ICD-10 classification.'®

The second main data source was the database from the
ARIA OIS for Medical Oncology v13.7 prescription
software'! (MedOnc) used at the Department of Oncology,
Aalborg University Hospital. The corresponding data

Drug cycle 1 for drug 1

N

Entries of drug cycle 1 for drug 1

Drug 1

Drug cycle 1 for drug 2

include the patient identifier, the start of treatment date,
the duration, the drug name, and the dose given for each
prescription and are only available for patients treated in the
Region North Denmark. The MedOnc dataset was used as
the gold standard to evaluate the validity of the DNPR
dataset.

Data Extraction

Our focus is on anti-neoplastic agents as defined by the
Anatomical Therapeutic Chemical (ATC) classification, '
ie, drugs with an ATC code starting with “L01”. These
drugs are referred to here as LO1 drugs. The corresponding
data were extracted from the DNPR using SKS codes
looking at the procedures: “Special medical treatments
and treatment principles” (codes starting with “BWH”)
and “Treatment with antibodies and immunomodulatory
therapy” (codes starting with “BOHJ”). These procedures
were mapped to ATC codes. Procedures corresponding to
drug combinations, ie, multiple ATC codes, in the DNPR
data were split into individual drug entries. Drugs admi-
nistered over consecutive days were grouped into one drug
entry with a duration equal to the number of consecutive
days. These drug entries are referred to here as drug cycles
(see Figure 1).

For MedOnc, the drug names were mapped to ATC
codes. The MedOnc prescriptions with no dose given,
corresponding to non-administered treatments, were
removed from the dataset. The drug entries were grouped
in drug cycles, where applicable, in a similar manner to the
DNPR dataset.

Drug cycle 2 for drug 1

e

Start of drug cycle 2 for drug 1

Drug cycle 2 for drug 2

—>
Drug 2 { { ( J { o
Days
N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8

Figure | Grouping of drug entries into drug cycles.
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Inclusion Criteria

The patients included in this study were identified using
the cancer diagnosis codes (ICD-10 codes starting with C)
found in the DNPR data as primary diagnosis. The diag-
noses were grouped into common cancer types (see
Supplementary Table 1). Only patients with a listed cancer

type and at least one LO1 drug cycle record in either the
DNPR or MedOnc were included (see Supplementary
Figure 1).

For the DNPR, we considered only LO1 drug cycles
from procedures performed at the Department of
Oncology, Aalborg University Hospital between 2009
and 2019 (11 years). These data cover all systemic antic-
ancer treatments given in the North Denmark Region. For
MedOnc, we similarly only considered LO1 drug cycles
given over the same period.

In Denmark, each citizen is assigned an ID number
from the Danish Civil Registration System.'® The data sets
were pseudonymized and linked at the patient level using
an encoded version of this number.

Analysis

The comparisons of the two datasets were performed both
for patients and for LO1 drug cycles. For the patients,
matching was performed using the patient identifier and
the analyses were stratified by diagnosis. For L0l drug
cycles, the ATC code and the start of treatment date were
additionally considered for matching and the analyses
were stratified by diagnosis, year, and drug.

Following an approach similar to Broe et al® the con-
cordance of the datasets was measured using the positive
predictive value (PPV) and the sensitivity. The MedOnc
data were the gold standard, and the DNPR dataset was the
predictive dataset. PPV was defined as the ratio of drug
cycles in the intersection between both datasets and in the
DNPR dataset, and the sensitivity was defined as the ratio
of drug cycles in the intersection between both datasets
and in the MedOnc dataset. Additionally, the F; score,
defined as the harmonic mean of the PPV and sensitivity,
was also used as an overall metric for concordance. As a
sensitivity analysis, we considered a margin of 1 day for
matching on the start date, as used by Broe et al.®

The data management and statistical analyses were
performed using SAS Enterprise Guide 8.3 (SAS
Institute Inc., Cary, NC, USA) and Python 3.8 in Jupyter

notebooks,'* respectively.

Table | Study Population Characteristics

Category Variable Count Ratio
Overall Patients 12,155 100%
Sex Male 5113 42%
Female 7042 58%

Age at diagnosis 1844 878 7%
45-59 3617 30%

60-74 6089 50%

75+ 1571 13%

Cancer Diagnosis Brain 462 4%
Lung 2621 22%

Breast 2968 24%

Gastro-esophageal 620 5%

Pancreatic 573 5%

Colorectal 2306 19%

Ovarian 557 5%

Endometrial 226 3%

Prostatic 514 4%

Urinary 284 2%

Other 1024 7%

Ethical Approval and Study Registration
According to Danish legislation, ethical approval and
patient consent for purely registry-based projects is not
required, only registration at the data responsible host
institution is needed. The study protocol was registered
in the North Denmark Region’s research project inventory
under the number 201941 and thereby complies with
relevant data protection and privacy regulations.

Results

Study Population

This study included patients with a broad range of solid
malignant tumors, the largest groups being lung, breast,
and colorectal cancers, representing two-thirds of the
cohort (see Table 1). Female patients accounted for the
majority of the patients (58%). Ninety-three percent of the
patients were >45 years old at diagnosis.

Matching Patients and Drug Cycles

Almost all patients are present in the intersection between
MedOnc and the DNPR, which translates into a large
concordance between the two datasets at the patient
level, with a PPV and a sensitivity of 98.8% and 98.4%,
respectively (see Table 2). However, the matching of brain
tumor patients led to a lower sensitivity of 90%.
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Table 2 PPV, Sensitivity, and Fl-Score for Patients and LOI Drug Cycles per Diagnosis

Cancer Diagnosis | Type MedOnc DNPR Intersection PPV Sensitivity Fl-Score
Overall Patients 12,014 11,965 11,824 98.8% 98.4% 98.6%
Drug cycles 215,293 216,074 198,888 92.0% 92.4% 92.2%
With a |-day margin 215,293 216,074 200,301 92.7% 93.0% 92.9%
Brain Patients 440 419 397 94.7% 90.2% 92.4%
Drug cycles 6671 6804 5546 81.5% 83.1% 82.3%
With a |-day margin 6671 6804 5610 82.5% 84.1% 83.3%
Lung Patients 2613 2571 2563 99.7% 98.1% 98.9%
Drug cycles 34,628 33,240 31,774 95.6% 91.8% 93.6%
With a |-day margin 34,628 33,240 32,066 96.5% 92.6% 94.5%
Breast Patients 2937 2953 2922 99.0% 99.5% 99.2%
Drug cycles 62,637 63,644 57,198 89.9% 91.3% 90.6%
With a |-day margin 62,637 63,644 57,582 90.5% 91.9% 91.2%
Gastro-oesophageal Patients 619 611 610 99.8% 98.5% 99.2%
Drug cycles 10,811 10,558 9863 93.4% 91.2% 92.3%
With a |-day margin 10,811 10,558 9998 94.7% 92.5% 93.6%
Pancreatic Patients 573 565 565 100.0% 98.6% 99.3%
Drug cycles 11,255 11,086 10,693 96.5% 95.0% 95.7%
With a |-day margin 11,255 11,086 10,726 96.8% 95.3% 96.0%
Colorectal Patients 2255 2296 2245 97.8% 99.6% 98.7%
Drug cycles 55,580 56,928 53,434 93.9% 96.1% 95.0%
With a |-day margin 55,580 56,928 53,688 94.3% 96.6% 95.4%
Ovarian Patients 554 544 541 99.4% 97.7% 98.5%
Drug cycles 11,901 12,252 10,586 86.4% 89.0% 87.7%
With a |-day margin 11,901 12,252 10,681 87.2% 89.7% 88.4%
Endometrial Patients 225 222 221 99.5% 998.2% 98.8%
Drug cycles 2800 3003 2511 83.6% 89.7% 86.5%
With a |-day margin 2800 3003 2527 84.1% 90.2% 87.1%
Prostatic Patients 509 512 507 99.0% 99.6% 99.3%
Drug cycles 3766 3861 3589 93.0% 95.3% 94.1%
With a |-day margin 3766 3861 3600 93.2% 95.6% 94.4%
Urinary Patients 283 275 274 99.6% 96.8% 98.2%
Drug cycles 3562 3541 3331 94.1% 93.5% 93.8%
With a |-day margin 3562 3541 3344 94.4% 93.9% 94.2%
Other Patients 1006 997 979 98.2% 97.3% 97.8%
Drug cycles 11,682 11,157 10,363 92.9% 88.7% 90.7%
With a |-day margin 11,682 11,157 10,479 93.9% 89.7% 91.8%

Notes: Patients are matched on encrypted CPR number, drug cycles on start date and ATC code. The |-day margin is on the start date for drug cycles allowing additional
matching if the start dates of unmatched drug cycles in MedOnc and the DNPR are | day or less from each other.

Matching the drug cycles using the patient identifier, the
ATC code, and the start of treatment date generated a PPV and
a sensitivity above 92%. Treatments within all diagnoses

except brain, ovarian, and endometrial cancers have a

sensitivity and a PPV above 89%, with treatments for pancrea-
tic cancer above 95% (see Figure 2). Adding a 1-day margin
for the start date improves the performance with a gain of
0.7% for PPV, 0.6% for sensitivity and 0.7% for F1-score.
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Figure 2 Positive predictive value vs sensitivity for the matching of drug cycles per cancer diagnosis. The area of the circle is proportional to the number of corresponding
drug cycles. The lighter circles in the background correspond to the performances with a I-day margin.

Evolution Over Time

The validity of the registered drug cycles is mostly stable
over the 2009-2019 period (11 years) (see Figure 3).
Nevertheless, a drop in PPV can be seen for 2016 and
2017. The sensitivity was also negatively impacted in
2012 and 2016. The effect of the 1-day margin, shown as
lighter surfaces above both lines in Figure 3, seems to be
stable over the period.

Validity per Drug

Looking at the most frequently administered drugs there is
a more detailed picture, with most drugs having F1-scores
above 90% (see Table 3). Some drugs (fluorouracil, gem-
citabine, pemetrexed, pembrolizumab, and nivolumab)
have high validity with F1-scores above 97%, while others
(temozolomide, pertuzumab, palbociclib, erlotinib and
lapatinib) have F1-scores below 80%. The low validity is
typically due to a low sensitivity with values below 70%,
ie, many entries in MedOnc cannot be matched with
corresponding data in the DNPR (see Figure 4). As

shown in Table 3, there is a strong correlation between
drugs and diagnoses, for example temozolomide and
cyclophosphamide are almost exclusively used for brain
and breast cancer, respectively.

Discussion

Main Results

The DNPR data can be used as a good proxy for LO1 drug
cycles when matching the ATC code and start of treatment
date. The reporting of drug cycles appears to be reliable
across diagnoses, especially for colorectal and pancreatic
cancers, but historically not for brain cancers, even though
improvements have occurred. Looking at specific drugs,
only a few have limited validity among frequently used
drugs, including temozolomide.

Using the Start of Treatment Date Only

The duration of the cycle was not considered because the
DNPR does not contain this information. However, in the
context of a specific treatment for a specific cancer type,

Clinical Epidemiology 2021:13
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Figure 3 Evolution over time of the validity of the DNPR registrations for LO| drug cycles for systemic anticancer treatments. The lighter surface above each line represents

the gain in performance by adding a I1-day margin.

the durations of cycles would be known, especially for
adjuvant and neoadjuvant treatments and, to a lesser
extent, for palliative treatments. Thus, the whole history
of patients could be reconstructed, as a cycle is typically
not stopped in the middle but instead cancelled or post-
poned altogether if the patient is not fit for it.

Temozolomide and Brain Cancer
Temozolomide cycles from the DNPR have a good PPV
but a low sensitivity, ie, a significant proportion of these
cycles do not seem to have been registered in the DNPR
up to 2014 (see Figure 4). This is due to historically poor
reporting in the DNPR by administrative personnel. This
could be explained by the complexity of the treatment
regimen used for glioblastoma'® and thus point toward
reporting issues at the diagnosis level. This poor reporting
mechanically impacts the concordance at the patient level,
as seen in Table 2.

Recent Drugs

Similar to temozolomide, other drugs, such as pertuzumab,
palbociclib, erlotinib, lapatinib, and panitumumab, also
display a good PPV with a low sensitivity but for a
different reason. Indeed, these are recently introduced
drugs for which specific national registry codes were not

available when first used, leading to a suboptimal registra-
tion at the drug level. For example, pertuzumab was first
used in 2012 according to the MedOnc dataset but was
only registered in the DNPR with a specific code in 2015.

Cyclophosphamide and Epirubicin
Cyclophosphamide and epirubicin display a low PPV but a
high sensitivity. This is due to an error in the registration
in 2016 and 2017. These two drugs are administered to
breast cancer patients in an adjuvant regimen composed of
three cycles of these two drugs followed by three cycles of
docetaxel. They were nevertheless registered in the DNPR
as given for all six cycles until the registration error was
discovered. This can also explain the drop in PPV seen for
these years, since they are frequently used drugs to treat
breast cancers which is the largest sub-cohort of the study
and thus have a significant impact on the overall perfor-
mance. Outside of these years, the performances are never-
theless good with sensitivities and PPVs above 90%.

Limitations and Strengths

Limitations
MedOnc was used as a reference, but some manual cura-
tion was nevertheless needed. We considered MedOnc to
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Figure 4 Evolution over time of the validity of the DNPR registrations for bottom 9 performing LOI drugs. Only drugs with more than 500 cycles were considered. The
lighter surface above each line represents the gain in performance by adding a |-day margin.

be a reliable source because it is used in clinical practice to
plan, prescribe, and administer treatment; therefore, data
entry is expected to be done by doctors and nurses with
much more care than in the DNPR, which is an adminis-
trative tool filled in by secretaries. However, the DNPR is
used for reimbursement of procedures which is a strong
incentive to avoid underreporting in this system. The
validity of MedOnc compared to patient journals remains
unknown but is expected to be similar.

Also, the results shown here might be specific to the
North Denmark Region since there might be some spatial
and temporal differences across Denmark and Scandinavia
in terms of clinical tools and reporting practices. Indeed,
Broe et al have reported slight discrepancies between uni-
versity hospitals and other hospitals,® but this study only
included data from one university hospital.

We report issues in the DNPR data. However, these
issues only affect a limited number of drugs and seem to
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have been resolved in recent years. The fact that they are
consistent with previously reported results suggests the
generalizability of these results.

Strengths

The main strength of this study is its large time span and
broad range of cancer diagnoses with low variability in the
results, which should guarantee a high level of consistency
in the data reported in the DNPR.

Comparison to Other Studies

Only a few articles’® analyzing registration practices are
available, and they focus exclusively on colorectal cancers
with much smaller cohorts. Broe et al’s work® is the more
directly comparable with ours. For individual drug cycles
to colorectal cancer patients, we report a PPV of 94% and
a sensitivity of 97% compared to a PPV of 95% and a
sensitivity of 90% in Broe et al’s study, illustrating the
reliability of the MedOnc dataset. Lund et al’s study,’
similarly to our work, reports high validity of the DNPR
for fluorouracil, oxaliplatin, and bevacizumab.

Conclusions

This study confirms the validity of the registration of
DNPR drug cycles for a large variety of cancer types and
antineoplastic drugs, with some limitations for brain can-
cer and recently introduced drugs. Identified reporting
issues, notably for temozolomide, cyclophosphamide, and
epirubicin, seem to have been resolved in the latter years
of the study period. Therefore, these data can be used for
retrospective studies on antineoplastic agent usage across
the country.
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Supplementary Material

Supplementary table 1 - Cancer type grouping, inclusion status, and exclusion criteria.

ICD10 Cancer type Specific group | Reason

C00-C14, C30-C33 Head and neck No Relatively rare and not primarily treated
with systemic anticancer treatment

C15-C16 Gastro-oesophageal Yes

c17 Intestine No Rare

C18-C20 Colo-rectal Yes

Cc21 Anal No Rare

C22-C24 Hepato-biliary No Referred to other hospitals

C25 Pancreatic Yes

C26, C39, C55, C57, C76, C80 lll-defined No lll-defined

C34 Lung Yes

C37-C38 Thoracic other than lung No Rare

C40-C41 Bone and articular cartilage No Rare

C43 Melanoma No Referred to other hospitals

caa Skin other than melanoma No Not treated with systemic anticancer
treatment

C45-C49 Connective and soft tissue No Rare

C50 Breast Yes

C51-C52 Vulva and vagina No Rare

C53 Cervical No Referred to other hospitals

C54 Endometrial Yes

C56 Ovarian Yes

C58 Placenta No Rare

C61 Prostate Yes

C64-C68 Urinary Yes

C69-C70 Eye and meninges No Rare

C71 Brain Yes

C72 Nervous system No Rare

C73-C75 Endocrine No Rare

C77-C79 Secondary No Not primary

“Specific group” refers to the fact that the corresponding diagnosis groups were considered individually,

while other diagnoses were grouped into an “Other” group.




RN Patients with solid tumours (2009-2019)
n=26.770

v

With LO1 drug records in MedOnc or the DNPR
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Supplementary figure 1 — Inclusion flow chart. RN stands for North Denmark Region. LO1 drugs refer to

drugs whose codes, according to the ATC classification, start with LO1, namely antineoplastic agents.
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Description

The goal of this paper was to build a predictive model for dynamic risk prediction of 30-
day mortality for cancer patients using extensive health data. We decided to focus on
patients with advanced lung cancer to obtain a more homogeneous cohort. To find the
best suited approach, we compared five different machine learning methods: logistic
regression with elastic net regularisation, random forest, gradient tree boosting,
multilayer perceptron, and long short-term memory (LSTM) architecture. The LSTM
architecture was considered for its ability to handle the sequence of events, as the
trajectory of the patients could play a role in the short-term mortality of patients and
summary variables may not capture all of the available information.
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1. Abstract
1.1. Background

Administering systemic anticancer treatment (SACT) to patients near death can
negatively impact their health-related quality of life, often with limited clinical benefits.
Therefore, late SACT administrations should be avoided in these cases. The availability
of extensive registry data suggests exploring machine learning techniques to build
decision support tools for clinicians to limit late SACT administration.

1.2. Material & methods

Patients with advanced lung cancer who were treated at the Department of Oncology,
Aalborg University Hospital and died between 2010 and 2019 were included (n=2368).
Their diagnoses, treatments, biochemical data, and histopathological results were
collected, and corresponding summary variables were generated. The data were used to
train predictive models of 30-day mortality using five different machine learning
approaches, logistic regression with elastic net penalty, random forest, gradient tree
boosting, two artificial neural networks, a multilayer perceptron, and a long short-term
memory network. The importance of the variables in each model was estimated using
Shapley additive explanation values. Clinical utility was evaluated by estimating the
number of preventable SACT administrations in the last 30 days while avoiding
treatment cessation before 90 days of death.

1.3. Results

The random forest and gradient tree boosting models outperformed other models, while
the artificial neural network models underperformed. Adding summary variables had a
modest effect on performance with an increase in average precision from 0.500 to 0.505
and from 0.498 to 0.509 for the gradient tree boosting and random forest models,
respectively. Most of the top variables selected in each model were biochemical results,
notably albumin, lactate dehydrogenase, leukocytes, neutrophils, and carbamide values.
Biochemical results alone contained most of the information with a limited degradation
of the performances when fitting models with only these variables. The average precision
decreased from 0.509 to 0.493 and from 0.505 to 0.487 for the gradient tree boosting
and random forest models, respectively.

The utility analysis showed that by applying a simple threshold to the predicted risk of
30-day mortality, 44% of late SACT administrations could have been prevented at the
cost of 3% of patients stopping their treatment 90 days before death.

1.4. Conclusion
This study demonstrates the potential of a decision support tool to limit late SACT
administration in cancer patients. Further work is warranted to refine the model, build
an easy-to-use prototype, and conduct a prospective validation study.
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2. Background

Systemic anticancer therapy (SACT) includes chemotherapy, targeted therapy,
immunotherapy, and hormonal therapy. SACT should only be considered in patients
with an adequate benefit from the treatment since SACTs often have a short-term
negative impact on health-related quality of life'~". An accepted threshold for late SACT
administration is 30 days before death®. However, clinicians’ experience in predicting the
remaining lifetime of patients may be inadequate?, leading to prescription of SACT too
late to achieve a clinical benefitS, Furthermore, death from advanced cancer often has a
multifactorial background where acute complications, such as infections, venous
thromboembolisms or myocardial infarctions, could lead to patient death.

Lung cancer is a frequently occurring cancer type with poor prognosis and high mortality,
patticularly in advanced stages. Thus, patients with lung cancer are at higher risk of
receiving SACT close to death than other cancer types with a better prognosis.

There is a need for decision support tools to assist the work of clinicians to minimize the
risk of decreasing health-related quality of life due to SACT of lung cancer patients
receiving palliative treatment in advanced stages. Patient health might promptly
deteriorate during treatment, requiring frequent use of dynamic predictive tools to assess
their situation. To the best of our knowledge, existing studies addressing this issue 1) are
based on a limited number of clinical variables, 2) do not consider artificial neural
network-based models, 3) are based on different endpoints, for example, 6-month
mortality, or 4) are not suitable for dynamic risk prediction!¢-17.

The aim of this study was to investigate the potential use of machine learning approaches
on electronic health registers and administrative data to limit late SACT by building
dynamic predictive models for the 30-day mortality of patients with advanced lung
cancer. It is based on the hypothesis that extensive medical data can improve the
petformances of the predictive models and on the hypothesis that artificial neural
network-based machine learning techniques can outperform other methods.

3. Materials and methods

3.1. Data sources and data management

This study was based on five data sources from the North Denmark Region (see Table
1). The data were merged at the patient level in patients with advanced lung cancer treated
at the Department of Oncology, Aalborg University Hospital between 2010 and 2019,
with the Danish civil registration number and were subsequently pseudonymized. Data
management and analysis followed a protocol similar to that proposed by Tomasev et
al.!8. For each patient, a sequence of records was generated. A record was defined as a
day where a diagnosis, a procedure, a drug prescription, a result, or contact with the
Department of Oncology, Aalborg University Hospital was made. All variables were
present for each record (Table 1). All data available for a given day were grouped into
one record, the latest value being retained in cases of multiple measurements on the same
day. The dataset contained three different types of variables: baseline, cumulative, and
status. Baseline variables represented information up to 30 days before diagnosis and
wete constant for each patient across the sequence of records (Figure 1).
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Table 1. Datasets and corresponding variables

Dataset  |Variable group Inclusion criteria Variable type | Variables | Baseline Patients Events per patient
. - . 2368 [2368- .
CPR Sex, age Baseline 2(2) 2 2368] N/A
Died between 2010 . 2368 [2368-
Date of death and 2019 Outcome 1(1) N/A 2368] 1[1-1]
PAS Cancer diagnoses |18 cancer patients | Bascline and |y o) 5 307 [24-2368] 1.8 [1.1-3.7]

(advanced stage) cumulative

Comorbidities Baseline and 8 (20) 11 107 [26-360] 1.6 [1.2-2.1]

cumulative

Symptoms and Baseline and o -
side effects cumulative 220 0 180 [38-514] 13 111-1.6]
Surgetics Cumulative | 10 (405) 0 96 [29-206] 1.1 [1.0-1.5]
Radiotherapies Cumulative 2(7) 0 824 [701-946] | 122 [8.2-16.2]
MedOne |P78 Received palliative Cumulative 25 (64) 0 394 [25-1890] |  15.1 [1.8-161.2]
admmlstratmns treatment
1f needed” drug Cumulative 3 (6) 0 838 [314-1857]| 7.1 [1.5-11.9]
p!‘CSCﬂpthﬂS
. 1677 [1677-
Status 7 [4.7-4.
BMI Status 1(1) 0 1677] 47 [47-4.7)
LABKA  [Biochemical data Status 45 (62) 0 |1648 [220-2367]|  10.8 [2.2-31.6]
Patobank [MOPhology and Status 56 (1170) 0 160 [22-929] 1.1 [1.0-1.5]
biomarkers

For the “Variable type” column, “Baseline” indicates which variable groups were included as baseline variables,
i.e., which variables were present before diagnosis (with a margin of 30 days). The “status” and “cummnlative” types
describe the method used for filling missing values (see paragraph 2.3). The “V ariables” column indicates the nuniber
of variables included in each variable group, and the value in parentheses is the number of variables before filtering.
The “Baseline” colummn informs on the number of variables included as baseline variables. The “Patients” column
indicates the mean number of patients for each variable with at least one event for this variable. “Events per patient”
is the mean number of events per patient with at least one event and per variable. For the last two columns, the
values between brackets show the range across the variables of the group.

The status and cumulative vatiables differed by the method used for filling missing
values. For status variables, the last value was carried forward, while for the cumulative
variables, empty values were designated with zeros. Status variables represented a
potentially variable state, such as BMI, blood tests, diagnoses, or biomarkers.
Cumulative variables included those that could be counted or summed and were
treatment related, e.g., the number of a certain type of surgery or cumulative dose of a
certain drug. The latest value for each variable was carried forward in both cases when
working with models not handling sequences of records. If no value was still available,
the mean value was used. Data management was performed using SAS Enterprise
Guide 8.3 (SAS Institute Inc., Cary, NC, USA) and Python 3.8 with Jupyter!?
notebooks.
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3.1.1. PAS

The primary data source was the North Denmark Region’s Patients Administrative
System (PAS). PAS includes all diagnoses and procedures from hospital inpatient and
outpatient visits coded following the Danish Health care Classification System? (SKS),
which is similar to the ICD-10 classification?! for diagnoses. All other cancer diagnoses
before or after the lung cancer diagnosis, comorbidity diagnoses according to the
Charlson’s Comorbidity Index?? (CCI), symptom diagnoses, and side effect diagnoses
(Supplementary Table 1) were considered. Diagnoses for the localization of metastases
were included individually. These diagnostic variables were used to calculate
corresponding baseline variables and were used directly as status variables containing
binary values.

PAS was also used to extract procedures for surgery (the SKS codes between KA and
KQ) and radiotherapy (the SKS codes starting with BWG but not BWGA) performed
in relation to a cancer diagnosis. These procedure variables were also used as cumulative
variables with binary values. We excluded minor surgical procedures (SKS codes starting
with KT), endoscopies, unknown operations, and procedures related to transplantation
due to either dependency on local practice or lack of relevance in the study context.

3.1.2. The CPRregistry
The Danish Civil Registration System (CPR) registry contains information on sex, date
of birth, and date of death for patients in contact with the Department of Oncology
between 01/01/2008 and 31/12/2019. This information was used to compute the “sex”
and “age” baseline variables. Furthermore, the date of death was used to label the binary
outcome variable, i.e., 30-day mortality from the record of which the prediction was
made (Figure 1).

3.1.3. MedOnc
Data from the prescription software ARIA OIS for Medical Oncology v13.7 (Varian
Medical Systems Inc., Palo Alto, CA, USA) (MedOnc), used at the Department of
Oncology, contains information about drug prescriptions as well as body mass index
(BMI). The drug prescriptions were characterized by date, Anatomical Therapeutic
Chemical classification?® (ATC) code, dose in mg, and RN (Pro Re Nata, if needed)
status. The dose for non-PRN drugs records whether the drug was given, with a dose
equal to zero for non-administered drugs. Additionally, a regimen name variable was
available to infer the intent of the treatment, i.e., neoadjuvant, adjuvant, or palliative. A
cumulative variable containing information about the dose administered was created for
each combination of ATC code and PRN status. The BMI was included as a status
variable.

3.1.4. Patobank
The Danish National Pathology Registry (Patobank) contains histopathological data,
including morphology, determining the subtype of lung cancer, and genetic biomarkers,
such as the presence of significant mutations in the epidermal growth factor receptor
gene or the programmed death ligand 1 protein expression level. These data were used
as binary status variables.
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3.1.5. LABKA
Biochemical results data from the Clinical Laboratory Information System (LABKA)
used at Aalborg University Hospital were included as status variables. This includes
mostly biochemical tests. These data were coded using the Nomenclature, Properties,
and Units** (NPU) classification.

3.1.6.  Summary variables
Variables generated from these five data sources are collectively referred to as base
variables. To capture information on the trajectory of the patients for models that do not
support time series, summary variables were created from the base variables. For each
cumulative variable, two additional cumulative variables were created, one adding the
values accumulated from diagnosis to the current record and one for the last 30 days
before the current record as reported by Elfiky et al.l”.
Additionally, binary baseline variables were created for the cancer diagnoses,
comorbidities, side effects, and symptoms from the PAS dataset based on the presence
of corresponding diagnoses before the initial lung cancer diagnosis.
For biochemical results and BMI data, mean values for the past records, including data
before the start of the first palliative treatment, was computed. A differential variable was
calculated as the difference between the value for the current record and the mean of the
previous measures.
For the machine learning model designed to handle the sequence of records (see Models
section), datasets containing these variables were not included.

3.1.7.  Dataset generation and feature selection
The overall dataset included records only after the start of the first palliative treatment
ot, if no palliative treatment was initiated, the first diagnosis of metastatic disease. Only
records or sequences of records associated with contact with the Department of
Oncology were retained.
Two versions of the dataset were created, one with only the base vatiables, refetred to as
the base dataset, and one with both the base and summary variables. For both datasets,
a nonspecific feature filtering step was performed to allow the convergence of all models.
This consisted of filtering out variables found in less than 1% of patients and highly
correlated or colinear vatiables with thresholds of 0.99 for Pearson’s cortelation
coefficient and 20 in variance inflation factor? (VIF) for multicollinearity. In cases with
a high correlation between two variables, the first variable alphabetically was removed.
Variables with the highest VIF were removed first. The cotrelation was calculated using
the pandas library?> and the VIF was calculated using linear regression. If a simple logistic
regression could still not be trained, the VIF threshold was lowered by one unit until
convergence was possible. Both the linear and logistic regressions were trained using the
Python scikit-learn library?7.
In a second phase, an additional dataset, referred to as the biochemical results dataset,
was generated keeping only the variables from the LABKA and CPR data sources to
compare performance to the base dataset. Two versions of this dataset were also created
and filtered as detailed above.
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3.2. Study population

Patdents in contact with the Department of Oncology between 01/01/2008 and
31/12/2019 and who died between 01/01/2010 and 31/12/2019 were identified from
PAS (n=14,902). Among these patients, 3,856 were diagnosed with lung cancer. Only
those who received SACT for advanced or metastatic lung cancer or who were diagnosed
with metastatic lung cancer were included in the final dataset (n1=2368, Supplementary
Figure 1). The patients were split into three cohorts: the training cohort with patients
who died between 2010 and 2017, the validation cohort with patients who died in 2018,
and the test cohort for patients who died in 2019. Since only patients in contact with the
Department of Oncology between 2008 and 2019 were accessible, including patients who
died in the same period would exclude patients who died in this period but were in
contact with the Department of Oncology only before 2008. To avoid missing this type
of patient, only patients who died after 2010 were included. A 2-year margin was
considered sufficient in this context.

3.3. Models

In addition to a logistic regression model without regulatrization, which was used as a
baseline model, five popular machine learning models were considered in this study: a
logistic regression with elastic net regularization?® (LRENR), a random forest classifier?’
(RF), a gradient tree boosting classifier® (GB), a multilayer perceptron (MLP), and a
long-short term memory model® (LSTM), as proposed in the literature!31432, The
architectures of the MLP and the LSTM are shown in Supplementary Figure 2.
Hyperparameters were optimized using records from the training cohort, referred to as
the training records, as the training set, and the records from the validation cohort,
referred to as the validation records, as the validation set. In practical terms, the models
were trained using the training set with various values for the hyperparameters, and the
performance was evaluated on the validation set to select the best set of hyperparameters.
To limit the complexity of the tree-based ensemble models (RF and GB), the lowest
values among those resulting in performance within 1% of the best performance were
selected. The 1% threshold was arbitrarily set. No cross-validation was performed to
maintain the temporal structure of the data. Once the optimal hyperparameter values
wete found, the models were retrained with these values on the training and validation
records combined. The final performance was evaluated on the records using the held-
out test cohort, referred to as the test records®?.

To assess the variability of the performance for all models, nine additional training sets
of the same length were generated by bootstrapping the combined training and validation
records. Using the optimal hyperparameters, the models were fitted using these ten sets.
In each case, performance was evaluated on the test records. This process was also
performed using the training records as the training set and the validation records as the
validation set.

LRENR, RF, and GB were fitted using the scikit-learn library, and hyperparameters were
optimized using a grid search. The hyperparameters optimized for LRENR were the
inverse of regularization strength and the elastic net mixing parameter with values
between 105 and 102 and 0.1 and 1, respectively. For RF and GB, optimization was
petformed on the number of trees, with values between 1 and 2000 and the maximum
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depth of these trees. This depth was set between 2 and 200 for RF and between 1 and
50 for GB (Supplementary Figure 3). The two artificial neural network-based models
were trained using the Python Keras library34 and their best hyperparameters were found
by Bayesian optimization using the Python Keras-Tunner library3> (Supplementary Table
2).

The average precision (AP) and receiver operating characteristic area under the curve
(ROC AUC), as calculated by scikit-learn, were used to evaluate model performance. The
AP was the primary performance metric used as recommended for imbalanced datasets's.
This metric is equivalent to the area under the precision-recall curve.

The importance of each vatiable was estimated from their SHapley Additive exPlanation
(SHAP) values® on a random sample of 1000 records from the combined training and
validation records. The SHAP approach was chosen due to its ability to generate
comparable results between all models. To measure the overall importance of each
variable, the effect of each variable was calculated by summing the absolute values of
these effects across the sampled records. For models using summary variables, the effects
of potential summary variables were added to the effect of the corresponding base
variables at the record level before the summation of absolute values across records.

3.4. Evaluation of utility
To assess the usefulness of a predictive model, the potential effect of limiting late SACT
administrations based on a simple rule was investigated. Given a threshold on the 30-day
mortality risk, SACT should be administered if the predicted risk is below that threshold.
Conversely, if the predicted risk is above the threshold, SACT should not be given. In
cases where the risk is above the threshold at a given time point but becomes below the
threshold at a later stage, SACT is considered administrable at that later timepoint and is
therefore only considered delayed. An administration was considered preventable if the
risk prediction at the time of administration, as well as for all subsequent contacts, were
above the threshold (Supplementary Figure 4).
To avoid stopping treatment too early, no administration should be considered
preventable more than 90 days before death in more than 1% of the patients, putting a
constraint on the value of the threshold. The threshold value was determined from a
model trained on the training records and used to predict risks for each validation record.
The lowest value for the 30-day mortality risk prediction fulfilling the above constraint
was selected as the threshold.
Risk was predicted for each test record using the best model with respect to AP trained
on the combined training and validation records of the base dataset with summary
variables. The threshold-based rule was applied to these predictions to identify
preventable SACT administrations within 30 days, 90 days and more than 90 days from
death and the corresponding number of patients.
To compare utilities, the Fi-score (harmonic mean of precision and recall) was calculated,
where SACT administrations within 30 days of death were considered positive events
and SACT administrations more than 90 days from death negative events. SACT
administrations between 30 days and 90 days were not considered in the calculation.
Preventable SACT administrations according to the threshold-based rule were
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considered as predicted as positive, true positive events being preventable SACT
administrations with 30 days of death.

3.5. Ethical approval and registration
According to Danish legislation, health registry projects do not require patient consent
or ethical approval but should be registered by the legal entity responsible for the data.

The study was registered at the North Denmark Region’s research project inventory (reg.
number 2019-41).

4. Results
4.1. Study population

The population characteristics are described in Table 2. The overall cohort was well
balanced regarding sex (52% male and 48% female). A majority of patients (56%) died
between the age of 60 and 74, and most patients (87%) received palliative SACT, among
whom 65% died less than 12 months from the initiation of palliative treatment. The most
prevalent histopathological subtype was adenocarcinoma (43%), followed by small cell
carcinoma (25%). An increasing proportion of adenocarcinoma and decreasing incidence
of small cell lung cancer were observed between the training, validation, and test cohorts.
The number of patients surviving more than 12 months was increased in the test (50.5%)
cohort compared to the training (32.6%) and validation cohorts (35.4%).

4.2. Performances

4.2.1. Comparing models
The AP and ROC AUC of the five models were computed for all datasets (Figure 2).
First, all values from the base dataset, with or without summary variables, were
considered. There were limited differences in the validation set, with mean values for the
AP varying between 0.486 and 0.544. The inclusion of summary vatiables had a beneficial
effect on the performance. The differences were larger on the test set where values
between 0.342 and 0.509 were observed, with the MLP and LSTM underperforming.
The effect of the summary variables was beneficial on the performances of all applicable
models except the MLP model but was modest for the GB and RF models, changing
from 0.500 to 0.505 and from 0.498 to 0.509, respectively.
Regarding performance variability, using the bootstrapped datasets, the LRENR model
exhibited the least variability on the validation set. The variability increased for the
LRENR and LSTM models on the test set and remained similar for the other models.
The patterns were similar using the ROC AUC as a performance metric, with values
between 0.794 and 0.846 in the validation set and between 0.766 and 0.868 in the test
set, with the MLP and LSTM models performing pootly on the test set. For both AP
and ROC AUC, the best-performing approaches remained the same on the validation
and test sets, suggesting robust results.
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Table 2. Study population characteristics

Training set Validation set Test set Overall
Patients 1819 (100.0%) 309 (100.0%) 240 (100.0%) 2368 (100.0%)
Sex
Male 937 (51.5%) 168 (54.4%) 117 (48.8%) 1222 (51.6%)
Female 882 (48.5%) 141 (45.6%) 123 (51.3%) 1146 (48.4%)
Histopathology
Adenocarcinoma 753 (41.4%) 143 (46.3%) 122 (50.8%) 1018 (43.0%)
Small cell carcinoma 493 (27.1%) 64 (20.7%) 43 (17.9%) 600 (25.3%)
Large cell carcinoma 264 (14.5%) 30 (9.7%) 27 (11.3%) 321 (13.6%)
Squamous cell carcinoma 223 (12.3%) 57 (18.4%) 40 (16.7%) 320 (13.5%)
Other 86 (4.7%) 15 (4.9%) 8 (3.3%) 109 (4.6%)
Age at death
18-44 35 (1.9%) 3 (1.0%) 5 2.1%) 43 (1.8%)
4559 416 (22.9%) 54 (17.5%) 47 (19.6%) 517 (21.8%)
60-74 1071 (38.9%) 165 (53.4%) 132 (35.0%) 1368 (57.8%)
75+ 297 (16.3%) 87 (28.2%) 56 (23.3%) 440 (18.6%)
Palliative treatment
Yes 1657 (91.1%) 226 (73.1%) 194 (80.8%) 2077 (87.7%)
No 162 (8.9%) 83 (26.9%) 46 (19.2%) 291 (12.3%)
Survival from start of palliative treatment
0-1 months 105 (6.3%) 9 (4.0%) 9 (4.6%) 123 (5.9%)
1-6 months 526 (31.7%) 70 (31.0%) 46 (23.7%) 642 (30.9%)
6-12 months 486 (29.3%) 67 (29.6%) 41 21.1%) 504 (28.6%)
12+ months 540 (32.6%) 80 (35.4%) 98 (50.5%) 718 (34.6%)
Contacts
All contacts 68 876 (100.0%) 12 205 (100.0%) (11(?02(230) (19(?02(;)"(/)0)
Within 30 days of death 10783 (15.7%) 21190 (17.9%) 1526 (125%) | 14499 (15.5%)

The percentages in parentheses present the proportion of corresponding patients in the cobort, except for the survival
data, where the value is the proportion of corresponding patients among patients who received palliative treatment,
and the contact data, which represents the proportion of contacts.
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Figure 2. Average precision and ROC AUC per model and dataset on the validation and test sets. The baseline
vatues show the performance of a logistic regression without regularization. The horizontal lines represent the mean
value of the corresponding metric. Each circle represents the performance on a bootstrapped dataset.

4.2.2. Top variables
For the complete dataset, most of the top vatiables by importance, without (Figure 3A)
or with summary variables (Figure 3B), were the biochemical results across all models,
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especially in the RF model (10 and 8 were in the top 10, respectively) and the GB model
(8 were in the top 10 in both cases). In particular, albumin, leukocytes, carbamide, and
lactate dehydrogenase were all in the top 10 for all models with or without summary
variables, and albumin and leukocytes were in the top 4 variable for all models.
Considering only the best performing models, RF and GB, with summary variables,
creatinine and neutrophils were additionally in the top 10. Concerning nonbiochemical
variables, treatment data were important only when summary variables were included
with prednisolone and carboplatin in the top 10 for both the RF and GB models.

4.2.3.  Performances using only biochemical results

As most of the important variables were biochemical results, the performance of models
trained exclusively on these variables was investigated (Figure 2). This had a limited
negative impact on the performance of RF and GB. The mean AP values between the
base dataset and the biochemical results dataset, both with the summary variables, went
from 0.509 to 0.493 and from 0.505 to 0.487 in the RF and GB models, respectively.
Notably, the optimum performance for the GB model was obtained for the biochemical
results dataset without the summary variables with a mean AP of 0.517.

4.1. Utility

The RF model was chosen as the best model in terms of AP on the base dataset with
summary variables to assess the utility of a decision support tool in preventing late SACT
administrations.

In the test cohort of the 195 patients who received palliative SACT, 16% (n=32) received,
on average, 3.2 (103/32) administrations within 30 days of death (Table 3).

The threshold identified by the validation set was 34.9%. Using this threshold, 44%
(14/32) of patents from the test cohort could have had preventable SACT
administrations within 30 days of death, corresponding to 44% (44/103) of the late
SACT administrations (see Figure 4). However, this threshold led to preventable SACT
administrations before the 90-day landmark for 3% (6/195) of patients. The 44
preventable late SACT administrations were primatily for osimertinib, etoposide,
alectinib, and carboplatin.

The Fi-scores for the GB and RF models and all datasets were calculated both at the
patient and administration levels in Table 4 with heterogeneous results. The best Fi-score
was observed for the RF model with the base dataset without summary variables, while
for the GB model, the best Fi-score was for the biochemical data without summary
vatiables.
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Figure 3. Top variables per importance for the full dataset with and without summary variables. “Bio.” stands for

biochemical results, “Rx” for radiotherapy, “Drug” for drug administration, “SE” for side effects, “Comorb.” for

2

comorbidities, “Patho.” for results from pathological analysis, and “Demo.” for demographic variables. The same

LSTM model was compared to the other models both without and with summary variables.
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Table 3. Utility evaluation for the prevention of SACT administration within 30 days of death in the RF model
on the base dataset with summary variables.

Administered Preventable

o ;S(V)ig:;s o ;S(V)ig:;s S(V)ig:;s ]933 fél):;s L e :c;re
Treated patients | 195 212() 4%) ?13130, % 1472%) | 631%) | 631%) | 07 | 04 | 05
Administrations | 4154 ézozo % 73(1.8%) | 44 (1.1%) | 18(04%) | 1103%) | 08 | 04 | 06
Etoposide 500-1000 4% 3% 1% 1% 0% 0.8 0.3 0.4
Vinorelbine 500-1000 1% 0% 0% 0% 0% 1.0 0.3 0.4
Carboplatin 500-1000 3% 1% 1% 0% 0% 0.8 0.3 0.4
Nivolumab 200-500 1% 0% 0% 0% 0% NA 0.0 NA
Pemetrexed 200-500 2% 2% 0% 0% 1% 0.0 0.0 NA
Osimertinib 200-500 8% 6% 6% 0% 0% 1.0 0.8 0.9
Gemcitabine 50-200 0% 1% 0% 1% 1% 0.0 NA NA
Docetaxel 50-200 2% 2% 1% 1% 0% 1.0 0.7 0.8
Pembrolizumab 50-200 1% 3% 1% 0% 2% 0.4 1.0 0.6
Topotecan 50-200 8% 3% 3% 0% 0% 1.0 0.4 0.6
Alectinib 50-200 14% 14% 14% 0% 0% 1.0 1.0 1.0

The “Administered” columns inform on the number of SACT administrations given. The corresponding “Within
30 days” colummn informs on the number of SACT administrations given within 30 days of death. “Preventable”
columns are for the numbers of SACT administrations that would have been prevented using the threshold as
mentioned in Section 2.4. The corresponding “Within 30 days” informs on the number of SACT drug
administrations that would have been preventable within 30 days of death. The “Within 90 days” colummn provides
the number of SACT drug administrations that would have been preventable between 90 days and 30 days to death.
The “Before 90 days” column informs on the number of SACT drug administrations that would have been
preventable more than 90 days from death. The “Treated patients” row provides information on the number of
corresponding patients for each colunmn. For individual drugs, only the range of total administrations is shown, and
the percentages shown are in relation to the total number of administrations or patients and are rounded to the closest
percent for anonymisation. “Pr.”, ‘Re.” and “NA” stand for Precision, Recall and Non-applicable, respectively.
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Figure 4. 30-day mortality risk predictions in the last 365 days before death for patients included in the test dataset
using the RE model with summary variables. Each circle represents a SACT drug administration. The trajectories
are not represented, and the days to death values have been randomly shifted within 2 days of the actual values for
anonymisation.

Table 4. Comparison of the REF and GB models on all 4 datasets in terms of Fi-score for utility evaluation.

Patients Admin.
Within 30 Within Before F1- Within Within Before F1-
Thres.
days 90 days 90 days score 30 days 90 days 90 days score

RF
Base dataset | 39.5% | 15 (7.7%) 7(3.6%) | 4@1%) | 059 47 11%) | 19 (05%) | 10 0.2%) | 059
\\’;2:&2:“ 349% | 14 (7.2%) 6(31%) | 631%) | 0.54 44(11%) | 18 (04%) | 11(0.3%) | 056
::’Eﬁi‘;ﬁiet 35.8% | 13 (6.7%) 7(3.6%) | 52.6%) | 052 43 (1.0%) | 22(05%) | 10(0.2%) | 055
\\Xa‘fa‘&;‘f‘(bm) 341% | 14 (7.2%) 251 6%) 8 (41%) | 0.52 49 (1.2%) | 33 (0.8%) | 18(0.4%) | 058
GB
Base dataset | 65.8% | 9 (4.6%) 5Q6%) | 3(1.5%) | 041 25(0.6%) | 18(04%) | 702%) | 037
\\’;2:&2:“ 44.6% | 11 (5.6%) 5Q26%) | 4@1%) | 047 27.(0.6%) | 90.2%) | 401%) | 040
:’éfjﬁfg‘;ﬁ:ﬁet 42.9% | 14 (7.2%) 841%) | 6(3.1%) | 0.54 47 (11%) | 36 (0.9%) | 13 (0.3%) | 058
\\Xa‘fa‘&;‘f‘(bm) 34.8% | 14 (7.2%) 9(4.6%) | 5@6%) | 055 40 (1.0%) | 31 0.7%) | 10©0.2%) | 052

In the “Admin.” section referring to administrations, the “Thres.” column shows the value of the threshold nsed and
the “Within 30 days” column informs on the number of preventable SACT administrations given within 30 days
of death. The “Within 90 days” colunmn provides the number of SACT drug administrations that would have been
preventable between 90 days and 30 days to death. The “Before 90 days” column informs on the number of SACT
drug administrations that would bave been preventable more than 90 days from death. The value in parentheses is
the percent of corresponding administrations among the total number of administrations (Table 3). In the “Patients”
section, the presented values inform on the number of corresponding patients in relation to the drug administrations,
and values in parentheses are the percentage of corresponding patients among treated patients. “sum.” stands for
summary.
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5. Discussion
5.1. Main findings

Five different machine learning models were compared for dynamic prediction of 30-day
mortality in advanced and metastatic lung cancer patients, including two artificial neural
network-based models and two tree-based ensemble models. The two tree-based
ensemble models performed best and exhibited similar performances in terms of average
precision. When used on the final test set, for the two models RF and GB, the ROC
AUC increased, while the negative impact on AP was limited.

The performances of all models were only marginally impacted, even increasing in some
cases, when using only the biochemical results. Inclusion of summary variables had no
clear benefit.

A utility analysis was performed on the tree-based ensemble models, indicating that some
late SACT administrations could be prevented by implementing the predictive model
with a simple threshold-based rule while maintaining almost all treatments before the 90-
day landmatrk.

5.2. Critical assessment

5.2.1.  Study population

One of the main strengths of this study is the long inclusion timeframe of patients,
allowing us to thoroughly investigate temporal performance of the models.
Additionally, the single centre study guaranties a high level of consistency and allows us
to access detailed clinical information. On the one hand, this leads to questions regarding
the generalizability of these results outside this centre since treatment implementations
might vary among hospitals. On the other hand, there is high homogeneity in the Danish
health care system that should allow an extension of these results to the entire country.

5.2.2.  Biochemical results and generalizability

Biochemical results are potentially highly variable and capture information that can
change significantly between the periods before and after the 30-day threshold. The fact
that using only biochemical results did not significantly alter the performance would tend
to indicate that limited information for this outcome is contained in the rest of the data
and that there is no strong interaction with other variables. A simpler model using only
these data should therefore be encouraged. It also indicates that these results can be
broadly extended because they are less dependent on local practices. Additionally, since
the most important biochemical results were not specific to lung cancer, these results
could also be extended to other diagnoses sharing the same type of progression, such as
pancreatic cancer. This is consistent with many studies investigating the prediction of
mortality in cancer patients that primarily use biochemical results in their models!-141537,
Another major advantage of the biochemical results is the objectivity of the
corresponding values, as they do not depend on the interpretation of clinicians.

Another key aspect is the validity of the model over time. Clinical practice changes over
the years, notably with the introduction of new treatment options and better
management of side effects so that a model fitted on old data might not be applicable to
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current data in lung cancer patients. This was the reasoning for using patients who died
in 2018 and 2019 as validation and test sets, respectively. For the tree-based ensemble
models, AP was moderately impacted, while the ROC AUC was even improved. This
improvement could be explained by more consistent data in recent years, i.e., on average,
the 2010-2018 data were more similar to the 2019 data than the 2010-2017 data were to
the 2018 data. The introduction of immune checkpoint inhibitors in Denmark between
2015 and 2017 could explain, at least in patt, this higher similarity even though most of
the information seems to lie in biochemical results, notably albumin and leukocytes, that
should not have been impacted by this change. Another explanation is that more data in
the training set helped the model to better capture the information available to make
better predictions. Additionally, one reason the ROC AUC improved could have been
the decrease in the frequency of 30-day mortality in the 2019 data (Table 2), which tends
to improve the ROC AUC by lowering the false-positive rate at a specific sensitivity.
The stability of the prediction over time was also the reason behind the approach
followed to evaluate the vatiability of the performance by bootstrapping the training set.
Indeed, due to the changing nature of treatment procedures over time, we expect some
variations in the training data as the predictive model is updated. Our goal was to avoid
models whose performances are at risk of being largely impacted by small changes in the
training dataset.

5.2.3.  Using health care data registries
The primary interest in using electronic health records (EHRs) and administrative data
is that they can be easily leveraged to build decision support tools. There are some issues
using such data, notably informed presence bias?$%, but in the current study, the patients
wete actively followed, and thus, limited differences in data availability were expected.
A potential limitation of using EHRs is the lack of reporting for potentially relevant data,
i.e., data that cannot be used in the training phase. This was the case for performance
status, which is a major resource in evaluating the survival time of patients in clinical
practice. However, previous studies have shown that performance status is well
correlated with certain biochemical results, such as C-reactive protein and albumin®.
This cotrelation should nevertheless be confirmed in a more recent obsetvational cohort
study.

5.2.4. Summary variables and overfitting
Inclusion of summary variables to inform patient trajectories yielded mixed results. Some
models benefitted from it, notably the RF model, while it had varying impact on other
models, such as the GB model. Not including these vatiables could prevent overfitting
in some cases. The same mechanism was potentially obsetved for nonbiochemical
variables that could cause overfitting. An important aspect is how well these summary
variables inform the trajectory of the patients. Indeed, each variable probably exhibits
different dynamics near the end of life, which would require the design of specific
summary variables.

5.2.5. Feature engineering vs. architecture optimization
The artificial neural network models did not perform well in this study, but it could be
speculated that this was due to a poor choice of architecture, notably for the LSTM.
While better performances could have likely been achieved by fine tuning the architecture
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of the model, this was not realistic within the time constraints of this project.
Furthermore, this extra tuning time could have also been used to perform much more
extensive feature engineering for the other models, for example, by including
interactions, designing specific summary variables that would better represent the
trajectory of the patients, or optimizing other hyperparameters such as the learning rate
for the GB model. Therefore, we decided to maintain relatively simple architectures for
the LSTM and MLP to allow for a fair comparison to identify in which direction more
effort should be placed.

5.2.6.  Explainability and usability

SHAP values were used to assess the importance of each variable in the predictions from
each model. However, the interpretability of these values is limited compated to that of
the coefficient in a linear model such as LRENR. The explainability of nonlinear models
such as tree-based models or artificial neural networks is the topic of ongoing research*.
If explainability is of critical importance, LRENR should be prioritized.

The primary aim of this study was to introduce a predictive model capable of supporting
clinical decision-making to ordinate SACT and thus potentially limit the risk of
unnecessary harm. The crucial aspect of the models is their utility in practice. As shown
in Table 4, the thresholds found across models and datasets for the considered rule
changed extensively from 34.1% to 65.8%, implying that providing only predictions
would leave much room for subjective assessment and might thus be challenging for
clinicians to use. Therefore, effort should be concentrated into making the results as
comprehensive as possible. Nevertheless, this study demonstrates that using a simple rule
alongside the predictive model could limit the amount of SACT given too close to death.
The rule cannot be implemented as is in a clinical context but could guide oncologists in
their decision-making. Indeed, many parameters should be considered, notably the type
of SACT. For example, protein kinase inhibitors such as osimertinib and alectinib
typically have milder side effects while potentially avoiding flaring of the tumour, limiting
the interest of stopping the treatment, even close to death. Conversely, etoposide and
carboplatin often have much more severe side effects; therefore, a predictive model
could help limit their use too close to death. These drugs are at high risk of being given
close to death since they are used to treat small cell lung cancer, which is a rapidly
progressing form of lung cancer. They are frequently given even in patients with late
diagnosis and poor performance status, as sensitivity to treatment is usually high,
resulting in good symptom control and long-lasting palliation; therefore, better selection
of patients could have tangible results.

5.3. Comparison to other studies

Concerning model selection, other studies have also reported the typically good
petformance of gradient boosting in a similar context, as well as the often poor
petformances of artificial neural network-based models using tabular data!®17.3242,
Indeed, artificial neural network models are difficult to tune due to the number of
hyperparameters and the instability of the optimization procedure and rarely outperform
other approaches on structured data. Additionally, tree-based ensemble models
outperform linear models by handling potential interactions between variables.
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With respect to mortality prediction in cancer patients, work has already been done but
in different contexts and with different endpoints. This includes simpler models!>1¢ and
more long-term endpoints, such as 6-month mortality'*. Studies using 30-day mortality
as endpoints typically take a more classical survival approach, i.e., predicting 30-day
mortality from inclusion!'-1317. In the two studies implementing the RF approach and/ot
the GB approach!#!7, only a few biochemical variables were selected as important
variables, probably due to the difference in endpoint and time of prediction. As opposed
to most of the aforementioned studies, age was not selected as an important variable.
This could be explained by the short-term nature of the prediction, where age might be
of less importance than age for the prediction of more long-term sutvival.

5.4. Perspectives

The goal of this study was to investigate the possibility of constructing a decision support
tool to avoid administering unnecessary SACT' in lung cancer patients. Additional work
is needed to develop a prototype applicable in a clinical context and to conduct a
prospective validation study. In practice, we envision a web server with a live connection
to the EHRs and administrative data with a user-friendly web interface where clinicians
can acquire an assessment of the risk of individual patient 30-day mortality by explicitly
providing an identifier. The most recent data would be automatically retrieved from the
relevant registries and used by the predictive model with an evaluation of the most
important variables in that specific case. Such a solution could also be validated by a two-
armed prospective validation study, randomized between active guidance of the where
the clinician in the treatment arm will based on the predictive assessment of the patient
compared and the control arm will be a standard decision without access to the data.
Once the solution is validated, long-term support and maintenance will be required to
retrain the model to maintain an acceptable level of performance. This might require
additional validation studies but is considered reasonable in terms of the potential benefit
for clinical practice.

5.5. Conclusion
Prediction of 30-day mortality in patients with advanced lung cancer was most accurate
using tree-based machine learning models on EHRs and administrative data. Most of the
information was contained in biochemical parameters, limiting the interest of using other
datasets for the prediction, such as comorbidities, disease trajectories, or histopathology.
Using predictive modelling may potentially help to limit late SACT, reducing the risk of
causing unnecessary harm to patients in the late stage of life.
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Supplementary materials
Supplementary Table 1. SKS codes for comorbidities, symptoms, and side effects.

Comorbidity

SKS codes

Myocardial infarction

DI21, DI22, DI23

Congestive Heart Failure (CHF)

DI50, DI110, DI130, DI132

Peripheral vascular disease

D170, D171, D172, D173, D174, D177

Cerebrovascular Accident (CVA) or
Transient Ischaemic Attack (TTA)

DI60, DI61, D162, D163, D164, D165, D166, D167, D168, D169, DG45, DG46

Dementia

DF00, DF01, DF02, DF03, DF051, DG30

Chronic Obstructive Pulmonary Disease
(COPD)

DJ40, DJ41, DJ42, DJ43, DJ44, DJ45, DJ46, DJ47, DJ60, DJ61, DJ62, DJ63, D64,
DJ65, DJ66, DJ67, DJ684, DJ701, DJ703, DJ841, D]920, Dj961, DJ982, DJ983

Connective tissue disease

DMO05, DM06, DM08, DM09, DM30, DM31, DM32, DM33, DM34, DM35, DM36,
DD86

Peptic ulcer disease

DK221, DK25, DK26, DK27, DK28

Liver disease - Mild

DB18 K700, DK701, DK702, DK703, DK71, DK73, DK74, DK760

Liver disease - Moderate to severe

DB150, DB160, DB162, DB190, DK704, DK72, DK766, DI85

Diabetes mellitus - Uncomplicated

DE100, DE101, DE109, DE110, DE111, DE119

Diabetes mellitus - End-organ damage

DE102, DE103, DE104, DE105, DE106, DE107, DE108

Hemiplegia

DG81, DG82

Moderate to severe chronic kidney
disease (CKD)

DI12, DI13, DN00, DNO1, DN02, DN03, DN04, DN05, DN07, DN11, DN14, DN17,
DN18, DN19, DQG61

Malignancy - Localized solid tumour

DC00-DC75 not finishing with a 'M', except DC44 (nonmelanoma skin cancer)

Malignancy - Metastatic solid tumour

DC76, DC77, DC78, DC79, DC80 or DCO0-DC75 finishing with a 'M'

Malignancy - Leukaemia

DCI1, DCI3, DCI3, DC4, DCI5

Malignancy - Lymphoma

DC81, DC82, DC83, DC84, DC85, DC88, DC90, DC6

AIDS

DB21, DB22, DB23, DB24

Symptoms and side effects

SKS codes

Anaemia

Between DD50 and DD64

Appetite Loss

DR63, DF50

Bleeding and Bruising

DD68, DD69

(Thrombocytopenia)

Constipation DK590
Delitium DFO05
Diarrhoea DK529, DK591

Oedema (Swelling)

DRG0

Fatigue

DR53
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Hair Loss (Alopecia) DL65

Neutropenia DD70

Bacterial infection Between DAOO and DA79
Viral infection Between A80 and B34
Lymphedema DI89

Memory or Concentration Problems DR41

Mouth and Throat Problems DR682, DR0O70

Nausea and Vomiting DR11

Ez:;;’:;}:l)emi (Peripheral DGY00

Pain DR52

Sexual Health Issues DF52

Skin and Nail Changes Between DL58 and DLG60, DL62
Sleep Problems DG47

Urinary and Bladder Problems DN32

Supplementary Table 2. Hyperparameter tuning for the artificial neural network-based models and values for
the best trial from the Bayesian optimization.

Hyperparameter Domain Best trial

MLP — Base dataset without summary variables

Hidden layers with dropout 1to5 5
Neurons per hidden layer 10 to 400 310
Activation method for the hidden layers softmax or relu or tanh or hard_sigmoid tanh
Dropout ratio 0t0 0.9 0.318
Activation method for the result layer softmax or sigmoid or hard_sigmoid sigmoid
Optimizer SGD or Adam or Adamax Adam
Learning rate of the optimizer 10 to 102 9.4x10-5

MLP — Base dataset with summary variables

Hidden layers with dropout 1to5 1
Neurons per hidden layer 10 to 400 290
Activation method for the hidden layers softmax or relu or tanh or hard_sigmoid tanh
Dropout ratio 0t0 0.9 0.305
Activation method for the result layer softmax or sigmoid or hard_sigmoid sigmoid
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Treated with palliative intent or
metastatic disease
n=2,368

Optimizer SGD or Adam or Adamax SGD
Learning rate of the optimizer 104 to 102 1x102
LSTM
Neurons for the LSTM part 10 to 400 380
Dropout for the LSTM part 0t0 0.9 0.0
Activation method for the LSTM part tanh or softmax or relu or sigmoid or hard_sigmoid tanh
Neurons for the hidden layer 10 to 400 250
Dropout for the hidden layer 0t0 0.9 0.116
Activation method for the hidden layer hard_sigmoid or softmax or relu or tanh tanh
Activation method for the result layer softmax or sigmoid or hard_sigmoid or linear sigmoid
Optimizer Adamax or SGD or Adam SGD
Learning rate of the optimizer 106 to 102 1.05x103
Oncological patients who died
between 2010 and 2019
n=14,902
|
v '
Diagnosed with lung cancer Other diagnoses
n=3,856 n=11,046
! ]

No treatment or curative intent only and no
metastatic disease
n=1,475

v

Training cohort (2010-2017)
n=1,819

Validation cohort (2018)

n=309

I:] From CPR registry
|:] From PAS
|:] From MedOnc

Test cohort (2019)

n=240

Supplementary Figure 1. Inclusion workflow.
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MLP

LSTM

Supplementary Figure 2. Architecture of the MILP and 1.STM models.
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Supplementary Figure 3. Grid search results for the logistic regression with elastic net regularization (LRENR),
the gradient tree boosting classifier (GB), and the random forest classifier (RF) models using the validation set
(2018) after fitting on the training set (2010-2017). The values in the grids show the average precision of the fitted

model using the corresponding hyperparameters, and a higher average precision corresponds to better performance.
The red square indicates which hyperparameters were selected.
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Supplementary Figure 4. Method to determine when SACT administration is preventable. Contacts for SACT
administration are represented with dashed lines ending in squares, while other contacts are represented with dashed
lines ending in lines. Green contacts are for contacts below the threshold, orange contacts are for contacts above the
threshold but followed by contacts below the threshold, and red contacts are above the threshold with no later contacts

below the threshold.
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