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ABSTRACT

Transfer functions which enable 2nd order surface elevation or 2nd order paddle control
signal to be calculated given the 1st order surface elevation have previously been pre-
sented by several authors. In the existing methods the 2nd order terms are calculated
in the frequency domain from the Fourier transform of the 1st order surface elevation
and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for
real-time applications, for example where white noise are filtered digitally to obtain a
wave spectrum with built-in stochastic variability. In the present paper an approxi-
mative method for including the correct 2nd order bound terms in such applications
is presented. The technique utilizes non-linear digital filters fitted to the appropriate
transfer function and is derived only for bounded 2nd order subharmonics, as they in
laboratory experiments generally are considered the most important. However, the
technique can be modified to include the 2nd order superharmonics.

Introduction
In the last two decades 2nd order wave generation theory has been treated exten-

sively by several authors, cf. Schéffer (1993) for a comprehensive historical summary.
For irregular waves methods for calculating the correct 2nd order bounded sub and



superharmonic terms in the surface elevation or paddle displacement signal given the
1st order surface elevation, (1), have been presented:

Ottesen Hansen (1978) derived a transfer function which in the frequency domain
enables a direct calculation of the 2nd order bounded subharmonic terms in the surface
elevation. The transfer function was derived for the 2nd order bounded superharmonic
terms by Sand and Mansard (1986). A general and compact form of the 1st order
elevation to 2nd order elevation transfer function was rederived by Schiffer (1993).

Transfer functions enabling the 2nd order bounded subharmonic terms in the paddle
displacement to be calculated were presented by Sand (1982) for a piston type wave
maker. Sand and Mansard (1986) presented the corresponding transfer functions for
the 2nd order bounded superharmonic terms. A general and compact form of the 1st
order elevation to 2nd order paddle displacement transfer function was rederived by
Schiffer (1993).

The present paper concentrates on the bounded subharmonic terms as they generally
are considered to be the most important in practical applications. Because the for-
mulations presented by Ottesen Hansen (1978) and Sand (1982), the latter especially
after correcting the formula as described in Sand and Mansard (1986), generally are
rather complex the formulations suggested by Schéffer (1993) are adopted herein.

Application of existing theory

The goal is to calculate the correct bounded 2nd order subharmonic terms in the
surface elevation, 7®~, and the corresponding paddle displacement, z®~. The calcu-
lations are performed using the 1st order surface elevation signal, 7,

Discrete Fourier transform of () decomposes the irregular surface elevation into,
say N regular wavelets. Let y be the general 2nd order subharmonic signal, that is
y =7~ when considering the surface elevation and y = (¥~ when considering the
paddle displacement. The contribution to y by each pair of regular wavelets with
complex amplitudes A, and A,, and wave frequencies fn and f,,, where f, > f,., can
then be calculated. In the frequency domain:
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where Y is the discrete Fourier transform of y, * denotes complex conjugation and K
for y = n®~ equals the n® to 7~ transfer function G- derived by Ottesen Hansen

(1978) and for y = z(¥~ equals iF~ in which 4 is the ‘imaginary unit and F~ is the - —

17 to 2®)~ transfer function derived by Schiffer (1993). - - - _

By adding the calculated y to the appropriate 1st order signal, ™ or 2@, the surface
elevation or paddle displacement correct to 2nd order, for linear and subharmonic



components only, is obtained.

Transfer functions

Introducing the formulations by Schiffer (1993) the progressive part of the the 7
to n~ transfer function G~ may be rewritten
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in which k is the wave number, w is the cyclic wave frequency, g is the gravitational
acceleration and h is the water depth.

Compared to G~ the complex 7™M to ()~ transfer function, F~, is more complicated,
in general

F~ = (Fu+ Fiz + Fi3) +i(Fa2 + F3 + Fou) (6)

Each of the 6 functions eliminates free waves which otherwise would be emitted from
the wave paddle due to interaction between two 1st order terms:

iy progressive wavelet and progressive wavelet,

Fi, component of paddle position and progressive wavelet,

Fo3 component of paddle position and local disturbance wavelet,
Fy; and F,, progressive wavelet and local disturbance wavelet and

Fy local disturbance wavelet and local disturbance wavelet

Cf. Schaffer (1993) for details. Sand (1982) showed that it is reasonable for laboratory
applications, where only subharmonic components are considered, to omit 2nd order
effects originating from any 1st order interaction with the local disturbance wavelets.
Hence F~ reduces to

F=Fa+Ff (7)

where
ko — km
(kn - km)2 - kim

Fy = Cy G (®)
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in which knm is the solution to (wp — wm)? = gknm tanh k,mh and c is the linear Biesel
transfer function for the actual type of wave paddle. This simplified formulation is
adopted herein. )

Approximation

The exact method outlined in the previous section is efficient and straight forward
to use and have been successfully implemented in several hydraulic laboratories. The
method is, however, limited to applications where the 1st order elevation can be fre-
quency analysed, or already is available in the frequency domain. This makes it inade-
quate for real-time applications, for example where the 1st order elevation is generated
on-line by means of digital filtering of white noise, to produce a wave spectrum of a
given shape but with built-in stochastic variability (non-deterministic spectral ampli-
tude model).

The scope of the present paper is to present an approximative method for including
the 2nd order subharmonic components in the surface elevation or paddle displacement
in such applications. Two in principle different schemes can be considered: internal
correction, where the approximative method is build into a real-time wave generation
software, and external correction, where the analog 1st order paddle control signal is
sampled from an existing wave generation system, manipulated to include the correct
subharmonics and send to the wave paddle. In the following only the internal correction
will be thoroughly described, but how to change it into an external correction will be
briefly outlined.

The study took its offspring in an internal correction method build into the wave
generating software in the Hydraulics & Coastal Engineering Laboratory at Aalborg
University.

2nd order process

Consider a function z which is the sum of two regular wavelets with complex ampli-
tudes A, and A, and wave frequencies f, and.fa, respectively:-Let:Z®) denote the: - . == -
discrete Fourier transform of 22. According:.to:the convelution-theorem -for Fourier: == =ecnez:
transforms multiplication in the time domain corresponds to convolution in the fre- .



quency domain, and vice versa, hence Z(® can be written

%(A,,A; + AmA;‘n) J=0
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Keeping in mind that Z(®(—f) = Z®)*(f) it is seen that all phases and frequencies
in Equation 11 correspond, except for the off-set (f = 0), to the subharmonics in
Equation 1 ( f = fa — fm and f = f — fa ), the superharmonic components from
Stokes 2nd order regular wave theory ( f = 2f,, and f = 2f,, ) and the superharmonic
2nd order components from wave-wave interaction as described by Sand and Mansard

(1986) (f = fm + fo and f = —fu = fu ).

Hilbert transform

The Hilbert transform relates the real and imaginary part of an analytic function.
That is, the imaginary part is the Hilbert transform of the real part, and vice versa.
Hence, in the frequency domain the Hilbert transform, H, is defined by

-1 ,f>0
H(f)={ 0 ,f=0 (12)
i ,f<0

Now consider the function z(2)-

(1) = 5 (£0) + H[=(0)]) (13)

b

in which 2 is given in the previous section. The discrete Fourier transform of 2(®)-,
Z@)=- is then

: lA;Am &fzfm_fﬂ
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By comparing Equation 14 to Equation 1 it is evident that 2(*~, except for a linear
transfer function and an off-set equals the 2nd order subharmonic function ¥ when
considering interaction between two regular wavelets.



Filter approach

Assume that the transfer functions G~ and Fy~ can be approximated by G~ and Fy,
respectively, which both can be separated into two real functions, H; and H,, in the
following manner (in the following only the approximation of Fy~ by Fy is discussed,
but the method equally applies to G™):

F—(fm fm) = Hl(fn)H2(fn - fm)Hl(fm) : (15)

where H,(0) = 0. The Fourier transform of 3, Y may then be approximated by Y’

1 _ Hl(fn)H2( )Hl(fm)aAnA;; yJ=Ju— T
Y(f) ""{ ?Hl(fﬂ)}‘ﬁ( )Hl(fm)‘S‘A:;Am ,.f‘-“-fm"'fn (16)

where § = 1 for y = ¥~ and § = ¢ for y = (. Hence the inverse Fourier transform
of Y', ¢/, will approximate y. Using the convolution theorem for Fourier transforms
and Equations 13 and 14, 3’ may be written:

Y(t) = gha s {(ba x 1) + (b x by + 7)) (17)

where h, hy and h; are filters defined by their Fourier transforms: H(f), H;(f) and
8H,(f), respectively.

Hence, 7() may be filtered digitally to give 7®~ or &=, Using discrete FIR filters
of equal odd finite length, say M, the delay between the last calculated or sampled 1st
order surface elevation and the calculated 2nd order elevation or paddle displacement
will be 3(M —1)/(2f,) in which f, is the frequency by which the surface elevation is
calculated or sampled. The scope of the present paper is not to discuss the choice of
filter length, tapering etc., reference is made to existing literature on the subject.

If calculation time is a problem it may be decided only to generate 2nd order bound
subharmonic waves below a certain frequency, say the lowest 1st order wave frequency.
In this case there is no need to include the Hilbert filter h in Equation 17, because
ho will act as a low-pass filter, removing any super harmonic components. Hence the
calculation time will be reduced by 33 %, if the filter lengths are unchanged.

From Equations 2 to 10 it is obvious that the variables in the theoretical transfer
functions generally cannot be separated as suggested in Equation 15 which means that
in general 7 # F7 . Only when considering a surface elevation consisting of wavelets

with frequencies that ensure that the eorresponding -subharmonic-components have - ::. -

different frequencies will the approximation be exact. However, it is-possible, using a -
steepest descent fitting method as outlined below, to calculate a F; that-makes the
filter approach generally applicable as will be shown. -~ s



The filters are fitted by minimizing the merit function, x?

1 N

M

X = X Y AFT fmr fm) = Br(fa) Halfo = S} i ()} (18)

i

m=1n=2

in which N is the number of frequency components, N = (M + 1)/2, by successive
calculations of the gradient to x2, Vx?, in each point on the n—m plane and subsequent
adjustment of Hy(f,), Ha(fn — fm) and H;(f,») by a small amount down this gradient,
until x? converges.

To take into account the actual distribution of wave energy in the 1st order surface
elevation and the actual shape of the transfer function a weighting function, W, is
introduced. W is chosen as the relative long wave energy induced by each pair of
wavelets in the irregular 1st order wave spectrum Sy, that is:

Sn(fn) S0 (fm)(G~(fn, m))? (19)

Wl J) = G o Um) (G f) Pl

in which maz denotes the maximum value. Hence the small step down the gradi-
ent is chosen as AW (fa, fm)(FT (fa, fm) = Hi(fa) Ho(fn = fm)Hi1(fm)), in which A is
sufficiently small to avoid instability.

To evaluate the quality of fitting, the relative long wave error induced by each pair
of wavelets, e(fo, fm) = (1 — Fy (fas fu)/FT (fas f))W (fas fm) and the sum of &
relative to the total long wave energy, £,,, are calculated. In Figure 1 ¢ is shown for
a JONSWAP type wave spectrum. As observed the overall error is quite small, €, =
2.3 %, and Fy only differs slightly from Fj~ in this case. Fitting the corresponding G-
to G~ leads to 4 = 3.0 %. It is in fact the general observation that F| fits better
to FT than G~ does to G~.

Example

Two examples of applying the presented approach to a JONSWAP type wave spectrum
and piston type wave maker are described in this section.

Figure 2 shows the 1st order paddle displacement signal z(!) and the correspond-
ing 2nd order subharmonic signal, z(~, calculated using the filter approach and the
existing theory. From the figure it is seen that the overall agreement between the
filter approach and the existing theory is very good. But because multiple frequency
combinations induce bounded long waves on equal frequencies there will be some differ-
ences. From the figure it appears that these differences mainly are on the subharmonic
components with relative high frequencies.



In Figure 3 the measured 1st and subharmonic 2nd order surface elevation, 7 and
7=, are shown for the paddle displacement calculated using the filter approach,
the existing theory and without including the 2nd order terms. As for the paddle
displacements in Figure 2 differences between the filter approach and the existing
theory mainly are on the subharmonic components with relative high frequencies. But
still the overall agreement is very good. Furthermore the figure clearly indicates the
problems when not including the bound long wave correction: The bounded long waves
will be formed, but freely propagating long waves will be generated and the phase and
amplitude of the observed long wave bounded to the wave group will vary along the
flume.

To change the internal correction method, described above, into an external correction
method, z(®) is calculated from the sampled linear paddle control signal and filtered
through an inverse Biesel filter, b~!, defined by its Fourier transform B~'(f), to obtain
7M. For a piston type wave maker:

inh kh cosh kh + kh
B_] - sin »
() 2sinh? kh (20)
Equation 17 may then be rewritten
yl(t) — %hz * {(hl * b—l * 33(1))2 e (h " hl % b—l * 2:(1))2} (21)

The filters b=, h; and h; of course need to be calculated according to the actual wave
parameters.

Closure

A method has been presented for filtering a 1st order surface elevation to obtain the
2nd order bound subharmonic surface elevation or corresponding paddle displacement.
The method has been compared in simulations and physical experiments to the existing
theory. The filter approach gives exact 2nd order subharmonic components when
only considering the interaction between two regular wavelets. For irregular wave
spectra the filter approach gives estimates which differs slightly from the existing
theory especially for relative high subharmonic frequencies. For the low subharmonic
frequencies, which generally are the most important as far as long wave phenomena are
concerned, only insignificant differences are observed. Hence, the method is suitable for
applications were bounded subharmonics otherwise cannot be included using existing
theory.

In addition a real-time scheme for manipulating the 1st order paddle control signal
to include the 2nd order subharmonic components has been outlined.
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Figure 1: Induced relative long wave error ¢ when fitting Fy to Fy, e = 2.3 %.
JONSWAP spectrum, peak frequency, f, = 1.0 Hz, y =10 and h =05 m. ~
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Figure 2: Calculated 1st and 2nd order piston displacement, z(!) and z(®~. JONSWAP
spectrum, peak frequency, f, = 1.0 Hz, 4 = 10 and h = 0.5 m. 2nd order subharmonic
components calculated using filter approach (filter) and existing theory (theory).
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Figure 3: Measured 1st and 2nd order surface elevation, 7V and #®-. JONSWAP
spectrum, peak frequency, f, = 1.0 Hz, v = 10 and » = 0.5 m. Wave generation not
including (no correction) and including 2nd order subharmonic components, calculated
using filter approach (filter) and existing theory (theory).



