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Abstract

With the still growing installation of photovoltaic (PV) systems, energy storage (ES)
elements such as batteries are increasingly integrated with PV panels to meet the grid
requirements. To simplify the system structure, reduce cost, and improve efficiency,
single-stage series configurations like cascaded H-bridge (CHB) converters are
attractive for integrating distributed PV and battery units. However, issues related to
the pulse-width modulation (PWM), distributed power control, and coordination
among individual units remain in series configurations, limiting their application in
PV-battery systems. This Ph.D. project was proposed to properly address these issues.

Firstly, in order to suppress high-frequency (HF) harmonics, the PWM carriers of
series converters should be synchronized and properly phase-shifted according to the
output voltages of individual converters. However, as conventional variable-angle
phase-shifting (VAPS) PWM methods are based on mathematical searching
algorithms, the optimal carrier phase-shifting (PS) angles cannot be timely updated
due to a high computational burden, which requires hundreds of milliseconds to
obtain the results. During the period when the optimal angles are not calculated, the
total harmonic distortion (THD) of the total voltage may grow significantly, leading to
a higher risk of electric magnetic interference (EMI) issues.

Secondly, if the individual converters are not properly coordinated, challenging
issues may appear in series-PV-battery systems, e.g., by degrading power quality,
stability, and grid-interaction performances (e.g., overloading the grid during the peak
power generation of PV systems). For instance, as a power quality issue,
interharmonics can be significantly amplified when PV converters are connected in
series, which is due to the in-phase maximum power point tracking (MPPT)
perturbation of individual converters. On the other hand, to achieve a schedulable
power flow, the total power of the series system should be flexibly controlled
according to grid commands. In this case, if individual converters are not properly
coordinatively controlled, 1) certain converters may be overloaded or overmodulated,
and 2) the total power scheduling constraints cannot be maintained in certain
conditions. Both can result in performance degradation, or even system instability.

Moreover, conventional distributed/decentralized control methods for series-con-
verter systems are either highly dependent on real-time communication or only appli-
cable for systems with limited operating conditions, e.g., when the power factors (PFs)
of individual converters are identical. In other words, prior-art solutions are neither
cost-effective nor suitable for series-PV-battery systems, where individual converters
can operate at any PFs with low communication requirements.

Accordingly, solutions have been developed in this project for series systems in
terms of modulation, interharmonic mitigation, distributed control, and flexible active
power control (FAPC). In order to improve the response of the VAPS PWM method, a
hardware approach for the VAPS PWM method has been developed, where the
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optimization is accelerated by the parallel computing using field programmable gate
arrays (FPGAs). With this approach, the optimization speed of the mathematical
searching algorithm can be accelerated significantly.

To address the interharmonic issue, a phase-shifting MPPT (PS-MPPT) method has
been proposed, which shifts the phase-angle of the DC voltage oscillations caused by
the MPPT in a way to counteract with each other. By doing so, interharmonics from
the series converters can be suppressed to a large extent. A random sampling-rate
MPPT method for CHB PV converters has also been studied. Subsequently, a hybrid
PS-MPPT combing PS-MPPT and the random sampling-rate MPPT, and a hardware-
based method called “interharmonic filter”, have been developed in this project. The
hybrid PS-MPPT method can improve the interharmonic mitigation performance,
while the “interharmonic filter” is an additional series converter with only capacitors
in its DC side, to cancel the total DC voltage oscillations of all PV converters, and
thereby interharmonics.

A distributed control scheme for series-PV-battery systems has also been proposed
in this project, which includes the active and reactive power (PQ) decoupling control
of individual converters, droop control for a battery converter, reactive power
distribution strategies, and anti-over-modulation (AOM) control for all converters.
With the proposed control, each converter can be self-synchronized with the entire
system regardless of its operating PF, while the difference between the PV power
generation and the load demand can be compensated by the battery converter,
enabling the participation of the entire system in grid frequency and voltage regulation.
The total reactive power is distributed among all converters in a way to balance their
loading condition, and the AOM control is achieved by the coordinated power
curtailment control of PV converters, reducing the overloading and overmodulation
risks for each converter.

Based on the distributed control, flexible active power control strategies including
the power ramp-rate control (PRRC), power limiting control (PLC), and power reserve
control (PRC) strategies have been developed for grid-connected series-PV-battery
systems. With the active power control strategies, all converters are coordinated
considering 1) the battery power and state of charge (SoC) limits, 2) the available
power of each PV converter, 3) the total power ramp-rate/limiting/reserve constraints,
and 4) the available power estimation command for each PV converter. By doing so,
the total power of series-PV-battery systems can be maintained following the ramp-
rate/limiting/reserve constraints from the grid scheduling control, while the
curtailed/reserved power is properly distributed among all converters to ensure the
stable operation, PV power yield, load balancing of individual converters, and the
available power estimation of individual PV converters for the PRC.

To summarize, in this Ph.D. project, efforts have been made to improve the THD
performance, mitigate interharmonics, reduce the communication dependency, and
achieve FAPC functions for series-PV-battery systems. Correspondingly, a
computation-efficient VAPS PWM method, modified MPPT methods, a distributed
power control scheme with low communication requirement, and flexible power
control strategies have been proposed, providing solutions to integrate PV panels and



batteries into distribution systems using series configurations with improved output
voltage / current performance, reduced cost, and enhanced power control flexibilities.
The documented thesis is “Distributed Control and Advanced Modulation of
Cascaded Photovoltaic-Battery Converter Systems”.






Dansk Resumé

Med den stadig voksende installation af fotovoltaiske (PV) systemer bliver
energilagringselementer (ES) sasom batterier i stigende grad integreret med PV-
paneler for at opfylde netkravene. For at forenkle systemstrukturen, reducere
omkostningerne og forbedre effektiviteten er enkelt-trins seriekonfigurationer som
cascaded H-bridge (CHB)-konvertere attraktive til at integrere distribuerede PV- og
batterienheder. Imidlertid forbliver der problemer relateret til pulsbreddemodulation,
distribueret effektstyring og koordinering mellem individuelle enheder i seriekon-
figurationer, hvilket begraenser deres anvendelse i PV-batterisystemer. Dette ph.d.
projekt vil addressere disse problemer.

For det forste, for at undertrykke hgjfrekvente (HF) harmoniske, ber pulsbred-
demodulationsbeererne (PWM) for seriekonverterne synkroniseres og korrekt fase-
forskydes i henhold til udgangsspeendingerne fra de individuelle omformere. Men da
konventionelle PWM-metoder med variabel vinkel faseforskydning (VAPS) er baseret
pa matematiske seogealgoritmer, kan de optimale bzerebelgefaseforskydningsvinkler
(PS) ikke opdateres rettidigt pa grund af dens hgje beregningsbyrde, som kraever
hundredvis millisekunder for at opna resultaterne. I den periode, hvor de optimale
vinkler ikke beregnes, kan den totale harmoniske forvreengning (THD) af den samlede
spending vokse betydeligt, hvilket forer til en hejere risiko for problemer med
elektrisk magnetisk interferens (EMI).

For det andet, hvis individuelle konvertere ikke er korrekt koordinerede, kan der
opstd udfordrende problemer i serie-PV-batterisystemer, forringende stremkvalitet,
stabilitet og net-interaktionsydelser (f.eks. overbelastning af nettet under spidsstrem-
produktionen af PV-systemer). For eksempel, kan et problem med stremkvaliteten,
forsteerke interharmoniske frekvenser betydeligt, nar PV-omformere er serieforbundet,
hvilket skyldes den i-fase maksimale effektpunktsporing (MPPT) forstyrrelse af
individuelle konvertere. Derimod ber seriesystemets samlede effekt styres fleksibelt i
henhold til netkommandoer for at opna et skemalagt stremflow. I dette tilfeelde, hvis
individuelle konvertere ikke er korrekt koordineret styret, 1) kan visse konvertere
blive overbelastet eller overmoduleret, og 2) de samlede effektplanleegningsbegraens-
ninger kan ikke opretholdes under visse forhold. Begge kan resultere i ydeevnefor-
ringelse eller endda systemustabilitet.

Desuden er konventionelle distribuerede/decentraliserede styringsmetoder til
seriekonverterede systemer enten steerkt afhsengige af realtidskommunikation eller
kun anvendelige for systemer med begrensede driftsbetingelser, f.eks. nar
effektfaktorerne (PFer) for individuelle konvertere er identiske. Med andre ord er de
kendte lesninger hverken omkostningseffektive eller egnede til serie-PV-
batterisystemer, hvor individuelle omformere kan fungere pa alle PF’er med lave
kommunikationskrav.
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Derfor er der i dette projekt udviklet lesninger til seriesystemer i form af
modulering, interharmonisk reduktion, distribueret kontrol og fleksibel aktiv
effektstyring (FAPC). For at forbedre responsen af VAPS PWM-metoden er der
udviklet en hardwaretilgang til VAPS PWM-metoden, hvor optimeringen accelereres
af den parallelle beregning ved hjeelp af feltprogrammerbare gate-arrays (FPGA’er).
Med denne tilgang kan optimeringshastigheden af den matematiske sggealgoritme
accelereres betydeligt.

For atlose det interharmoniske problem er der blevet foreslaet en PS-MPPT-metode,
som forskyder fasevinklen af DC-spaendingsoscillationerne forarsaget aft MPPT'en pa
en made, der modvirker hinanden. Ved at gere det kan de interharmoniske fra
seriekonverterne i vid udstreekning undertrykkes. En tilfeeldig prevetagningsha-
stighed MPPT-metode for CHB PV-konvertere er ogsa blevet undersogt. Efterfolgende
er der i dette projekt udviklet en hybrid PS-MPPT, der kombinerer PS-MPPT og den
tilfeeldige sampling-rate MPPT, og en hardwarebaseret metode kaldet "interharmo-
nisk filter". Hybrid PS-MPPT-metoden kan forbedre den interharmoniske deempning-
sydeevne, mens det "interharmoniske filter" er en ekstra seriekonverter kun bestaende
af kondensatorer pa DC-siden, for at annullere de samlede DC-spaendingsoscillationer
for alle PV-konvertere og dermed ogsa de interharmoniske.

En distribueret kontrolordning for serie-PV-batterisystemer er blevet foresldet i
dette projekt, som inkluderer aktiv og reaktiv effekt (PQ) afkoblingskontrol af
individuelle omformere, droop kontrol for en batterikonverter, reaktiv effektfor-
delingsstrategier, og anti-over-modulation (AOM) kontrol for alle konvertere. Med
den foreslaede styring kan hver konverter selvsynkroniseres med hele systemet uanset
dets drifts-PF, mens forskellen mellem PV-stremproduktionen og belastningsbehovet
kan kompenseres af batterikonverteren, hvilket muligger deltagelse af hele systemet i
netfrekvens- og speendingsregulering. Den samlede reaktive effekt er fordelt mellem
alle omformere pd en made, der balancerer deres belastningstilstand, og AOM-
kontrollen opnas ved den koordinerede effektbegraensningskontrol af PV-konvertere,
hvilket reducerer overbelastnings- og overmodulationsrisikoen for hver omformer.

Baseret pa den distribuerede styring er der udviklet fleksible aktiv effektsty-
ringsstrategier, herunder kontrol af effektrampehastighed (PRRC), effektbegreensende
kontrol (PLC) og stremreserve kontrol (PRC) strategier til nettilsluttede serie-PV-
batterisystemer. Med de aktive stremstyringsstrategier er alle omformere koordineret
under hensyntagen til 1) batteristrem og ladningstilstand (SoC) greenser, 2) den
tilgeengelige effekt for hver PV-konverter, 3) den samlede -effektrampeha-
stighed/begraensning/reserve-begraensninger, og 4) den tilgeengelige effektestimerings
kommando for hver PV-konverter. Ved at gore det kan den samlede effekt af serie-PV-
batterisystemer opretholdes ved at folge rampehastighed/begraensning/reserve-
begreensningerne fra netplanleegningskontrollen, mens den begraensede/reserverede
effekt er korrekt fordelt mellem alle omformere for at sikre stabil drift, PV-
effektudbytte, belastningsbalancering af individuelle konvertere og den tilgeengelige
effektestimering af individuelle PV-omformere for PRC.

For at opsummere, i denne ph.d. projekt, er der blevet gjort en indsats for at forbedre
THD-ydeevnen, afbgde interharmoni, reducere kommunikationsafthengigheden og

viii



opna FAPC-funktioner for serie-PV-batterisystemer. Tilsvarende er der foreslaet en
beregningseffektiv VAPS PWM-metode, modificerede MPPT-metoder, et distribueret
effektstyringssystem med lavt kommunikationskrav og fleksible stremstyringsstrate-
gier, der giver losninger til at integrere PV-paneler og batterier i distributionssystemer
ved hjelp af seriekonfigurationer med forbedret output speendings-/stremydelse,
reducerede omkostninger og forbedret stromstyringsfleksibilitet. Denne dokumente-
ret afhandling er “Distribueret kontrol og avanceret modulering af kaskadede
fotovoltaiske batterikonvertersystemer”.
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Chapter 1.

Introduction

1.1. Background

In past decades, due to the foreseen exhaustion of conventional fossil-based energy
and the increasing environmental concern, many efforts have been globally directed
towards developing and utilizing more renewable energy sources, like wind and solar
photovoltaic (PV) energy [1]. The global PV expansion is still expected to accelerate,
with new PV installations reaching 138 GW in the year of 2020, leading to a new annual
record of 18% growth [2]. The distributed PV remains a driving force to the growth of
the entire PV market, which had achieved an annual addition of 49 GW in 2020 [3].

As the power conditioning component in PV systems, the PV inverter is in charge
of converting the DC power from PV panels to the AC power required by load or grid.
Among various products, the string inverters and the central inverter are dominating
the market of PV inverters (64.4% and 33.7% in 2021, respectively) [4], which connect
a single string of PV modules and a PV array consisting of multiple strings to the grid,
respectively, as shown in Figs. 1.1(a) and (b). For applications with multiple strings,
multi-string inverters can also be employed, as shown in Fig. 1.1(c), where a dedicated
DC/DC converter is employed to connect each string with a common DC bus, while
performing the string-level maximum power point tracking (MPPT) control. However,
as PV strings are directly connected to the DC links, module-level monitoring of PV
panels cannot be achieved with the above inverters, which can result in power losses
or even damaging of PV modules due to module mismatches (e.g., partial shading) [5].
To address this issue, module-level power electronic (MLPE) converters can be
promising solutions, including the microinverter and the DC power optimizer [5], [6].
Although they are only accounting for a small market share, ie., 1.4% for
microinverters and 5.1% for power optimizers in 2020 [4], their market is growing
rapidly [7]. In addition, for residential applications, microinverters and power
optimizers have already been highly employed in the U.S. residential solar market [3].

The structure of conventional microinverters is shown in Fig. 1.1(d), where a DC/DC
converter is firstly connected to PV panels to generate a voltage suitable for inverting
and perform module-level MPPT. Then, each DC rail is connected to the grid (e.g., 230
V AC) with a DC/AC converter [5]-[9]. Microinverters offer benefits like independent
functioning and monitoring of each PV module, enhanced safety owing to low DC
operating voltages, and improved reliability by matching the lifespan of the individual
modules [5]. However, as each PV module should be equipped with a DC/DC and a
DC/AC converter, the main disadvantage for microconverters is the cost. As an
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alternative, power optimizers are firstly installed on individual PV modules to
perform module-level MPPT, and then, several power optimizers are series-connected
to increase the voltage level, with the DC bus interfaced to the DC rail of a DC/AC
inverter (i.e., string inverter) for grid-connection, as shown in Fig. 1.1 (e). Compared
with expensive microinverters, the cost of power optimizers can be less [5]. Although
both solutions can achieve module-level control and monitoring of PV panels, their
efficiencies are still compromised owing to multiple conversion stages. For instance,
the efficiency of microinverters varies between 90%-97% [4], and the efficiency of
systems using power optimizers is also limited by that of the string inverters, even if
power optimizers can achieve high efficiencies up to 99.5% [4].

On the other hand, due to the intermittent power generation of PV systems, certain
adverse impacts appear, e.g., fluctuation of the grid frequency and voltage, and
overloading of the distribution grid [6]. To avoid these issues and achieve schedulable
power flow, energy storage (ES) units like batteries and super-capacitors are
increasingly used together with PV panels [10]-[16]. The topologies in Figs. 1.1(c)-(e)
are commonly used to integrate batteries with PV systems, with various products
available in the market, e.g., the Huawei LUNA2000-5/10/15-S0 smart string ES
system, and PV-battery systems based on microinverters and power optimizers [16].
Besides, multi-terminal converters have been studied to integrate PV-battery systems,
providing more compact and efficient designs, as exemplified in Fig. 1.1(f) [17]-[19].
Nevertheless, they are not suitable for distributed controlled systems, as the control
and modulation of the entire system are usually complex, which are achieved with a
central controller [17]-[19]. For distributed systems, the implementation can be
challenging, especially when the distributed generation (DG) units are geographically
far away from each other.

To integrate distributed DG units in a simple and cost-effective manner, series-
connected topologies have been investigated, where low voltage (LV) DG units
including PV panels and batteries are directly plugged into the DC rail of each
converter, as demonstrated in Fig. 1.1(g) [8], [12]-[15], [20]-[33]. This configuration
provides a simple way to directly integrate LV-DC sources to AC grids without
additional DC/DC converters, and thereby minimizing the cost, while increasing the
efficiency [12]-[15]. Among various series configurations, the cascaded H-bridge (CHB)
is one of the most commonly used system architecture, which has already been widely
used in motor drive systems, static synchronous compensators (STATCOMs), and
battery ES systems [8], [12]-[15]. Their application in PV systems has also been widely
studied [20]-[26], but for now, no products are available for PV systems, which may be
because of the grounding issue of PV modules. More specifically, PV modules in
certain converter cells should withstand a high voltage (as high as the grid voltage)
with respect to their frames, which are usually grounded. Thus, non-isolated CHB PV
converters are only suitable for LV applications (e.g., connected to 220-V or 380-V AC
grids) [20]. Despite this limitation, the series configurations are still attractive due to
the removal of DC/DC converters. In addition, if isolated DC/DC converters are
employed, distributed DG units can be easily connected to grids with higher voltage
(e.g., medium voltage grid) using series configurations, by simply cascading more
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Fig. 1.1: Structures of distributed generation (DC) systems: (a) the H-bridge string inverter, (b) the three-phase
central PV inverter with the low frequency transformer, (c) the multi-string inverter, (d) parallel-connected
microinverters, (e) the string inverter with power optimizer for each PV module, (f) the multi-terminal

converter, and (g) the series configuration. Source: [J4].

converter cells [25]. While for other topologies in Fig. 1.1(a)-(e), either components
with larger ratings or complex multilevel topologies with a lot of components should
be adopted, significantly increasing the cost of the system. Thus, the series
configuration is promising for integrating PV panels and batteries in future DG
systems.

In prior-art research, many control methods have been developed to enhance the
power flow management [21], [22], achieve a distributed control [24], [27]-[30], ensure
a stable operation [25], [26], [31]-[33], and improve the reliability of the CHB converters
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[34], [35]. However, most research has focused on the output power and current
response, and more importantly, the same type of DC sources had been plugged into
separate DC rails of the series system. When different DC sources are interfaced, e.g.,
PV and battery systems, the control of the series system has not been fully investigated.
In fact, the operating conditions of series-PV-battery systems are more complex than
series systems with the same type of DC sources, where all converters should be
coordinated controlled considering various requirements, such as MPPT for PV
converters, state-of-charge (SoC) balancing for battery converters, power distribution
among all converters, power scheduling of the entire system, etc. Nevertheless, these
control requirements have not been considered previously. Only in a few studies [36]-
[42], the coordinated operation of PV and battery units in series converter systems has
been discussed. Among them, a typical distributed control scheme for series-PV-
battery systems is developed in [36]-[38] as a hierarchical control, and the control
diagram is briefly sketched in Fig. 1.2. With this, the series-PV-battery can achieve
multiple control objectives from multiple timescales. They could include modulation,
carrier synchronization, harmonic control, active and reactive power (PQ) regulation,
MPPT control for individual PV converters, SoC balancing control among battery
converters, and power scheduling of the system, etc. Nevertheless, certain challenges
remain unaddressed (or not fully), which so far have limited the application of series-
PV-battery systems, as listed below.

e  Challenge I: The dynamic of the variable-angle phase-shifting (VAPS) pulse
width modulation (PWM) is slow, leading to large harmonics around and
above the switching frequency.
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e  Challenge II: Interharmonics can be amplified in series PV converters, which
may cause fluctuation of the grid voltage and frequency, flickering of the
lighting system and unintentional disconnection of the PV power plant, and
have had limiting attention.

e Challenge III: Previous distributed control methods for series systems are
either highly communication-denpendent, or only suitable for series-PV-
battery systems with limited operating conditions (e.g., PFs of individual
converters should be consistent), which are compromised in either the system
cost or the power utilization of individual converters, respectively.

e  Challenge IV: Most flexible active power control (FAPC) strategies are only
suitable for single-inverter systems. When applying these strategies to series
systems, the performance of the system can degrade. Adverse consequences
include uneven loading of individual converters, unwanted PV power
curtailment, battery over-charging / over-discharging, failure in maintaining
the total power scheduling commands, etc.

In the following, the previous research in the above aspects and their limitations
will be elaborated.

1.1.1. Modulation Methods for Series Systems

In previous research, a variety of modulation methods have been developed for
series topologies. However, most of them were designed for series systems where the
DC sources are of the same type. When applying these methods to series-PV-battery
systems, they should be improved to accommodate the requirements of series-PV-
battery systems. In addition, several modulation methods have been developed to
cope with the conditions when different DC sources are adopted. These methods are
based on different conventional modulation approaches, i.e., the phase shifting PWM
(PSPWM) [43]-[46], the level shifting PWM (LSPWM) [45]-[47], and the space vector
PWM (SVPWM) [15], [48]. Compared with the PSPWM, the LSPWM- and SVPWM-
based methods have been widely developed for series systems with hybrid DC
sources, owing to the possibility to utilize more redundant switching states for
improved control flexibilities. For instance, in [15], single-phase SVPWM methods
were proposed for series systems with hybrid DC sources, where some converters are
interfaced with DC sources, while others only with DC capacitors. In [47], an LSPWM-
based modulation strategy with the energy balancing capability was developed. With
these approaches, certain converters can absorb the active power from other
converters, which is similar to the operating conditions of series-PV-battery systems.
Although these modulation methods can potentially be implemented for series-PV-
battery systems, high-bandwidth communication (HBC) is required to transmit real-
time variables and gating signals.

On the other hand, although the PSPWM has less control flexibilities than the
LSPWM and SVPWW, it has been widely adopted due to its simplicity. By shifting the
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carrier phase-angle of individual converters, the equivalent switching frequency of the
system can be increased to 2nfs (where  is the number of series-connected converters,
and fs is the switching frequency), and the harmonics of lower frequencies can be
canceled, thereby reducing the THD of the total multilevel voltage [44]. In practice, the
PSPWM can be easily implemented in distributed systems by using either the serial
communication or the line current to synchronize the PWM generation of individual
controllers [49], [50]. In addition, due to the interleaving effect of the PSPWM, the filter
size of individual converters can be reduced, or even lumped as one single filter at the
output of the entire series system, which will further reduce the cost [51].

However, when unbalances occur in series cells, i.e., the DC voltages, active and
reactive power of individual converters are unequal, the conventional PSPWM will
lose its harmonic cancellation property. This will lead to a significant increase in the
THD of the total multilevel voltage [52]-[56]. To address this issue, several variable
angle PSPWM methods have been proposed for CHB converters [52]-[56]. In these
methods, the carrier phase shifting (PS) angles are adjusted to reduce the harmonic
distortion of the total multilevel voltage. The diagram of the variable angle phase-
shifting (VAPS) PWM method is illustrated in Fig. 1.3. According to [52] and [54], the
optimal carrier PS angles can be analytically obtained for CHB converters to mitigate
harmonics around 2f. However, these approaches are mathematically unfeasible
when the PFs of individual cells are different. Therefore, optimization algorithms have
been developed [56]. Nevertheless, it still requires a large number of evolutionary
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computations, which might use hundreds of milliseconds (dozens of fundamental
cycles) to obtain the results with a common digital signal processor (DSP) [57]. When
the outputs of individual converters change, the THD of the total output voltage may
significantly grow, as the optimal carrier PS angles cannot be timely updated.
Therefore, efforts should be made to improve the dynamics of the optimal VAPS PWM
methods, as computation-efficient modulation strategies.

1.1.2. Interharmonics from PV Converters

Recently, interharmonics have become a concern in PV systems [58]-[61]. According
to the laboratory tests [58], [59] and field measurements [60], [61], PV inverters can
potentially generate interharmonics, which may cause fluctuations of the grid voltage
and frequency, flickering of the lighting system, and unintentional disconnection of
PV power plants [58]. As recommended by the IEEE Standard 1547-2018 and the
International Electrotechnical Commission Technical Specifications (IEC TS) 63102 [62],
[63], interharmonics should be assessed for grid-connected PV systems. In previous
studies, it has been revealed that interharmonics can be generated by the MPPT
perturbation of PV inverters [58]-[61]. More specifically, the PV voltage oscillation due
to the MPPT will interact with the grid fundamental frequency through the control,
contributing to the generation of interharmonics [58].

Many efforts have been made for mitigating interharmonics from single-phase full-
bridge PV inverters. According to [64], lowering the MPPT sampling rate is a simple
solution. However, this method slows down the dynamics of the MPPT, and may
eventually affect the PV energy yield. In [65], an adaptive gain method, as well as a rate
limiter method have been proposed to suppress interharmonics by avoiding the abrupt
change on the AC current reference. Nevertheless, only interharmonics at a certain range
of frequencies can be reduced (e.g., relatively high order). In [64], a random sampling-
rate MPPT method was proposed, where PV voltage reference is perturbed with
random frequencies. Although dominant interharmonics can be effectively mitigated
with this approach, interharmonics cannot be completely suppressed, as the
perturbation of MPPT remains. In addition, all above studies about the interharmonic
mitigation were mainly focused on single-inverter systems. When PV converters are
connected in series through the CHB topology, the oscillation on the total DC voltage
(which is the sum of voltages of all series converters) will be magnified if the PV
voltages of individual converters are oscillating in phase, as it is illustrated in Fig. 1.4
[C1]-[C3], [J2]. Consequently, the interharmonics from the series-topology-based PV
inverter will become much larger than one single unit.

According to the experimental results of series-PV-battery systems, the power
oscillations from PV converters can be effectively compensated by the battery, as well
as interharmonics [37]-[40]. However, as the interharmonic issue is common for PV
converters, it is not cost-effective to employ battery converters just to suppress
interharmonics. Considering that the independent DC-side of the series system
provides more control flexibility, more possibilities are expected to mitigate
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interharmonics, e.g., through the coordinated control of individual converters. Thus,
interharmonic mitigation methods for series-topology-based PV inverters should be
explored, while the methods should be achieved with minimum ES requirements.

1.1.3. Distributed Control Schemes for Series Systems

Although many distributed control methods have been developed for series-
converter systems, most of them are not suitable for series-PV-battery systems. This is
because only ideal DC sources with equal power sharing, or DC sources of the same
type are considered in these methods [20]-[24], [66]-[71]. When different types of DC
sources are adopted, e.g., PV and battery units, or the active/reactive power sharing
among individual converters is unequal, these methods cannot be directly applied to
series-PV-battery systems. In fact, the distributed control schemes suitable for series-
PV-battery systems can only be found in a few studies [37]-[40]. Among them, one
typical solution is a communication-based hierarchical control [37], [38]. However, this
approach highly relies on a low-bandwidth communication (LBC) system. Through
the LBC, many control signals should be transmitted in real-time between the central
and local controllers, resulting in poor communication fault tolerance and low
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reliability. As the communication burden will increase with the number of series
converters, it will become more difficult to implement such hierarchical control. In
addition, this LBC-dependent feature also challenges the plug-and-play implementa-
tion in distributed series systems.

To alleviate the dependency on communication, the current-/voltage-mode (CVM)
control method has been proposed in [30] and [24], where one or several converters
are controlled as a current source in a centralized manner, while others are distributed
controlled as voltage sources, as shown in Fig. 1.5. With the CVM control, the
communication burden can be alleviated. However, only the grid-connected operation
with unity PF has been addressed in those studies [30], [24], [41], [40]. The non-unity
PF operation has been considered in a few studies, but only the current-source-
controlled converters are responsible for reactive power regulation, which limit the
grid support capability of the entire system [70], [71]. Besides, as the CVM control is
designed for grid-connected systems, it has rarely been studied on the islanded
operation of series-PV-battery systems. In this case, the load PF is variable in a wide
range, and the reactive power distribution will be of significance. If the load reactive
power fails to be properly distributed, certain converters may easily suffer from
overloading or even overmodulation, which may eventually lead to unwanted PV
power curtailment [42], output voltage/current distortion or even instability of the
system [38]. Therefore, this issue needs to be addressed for series-PV-battery systems.

On the other hand, due to the increasing grid-integration of PV systems, some
adverse impacts appear, which are related to the voltage and frequency stability of the
distribution grid, as mentioned previously. It thus calls for more flexibly controlled
and grid-friendly PV systems to enhance the stability of DG systems [72]-[75]. As
several grid codes have involved PV systems in their grid regulation [76]-[78], PV
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systems should achieve three main functions in active power control, in addition to
the MPPT operation, which are the power limiting control (PLC), power reserve
control (PRC), and power ramp-rate control (PRRC), as exemplified in Fig. 1.6 [6].
However, for series-PV-battery systems, these flexible active power control (FAPC)
strategies including the PLC, PRC, and PRRC have rarely been studied. Only in [40]
and [41], a ramp-rate control and a virtual inertia control have been respectively
developed. Moreover, when the battery power and SoC reach their upper or lower
limits, the battery converter may fail to provide the power buffering. However, the
battery SoC constraint in series-PV-battery systems has rarely been considered
previously. Therefore, it requires further explorations on how to achieve those flexible
power control functionalities, while ensuring optimal power utilization from the PV
panels, and maintaining the battery power SoC within the required limits.

Another control challenge is overmodulation, which can occur in series-PV-battery
systems when the islanded load is light, or the total power is flexibly controlled
according to grid commands. According to [38], the overmodulation of PV converters
can significantly affect the MPPT operation, leading to power oscillation and voltage
and current distortions. To cope with this issue, one basic idea is to curtail the PV
power yeilding. By doing so, the modulation indices of PV converters can be directly
reduced, while the operating points of PV panels will move away from their maximum
power points (MPPs), and be in the region of a higher voltage [33], [38]. Nevertheless,
only the anti-overmodulation (AOM) control of PV converters can be found in the
literature [33], [38]. In series-PV-battery systems, the overmodulation issue can be
more complex, where not only the PV converters, but also the battery converters may
suffer from overmodulation. Therefore, the main causes of overmodulation in series-
PV-battery systems should be further analyzed, while the corresponding AOM control
should be developed.

12
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1.2. Project Motivation

1.2.1. Research Questions

As discussed above, although a variety of approaches have been proposed to
improve the performance of series converter systems, most of them are not suitable for
series-PV-battery systems. Moreover, several essential issues in series-PV-battery
systems remain unaddressed, which limit the application of series-PV-battery systems.
This Ph.D. project aims to tackle those control-related challenges. The overall research
goal of this Ph.D. project is “to improve the control schemes for better integration of
distributed PV panels and batteries into distribution systems using series
configurations”.

To achieve this goal, on one hand, improved modulation and distributed control
strategies have been developed considering various operating conditions of series-PV-
battery systems. On the other hand, it is also highly demanded to reduce the cost of
the overall system while ensuring high power quality and maximize energy
harvesting. Accordingly, the following questions are considered:

e Q1: How to improve the dynamic performance of the VAPS PWM method
for series-PV-battery systems?

e Q2 How to mitigate large interharmonics from series-connected PV
converters with the minimal requirement of batteries, or even without
batteries in a cost-effective way?

e Q3: What can be a suitable distributed control scheme for series-PV-battery
systems with low communication requirements?

e Q4: What could be the additional flexibility for power regulation of
individual converters while considering PV power harvesting, battery
power, and battery SoC status?

1.2.2. Research Objectives

With the above research questions, the objectives of this Ph.D. project are
summarized as follows:

e O1 - Develop a hardware computation-efficient approach for the VAPS
PWM method using parallel computing.
To address Q1, one possible solution is to accelerate the optimization process
using parallel computing, which can be achieved using additional hardware,
e.g., FPGAs. In this Ph.D. project, efforts will be made on how to implement
the VAPS PWM method in an FPGA with a minimum hardware requirement.

13
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Then, the improvements on the dynamic performance will be evaluated
through experiments.

02 - Explore the interharmonic emission mechanism for series PV
converters, and accordingly develop interharmonic mitigation methods.
To answer Q2, solutions to suppress interharmonics without the battery
converter need to be developed, which can possibly be achieved by the
coordinated control of multiple series PV converters. Then, both the dynamic
and steady-state performance of the proposed control approaches need to be
investigated, evaluated and compared with each other considering the
requirements of practical applications.

O3 - Advance the distributed control methods for series-PV-battery
systems with low communication requirements

To address Q3, a distributed control scheme with low communication
requirements should be developed, where the power control and AOM
control of individual converters, reactive power distribution among all
converters should be considered. A stability analysis on the proposed control
is also required, and based on that, the guidelines on how to tune the control
parameters will be provided.

04 - Propose flexible active power control methods for grid-connected
series-PV-battery systems

To answer Q4, FAPC strategies should be designed for series-PV-battery
systems to achieve the PRRC, PLC, and PRC functionalities. Those strategies
are developed based on the distributed control architecture proposed in this
Ph.D. project (O3). Various constraints should be considered when
developing the FAPC strategies, including the total active power constraints,
charging/discharging power and SoC constraints for the battery converter, as
well as the available PV power and the MPP estimation of each PV converter.

1.3. Project Limitations

14

There are still several limitations in this Ph.D. project, as listed in the following:

L1: Since this Ph.D. project is mainly focused on the control-related issues of
series-PV-battery systems, how to determine the capacity and power rating
of the battery system is not considered. As the design of the battery system
should consider various factors, such as the requirements of distributed
systems, power ratings and generation profiles of PV converters, etc,, it is a
complex issue, and it remains to be addressed in future studies. Nevertheless,
several guidelines have already been developed for conventional PV-battery
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systems in the literature and application notes, which can be referred to when
sizing the battery for series-PV-battery systems [79]-[82].

e L2:In this Ph.D. project, only the single-phase system has been discussed. On
the other hand, there are more control challenges in three-phase series-PV-
battery systems. For instance, the three-phase unbalance is a common issue,
which includes both the three-phase generation unbalance and the grid
unbalance [34], [83]-[85]. In those cases, how to coordinatively control the
individual converters with three-phase balanced power generation and
optimized power distribution among all converters requires further
exploration. Besides, various three-phase series topologies have provided
more flexibilities in integrating PV panels and batteries [86]-[88], e.g., through
hybrid cascaded converters [86], [87]. It indicates that the configuration and
control of three-phase series-PV-battery systems can be more complex, which
are expected to be addressed in future studies.

e L3: In the experiments, PV/battery simulators have been employed to
emulate the behavior of PV panels and batteries, and only down-scaled tests
were performed. Nevertheless, it is sufficient to validate the effectiveness and
demonstrate the performance of the proposed control on the down-scaled
experimental setup using PV/battery simulators, although the operation of
the series-PV-battery system can be more complex in practice.

1.4. Thesis Outline

The dissertation consists of two main parts: Report and Selected Publications. In
Report, the outcomes of this Ph.D. project are summarized based on the publications
during the Ph.D. study, as illustrated in Fig. 1.7 (Journals — J, Conference - C). The
Report is organized with five chapters, which are briefly introduced in the following:

e  Chapter 1 - Introduction
In Chapter 1, the background of the research project is discussed, and the
focus of which is put on the limitations in state-of-the-art control methods for
series-PV-battery systems. Accordingly, the objectives of this Ph.D. project
are clarified.

¢  Chapter 2 - Computation-efficient variable angle phase-shifting PWM
In this chapter, an FPGA-based VAPS PWM method is developed to improve
the harmonic optimization speed for cascaded converters, and the
performance of the developed method is evaluated and compared with the
conventional DSP-based approach. The hardware requirement of the
proposed method, extendibility of the method for more cascaded cells, and
potential methods that can further improve the optimization, are discussed.
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Chapter 3 — Interharmonic mitigation for CHB PV inverters

In this chapter, the interharmonic issue in series PV converters is discussed
firstly. Then, three interharmonic mitigation methods (phase-shifting MPPT,
random sampling-rate MPPT, and the series interharmonic filter) are intro-
duced and compared. Furthermore, hybrid MPPT methods are developed to
further suppress interharmonics.

Chapter 4 - Distributed power control with low communication
requirements

In this chapter, a distributed control architecture for islanded series-PV-
battery systems is developed, where the PQ control for individual converters,
AOM of both the PV and battery converters, and power distribution among
all converters, are achieved with very low communication requirements. A
small-signal model is also developed for the stability analysis of the proposed
control.

Chapter 5 — Flexible active power control for series-PV-battery systems

In this chapter, FAPC strategies including the PRRC, PLC, and PRC strategies
are proposed for series-PV-battery systems, which are realized by the coor-
dinated control of all converters. Various control constraints are considered
in the control, including the total power ramp-rate/limiting/reserve con-
straints, battery charging/discharging power and SoC limits, available PV
power, and the MPP estimation of each PV converter.
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Chapter 6 — Conclusion
In this chapter, concluding remarks and the main contributions of this Ph.D.
thesis are summarized, and the future research perspectives are presented.

1.5. List of Publications

The outcomes during the Ph.D. study have been published in journals and confer-
ence proceedings. Parts of them are used in the Ph.D. thesis (J1-J4; C1-C6), as listed

below.
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Chapter 2.
Computation-Efficient
Variable Angle Phase-
Shifting PWM

2.1. Background

According to the discussions in Chapter 1, the variable angle phase-shifting (VAPS)
PWM methods can be applied to distributed series systems. Considering the operating
conditions of series-PV-battery systems, where the phase angles of the fundamental
voltage for different converter cells are usually none identical, it is difficult to
analytically obtain the optimal carrier phase shifting (PS) angles [52], [54], and [55],
which are mathematically unfeasible. In such cases, the most suitable VAPS PWM
methods are obtained by using mathematical searching algorithms, e.g., the exchange
marketing algorithm (EMA) [56] and the particle swarm optimization (PSO) [57].
However, these methods have slow dynamics. For instance, the optimal carrier PS
angles are calculated every two seconds in [57] (100 fundamental grid cycles). This is
due to a large number of computations are involved in the optimization, which is time-
consuming when it is implemented with ordinary digital signal processors (DSPs).
Due to the slow optimization rate, the output harmonic suppression performance
cannot be guaranteed within dozens of grid fundamental cycles, when the calculation
of the optimal angles is not accomplished. During that period, the high-frequency
voltage harmonics can be significant, leading to increased power losses and higher
electromagnetic interference (EMI) issues. In fact, the optimization speed of the VAPS
PWM method has not been evaluated previously, while only steady-state performance
has been demonstrated [56], [57].

Therefore, efforts should be made to improve the optimization speed of the VAPS
PWM method. In this chapter, firstly, a PSO-based algorithm to search the optimal
carrier phase-shifting (PS) angles for CHB converters is introduced, as well as its
dynamic response when it is realized using a DSP. Then, the implementation of the
optimization algorithm with FPGAs is discussed, and the dynamic of the VAPS PWM
method with the hardware implementation is compared with the conventional DSP-
based method. The performance of the proposed method is also evaluated through
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quantitative analysis of the execution time and hardware resources, and methods to
further improve the optimization are also discussed.

2.2. Variable Angle Phase-Shifting PWM Method

2.2.1. Particle Swarm Optimization Algorithm

The objective of PSO-based algorithms [57] is to find a set of PS angles for individual
converters that minimizes the total harmonics in the output voltage / current of multi-
converter systems. The analytical expressions of the total harmonics in CHB converters
can be obtained through a double integral Fourier analysis [57], [89]

2 2
Uy gum = Z [[zuhkf cos (Phka + (kzuhkf sin q)hkfj ] (2.1)
=1

f=for| Ueml
Prie = Pr(nf.thyfy) — 2l + (2h2 - 1)(P0,k (2.2)
J2u 23
Uy = Uhk(h,fc+h2fm) = Tm]%fl (th(Mk ) COS(hl +h, - 1) @3)

1

Here, Unsum is the total harmonics in the output multilevel voltage. n is the number of
cascaded cells. Unkt and ¢nk are the voltage amplitude and phase-angle of the
harmonics with its frequency being f (f= hifc + hafo) for the k' converter cell, with fo and
fc being the fundamental and carrier frequencies, respectively. Mk, Ubck, gok and ¢ck
are the modulation index, DC voltage amplitude, phase angle of the fundamental
voltage and the carrier PS angle of the kth converter cell, respectively. 1 and h2 are
multiples of the carrier and fundamental frequencies, respectively (k1 > 0). Ji(x) is the
Bessel function given as

ﬂ(zj 4

]i(x):]-:oj!(j+i)! 2

From (2.1)-(2.3), it can be noticed that for given U, M and @, (U= [Ubci, Upcy, ...
Ubcn], M= [M1, Mz, ... Mx], and @,= [@o1, o2, ... gon]), it is difficult to obtain an
analytical solution of @ = [@c1, Qc2, ... Pen] that minimizes Unsum in (2.1). To solve this
large-scale nonlinear optimization problem, the PSO algorithm is employed, as
illustrated in Fig. 2.1. As it is shown in Fig. 2.1, the PSO-based algorithm has an
iteration loop, which include: 1) initialization, 2) calculation of U]iSL,m values, and 3)
the update of all particles. When the optimized ¢l (the global best solution) is
obtained after a certain number of iterations, U]iSL,m will be compared with that of @,
which is the carrier PS angles at the current state. If U}, .. is smaller than U} . ..,

the carrier PS angles ¢ will be replaced by the optimized values. In the algorithm,
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Fig. 2.1: Flow chart of the PSO-based algorithm for the VAPS PWM method to search for the optimal carrier PS
angles, where ¢_; and Ty are the arrays of the carrier PS angles and velocities for the g particle in the a
iteration, respectively, rand([a,b]) is a random number between a and b, vmax refers to the pre-defined maximum
velocity, wrso, cp, and ¢ are three coefficients for updating the velocity of each particle, respectively, and r1,3 and
r2p are two random numbers within the range of [0,1] for the " particle [J1].

Uﬁlmm is used instead of Unsum to avoid the square root calculation, and only the main
harmonics are involved in the calculation, e.g., h1=1,2, and h2=-2,-1,0, 1, 2, 3.

The evolution response of the PSO-based algorithm is demonstrated in Fig. 2.2,
where 20 independent cases are performed for the optimization of a 4-cell CHB con-
verter with 100 particles. It can be noticed that optimal solutions can be obtained after
10 to 20 iterations. Obviously, a large number of calculations are involved in the PSO-
based VAPS PWM method, where U}z‘,sum should be calculated for all particles in each
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Fig. 2.2: Twenty evolution responses of the carrier PS angle optimization for a 4-cell CHB converter with 100
particles, where U,.= [120 V, 100 V, 110 V, 80 V], M= [0.9, 0.8, 0.7, 0.3], and @,= [0.1963, 0, 0, 3.1293].
Source: [J1].
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Fig. 2.3: Photo of the experimental platform. Source: [J1].

round of iteration. For instance, an optimization with 100 particles and 10 times of
iteration requires 1000 times in the calculation of Uf\,sum. Considering that (2.1) is
complex, it will take longer time (hundreds of milliseconds) for a DSP to solve the
optimization problem. When the output voltage of each converter changes, the
conventional VAPS PWM methods cannot timely update the optimized carrier PS
angles. During the period when the optimization is not ready, the power quality
performance of the converter can be degraded due to the presence of high-frequency
harmonics.

In practice, although the calculations of the Bessel function and trigonometric
functions can be simplified by using lookup tables (LUTs) to accelerate the optimiza-
tion, the computational burden remains high. To demonstrate the dynamic response
of the conventional DSP-based VAPS PWM method, experiments have been
performed on a 4-cell CHB converter, as demonstrated in Fig. 2.3, where the
optimization algorithm is implemented in TMS320F28335 DSP (wrso = 0.5, cp = cg=0.25),
and the switching frequency f; for one bridge arm is 1.25 kHz. Two cases have been
tested, where their reference voltages are given in Fig. 2.4(a) and (b), respectively.
Experimental results for Case 1 are shown in Figs. 2.5 and 2.6, where the optimization
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Fig. 2.4: Reference voltages in the experiments with U, = [120 V, 100 V, 110 V, 80 V]: (a) Case 1: M= [0.9, 0.8,
0.7, 0.3], and @,=[0.1963, 0, 0, 3.1293], and (b) Case 2: the modulation indices change from M= [0.9, 0.3, 0.9,
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reference AC voltages for the k* converter cell and total AC voltage reference, respectively. Source: [J1].
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Fig. 2.5: Experimental results of Case 1 with the DSP-based VAPS PWM: (a) output multilevel voltage, and
(b) the zoomed-in plot of Zone 0 in Fig. 2.5(a). Source: [J1].

is executed with 100 particles and 20 times of iteration. Initially, the conventional
PSPWM method with fixed PS angles is employed [43]. When the VAPS PWM method
is enabled, the output voltage of the CHB converter remains unchanged for 358.4 ms,
which is the time until the optimized carrier PS angles are calculated. In steady state,
the total harmonic distortion (THD) of the multilevel voltage vinv is reduced from 44.85%
to 35.91% with the optimized carrier PS angles ($.= [0, 2.1967, 1.0063, 2.7121]) and
harmonic components near 2fs are significantly suppressed. However, it requires
almost 18 fundamental cycles for the algorithm to find the optimal carrier PS angles,
which results in a slow speed.
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Fig. 2.6: Frequency spectra of the multilevel voltage in (a) Zone 1 and (b) Zone 2 of Fig. 2.5(b), where Uk is the
fundamental voltage of vinv. Source: [J1].

Case 2 demonstrates the performance when the outputs of the individual converters
change according to the voltage references in Fig. 2.4(b), and the carrier PS angles are
continuously updated with the VAPS PWM implemented in the DSP. Experimental
results are shown in Fig. 2.7, and 100 particles with 10 times of iteration are employed
in this test. Initially, the CHB converter is operating with optimal carrier PS angles (.
= [0, 1.1290, 2.0249, 1.6690], Zone 3 in Fig. 2.7(b)). After the change of the modulation
indices, the THD performance of vinv is degraded for 580 ms, until the new optimal
angles @.= [0, 0.0736, 2.1598, 1.0677] are obtained by the optimization algorithm. The
harmonic performance is even worse during the transition, ie. in the first 11
fundamental cycles (Zone 4 in Figs. 2.7(b) and (c)), where the THD of vinv is increased
to 58.03%, which is much higher than the initial 31.50% and the steady-state 37.74%,
as shown in Figs. 2.7 and 2.8. After that, the voltage harmonic performance is
improved when the optimized PS angles are obtained in the first round of optimization
after the reference voltage step change (Zone 5 in Figs. 2.7(c) and (d)), with its THD
optimized to 41.28%, which is still not as good as the steady-state value. The optimal
37.74% THD is obtained at the end of the 39 optimization (Zone 6 in Fig. 2.7(d)).
Notably, even if the optimal PS angles can be obtained within one round of
optimization, the dynamic period Ta is always longer than the optimization period Topt
(180 ms), being a major limitation of the VAPS PWM method.

From the above, it is shown that the VAPS PWM method has a slow dynamic re-
sponse when the optimization is solely achieved by a DSP. For operating conditions
when the output voltages of individual converters frequently change (e.g., MPPT
control of PV converters), the DSP-based optimization may fail to timely optimize the
voltage THD. It thus calls for faster VAPS PWM methods.

2.2.2. FPGA-Enabled Computation-Efficient Method

From the above, it is challenging to further improve the optimization speed of the
VAPS PWM method only with a DSP due to its limited computing capability. To
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Fig. 2.7: Experimental results of Case 2 with the DSP-based VAPS PWM: (a) output multilevel voltage, and (b),
(c), and (d) zoomed-in plots of Zones 0, 1, and 2 in Fig. 2.7(a). Source: [J1].

overcome this limitation, multicore computing approaches can be considered. The
basic idea is to build a few calculation units (CUs) with additional hardware, where
multiple calculations can be executed in parallel, thus improving the optimization. The
schematic of the proposed FPGA-based VAPS PWM method is shown in Fig. 2.9. As it
can be seen in Fig. 2.9, multiple CUs are implemented in the FPGA, which include a
few harmonic calculation units (HCUs) and particle updating calculation units
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Fig. 2.7. Source: [J1].

(PUCUs). The HCUs are responsible for calculating Uy, with the given Unkt, @, and
¢. from the DSP using (2.1) and (2.2), while the PUCUs are responsible for calculating
the updated position @¢5 and velocity ;" of each particle with the given 75, @2,
@z:t, (f)f,?, rip, and r2p from the DSP, as illustrated in Fig. 2.9. Those variables are
exchanged between the DSP and the FPGA through high-bandwidth parallel
communication bus. A random-access memory (RAM) is implemented in the FPGA to
provide the data buffering for the parallel communication. In this structure, the DSP
is still responsible for executing the remaining part of the algorithm, e.g., initialization,
logic execution, etc.

To better utilize the limited hardware resources in the FPGA, the hardware struc-
ture of HCUs is optimized, as shown in Fig. 2.10. It can be noticed that after calculating
@ni, the following calculations are processed in series. This is because the calculations
of trigonometric functions and multiplications require a large amount of hardware
resources. More specifically, according to (2.1), 48 CORDIC (coordinate rotation digital
computer, which is used for calculating trigonometric functions) elements and 192
hardware multipliers are required if all computing is executed in parallel. Although
the series computing can slow down the calculation speed, more HCUs can be
implemented in FPGAs due to the reduced circuit size, enabling the parallel compu-
ting of multiple particles.
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With the above approaches, the speed of the optimization algorithm can be
improved from the following aspects:

1) When calculating Uy, , @ and ;" values for each particle, multiple
additions and multiplications (can be replaced by shifts and additions) can be
executed in parallel.

2) Multiple particles can be processed in parallel with multiple CUs.

3) The calculation speed can be further improved with higher clock frequency for
the FPGA (e.g., using hardware phase locked loop (PLL) in the FPGA).

To evaluate the performance of the computation-efficient VAPS PWM method,
experiments have been performed with the same test conditions as in section 3.2.1, and
the results are shown in Figs. 2.11-2.14. The bus-frequency and the bus-width are 28
MB/s and 12-bit, respectively. The FPGA clock frequency is 150 MHz, being the same
with as DSP. The resolution of all variables is given in Table 2.1. Firstly, compared with
the results in Fig. 2.5, it takes only 18.5 ms for the proposed algorithm to obtain the
optimal PS angles, which is 19.4 times faster than the conventional DSP-based method.
The THD values of vinv in Zones 1 and 2 of Fig. 2.11 are shown in Fig. 2.12, which are
almost the same with those in Fig. 2.6(a) and (b), respectively, indicating that both
methods have successfully obtained the optimal PS angles. For the test case 2 (Fig. 2.13),
the THD of vinv in Zones 1 and 2 is shown in Fig. 2.14, which is almost identical with
that in Fig. 2.8(a) and (d), respectively. However, the required time to calculate the
optimal angles is reduced from 580 ms to 28 ms, indicating a significant improvement
in the optimization speed. Especially for the period where the voltage THD is
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Fig. 2.10: Hardware structures of the CUs in the FPGA: (a) harmonic calculation units (HCUs) and (b) particle
updating calculation units (PUCUs). Source: [J1].

significantly degraded (Zone 3 in Fig. 2.12), it only lasts for less than one fundamental
cycle, while it was a period of 11 fundamental cycles in Fig. 2.7 (Zone 4). Thus, with
the acceleration of FPGAs, the dynamic response of the VAPS PWM method can be
significantly improved.

2.3. Performance Comparisons

2.3.1. Evaluation of Required Hardware Resources

In terms of the execution time for the optimization, three cases of the hardware-
based method are compared with the conventional DSP-based approach, as shown in
Fig. 2.15. According to Fig. 2.15(a), for one round of iteration with 100 particles, the
calculation speed can be accelerated 9.0 times faster than the DSP-based method using
1 HCU in the FPGA. The most time-consuming part in the optimization is the
calculation of Uﬁ/sm which takes 93% of the total time for the DSP-based method. In
the proposed method, this part can be significantly accelerated by the parallel
computing. Although the calculation of U}Z\,sum remains the most time-consuming part
in the optimization after the acceleration, it only accounts for 43% of the total time,
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Table 2.1: Operational precision for variables in HCUs and PUCUs. Source: [J1].

Variables Sign bit Integer bits Decimal bits
Uk 1 12 12
@nt (p.u.) 0 1 8
cos(@n) and sin(@nke) 1 1 8
Uhiicos(qni) and Unkisin(qnks) 1 10 18
ZXnkt and X Yhe 1 10 10
X} and Y7 0 20 20
e 0 20 4
@5, ox'and o3 (p.u.) 0 1 8
7 (p.u.) 1 0 8
riand r2 0 0 9

*subscript “k” is the converter index.

being only 0.86 ms to calculate U, for 100 particles. On the other hand, although
the calculation of ¢¢; and 7" is more simple than that of UZ,,, it still takes 34% of
the total time (0.68 ms) for the DSP to calculate the updated positions and velocities.
This part of calculation can be accelerated by adding 1 PUCU in the FPGA, with which
the total time is reduced to 1.57 ms, being 11.4 times faster than the DSP-based method.
The time for calculating all ¢y and ;" values is reduced to 0.27 ms (17% of the total
time, including the time for manipulating the parallel bus). When 4 HCUs and 1 PUCU
are equipped, the calculation speed can be further accelerated 19.3 times faster than
the DSP-based method. However, compared to the case with 1 HCU, the
improvements of the 4-HCU approach is not very significant, being only 1.7 times
faster. This is because the manipulation of the parallel bus as well as other codes in the
DSP (e.g., logic execution) have become the most time-consuming parts in the entire
algorithm, being 33% and 37% of the total time, respectively, while the calculations
which are accelerated by FPGAs only account for 29% of the total time. This indicates
that the improvements will become minor when more CUs are equipped, because the
communication between the DSP and the FPGA will be the bottleneck in the
optimization speed.

On the other hand, the acceleration process is also limited by hardware resources.
The hardware requirements for different parts of the optimization are shown in
Fig. 2.16. For the control system shown in Fig. 2.3 with 2 EP4CE10 FPGAs, the
maximum of 4 HCUs and 1 PUCU can be achieved. More specifically, since each FPGA
only has 10320 LEs and 23 hardware multipliers (18x18 bits), it takes 98% of the total
logic elements (LEs) for FPGA #1 (including a RAM, 2 BCUs and the VAPS PWM
circuits) and 99% of the total LEs for FPGA #2 (including a RAM, 2 BCUs and 1 PUCU).
To further accelerate the optimization speed, efforts should be made considering the
following aspects:

1) In the control system shown in Fig. 2.3, only the lower 12 bits of parallel data

bus are connected between the DSP and FPGAs. A bus with wider bus-width
can be employed to reduce the time spent on the communication, e.g., a
maximum 32-bit data bus.

2) Apart from the implementation of a few CUs, the rest of the optimization can

be incorporated in the FPGA. More specifically, for the proposed method, the
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DSP is still responsible for executing the optimization algorithm. If the entire
optimization algorithm can be solely achieved by the FPGA, the time spent on
the communication between the FPGA and the DSP (33% of the total time in
Fig. 2.15(e)), as well as the logic execution of the optimization algorithm (37%
of the total time in Fig. 2.15(e) (Other codes)) can be further reduced.

3)

time for the calculation.
Nevertheless, it is challenging to achieve the above-mentioned methods with the
limited hardware resources of the available control system (Fig. 2.3). In other words,

30
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Fig. 2.13: Experimental results of Case 2 using the proposed computation-efficient VAPS PWM method:

(a) output multilevel voltage, and (b) the zoomed-in plot of Zone 0 in Fig. 2.13(a). Source: [J1].
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the existing hardware should be upgraded to further improve the optimization speed,

which will be done in the future.

2.3.2. Evaluation of N-cell CHB Converters

The improvements in terms of the dynamic response will be more significant for
CHB converters with a higher number of cascaded cells. As it can be noticed in
Fig. 2.17(a), for an optimization with 100 particles and 20 times of iteration, with the
increase of the cascaded cell number, more time is required to obtain the optimal
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carrier PS angles due to an increased amount of computation. When 10 cells are
cascaded, the required time for the DSP-based method is 1075 ms, being 53.75
fundamental cycles. In this case, the optimization speed can be improved 24.1 times
faster with the FPGA-accelerated method using 4 HCUs and 1 PUCU, being only 44.6
ms (around 2 fundamental cycles). At the same time, with the increase of the cascaded
cell number, more hardware resources are required for the FPGA-accelerated
approach, as it is illustrated in Fig. 2.17(b). For instance, approximately 42800 LEs and
148 hardware 9-bit multipliers are required for the 10-cell VAPS PWM method with 4
HCUs and 1 PUCU. To achieve this, the two EP4CE10 FPGAs in Fig. 2.3 should be
updated by two EP4CE22 FPGAs, which have more hardware resources.

To implement the computation-efficient VAPS PWM method, the cost of the control
system might be increased due to the additional hardware. However, in applications
where the DSP+FPGA hardware architectures are already employed (e.g., centrally
controlled systems with a large number of converter cells), the proposed computation-
efficient method can be achieved by utilizing existing hardware resources. In such
cases, the DSP+FPGA control architecture is employed because of the insufficient
PWM resources of a single DSP (e.g., only 12 PWM channels for the TMS320F28335
DSP), and the FPGA is responsible for generating the carriers and PWM signals for all
converters. Considering that the PWM generation only requires a small amount of
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Fig. 2.16: Requirement of hardware resources for the FPGA-based VAPS PWM method with 1 HCU and 1
PUCU. Source: [J1].
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Fig. 2.17: Optimization speed and the required hardware resources for N-cell CHB converters with VAPS PWM
method accelerated by 4 HCUs and 1 PUCU: (a) optimization period and (b) requirement of hardware re-
sources. Source: [J1].

hardware resources (i.e., LEs), the remaining hardware resources of the FPGA can be
used to implement the proposed method. Therefore, for such applications, the
proposed hardware-based approach can be a cost-effective solution to improve the
dynamic response of the high-frequency voltage harmonic optimization.

2.4. Summary

In this chapter, a computation-efficient VAPS PWM method has been proposed,
which uses the FPGA-based parallel computing to reduce the time for obtaining the
optimal carrier PS angles, improving the dynamic response of the VAPS PWM method.
The optimization algorithm in the VAPS PWM method was accelerated from three
aspects: 1) by building multiple CUs in the FPGA, multiple particles are calculated in
parallel, 2) for each particle, multiple calculations are executed simultaneously, and 3)
by simply improving the clock frequency of the FPGA, the calculation can be further
accelerated. With the acceleration of FPGAs, the optimization speed can be improved
to be at least ten times faster compared to the DSP-based optimization. The
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acceleration performance was also evaluated by quantitatively analyzing 1) the
consumed time for each part of the optimization algorithm and 2) the required
hardware resources, while methods that can further accelerate the optimization speed
were also discussed. The proposed computation-efficient VAPS PWM method can be
easily applied to N-cell CHB converters. Experimental tests have been performed to
demonstrate the effectiveness of the proposed method.
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Chapter 3.
Interharmonic Mitigation in

CHB PV Inverters

3.1. Background

As discussed in Section 1.1.2, for a single-phase CHB PV inverter shown in Fig. 3.1(a),
when the DC-side oscillations due to the MPPT operation are in-phase for all inverter
cells, the equivalent total voltage reference will oscillate further. Consequently,
interharmonics will be amplified through the voltage / current control loops shown in
Fig. 3.1(b) [J2], [C1]. To suppress interharmonics, compensation systems like energy
storage systems can be employed, where the interharmonics can be suppressed through
the feedback control [90], [91]. However, these approaches are not cost-effective. On the
other hand, for power-electronic-interfaced systems which generate interharmonics, it is
challenging to compensate for the generated interharmonics through conventional
feedback control without additional hardware. This is due to the fact that the feedback
control relies on the measurement of interharmonics. In that case, it requires a wide
sampling window, a large amount of sampling data and computational efforts [60], [92].

However, if the main sources of interharmonics can be identified, e.g., MPPT
operation for PV systems, the interharmonics can be suppressed through a control
modification. Nevertheless, this approach is difficult to be achieved on one single PV
inverter, where the MPPT perturbation is inevitable. On the other hand, for series-
topology-based PV systems, the multi-cell configuration can provide more control
flexibilities in suppressing interharmonics, e.g., through the coordinated control of
each inverter cell. One potential solution is to shift the phase angles of PV voltage
oscillations of different inverter cells in a way to counteract with each other, as shown
in Fig. 3.2. With such approach, the oscillation on the equivalent total DC voltage will
be suppressed. As a consequence, interharmonics can be suppressed as well. This is
the core idea of the phase-shifting MPPT (PS-MPPT) method proposed in [J2], [C1]. In
addition to the PS-MPPT, more solutions will be explored for CHB PV inverters in this
chapter, e.g., the random sampling-rate MPPT, hybrid PS-MPPT, and an
“interharmonic filter” method [J2], [C5], [C3]. All these methods will be evaluated and
compared, through simulations or experimental results.
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Fig. 3.1: Overall diagram of a single-phase CHB PV inverter: (a) configuration of the system with n cells, and
(b) control diagram, PLL refers to the phase locked loop, DFT refers to discrete Fourier transform, PI refers to
the proportional-integral regulator, 0 and 6; are the phase-angles of the grid voltage and current, respectively,
Mol and mxk are the total modulation index and the modulation index for the k™ converter cell, respectively,
and AMk is the adjustment calculated by the secondary voltage controller of the k™ converter cell. Source: [J2].

3.2. Interharmonic Mitigation Methods

3.2.1. Phase-Shifting MPPT Method

The operational principle of the PS-MPPT method is to detect the phase-angles of
the DC-side oscillations for individual PV inverters, and thus adjust them in a way to
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Fig. 3.2: PV voltage references of a 4-cell CHB PV inverter in steady state when the PV voltage oscillations are
phase-shifted. Source: [J2].
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Fig. 3.3: Synchronization signal and phase-angle references @rviet — @rvare of the DC-side oscillations for a 4-
cell CHB PV inverter, where Twrer is the MPPT period. Source: [J2].

minimize the oscillations on the total DC voltage V;C,to,al [J2]. The implementation of

the PS-MPPT consists of three parts: detection, synchronization, and phase-shifting.

Detection: The “detection” is to detect the phase angle of the PV voltage
oscillation. It is obtained through a sliding discrete Fourier transform (SDFT)
algorithm expressed as

J 2T funa

Apng (x4 = "o [ AL () + Vi, (x4 N) = Vo ()] G.1)

where fiund = furrr / 4, and is the fundamental frequency of the SDFT algorithm
(fmrer is the MPPT frequency), Asnd(x) is the amplitude of the PV voltage
oscillation obtained after the x™ transform. Nsorr is the width of the sampling

window for SDFT, while V,,, (x+ N) is the latest sampled voltage reference.

With (2.1), the phase-angle of the DC voltage oscillation for the k" inverter
cell can be obtained as

Povi =arctan (Im (A, (x+1))/Re( A, ,(x+1))) (32)

where “Re(-)” and “Im(-)” refer to the real and imaginary part of the variable,
respectively.
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e Synchronization: In order to precisely phase-shifting the PV voltage
oscillations, all PV inverters are synchronized to a common clock signal, as
demonstrated in Fig. 3.3, where synchronization signal appears every 4/furer.
With this common clock signal, the phase-angle reference of the PV voltage
oscillation can be generated locally by the individual PV inverter, which is
phase-shifted by a specified value with respect to the former inverter, e.g.,
/2 for each in a 4-cell CHB PV inverter, as demonstrated in Fig. 3.3.

e  Phase-shifting: If one inverter cell is operating in steady state (the phase-
angle of the PV voltage oscillation remains unchanged for a few consecutive
MPPT cycles), the PS control will be executed for this inverter cell. The phase-
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Fig. 3.5: Grid current and PV voltages of a 2-cell CHB PV inverter using the conventional and the proposed PS-
MPPT methods, with the two 300-W PV panels operated at 20% of its rated power, and the grid voltage being
40 V(rms). Source: [J2].
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Fig. 3.6: Frequency spectra of iz in Fig. 3.5: (a) with in-phase PV voltage oscillations, and (b) with the PS-MPPT,
where iguna refer to the fundamental grid current. Source: [J2].

shifting control is achieved by skipping the MPPT control for a certain period
of MPPT cycles, which will insert time delays to the oscillation on the PV
voltage reference. According to the phase-angle difference, four different
time delays can be inserted, i.e., Tmert, 2Tmrer, 3Tveer and 0, as demonstrated
in Fig. 3.4. By doing so, the PV voltage of each inverter cell can oscillate in-
phase with its phase-shifted reference @pviret.

To validate the effectiveness of the PS-MPPT, experiments have been performed on
a2-cell CHB PV inverter, and the results are shown in Figs. 3.5 and 3.6. It can be noticed
that the two PV voltages are oscillating in phase at the beginning, with the oscillating
frequencies being 1.67 Hz. Meanwhile, periodical spikes appear on the envelope of the
grid current, and interharmonics are significant, with certain dominant components
being higher than 0.05 A. When the PS-MPPT is enabled, the phase angles of the two
PV voltages are in opposite phases (phase-shifted by 2Twmrrr), eliminating the spikes on
the grid current as well as the dominant interharmonics. Thus, the amplified
interharmonics due to the in-phase MPPT oscillation can be significantly mitigated
with the PS-MPPT control.

In practice, various sets of PV voltage PS angles can be employed by the PS-MPPT
method to minimize the total DC voltage oscillation. For instance, they can be linearly
dispatched among all cells (i.e., phase-shifted by 27t/n for each cell with respect to the
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Table 3.1: PV voltage phase-angle references of the PS-MPPT method for n-cell
CHB PV inverters. Source: [J2].

Total number

of cells | 2-cell 3-cell 4-cell 5-cell 6-cell 7-cell
Converter index
Converter #1 0 0 0 0 0 0
Converter #2 b /2 /2 /2 /2 /2
Converter #3 / T T T T T
Converter #4 / / 3m /2 3m /2 3m /2 3m /2
Converter #5 / / / 0 0 0
Converter #6 / / / / T /2
Converter #7 / / / / / T

former cell), or non-linearly dispatched, as shown in Table 3.1, where one case of non-
linear dispatching (6-cell case) is given.

3.2.2. Hybrid Phase-Shifting MPPT Method

When applying the PS-MPPT to CHB PV inverters with an even cascaded number,
it is possible to fully eliminate the oscillation on the total DC voltage reference.
However, the total voltage oscillation, as well as interharmonics cannot be eliminated
for CHB PV inverters with an odd number of cascaded converters, regardless of the
applied PS angles. In this case, the oscillation amplitude of the total voltage equals to
that of one inverter cell, as illustrated in Fig. 3.7, where the PV voltage references of a
3-cell inverter are exemplified. To solve this issue, a hybrid PS-MPPT method is
developed in [J2], which is demonstrated in Fig. 3.8. It can be explained as follows: for
an n-cell inverter (n is odd number), the PS-MPPT is applied to (1-1) converters, and
the oscillation on the sum of voltage references of these (n—1) converters can be fully
canceled. Meanwhile, the random-sampling rate MPPT is adopted for the remaining
converter. By doing so, the interharmonic contents of the entire system will be similar
with one inverter cell with the random sampling-rate MPPT. With such approach, the
interharmonic suppression performance can be further improved for systems with an
odd number of cascaded converters, compared with the case where the PS-MPPT is
applied to all cells. The effectiveness of this hybrid PS-MPPT is verified by simulations
on a 3-cell CHB PV inverter, as shown in Figs. 3.9 and 3.10, where the interharmonic
performances of the conventional, PS-, and hybrid PS-MPPT are demonstrated.

3.2.3. Random Sampling-Rate MPPT Method

For both the PS-MPPT and the hybrid PS-MPPT methods, when part of the CHB
cells are not operating in the steady-state, e.g., under varying irradiance, the PV
voltage oscillations of these cells may not be properly phase-shifted. As a result,
interharmonics will appear again. In addition, as the PS-MPPT is dependent on the
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Fig. 3.7: PV voltage references for a 3-cell inverter when the PV voltage oscillations for cells #2 and #3 are phase-
shifted by (a) /2 and m, and (b) 21/3 and 47/3, respectively. Source: [J2].

Fig. 3.8: Diagram of the hybrid PS-MPPT. Source: [J2].

communication to realize the MPPT synchronization of all converters, additional LBC
system should be equipped for each inverter cell, making the PS-MPPT not cost-
effective, especially for CHB PV system with a large number of cells. To address this
issue, the random sampling-rate MPPT method can be used as an alternative solution
[C5]. In this method, the MPPT frequency is randomly selected for each inverter cell,
as illustrated in Fig. 3.11, and the oscillation frequency of the total voltage can thus
become more arbitrary. Consequently, interharmonics will be distributed among a
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Fig. 3.10: Frequency spectra of the grid current shown in Fig. 3.9: with the (a) conventional, (b) PS-, and (c)
hybrid PS-MPPT. Source: [J2].

wider range of frequencies, with the amplitudes of dominant interharmonics being
reduced to a large extent.

The effectiveness of the random sampling-rate MPPT is validated by simulation
results as shown in Figs. 3.12 and 3.13, where the both the steady-state and dynamic
performance of the random sampling-rate MPPT are compared with those of the PS-
MPPT. The simulation was performed on a 4-cell CHB PV inverter. It can be noticed
that although the PS-MPPT has a satisfying interharmonic performance in steady state,
where the interharmonics are almost fully eliminated, interharmonics of/near the
dominant frequencies appear again during the dynamic changing period. On the other
hand, interharmonics can be effectively suppressed by the random sampling-rate
MPPT in the same period, as shown in Fig. 3.12, where the sampling-rate of each
converter cell randomly varies among any frequencies between 2 Hz to 10 Hz.

The steady-state interharmonic suppression performance of all above methods are
compared in Fig. 3.14, where the total interharmonic distortion (TIHD) values for n-
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cell inverters are shown. Firstly, although the interharmonics increase with the number
of cascaded converters, the TIHD values for the conventional MPPT method with in-
phase oscillations are almost constant. Compared with the in-phase oscillation case,
the TIHD values are much smaller for the random sampling-rate MPPT method, which
further decreases with the increase of the cascaded number. When the cascaded
converter number is even, the PS-MPPT method with linear- and non-linear-
dispatched angles have similar performance, where interharmonics are almost fully
eliminated (below 0.3%). On the other hand, when the cascaded number is odd, the
PS-MPPT method with non-linear dispatched angles exhibits superior interharmonic
performance. In this case, even the random sampling-rate MPPT method outperforms
the PS-MPPT method with linear-dispatched PV voltage PS angles. Among all these
approaches, the hybrid PS-MPPT method has the best interharmonic suppression
performance. Compared with the PS-MPPT method with non-linear dispatched ang]les,
the TIHD values are almost halved for the hybrid PS-MPPT method when the
cascaded number is odd.

3.2.4. Series Interharmonic Filter

Although the interharmonics can be effectively suppressed by both the PS-MPPT
and random sampling-rate MPPT methods, they are compromised either in the
dynamics or in the steady-state. Therefore, more efforts are expected to overcome these
limitations. Considering that an additional series converter cell can be used as a
harmonic filter [33], the concept of “series interharmonic filter” is developed [C3],
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Fig. 3.12: Dynamic performance of the PS-MPPT on a 4-cell CHB PV inverter, where the power of PV #1 and #2
ramps from 10% to 15% of its rated from 6 s to 10 s and 8 s to 12 s, respectively: (a) grid current, (b) total DC
voltage, (c) PV voltages of the 4 converters, (d) frequency spectrum of iz before t = 6 s, and (e) frequency
spectrum of iz between t =6 s to 13 s. Source: [C2].

where a series converter only with capacitors in its DC-side is employed to mitigate
interharmonics. The configuration of the CHB PV system with the interharmonic filter
is shown in Fig. 3.15(a).

Considering that the oscillations on the total DC voltage plays a major in the
generation of interharmonics, the operational principle of the interharmonic filter is to
control its DC voltage in a way to cancel the oscillation on the total DC voltage of all
other inverters. In this way, the total voltage can be kept constant regardless of the DC
voltage oscillation of all other inverters, thus preventing the generation of
interharmonics through the total voltage control loop. The control diagram of the CHB
PV system with the interharmonic filter is shown in Fig. 3.15(b), where the control of
the filter is achieved by collecting the modulation indices of all PV converters.

To evaluate the performance of the series interharmonic filter, experimental results
on a 2-cell CHB PV inverter without and with the interharmonic filter are shown in
Fig. 3.16(a) and (b), respectively. As it is shown in Fig. 3.16, the DC voltage of the filter
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Fig. 3.13: Dynamic performance of the random sampling-rate MPPT on a 4-cell CHB PV inverter, where the
simulation conditions are the same with Fig. 3.12: (a) grid current, (b) total DC voltage, (c) PV voltages of the 4
converter cells, (d) frequency spectrum of the i; before t = 6 s, and (e) frequency spectrum of is between t =6 s
to 13 s. Source: [C2].

cell oscillates with a reversed oscillating voltage, which cancels the in-phase oscillation
of the two PV converters. Periodic spikes on the grid current are mitigated, as well as
the interharmonics.

In practice, the interharmonic filter can be implemented by adding a redundant
converter cell or employing one existing PV inverter, e.g., use the one with the smallest
PV power. By doing so, the MPPT efficiency of this cell will only be affected a little,
and in return, the interharmonic performance of the entire system can be significantly
improved. Nevertheless, rather than merely operate as an interharmonic filter, the
redundant/selected converter cell can also operate as a conventional harmonic filter,
which is responsible for compensating low-order harmonics from either PV converters
or the grid background distortion. A similar approach has been developed in [33],
where the low-order harmonics can be properly distributed among all converter cells.
With such an approach, the power quality performance of the CHB PV converter can
also be improved.
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TIHD (%)
14-

Fig. 3.14: TIHD performance of different MPPT schemes for n-cell inverters: (a) conventional MPPT with in-
phase DC voltage oscillations, (b) random sampling-rate MPPT, (c) PS-MPPT with linearly dispatched PV
voltage PS angles, (d) PS-MPPT with non-linearly dispatched PV voltage PS angles shown in Table 3.1, and (e)
hybrid PS-MPPT. Source: [J2].

Although the oscillations on all other converters can be compensated by the
interharmonic filter, interharmonics cannot be completely eliminated because the
periodical MPPT disturbances on the total voltage loop remain. More specifically, the
abrupt change of individual PV voltage references will result in disturbances on the
total voltage loop, which grow larger when 1) more cells are oscillating in-phase or 2)
the total PV power increases [C3]. In addition, if all other converters are oscillating in-
phase, with the increase of the cascaded cell number, the interharmonic filter should
generate a reversed oscillation voltage with a higher amplitude, which will
significantly increase the voltage rating of the interharmonic filter. To improve the
interharmonic suppression performance, the in-phase oscillations of PV converters
should also be avoided even with the involvement of the interharmonic filter. This can
be achieved by the combination of both the PS-MPPT and the interharmonic filter.
With the PS-MPPT, the oscillation on the total voltage can be minimized. Then, the
interharmonic filter will be responsible for suppressing this minimized oscillation in
both the steady states and dynamics, which fails to be eliminated by the PS-MPPT.

3.3. Summary

The interharmonic mitigation methods for CHB PV inverters were discussed in this
chapter, which are achieved by a coordinated control of individual PV inverters. With
the PS-MPPT method, PV voltage oscillations of all converter cells are phase-shifted to
minimize the oscillation on the total DC voltage, and thereby interharmonics. The
hybrid PS-MPPT method was subsequently developed to enhance the interharmonic
suppression capability, where the PS-MPPT and the random sampling-rate MPPT
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Fig. 3.15: Control diagram of a single-phase CHB PV system with a series interhamonics filter: (a) configuration
of the system, and (b) control diagram, where Vacfiter and misier are the DC capacitor voltage and the modulation
index of the interharmonic filter, respectively, and AMiier is the modified value on the amplitude of il for
the interharmonic filter. Source: [C3].

methods are simultaneously applied to different converter cells. As these methods rely
on the LBC, when the cascaded converter number is large, the random sampling-rate
MPPT can be a more cost-effective alternative for interharmonic suppression. To
address the issues that the PS-MPPT cannot ensure the interharmonic mitigation
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Fig. 3.16: Experimental results of a 2-cell CHB PV inverter (a) without the interharmonic filter and (b) with the
interharmonic filter, where each PV converter is operated at 20% of its rated power (300 W), and the frequency
spectra of the grid current in (a) and (b) are shown in (c) and (d), respectively. Source: [C3].

during the dynamics, while the steady-state performance of the random sampling-rate
MPPT is compromised, the concept of “series interharmonic filter” was developed. By
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controlling the DC voltage of one converter cell in a way to cancel the DC voltage
oscillations of all other converters, the total voltage can be oscillation-free, thus
eliminating the generation of interharmonics through the total voltage loop.
Nevertheless, as the interharmonics can be added in hardware, or selected among
existing PV converters, this method is also compromised either in cost or the MPPT
efficiency. All these methods are simple to be achieved, which can be easily applied to
n-cell inverters. The interharmonic performance of all the above-mentioned methods
were evaluated through either simulations or experimental tests.
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Chapter 4.
Distributed Power Control
with Low Communication

Requirements

4.1. Background

To avoid the high-bandwidth communication (HBC), various distributed and
decentralized control methods have been developed for series-connected systems in
the literature [20]-[24], [27]-[30], [37]-[40], [66]-[71]. However, only a few are
specifically designed for series-PV-battery systems [37]-[42]. As discussed in Chapter 1,
these methods either highly rely on the low-bandwidth communication (LBC) with
poor communication fault tolerance [37], [38], or are only applicable for certain
operating conditions, e.g., unity-PF operation [40], [41], or the PFs for all converters
should be the same [42]. It thus calls for the development of a more suitable distributed
control method for series-PV-battery systems with less requirements on the commu-
nication. Although various distributed/decentralized control schemes for series
converters have been proposed, they usually have certain limitations if adopting them
for series-PV-battery systems, as listed in Table 4.1, where most of them are
communication-free control methods. However, the “communication-free” is only
effective under certain conditions, and the limitations are summarized as follows:

e Effective only with equal power sharing, equal PFs, or limited PF range [24],
[28]-[30], [40]-[42], [67]-[69]. For instance, the methods in [30], [24], [40] and [41]
are only suitable for unity-PF operation; the Q-w and P-V control in [69] is only
suitable for reactive load conditions (PF close to 0); and the AC voltage
amplitudes for individual converters are not adjustable in [28], [29], [67] and [68],
which is obviously not suitable for series-PV-battery systems, where the active
and reactive power (PQ) for individual converters are variable.

¢ Only considering ideal or the same kind of DC sources [12], [13], [15], [60]-[62].
When different kinds of power sources are interfaced (PV panels and batteries),
these methods cannot be directly applied.

e Reactive power distribution not considered [14], [15], [33], [34], [59]. As
discussed in Chapter 1, the inappropriate reactive power distribution among
individual converters can increase the overloading and overmodulation risks of



Table 4.1: Prior-art distributed and decentralized control methods for series-connected inverter systems. Source: [J3].

Ref. | DC-source types Control architecture ¢ommun1ca- Operating condition I LA I O SR Over-modulations
tion burden battery systems
[37], . ~ . . . Grid-connected operation at any | Highly rely on the LBC; control signals should | Only addressed
[38] PV panels and batteries | Two-layer hierarchical control | High power factors (PFs) be transmitted in real-time for PV converters
Distributed active and reactive Grid-connected operation at any Additional grid voltage .
[66] |PV panels ower (PQ) control Low PFs sensor for each converter;
P same kind of DC sources;
Additional grid voltage
[30] |Ideal DC sources / Low sensor for each converter i
[24] |PV panels Current- Low Same kind of DC sources Rfeacflve power
- voltage- distribution not
[40] |PV panels and batteries n‘ig d:ge T Low Grid-connected operation at considered
ctive power versus unity PF
(CVM) | voltage (P-V) and PF Y
[41] |PV panels and batteries control | versus angular fre- /
quency (PF-w) con-
trol for PV converters
[28] Inverse droop control I§1and1ng operation with resis- Only suitable for RL loads | Cannot adjust the
tive and inductive (RL) loads AC voltage
67] :ztei(\q:e;gngfiztse;}clteixf:t;:)azfer Islanding operation at quadrant |Mathematically unfeasible | amplitude for
Ideal DC sources (£P/Q) droop control Tand IV for pure resistive loads fdazglclggvse;ﬁ?es
[29] Active power versus angular . Grid-connected operation at any / only equal powel,' Not addressed
frequency (P-w) droop control Som;numca— PFs sharing among all
68 PFd trol ron-iree Grid-connected and islanding / converters is
[68] roop contro! operation considered
. . . . Only effective when the load of all converters
. Reactive power versus angular Grid-connected operation with | . .
[69] |DC capacitors frequency (Q-w) and P-V control PF dlose to 0 is reactive (PF close to 0 for all converters);
q Y Specially designed STATCOMs
Decentralized master-slave Poor PV power utilization |Overloading risk
[42] PV ls and control: droop control for the when the PF of the entire | of the dispatch-
di patn; sba]m a master (dispatchable) converter; Islanding operation at quadrant |series system is small able converter;
blsgaﬁc a ;3 source (can PF synchronization control for Tand IV reactive power
[93] © batteries slave (non-dispatchable) / distribution not
converters considered
Cascaded two-layer control: Rely on the central controller and the
. roop control for the system an rid-connected and islandin communication to calculate and transmit
[94] |Batteries droop | for the sy d Low Grid d and islanding icati leul d i

inverse droop control for each
converter cell

operation

power references; specially

developed for
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certain converters, which may result in performance degradation, or even
instability of the entire system.

In fact, a few communication-free methods have been further studied in [94]-[96],
where the LBC is additionally equipped. Nevertheless, as these methods are designed
for other applications, e.g., battery systems, they are still not suitable for series-PV-
battery systems. In addition, overmodulation is another essential issue, as discussed
in Chapter 1. However, this issue has rarely been studied, as also shown in Table 4.1.
Considering the above challenges, a distributed power control method is necessary,
which is expected to achieve 1) the distributed/decentralized power control for
individual converters regardless of their active and reactive power conditions, 2)
properly distributed reactive power among all converters, 3) AOM control for all
converters, and 4) low communication dependency. Therefore, a distributed control
architecture for series-PV-battery systems is proposed in this chapter. Firstly, a PQ
decoupling control is developed to achieve the power regulation of each converter at
any PFs. The proposed PQ decoupling control is communication-free and can be
realized with only local measurements. The droop control is employed for the battery
converter, which automatically compensates the power difference between the PV
power and the load demand, involving the entire system in the voltage and frequency
regulation of the islanded grid. Then, reactive power distribution strategies are
discussed with the aim to distribute the reactive power and balance the loading among
individual converters. Subsequently, AOM control strategies for the PV and battery
converters are respectively proposed, ensuring a stable operation of the system under
1) light load and 2) low PF conditions. All the above functions can be achieved with
low requirements of the LBC. Experiments have been performed to validate the
effectiveness of the proposed control.

4.2. Power Control and Anti-Overmodulation for Individual
Converters

4.2.1. PQ Decoupling Control for PV Converters

In the following analysis, an n-cell system with one battery converter and (n-1) PV
converters is studied. For simplicity, a 3-cell system is exemplified, as shown in Fig. 4.1,
where it can be noticed that all converters have a common line current iine. When the
amplitude and phase angle of the output AC voltage of one converter change, its active
and reactive power will be affected, as shown with the phasor diagram in Fig. 4.2. The
relationship can be expressed as

AP, cos, -V, sin6, || AV, AV,
= Iline . = IlineA (41)

AQ, sinf, V, cosO, || AO, AB,
where Ok and Vi refer to the PF angle and amplitude of the output AC voltage of the
kth converter, respectively, AOk, AVk, APx and AQx are the increments on 6x, Vi, Px, and
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Fig. 4.1: Hardware configuration of a 3-cell series-PV-battery system, where vack is the AC voltage of the k™
converter, Vevm and Vot are the DC voltages of PV #m and the battery, respectively, and vl is the output AC
voltage of the system. Source: [J3], [C4].
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Fig. 4.2: Phasor diagram of a 3-cell series system when (a) the output voltage amplitude of the 1 converter
changes (AV1), and (b) the phase angle of the 1%t converter changes (A6:), where V, is the phasor of vk, Re[]

and Im[] refer to the real and imaginary part of the variable, respectively, and AVi. refers to the increment on
V, caused by the variations of phase-angle of V, . Source: [J3], [C4].

Qx respectively, and A is the coupling matrix. Clearly, there is a coupling relationship
between [APx, AQx]T and [AVk, AB«]T, which is also dependent on the static PF and
voltage of the k™ converter. Reformatting (4.1), it gives

AV A[AP 1 cosf,  sin6, AP
{ k}:—{ k}:— sinf, cos6, { k} (4.2)
Aek I AQk I]ine - Vk Vk AQk

line

where A7 is the decoupling matrix. According to (4.2), the control diagram of
distributed PV converters can be designed, as given in Fig. 4.3(a), where the PQ of each
converter is controlled by PI regulators, with the active power reference obtained from
the MPPT controller. The outputs of the two PI regulators are then decoupled by A,
and the voltage reference of each converter can be obtained. Afterwards, through the
voltage and current dual-loop control, the PQ regulation of each converter can be
achieved regardless of its static PF using only local measurements. As the output
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Fig. 4.3: Control diagrams of (a) the distributed PV converter and (b) the battery converter. The subscript
“PVm” indicates PV #m, and the superscript “*” indicates that the variable is a control reference. Irvm, and Prvm
are the PV current and active power of the m™" PV panel, respectively, Vgnom, wnom, wk, Awk are the amplitude of
the nominal grid voltage, the nominal grid angular frequency, the angular frequency of the k* converter, and
the increment on wx, respectively, 0, is the phase angle of the entire system, vack is the AC voltage of the k"
converter, itacbat is the filter inductor current of the battery converter, nx and PWMk are the modulation index
and PWM signals of the k' converter, respectively, nea and PWMbat are the modulation index and PWM signals
of the battery converter, respectively, and PR refers to the proportional-resonant regulator. Source: [J3], [C4].

frequency of each converter is generated locally, all distributed converters can be self-
synchronized without any communication.

4.2.2. Droop Control for the Battery Converter

The conventional droop control is adopted for the battery converter to enable the
participation of the series system in the voltage and frequency regulation of the
islanded grid, and the control diagram is shown in Fig. 4.3(b). According to the droop
curve, the frequency and total voltage reference of the series system is generated,
which is subsequently regulated by the voltage and current dual-loop control of the
battery converter. By doing so, the entire system will behave as a voltage source with
a droop characteristic, while the power difference between the grid load and the PV
power generation is automatically compensated by the battery.

4.2.3. Stability Analysis

To analyze the stability performance of the system under the above distributed
control scheme and tune the control parameters, a small signal model has been derived
in [J3], where the tracking errors of the inner voltage/current loops have not been
considered for simplification. The model is detailed in the following.

According to the control diagram in Fig. 4.3(a), for the kth converter, it satisfies

Avk G]‘l k G12 k AI)k

= : 4.3)
Aek GZl,k G22,k AQ](
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in which G, = —(kp/P +k, s)cos@k, Gy = —(kp,q +k, s)sinGk, Gy = (kp,p +k,, s)sin 0, /sV,, and
G,y = —(kp,q +k,, s)cos 0, / sV, . Here, kpp, kip, kpq, and kiq are the proportional and
integral gains for the PQ control loops, respectively. The PQ of each converter can be
expressed as

Pk + ]Qk = Vkejgk [(Vtotalefgmm1 - Vgejo )/‘Zf‘gﬁ‘ :|*

+6,)-V, cos(6, +6,)] (4.4)

total

V.
= ﬁ[vm cos (Qk -0
f

.V,
*J

@[le sin(6, =6, +0,) -V, sin(6, +6,) ]|

total

where [Ztl and Or are the amplitude and phase-angle of the line impedance,
respectively. Accordingly, AP« and AQx can be calculated by

AR, A Appy Apy Apyy
{AQTJ :GLPFk (S)L ' a ? : [AEk Aek AVtolal

QLk Q2k aQS,k aQ4,k

T
Aetotal] (45)

Here, Grrrk(s) is the equivalent low-pass filter (LPF) due to the power measurement,
and the other coefficients are expressed as

_ _ I Vool COS(Qk =0, +6f)— Vg cos(@k +6f)
a
ait Vo[ Vi sin(6, 6, +6,)+ V. sin (6, +6, )
tlm,k Vk cos (Gk - etotal + 6{)
Apyy _ i Vkvtotal sin (ek - etotal + ef ) A (46)
A ‘Zf ‘ Vtotal sin (Qk - 6total + Qf ) - Vg sin (Qk + Qf )
Aan Vo[ Vi €08(6, =0, +6,) =V, cos(6, +6,) |
ZQslk Vk sin (Qk - Gtotal + 6{)
- L _Vkatal cos (Qk - Qtotal + ef ) i

Secondly, according to Fig. 4.3(b), the variations on the amplitude and frequency of

the total output voltage can be expressed as

_AQtotalkD,q
N0 A o] 4.7)
S

total total " D,p g

AV

total

where kpp and kpq are the droop coefficients. The total apparent power of the system

is obtained as

1 — JL
Ptotal +] Qlotal - thale |:( Vcotal
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With (4.7) and (4.8), the variations on the measured total PQ can be written as

{ APy } _
AQtutal

GLI’F,mtaI ( S )

12

total

{

total

cos 0, —Vg COS(G
sin0, — Vg sin(@

total

total

+6f)
+6f)

%4

total

-V,

total

Vg sin (6

total

Vg cos(@

total

+ ef) Avtotal
+9f)j“:A6mlali| ’ (4.9)

in which Grekota(s) is the LPF in the droop control. Then, with (4.5)-(4.7) and (4.9), the
small signal model of the closed-loop controlled series system can be described as

bl,l bl,Z 0 0 bl,Zn—l bl,Zn AV]
bZ,l bZ,Z 0 O b2,2n71 b2,2n A91
0 O b2n73,2n—3 bZn—3,2n—2 bZn—3/2n—l bZn—S,Zn Avn—l = 0 M (4'10)
0 O 2n-2,2n-3 2n-2,2n-2 2n-2,2n-1 2n-2,2n Aen—l
0 0 0 O 2n-1,2n-1 2n-1,2n A‘/tota\l
L 0 0 0 0 bZn,Zn—l bZn,Zn ] _Aetotal i
where the coefficients except the last two rows are expressed as
b2k71,2k71 G]l,kal"],k + G]Z,kan,k -1
bZk,Zk—l GZl,kaPl,k + GZZ,kan,k
bZk—l,Zk GZl/kaPZ,k + GlZ,kﬂQZ,k
b2k,2k G21/kaP2,k + GZZ,kHQZ,k - 1
b | G..a,. +G,.a (4.11)
2k-1,n-1 11,k"P3k 12,k7Q3,k
bZk,n—l GZl,kuI’3/k + GZZ,k“QS/k
bZk*l,Zn Gll,ka[’4,k + GlZ,kaQ4,k
L bZk,Zn N L GZ'I ,kaPA,k + GZZ,kaQ4,k B

Here, the subscript “k” indicates that the variable is for the kth converter (k < n). The
last two rows can be obtained as

b2n71,2n71 GLPF,total (S)|:2Vlotal cos 9{ - Vg COS(Qlotal + Gf )J/‘Zf‘
GLPF,lotal (S) Vtotalvg Sin (Qlotal + Gf )/ Zf‘ + S/kD P

- ' . : . @12
GLPF,total (S) |:2Vtotal sin Gf - Vg sin (etutal + ef ):|/‘ Zf‘ + 1/kD,q

~Gipr potal (S)V v COS(Qmm +0, )/ ‘Zf‘

total * g

b2n—l,2n
b

2n,2n-1

2n,2n

According to the small signal model in (4.10)-(4.12), the root loci of a 3-cell system
with the proposed distributed control can be obtained [J3]. Fig. 4.4 demonstrates the
root loci of the system under different control parameters of PV converters, and all
parameters of the system are shown in Table 4.2.. As shown in Fig. 4.4(a), all poles of
the system (13 poles in total) are on the left half plane, which means that the system is
stable. Among these poles, only Ai-As are considered in the analysis, since A7-A13 are
far from the imaginary axis. As it can be observed from Fig. 4.4(b), A1 and A2, A3 and As,
and As and As are conjugate pole pairs, respectively. With the increase of kpp and kp.q,
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Table 4.2: Parameters of the 3-cell system. Source: [J3].

Circuit parameter Value

Feeder impedance (0.02+0.1) Q
Amplitude of the grid nominal voltage Vgnom 311V

Grid nominal angular frequency wnom 2750 rad/s
Steady-state AC voltage amplitudes of PV converters ~ Vi=V2=103.7 V
Steady-state phase angle of the entire system Ootal = 0.02 rad
Steady-state phase angles of PV converters 61 =0.=0.02 rad
Control parameter Value
Parameters of the power loops of PV converters kpp=kpq=0.12, kip=kiq= 0.4
Cut-off angular frequency of Grrrx(s) etk =100 rad/s
Cut-off angular frequency of GreE.otal(s) Weuttoral = 50 rad/s
f/P Droop coefficient kop 2m-107° rad/W
V/Q Droop coefficient kbq 0.005 V/var

A1and A2 are moving towards the imaginary axis, and A3 and A4 are moving away from
the imaginary axis, while As and As are firstly moving away and then towards the
imaginary axis. It means that the stability margin of the series system can be reduced
when the proportional gains of the power controllers are extreme. With the movement
of A3-Ae, the damping ratio of the system also changes, indicating different dynamic
performance of the power control can be achieved. On the other hand, when kip and
kiq increase, A1 and A2 will move away from the imaginary axis, and As-As will become
less damped according to Fig. 4.4(c). Thus, the control parameters of the PI regulators
for PV converters should be tuned considering both the stability and the damping
requirements. The selection of kpp, kpq, kip, and kiq are shown in Table 4.2, and the
operating points of the system with the selected parameters can be observed in Fig. 4.4.

Other control parameters (e.g., kp,p, Weuttotal, €tc.) can also be tuned with the help of
the root loci obtained from (4.10)-(4.12) [J3]. Notably, once the control parameters are
determined, the stability performance of the series system with such parameters
should be evaluated under different steady-state conditions. More specifically, as it is
shown in (4.12), the system stability is related to the static Viotat and Otwtat. Nevertheless,
it is not necessary to analyze the stability performance of the system with different
static Vk and Ok, as the location of poles are not affected by the variations of Vi and Ox.
The analysis on the root loci of the system under different values of kb, weuttotal, Viotal
and Bl is detailed in [J3].

4.2.4. Reactive Power Distribution

As discussed previously, the inappropriate distribution of reactive power can result
in overloading or overmodulation of certain converters, which may eventually lead to
stability issues. To avoid such issues, the reactive power should be distributed
considering the apparent power balancing of all converters. In [J3], a reactive power
distribution strategy has been proposed, where only the information of the total active
and reactive power is received by individual converters through the LBC. With the
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knowledge of the total PQ, the reactive power reference of each converter can be
obtained by assuming 1) the apparent power references of all converters are the same,
and 2) the total voltage is maintained by all other converters with the minimum
required voltage amplitude. This assumption is demonstrated in Fig. 4.5, where the
assumed power are (P2+jQ2)min and (Ps+jQs)min for the 2" and the 3t converter, respec-
tively. With the above assumption, the reactive power reference of the k* converter
can be obtained by solving

P+ i L (4.13)
(P =P)+i(Qua —Q;)| -1
Accordingly, Q, can be expressed as
0, o<0
Q.= % 0>0and No - Q| <|Vo - Q| (414)
Qs 20 and N - Q> [ F - Qo
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Fig. 4.5: Phasor diagram of the reactive power distribution. Source: [J3], [C4].
with
2 2 2 2 2 2
0=Qu 7(” - 2”)|:(n - l) B 7(Ptolal - Pk) 7ij| : (4.15)

where Q, should be limited within the range of [0, Qrotal] to avoid generating excessive
and reversed reactive power. However, the values of the actual output voltages of
other converters are usually not the assumed minimum values. Instead, the actual
output voltages are usually larger, as shown in Fig. 4.5. Thus, the control equations in
(4.14) and (4.15) can result in less reactive power contribution from PV converters, and
at the same time, the battery converter is under higher risk of overloading. To address
this issue, the integer 7 in (4.14) and (4.15) can be replaced by a non-integer d, being an
adjustable coefficient for the reactive power distribution. If d is selected smaller than
n, PV converters can generate more reactive power, alleviating the overloading risks
of the battery converter. In practice, d can also be adjusted online to optimize the power
distribution performance.

Although the reactive power distribution strategy in [J3] has a low communication
dependency, it is still challenging to achieve optimal reactive power distribution with
the strategy in [J3], which is based on the assumption of the operating conditions of
other converters. Nevertheless, with the knowledge of the active power contribution
of all other converters, it is possible to achieve an optimal reactive power distribution,
as discussed in [C5]. According to the approach in [C5], the reactive power references
of individual converters are obtained through mathematical searching algorithms (e.g.,
the PSO algorithm), which is employed to minimize the cost function g:

n

n
8=h lZ(Sk_S)Z'l'pzsz' (4.16)
= k=1
where Sk is the apparent power of the kth converter, S is the average apparent power
of all converters (S =(1/n)3_._S, ), and p1 and p2 are two weighting factors. From (4.16),
it can be noticed that the first and the second terms in the cost function are designed
to minimize 1) the apparent power differences among all converters, and 2) the total
apparent power contribution from all converters, respectively, for the given {P1, ... Pn-1,
Protal, Quotal}. As the calculation of this optimization issue is much simpler than the
harmonic optimization issue discussed in Chapter 2, it requires only 12 ms for the
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Fig. 4.6: Phasor diagram of the system when the total PF is small: (a) the battery converter is overmodulated,
and (b) the battery converter is free from overmodulation with the proposed AOM loop. Source: [J3], [C4].

TMS320F28335 DSP to achieve the optimization with 100 particles and 200 iterations
[C5], which is fast enough to meet the power distribution requirement. In practice, the
PSO-based reactive power distribution algorithm can be executed by any one of the
local controllers, which should collect the active power information of all converters,
and dispatch the calculated reactive power reference to each converter through the
LBC. Although more variables should be transmitted through the communication, the
increase of the communication burden is negligible, as all transmitted data are of slow
dynamics.

4.2.5. Anti-Overmodulation (AOM) Control

Overmodulation may appear on certain converters when 1) the line current fiine
reduces, and 2) the entire system has a high reactive load [J3]. The first case usually
leads to the overmodulation of PV converters. More specifically, when iine decreases
as the load power decreases, the output voltages of PV converters will increase to keep
themselves operating at their MPPs, which could result in overmodulation. The second
case will usually lead to overmodulation of the battery converter, which can be
explained as follows. As shown in Fig. 4.6(a), when Qtotal is large while Protal is small,
PV converters can stay in the MPPT mode owing to a large iine. As the PV converters
already have a high loading, PV converters may only generate active power, according
to the reactive power distribution strategy in (4.14). In this case, a large amount of
excessive active power being (Ppvi+Prva—Putr) will be generated, which should be
absorbed by the battery converter. In addition, the battery converter should also
provide all reactive power, as demonstrated in Fig. 4.6(a), where the apparent power
of the battery equals to (Prota—Ppvi+Ppv2)+jQiotal. Such large power can easily result in
overmodulation of the battery converter.

To address these issues, AOM control method is developed in [J3] for both the PV
and battery converters. The basic idea of the AOM is to curtail the PV power
generation, which is achieved by operating PV panels at a voltage higher than their
MPP voltages. By doing so, 1) the modulation index of PV converters will decrease as
the reduction of PV power, 2) higher DC voltages can be available for modulation, and
3) PV converters can generate more reactive power according to the control equation
in (4.14), and the battery converter will absorb less active power, freeing the battery
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converter from overmodulation, as illustrated in Fig. 4.6(b). The diagrams of the AOM
loops are shown in Fig. 4.7, where two comparison thresholds for the modulation
index are introduced, i.e., the higher threshold being mmu and the lower one being
mumL. For the k" PV converter, when amplitude of the modulation index Mk is higher
than mmH, a voltage increment calculated by a PI controller will be added to the PV
reference voltage. When Mk becomes lower than 1, the PV converter is considered
to be free from overmodulation. In this case, the AOM PI loop will be reset, enabling
the MPPT operation of PV converters.

The AOM of the battery converter is achieved similarly. As shown in Fig. 4.7, a PI-
controller-based AOM loop is designed, where Mvat (amplitude of the modulation
index of the battery converter) is the input variable. All PV converters are involved in
the AOM of the battery converter, but only the PV converter with the highest active
power will discard part of its power. Obviously, the AOM control of the battery
converter is dependent on the LBC, which collects the active power information of all
converters (Prvi, ... Prvn1) for sorting, and sends out the AOM enabling signals
Bat_AOM_flags from the controller of the battery converter. Considering that all these
transmitted variables are of slow dynamics, the LBC is sufficient to achieve the
proposed AOM control. Overall, the architecture of the proposed LBC-based
distributed control is demonstrated in Fig. 4.8, where the PQ decoupling control,
droop control, AOM control, reactive power distribution, and all necessary communi-
cating variables are illustrated.
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4.3. Experimental Verification

Experimental tests have been conducted on a downscaled 3-cell series-PV-battery
system with two PV converters shown in Fig. 4.9. The hardware and control
parameters are given in Tables 4.2 and 4.3. Three cases of experiments have been
performed for validating the effectiveness of the proposed PQ decoupling control,
AOM control and the reactive power distribution method given in (4.14):

Case 1: The first test demonstrates the active power step response of the system, and
the effectiveness of the AOM control for PV converters. As it can be observed in
Fig. 4.10, initially, each PV converter has an active power of 225 W, and the battery
converter offers the remaining 175-W power to meet the 625-W load requirement. Both
PV converters are operating in the MPPT mode, and the two PV voltages are oscillating
around 55 V (MPP voltage), as shown Fig. 4.11. When the load is reduced to 165 W,
the power of each PV converter is reduced to 95 W because of the AOM control, as it
can be seen from Fig. 4.11, where the two PV voltages are increased to 62 V, which
means that a part of PV power is curtailed to keep the modulation indices of PV
converters within the allowed range. The amplitudes of vacpvi and vacpv2 are
maintained at around 53 V, and the amplitudes of the modulation indices for the two
PV converters can be approximated as 0.85 (53 V/ 62 V), which are within the dead-
band of the AOM control ([mmm, mumu]). The battery converter is charged to absorb the
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Fig. 4.9: Photo of the downscaled series-PV-battery system. Source: [J3].

Table 4.3: Parameters used for the experiments. Source: [J3].

Circuit parameters Value

PV rated power per panel 260 W

LC filter for each converter 1.8 mH /30 uF
DC capacitor for each converter 2000 uF
Amplitude of the grid nominal voltage Vgnom 90V

Battery nominal voltage 48V

Control parameters Value
Switching frequency of each converter 5kHz
Sampling frequency of each controller 10 kHz
MPPT sampling-rate 5Hz

MPPT perturbation step-size 25V
Reactive power distribution coefficient d 2.8
Proportional gain of the AOM loop for PV converters kp.aompv = 50
Integral gain of the AOM loop for PV converters kiaompv =500
Proportional gain of the AOM loop for the battery converter kp.aompat = 30
Integral gain of the AOM loop for the battery converter ki aompat = 100
Upper threshold for the AOM loop mmu = 0.9
Lower threshold for the AOM loop mue=0.8
Communication baud rate 9600 b/s

surplus 35-W power. The power control performance of the system is fast and stable
during the load change, while the islanded AC voltage is sinusoidal with high quality.

Case 2: The control performance of the AOM loop for the battery converter is shown
in Figs. 4.12 and 4.13, where the load active power steps from 165 W to 225 W, and
load reactive power steps from 0 to —210 var. The initial conditions of the system are
identical with the steady-state conditions of Case 1. As demonstrated in Fig. 4.12, after
the load step, both Prvi and Prvz are increased to 160 W, while Prat is decreased to -65 W.
while the reactive power is distributed according to the active power contribution of
each converter, being —10 var for each PV converter and -190 var for the battery
converter. The apparent power can be accordingly calculated as 200 VA for the battery
converter and 160 VA for each PV converter. Clearly, the battery converter contributes
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Fig. 4.10: Load active power step response of the series-PV-battery system, where Pt changes from 625 W to
165 W. Source: [J3].
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Fig. 4.12: Load PQ step response of the series-PV-battery system, where the load PQ change from 165 W / 0 var
to 255 W / =210 var. Source: [J3].

with more apparent power than each PV converter using the reactive power
distribution strategy in (4.14) and (4.15), which can be further supported by Fig. 4.13,
where the amplitude of vacpat is slightly larger than the amplitudes of vacpvi and vacrva.
Since the battery converter provides more power, overmodulation of the battery
converter appears at the 11* grid cycles after the load change. The overmodulation of
the battery converter has lasted for approximately 13 grid cycles, and after that, the
battery converter is in the linear modulation region again because of the AOM control,
as demonstrated in Figs. 4.13(c) and 4.14. Both PV voltages are around 58 V, being 3-V
higher than the 55-V MPP voltage, as shown in Fig. 4.13(a), which means that a small
part of PV of power is discarded to keep all converters operating within the allowed
modulation region. During the whole process of the load power step change, the total
AC voltage is stable and sinusoidal, except a 20% voltage drop appeared in the first
grid cycle after the load change (at the beginning of Stage Il in Figs. 4.13(b)). In practice,
such transient voltage drop can be avoided by appropriate start-up strategies.
Nevertheless, the system can still be quickly stabilized with the proposed control even
though the reactive load is “hard-started”, which indicates that the designed system is
of high stability.

Case 3: To demonstrate the reactive power distribution performance, experimental
tests are performed under the same conditions as Fig. 4.11, but the PV power is halved.
It can be observed from Fig. 4.15 that both Prvi and Prv2 are approximately 120 W,
while the battery converter contributes the remaining 15-W power after the load
change. Both PV converters are back to the MPPT mode again, as it can be observed
from Fig. 4.16(a), where Vrvi and Vpv2 are oscillating around 55 V. The reactive power
of —30 var is provided by each PV converter, while the battery converter contributes
the remaining —150-var power. Accordingly, the apparent power can be obtained as
150.7 VA for the battery converter and 123.7 VA for each PV converter, indicating that
the total load power is shared among all converters in a way to balance their loading
with the reactive power distribution method. Evidence can be found by Fig. 4.16,
where the AC voltages of the three converters have similar amplitudes.

Clearly, the optimal reactive power distribution is not achieved with the strategy in
(4.14) and (4.15). As discussed previously, it can be accomplished by employing the
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Fig. 4.13: Voltage and current response of the series-PV-battery system when the load PQ change from 165 W
and 0 var to 255 W and -210 var: (a) two PV voltages, total output AC voltage and the line current, (b) zoomed-
in plot of Fig. 4.13(a), and (c) AC voltages of individual converters. Source: [J3].

optimization-based approach, which is developed in [C5]. More experimental results
can also be found in [C5] in terms of the optimal reactive power distribution, which
will not be detailed in this chapter.

Comparisons between the proposed distributed control scheme and the
conventional hierarchical control in [37] and [38] are shown in Table 4.4. Clearly, the
amount of required data for communication can be significantly reduced with the
proposed control, while real-time communication is no longer required. In the

experiments, the proposed distributed control is achieved with a slow communication
speed (9600 b/s) using the RS-485 protocol, being much lower than the communication
speed in [38] (i.e., 1 Mb/s).
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4.4. Summary

A distributed control method for islanded series-PV-battery systems was developed
in this chapter, which includes the PQ decoupling control for distributed PV
converters, droop control for the battery converter, AOM control for all converters,
and the reactive power distribution strategies. With the PQ decoupling control,
individual PV converters can achieve independent PQ regulation and self-
synchronization using only local measurements, enabling the communication-free
operation of the series system regardless of its PFs. The battery converter automatically
compensates the power difference between the PV power and the load requirement,
while maintaining the output of the series system following the droop curve, which
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Fig. 4.16: Voltage and current response of the series-PV-battery system with halved available PV power, where
the load PQ change from 165 W / 0 var to 255 W / =210 var: (a) two PV voltages, total output AC voltage and
the line current, (b) zoomed-in plot of Fig. 4.16(a), and (c) AC voltages of individual converters. Source: [J3].

enables the participation of the system in the regulation of the grid voltage and
frequency. To analyze the stability performance of the system, a small signal model
was developed for systems with the proposed control, which can be used for the
tuning of control parameters. To alleviate the overloading/overmodulation risks of
certain converters, the reactive power is distributed among all converters in a way to
achieve balanced apparent power sharing among all converters. In addition, two AOM
loops were developed to tackle the overmodulation, which are both achieved
curtailing a part of PV power. Although the reactive power distribution as well as the
AOM for the battery converter are dependent on the LBC, they have very low
requirements for the communication, by which only a few control variables with slow
dynamics are required to be transmitted. Experiments were conducted to validate the
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Table 4.4: Comparisons of the low-bandwidth communication between the conventional hierarchical control
method and proposed distributed control method. Source: [J3].

Parameters Necessary communication variables L Baud-rate of
Communication the LBC i
Variables requiring real- | Variables not requiring protocol QL
Methods time transmission real-time transmission experiments

Conventional Prvi, ... Pevat, Poa, QF, ... | Miow?®, AOmeota®, AMp, ...
hierarchical control Q1) Vevi, ... Veva, Viay, AMpn1¢, AMaqy, ... AMgn1d CAN 1 Mb/s
[37], [38] Mo (311 variables in total) | (21 variables in total)

Protal, Qrotat, Mbat, Prvi, ...
Proposed control [J3] | Prvni, Bat_AOM_Flags® No variables RS-485 9.6 Kb/s
(n + 3 variables in total)

*Motal is the amplitude of mal, which is calculated by the total power control in the central controller [38].
PAOmtotal = Omiotal — 01, Where Omeotal and 0i are the phase angles of #twtl and fine, respectively [38].

“dAMpx and AMgx are the outputs of local PQ controllers of the kth converter, both of which will be added to
Mot to calculate Mk [38]. According to [38], Mk = Mrotal + AMpx and AMqx.

cAll Bat_AOM_Flag signals can be combined as one variable for communication, as each of them are bit-type
signals.

effectiveness of the proposed control in terms of the individual PQ control, AOM, and
the reactive power distribution.
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Chapter 5.
Flexible Active Power Control
for Grid-Connected Series-

PV-Battery Systems

5.1. Background

As discussed in Chapter 1, to avoid the voltage and frequency instability issues due
to the increasing penetration of PV systems, flexible active power control (FAPC)
functions are required for grid-connected PV systems [6], [72], [78]. Conventionally,
the FAPC for single-PV-converter systems is achieved by the modification of the MPPT
algorithm, where the PV operating point is perturbed around a curtailed power point
rather than at its MPP [6], [72], [73], [97]-[100]. However, when applying these FAPC
methods to series-PV-battery systems, there are certain limitations to overcome:

e How to distribute of the curtailed power among multiple converters has not been
discussed in prior-art strategies in [6], [72], [73], [97]-[100], which were developed
for single-converter systems. Nevertheless, it is an important issue in series-PV-
battery systems, where individual converters will become unevenly loaded if the
curtailed power is distributed improperly. In extreme cases, the operation of the
system can be beyond its allowed operating region [101], leading to undesired
power curtailment or instability of the system []J3], [J4].

e The charging/discharging power limit and SoC conditions of the battery
converter should be considered when distributing the curtailed power among
individual converters. However, in [6], [72], [73], [97]-[100], no batteries have
been included in the system configuration, and the FAPC constraints are
maintained by directly discarding a part of PV power.

e To achieve the PRC, the MPP of each PV converter should be periodically
observed to determine the reserved power level [98]. The observation of MPP is
usually realized by routinely operate the PV converters in the MPPT mode [98].
However, for series-PV-battery systems, if the observation of MPPs for
individual PV converters is not properly coordinated, certain converters can
operate in the MPPT mode simultaneously. This can lead to large excessive
power, which can be difficult to be compensated by the battery converter.
Consequently, the battery converter may fail to maintain the total power reserve
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constraints. Especially when the reserved power is a large, the conflict between
observing the MPPs of PV converters and achieving the desired power reserve
will be severe.

Apart from the above FAPC strategies for single-converter systems, several FAPC
strategies have particularly been designed for series-connected systems [40], [74], [102].
For instance, a PRRC method for series-PV-battery systems can be found in [40], which
is based on the CVM control. Two PRC strategies have been developed for CHB PV
inverters, where the total power can be curtailed according to the grid frequency and
the output of a virtual synchronous generator (VSG) in [74] and [102], respectively.
However, similar limitations remain in these strategies:

e The distribution of the curtailed power is not considered in [40] and [74], while
all the reserved power is assigned to only one converter in [102], resulting in a
limited power reserve capability (limited to the capacity of one converter cell).
Especially when the power reserve becomes large, the uneven loading condition
among all converters will aggravate with the strategy in [102].

e Ithasnotbeen addressed in [74] and [102] about the method to avoid the conflict
between observing the MPPs of PV converters and achieving the power reserve.

e The battery power and SoC constraints have not been considered either. More
specifically, 1) no batteries are included in [74] and [102], and 2) the PRRC in [40]
will not be effective when the battery is fully charged.

Considering the above, in this chapter, various FAPC strategies for series-PV-
battery systems (including the PRRC, PLC, and PRC strategies) are proposed based on
the distributed control architecture discussed in Chapter 4. With these strategies, the
total power of the system can be flexibly controlled according to the power ramp-rate,
limiting, and reserve constraint commands. The surplus PV power is distributed
among all converters considering 1) the battery power and SoC conditions, 2) the
available power of each PV converter, and 3) periodical MPP estimation of each PV
converter. All converters are coordinatively controlled to achieve the above functions.
Experiments have been conducted to demonstrate the effectiveness of the proposed
strategies.

5.2. Flexible Active Power Control Strategies

5.2.1. Overall Control Architecture

The hardware structure and the control architecture of a series-PV-battery system
with n cascaded converters is shown in Fig. 5.1, including m1 battery converters and n2
PV converters. The 1¢ battery converter (master controller) is responsible for 1)
collecting and sending the operating conditions of each converter to the grid layer
controller for power scheduling, 2) receiving the FAPC commands from the grid
control layer, and 3) sending the commands and information to individual converters.
In addition, this battery converter is also in charge of directly regulating the total PQ
of the system, as shown in Fig. 5.2. All other converters are controlled locally using the
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Fig. 5.1: Control diagram of an n-cell series system with m battery converters and n2 PV converters, where
Prapres Poims and Poy o are the total power ramp-rate, limiting, and reserve commands from the grid layer
control, respectively, P, and Q,, are the total PQ references, respectively, Vbatx is the DC voltage of battery

otal

#k, and PLC_ENAXk is the power limiting signal for the k™ PV converter #k. Source: [J4].

PQ decoupling control discussed in the previous chapter, and are interlinked with the
1t battery converter through the LBC. For PV converters, their active power references
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Fig. 5.2: Power control loops for the battery converter #1 in Fig. 5.1, which is responsible for regulating the total
active and reactive power of the series-connected system. Source: [J4], [C6].

are generated by the MPPT control, as discussed in Chapter 4. For other battery
converters (except the 1% battery converter), as they should also provide the power
compensation functionality, their active power references can be obtained by

P]: :'Sk[ptotal_szVm] (6.1)
m=1

where ¢k is the power distribution ratio of the k*h converter. In practice, ex can be related
to the battery SoC and power capacity [13], [37], [103], and can be selected as

£,=50C, -Cpii/ D(S0C, Coim ) (5.2)
m=1

in which SoCk and Cratk are the SoC and capacity of the k' battery, respectively.
According to (5.2), the battery power will be proportionally shared among all
converters depending on the available capacity of each battery, and the SoC balancing
control among batteries can thus be achieved. Considering that both the battery SoC
and the coefficient ex are of slow dynamics, only one battery unit is considered in the
remaining analysis for simplification. Therefore, similar to the case in Chapter 4, an n-
cell system with one battery converter is considered in the following.

5.2.2. Power Ramp-Rate and Power Limiting Control

Depending on the charging/discharging power and SoC conditions of batteries,
three operating modes have been designed for the PRRC and PLC strategies, which
are illustrated in Fig. 5.3, where the operation of a 3-cell system is exemplified:

e Mode 1: Normally, the difference between the PV power and the total required
power is fully compensated by the battery, as shown in Figs. 5.3(a), (d), and (g).

e Mode 2: When the power required to be compensated by the battery is too much,
the battery power will be limited to its maximum allowed charging/discharging
power, as shown in Figs. 5.3(b), (e) and (h). As a result, a part of PV power will
be discarded to maintain the total power ramp-up and power limiting
constraints, while the power ramp-down constraint will not be maintained for a
period being Tsa, during which the battery cannot provide sufficient power.

e Mode 3: When the battery SoC reaches its upper or lower limit, battery charging
or discharging will be disabled, respectively. In this case, all excessive PV power
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Fig. 5.3: Three operating modes of the proposed PRRC and PLC strategies, where the operation of a 3-cell
system under the (a)-(c) power ramp-up, (d)-(f) power ramp-down, and (c) power limiting conditions are
demonstrated, Puotlavai and Prvkavai are the available power of the entire system and the k™ PV converter,
respectively, Poatuplim and Pratiwiim are the charging and discharging power limits (upper and lower power limits)
of the battery converter, respectively, and Te: is the period when the power ramp-down constraint fails to be
maintained because of the insufficient battery power. Source: [J4].

will be discarded under the power ramp-up and PLC conditions, as demon-
strated in Figs. 5.3(c) and (i). Notably, the power of both PV converters is
curtailed to the same level to balance their loadings. During power ramp-down,
since the battery cannot provide the power buffering function, the power ramp-
rate (PRR) constraint cannot be maintained, as shown in Fig. 5.3(f). Nevertheless,
such operation conditions (including the condition in Fig. 5.3(e)) should be
prevented in practice, by allocating batteries with sufficient capacities.
According to the analysis of the three operation modes, the control flow charts of
the PRRC and PLC is designed, as given in Fig. 5.4. The basic idea of the PRRC is
explained in the following: if Pvar is higher or lower than its steady-state
charging/discharging power reference P, , P, , will be decreased or increased by Pstep
in each control period Ts. With such approach, Pt will change with a PRR of Pstep/Ts.
P, can be manually set according to charging/discharging power limits and the SoC
condition of the battery. For instance, it can be set as zero, which means that the battery
will be neither charged nor discharged in steady state, but still responsible for
compensating the power difference between the PV power and the constrained Protal
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during dynamics. To eliminate the steady-state oscillation on P, a hysteresis band
P is introduced in the control, as shown in Fig. 5.4(a). Pn can be assigned with two
values, which are denoted as Pthwide and Penrrw (Pthwide > Pthnrrw). When Phat is within
the range of (P;al -P,,B. +P, ), Pw will be set as Pi,wide to avoid frequent perturbations
on P . When Poa is beyond the range of (P;al -P,,B, +Pm), Pw will be changed as

total *

Pt nrrw to reduce the steady-state errors induced by the hysteresis width Pe.
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Notably, P, should be maintained within the allowed operation range [Pbatlwlim,
Pratuplim] according to the battery conditions. However, if the battery SoC is beyond
SoCup (the upper limit of the SoC), or the battery charging power is beyond its
maximum charging power limit (lower power limit) Pbatiwim, the PLC of PV converters
will be activated, as demonstrated in Fig. 5.4(b). In this case, PV converters with their
power close to Prv,max will be selected for power curtailment. As shown in Fig. 5.4(b),
if the power of the i PV converter is higher than (Ppv,max — Ppv,m), the PLC signal for
the i converter (PLC_ENAi) will be enabled, which will disable the MPPT operation
of this converter. In this case, the PV voltage reference of this converter will be
increased by a small step (vseprrc) every MPPT period to achieve the PV power
curtailment, as illustrated in Fig. 5.4(c). Here, a small threshold Prv, is used to enable
the power curtailment of multiple PV converters. On the other hand, if the battery is
operating in normal conditions (S0C < SoCup and Pbat > Pratiwiim), no PV converters will
be selected for power curtailment, and all PLC_ENA signals will be reset to zero.

The PLC of the entire system is achieved similarly. As shown in Fig. 5.4(a), when
the total available power generated by the PRRC (P, ....) is larger than P, ., P..
will be saturated to P, ... Meanwhile, the excessive power (Pf;ml —P;ml,avai) will be
added to B, indicating that the excessive power is fully absorbed by the battery.
When the excessive power (P(Zm - P;ml,m) is beyond the range of [Poatwlim, Pbatuplim], the
power curtailment control of PV converters shown in Figs. 5.4(b) and (c) will be
enabled to avoid overloading the battery converter.

During the power ramp-down, the PRR constraint cannot be maintained if the
battery power reaches its maximum discharging power limit (upper power limit) or
battery SoC reaches its lower limit SoCaw. To avoid overloading the battery, an anti-
overloading control is included. According to Fig. 5.4(a), if the battery power is higher
than its upper limit (Pbatupiim is set as zero when the battery SoC reaches SoCaw), the

excessive power (Pbat — Pratuptim) will be directly subtracted from P, thus

total,avai 7

preventing the battery converter from overloading.
5.2.3. Power Reserve Control

In addition to maintaining the power reserve constraint, the available power
estimation of each PV converter is essential. To achieve this objective, a sensorless PRC
strategy in [98] can be employed. In this strategy, individual PV converters routinely
alter their operation modes between the MPPT and the PLC modes. When the MPPT
is enabled, the available power of each PV converter is estimated using the measured
MPP power, while the excessive power beyond the PRC limit is temporarily stored in
the battery units. In the proposed PRC, the available power of series-PV-battery
systems is estimated similarly, i.e., by the routinely MPPT operation. Nevertheless, if
the MPPT operation of different PV converters is not properly coordinated, e.g., certain
PV converters operate in the MPPT mode simultaneously, the excessive PV power will
be significantly increased beyond the PRC limit, which is difficult to be fully
compensated by the battery converter, as illustrated in Fig. 5.5(a). To address this, in
the proposed PRC strategy, the MPPT operation of different PV converters are enabled
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2, and 3 of the proposed PRC, where Prvkavai is the available power of the k" PV converter. Source: [J4].

in sequence, and the enabling signals are shown in Fig. 5.6. Clearly, at any time instant,
the MPPT operation is enabled for only one PV converter. Then, according to the

enabling signals, the operation of the k' converter can be divided into three periods:
1) InPeriod I, the MPPT is enabled for this converter.

2) In Period II, the MPPT is disabled for all PV converters.

3) InPeriod III, the MPPT is enabled for any other PV converters.

With the above coordination, the simultaneous MPPT operation of multiple
converters can be avoided, as shown in Figs. 5.5(b)-(d), where the operating
waveforms of the proposed PRC are demonstrated. It can be noticed from Figs. 5.5(b)-
(d) that three operation modes have also been designed in the proposed PRC strategy,
respectively, which are similar to the three modes of the PRRC and PLC in Section 5.2.2:
e Mode 1: All excessive power beyond the required power reserve is compensated

by the battery, as illustrated in Fig. 5.5(b).

e Mode 2: When P, is larger than the battery charging limit | Peatiwim |, only a

part of power being | Pvatiwim | will be compensated by the battery, while the rest
part of the excessive power is discarded, as demonstrated in Fig. 5.5(c).
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Fig. 5.7: Zoomed-in figure of Zone 1 in Fig. 5.5(d). Source: [J4].

e Mode 3: When the battery SoC reaches SoCup, all reserved power is discarded, as
demonstrated in Fig. 5.5(d).

It can be noticed from Figs. 5.5(b)-(d) that the operation of the system with the
proposed PRC is more complex than the PRRC and PLC strategies. As shown in
Figs. 5.5(c) and (d), due to the routinely operation mode switching of different PV
converters, when one PV converter estimates its MPP, further power curtailment may
be required for the other PV converter in order to maintain the power reserve
constraints. Zoomed-in operation waveforms of Zone 1 in Fig. 5.5(d) is shown in
Fig. 5.7, where the routinely MPPT of different converters is coordinated by the
PLC_ENA signals. According to the operation waveforms in Figs. 5.5(b)-(d) and Fig. 5.7,
a PRC strategy shown in Fig. 5.8 is designed, which is explained as follows:

1) At the beginning of Period I for the k™ converter, its MPPT operation is
enabled by resetting PLC_ENAk as 0. Then, the historical highest Pevkavg (the
average power of the k™ converter) during Period I will be regarded as the
available power of the kth converter (Prvkavai). Ppvkavg is obtained by using a
low-pass filter (LPF). To accelerate the process of the available power
estimation, the PV reference voltage can be set as FvVrv,oc at the start of Period
I (Fv can be selected between 71-78%, and Vrvoc is the PV open-circuit
voltage) [98].

2) When it enters to Period II, the total available power of the system P, ... is
obtained by summing up Ppviavai of all PV converters. Then, a power limiting
threshold Py ¢ is calculated, which determines the power limiting level of
all PV converters. According to the number of power-curtailed PV converters,
the calculation of Py has also three cases like shown in Fig. 5.9, where the
power curtailment of a 4-cell system with three PV converters is exemplified:
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e Case 1: When all reserved power is absorbed by the battery, Py is
larger than any Prvkavai, as shown in Fig. 5.9(a).

e Case 2: When not all PV converters are power-curtailed, Py will be
larger than at least Prvkavai, as illustrated in Fig. 5.9(b), where only the 1
and 3 PV converters are power-curtailed, while no power is curtailed
from the 2" PV converter.

e Case 3: When all PV converters are power-curtailed, Py pc is lower than
any Prvkavai, as shown in Fig. 5.9(c).

An algorithm is accordingly developed to obtain Py pc . Firstly, all PV

converters are sorted according to their available power. More specifically,

after the sorting, the x(1) PV converter will be the one with the highest
available power, while the x(n—1)* will be the one with the lowest. Their
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curtailed. Source: [J4].

3)

available power are denoted as Prvx)avai and Prvxn-1)avai, respectively. With
the sorted indices x, the P, values for the above three cases can be
calculated:

Case 1: if P, < |Pratiwiiml, Ppypic is assigned with a large value M,
which is much larger than Pevx)avai, and no PV power will be discarded.
Case 2: if P, .. > | Poatiwim|, the algorithm will search from the x(1)* to
the x(n—-1)" PV converters to determine the number of power-curtailed PV
converters. In the at searching round, Ppvx(+)avai is assumed as the value
of Pyypic. With this assumption, the amount of curtailed PV power can be
calculated using

a

Apcomp = ;(P PVx(m)avai P PVx(oﬁ-l),avai) (5 3)
where APcomp is the assumed curtailed power. If APcomp is smaller than the
total discarded power (P.,... = P ), the searching will be continued
by increasing o by 1. If not, the searching will be stopped, and the x(1)* to

the x(a) PV converters will be selected for power curtailment. Fpypc can
be calculated by

PI:V,PLC = [Z PI:Vx(m),avai - Pt;tal,res - Pbat,lwlim ]/a (54)
m=1

-P

bat,lwlim

Case 3: if APcomp is still smaller than (P;Mres ) when a =n -1, the
power of all PV converters should be curtailed. In this case, Py is

calculated by

Pr:v,m‘c = (ljt;tal,avai - Ijt:;tal,res . )/(” - 1) (5.5)

With (5.3)-(5.5), the power limiting threshold for PV converters can be
calculated. Then, the PLC_ENA signals can be generated for individual PV
converters by comparing their power and Py pic.

In Period III of the kt converter, to maintain B, the power of the kth
converter may be further curtailed due to the MPPT operation of another PV
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Fig. 5.10: A 3-cell series-PV-battery experimental setup for the FAPC. Source: [J4].

converter, as shown in Fig. 5.7. More specifically, if Prat is lower than Pbawiim,
while the power of the k" converter is close to Prvmay, the power of this
converter will be further curtailed by enabling PLC_ENAk. Prvmax is the
maximum power among all PV converters except the one in the MPPT mode.
A control dead-band Prvu is introduced to enable simultaneous power
curtailment of multiple PV converters.
With the above control strategies for Period I, II, and III, the total available power
reference P, ..., and the power limiting commands PLC_ENAs for individual PV
converters, are obtained. Then, P, can be calculated by subtracting the required
power reserve P, . from P, ... In the control flowchart in Fig. 5.8, P, is
determined following a ramp-rate (P, prz = Pstep / Ts), which is achieved with a similar
hysteresis control approach shown in Fig. 5.4(a). Overall, the available power
estimation and the power curtailment control of individual PV converters can be
achieved with the proposed three-stage PRC strategy, while the reserved power is
coordinately assigned to individual converters considering the required total power
reserve, PV available power, and the charging/discharging power limits and SoC
conditions of batteries.

5.3. Experimental Validation

To validate the effectiveness of the proposed PRRC, PLC and PRC strategies,
experiments tests have been performed on a 3-cell grid-connected series-PV-battery
system, as shown in Fig. 5.10. Parameters in the experiments are shown in Table 5.1,
unless otherwise noted. Considering that three operation modes of the proposed
PRRC, PLC and PRC are similar in terms of the distribution of the curtailed power,
only the operation Mode 2 of the proposed PRC is validated experimentally, when the
PV power is partially curtailed. Five cases of experiments have been performed:

Case 1: The first test demonstrates the control performance of the series-PV-battery
system under the power ramp-up and power limiting constraints (Mode 1 of the PRRC
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Table 5.1: Parameters for the experimental setup for the FAPC. Source: [J4]

Circuit parameters Value
DC-side capacitors of each PV converter 1360 uF
DC-side capacitors of the battery converter 680 uF

LC filter of each converter 1.8 mH /30 uF
Grid nominal voltage Vi (RMS) and frequency 230 V /50 Hz
Power rating of PV converters 1000 W
Parameters of each PV panel at the STC? Value

Open circuit voltage Vev,ec 333.7V

Short circuit current Ipv,sc 433 A

PV voltage and current at its MPP (Vmrr and Iwrr) 2615V /3.824 A
Parameters of the battery converter Value
Nominal DC voltage 144V
Maximum power +600 W
Battery capacity 20 Ah

Control parameters of individual converters Value
Switching frequency of each converter 10 kHz
Sampling frequency of each converter 10 kHz

MPPT sampling rate 5Hz

MPPT perturbation step-size 6V

Power control parameters for PV converters®

Power control parameters for the battery converter

kpp =2, kip =2, kpq=0.12, kiq=0.4
Kkpprotal = kp,qtotat = 0.005, Kip,total = Kigtotal = 1

Threshold for AOM loops mue = 0.85, munn=0.9
Communication baud rate 9600 b/s
Parameters of the FAPC Value

Total power limit

Charging/discharging power limits of the battery converter

Thresholds for the battery power control

Threshold to enable the PLC of multiple PV converters

Perturbation step-size of the PLC
Control periods for the PRC*

Fraction value when starting the MPPT in Periods I

LPF to calculate Prvkavg for the MPPT estimation

Pl:vtal,hm =1600 W

Pratuplim = 450 W, Phatiwiim = 450 W
Ptinerw =10 W, Pinwide = 20 W

Prvin =50 W

Vieprre =2 V

Tri=3 S, Tr=7 S, Tmro=20's
F,=0.78

1-Hz rectangular window, fsier = 200 Hz!

2STC is the abbreviation of standard test condition.

%kpp, kip, kpq, and kiq are the proportional and integral gains for the PQ control, which have been introduced in

Chapter 4.

Kpptotal, Kipyotal, kpatotal and Kiquotal are the proportional and integral gains of the total PQ loops, correspondingly.

dfsrrr is the sampling frequency of the LPF.

¢Tr1, Tr2 and Twro is the duration of Periods I, II and the period of the MPO_ENA signals.

and PLC). Initially, the available power of PV#1 and #2 are 55% and 100% of their rated,
respectively. Then, the available power of PV #1 steps up to 100%. As shown in
Fig. 5.11, Prv1 quickly increases from 506 W to 920 W, while Protal slowly increases with
a PRR being 40 W/s, until it reaches 1.6 kW, which is the required power limiting value.
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Fig. 5.11: PRRC (ramp-up) and PLC performance when the PV power steps up while the battery power and
SoC are in the allowed limits (Case 1). Source: [J4].
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Fig. 5.12: Voltage response of each converter under the PRRC (ramp-up) and PLC (Case 1), when the PV power

steps up: (a) AC voltage of each converter and the grid current, (b) and (c) zoomed-in figures of Zones 1 and 2
in Fig. 5.12(a), respectively. Source: [J4].

It can be observed that both the PRR and PLC constraints have been achieved with the
proposed PRRC and PLC. The excessive power during the power ramp-up, and the
steady-state excessive power beyond Py (240 W), are all compensated by the
battery converter. The power distribution among all converters can be confirmed by
Fig. 5.12, where vacpat is quickly increased after the step up of PV power. In steady-state,
vacpv1 and vacpvz are in-phase with ig, indicating that the two PV converters only inject
active power to the grid; while vacpat is in opposite phase with 7, indicating that the
battery converter is absorbing power. Before and after the PV power step change, both
PV voltages are around the MPP voltage, as shown in Fig. 5.13. In the entire process,
the grid current ig is kept stable, sinusoidal, and in-phase with vs.

84



Chapter 5
Flexible Active Power Control for Grid-Connected Series-PV-Battery Systems

i:\->The power of PV#1 steps up from 55% to 100% of its rated
Zone1 [] ! [ Zone 2

Vevi (50 V/div)

ity ity
Vv (50 V/div)
»)
»
!
SR - =Y 1 Time (1 s/div)
b sooy sooy ]Z1.DDS 100000 s

@

Veva (50 V/div)

Vrwz (50 V/dl\
F“-\./'*\.-

Vi (50 V/div) 0 (250 V/divY s (10 o (350 V/diy i (10 aTdng

R e e
05 (250 V/dlf\ 15 (10 A/dlv
\\ /\ .= .
V Y Ve \v
ime lme

F--VHe=0 et 0
SO0h @ mv (20 ms/div SO0A o 25w 20 ms/d“’
@ sy ooy Jfomims w0 (@D soov sy Fomims o
(b) (c)

Fig. 5.13: Current and DC voltage responses of the system under the PRRC (ramp-up) and PLC (Case 1), when
the PV power steps up: (a) two PV voltages and the grid current, (b) and (c) zoomed-in figures of Zones 1 and
2 in Fig. 5.13(a), respectively. Source: [J4].

Vevi (50 V/div)

Case 2: In this test, the PLC performance with different battery SoC conditions is
demonstrated, and the experimental results are given in Figs. 5.14 and 5.15 (Mode 3 of
the PLC). The initial condition of this test is identical with the steady-state condition
of Case 1, and afterwards, the battery charging is disabled by setting Pratiwim as 0. As
shown in Fig. 5.14, after disabling the battery charging, Prat slowly increases from
—240 W and oscillates around 0 in steady state. At the same time, each PV converter is
curtailed by approximately 120-W power, while Pt is not affected, which remains
constant at 1.6 kW. The PV voltages shown in Fig. 5.15 provide evidence to the PV
power curtailment control, where Vevi and Vrv2 are increased to be around 285 V, being
higher than the 261.5-V MPP voltage. The grid current ig is stable during the entire
process, which confirms a constant Protal.

Case 3: The performance of PRRC during power ramp-down is demonstrated in
Figs. 5.16- 5.18, where the available power of PV #1 is reduced from 100% to 60% of its
rated (Mode 1 of the PRRC). As shown in Fig. 5.16, after the reduction of Prvi, Protal
slowly decreases with a PRR being —40 W/s, while the battery converter only supports
the active power during the power ramp-down, with its peak value being 360 W. Apart
from the ramp-down period, Prat is oscillating around zero, indicating the battery is
neither charged nor discharged in steady state. The power contribution of each
converter can be confirmed by its output AC voltage shown in Fig. 5.17, where the
amplitude of vacpv1 is decreased because of the reduction of PV power, while vacbat is
only increased during the power ramp-down period. In steady state, the two PV
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Fig. 5.14: Performance of the PLC with battery charging disabled (Case 2). Source: [J4].
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Fig. 5.15: Current and DC voltage responses of the system under the PLC with battery charging disabled
(Case 2). Source: [J4].
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Fig. 5.16: Performance of the PRRC (ramp-down) when the PV power steps down (Case 3). Source: [J4].

voltages are reduced from 285 V to be around 260 V, as shown in Fig. 5.18, which
means that the MPPT control is activated for both PV converters again.

Case 4: Figs. 5.19 and 5.20 demonstrate the PRC performance. In the following test,
Ustep,PLC, Pinnrrw and P, wide are increased to 6 V, 20 W and 30 W, respectively. In Stage I,
P e 18 0, and Poatiwiim = =200 W. As shown in Fig. 5.19, a total power being 1.4 kW is
generated by the series system, with Prvi and Prv2 being 700 W and 680 W, respectively.
Both PV converters are operating around their MPPs, as shown in Fig. 5.20(a), where
both Vevi and Vpv2 are around 260 V. A small part of power being 20 W is provided by
the battery converter due to the control dead-band Pw. Then, P,,,.., is increased to
100 W. As shown in Fig. 5.19, Piwti slowly decreases to 1.3 kW with a PRR being

86



Chapter 5
Flexible Active Power Control for Grid-Connected Series-PV-Battery Systems

é—PThe power of PV#1 steps down from 100%
0 ) i~ to60% of its rated nﬁ

v a 5 ) ime (1 s/d1iv)
& oy w0k |Fiees  oooons)
(a)
0 - Uactat (100 V7/div) fa Dactar (100 V/div)
i N S R [ S SR N T
i 0 Dacgvi (100 V/div)
| ¢ - IF
D / D]
o B / j
ime X . Ti
. iz (5 Afdiv) ¥, .
00y (20 ths/div v @ v 20 ms/div
@@ 1y 5004 Ta0ms 00 (@ 100V 5004 Z200ms 04
(b) (c)

Fig. 5.17: AC voltage response of each converters under the PRRC (ramp-down) when the PV power steps
down (Case 3): (a) AC voltages of individual converters and the grid current, (b) and (c) zoomed-in figures of
Zone 1 and Zone 2 in Fig. 5.17(a). Source: [J4].
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Fig. 5.18: Current and DC voltage responses of the system under the PRRC (ramp-down) when the PV power
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in Fig. 5.18(a). Source: [J4].

0 (250 V/div). s

-5.5 W/s, and the reserved power is fully absorbed by the battery (Mode 1). In Stage
I, P, further increases to 300 W. Since F,, .., > | Poatiwiim |, the battery converter is
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The battery SoC is within its normal range in Stages I-III, and reaches its upper limit in Stage IV. Source: [J4].
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Fig. 5.20: Voltage and current response of the system under the PRC (Case 4): (a) two PV voltages and the grid
current, and (b) AC voltage of each converter. Source: [J4].

charged with its maximum allowed power (200 W), while the remaining 100 W power
is directly curtailed. As it can be noticed from Fig. 5.19, both Prvi and Prv2 are curtailed
to be around 640 W (Mode 2). In this stage, the two PV converters periodically switch
their operation between the MPPT and the PLC modes, which can be confirmed by the
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PV voltage waveforms in Fig. 5.20(a), where both Vpvi and Vev2 are around 260 V firstly,
then increase to 280 V because of the PRC (Periods II), and further reach 300 V when
the MPPT of the other PV converter is activated for the available power estimation.

In the final stage, Pratwiim is assigned as zero to disable battery charging. As a result,
Prat quickly increases and oscillate around zero, while the total 300-W power reserve
is directly curtailed from the two PV converters, which are both curtailed to 540 W
(Mode 3). Compared with the results in Stage III, the PV voltages are further increased
to 295 V and 310 V in Periods II and III of both PV converters, respectively, which
means that more PV power is curtailed. The periodical mode switching of PV
converters can be clearly observed from Fig. 5.20(b), where the amplitudes of vacpvi
and vacpv2 also change in a three-stage manner, which are in accordance with the
changes of Prvi and Prv2 in Fig. 5.19, respectively.

Case 5: To demonstrate the performance of the PRC when PV power changes,
experimental results are given in Figs. 5.21 and 5.22, where the conditions in Stage I
are identical as the steady-state conditions of Case 4. Then, the available power of
PV #1 is increased by 80 W. As shown in Figs. 5.21 and 5.22, the two PV converters
routinely switch their operation from the MPPT mode, PLC mode, and further
curtailed to assist the available power estimation of the other PV converter. In Stage II,
the estimated Ppviavai and Ppvzavai are 780 W and 680 W, respectively. Considering
Py s =300 W, a total power reference being 1160 W can be calculated, being the same
with the value of Protaavg in Stage II of Fig. 5.21. Both Pevi and Pevz are curtailed to be
around 590 W, which is slightly larger than the desired Py = 580 W calculated by
(5.5). This small error is possibly due to the slow dynamics of the LPFs which are used
to calculate the average power of PV converters. Nevertheless, the performance of the
PRC performance is almost not affected by such small errors, as the small excessive
power being only 20 W can easily be compensated by the battery.

In Stage III, Prviavai is decreased by 160 W. As shown in Fig. 5.21, Protalavg slowly
ramps down with a PRR being -5.5 W/s, until it reaches 1.02 kW, which is slightly
higher than the desired 1-kW power. This 20-W error is induced by the control dead-
band Pu. The available power of the 1%t and the 2"d PV converters is correctly estimated
as 620 W and 680 W, respectively, and both PV converters are curtailed to 520 W in the
PLC mode, with a small power being only ~20 W absorbed by the battery converter to
fulfil the requirement of P, ..

It can be noticed that Prvat is not strictly within the range of [Poatiwlim, Pbatuplim]
according to the experimental results in Figs. 5.19 and 5.21. This is mainly because of
the low bandwidth of the PRC. In addition, since the battery should also compensate
for transient power variations, the instantaneous value of Prat can easily exceed the
desired battery power range for a short while. Considering the above, sufficient
margins should be reserved for the battery power capacity. Moreover, as it can be
observed from Figs. 5.19 and 5.21, there are small steady-state errors in Protat and Poat,
which is induced by the control dead-band. As the errors are relatively small (1.25% of
the system rated power), it is acceptable in practice. However, such error on Ppat can
still lead to the cumulative charging or discharging of the battery. To avoid this, a
simple hysteresis-control-based SoC self-balancing method can be employed [J4].
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Fig. 5.21: Performance of the PRC under varying PV power (Case 5). Source: [J4].

Stage I Stage III

IR T rm .’5- "mmu’\u.n-
Y "f " IV

P

T @ 5 |~ Vevi=0 | Time (40's/div)
& coov so0v Jnas |
@
i<— Stage I Stage II Stage I11

v

Dachat (250 V/div)

» gt s e s A
: i Time (40:s/div)
=Y @ =
b s0Y Jnas ]

(b)

Fig. 5.22: Voltage and current response of the system in Case 5 of the experimental tests: (a) PV voltages and
the grid current, and (b) AC voltages of individual converters. Source: [J4].

5.4. Summary

In this chapter, FAPC strategies (including the PRRC, PLC, and PRC) have been
developed for grid-connected series-PV-battery systems. With the proposed strategies,
individual converters are coordinatively controlled to fulfil the PRRC, PLC and PRC
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requirements, while the power curtailment is assigned to individual converters
considering a variety of constraints, including the available power of PV converters,
battery charging/discharging power limits and SoC conditions, and the total power
constraints from the upper grid layer control. With the proposed control strategy, the
safe operation of the battery converter, load power balancing among PV converters,
and high utilization of PV power can all be achieved.

The proposed PRRC and PLC strategies are mainly achieved by 1) modifying the
MPPT control, 2) a hysteresis-based battery power control, and 3) the coordinated
power curtailment of PV converters. The implementation of the proposed PRC is more
complex, as it also requires the estimation of the available power of each PV converter.
More specifically, when one PV converter is estimating its available power, all other
converters should be coordinatively controlled to assist this converter observing its
available power. The operation of each PV converter is divided into three stages: 1) the
available power estimation stage (MPPT mode), 2) the power limiting stage to achieve
the power reserve, and 3) the coordinatively controlled stage to assist the available
power estimation of other PV converters. The implementation of the proposed PRRC,
PLC and PRC strategies will not burden the LBC, as only a few control signals and
variables are required, and all of them are of slow dynamics. Experimental results have
validated the effectiveness of the proposed FAPC strategies.
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Chapter 6.

Conclusion

6.1. Summary

This Ph.D. project was focused on advancing prior-art control schemes for better
integration of distributed PV panels and batteries into distribution systems using
series configurations. Challenging control issues for series-PV-battery systems, and the
limitations of prior-art methods have been discussed, and solutions have been
proposed to overcome these limitations. This Ph.D. thesis is summarized as follows:

In Chapter 1, conventional converter configurations to integrate distributed PV and
battery units have been reviewed, as well as their advantages and limitations. Then,
series topologies have been introduced, which can be promising for future PV-battery
systems. To extend the application of series configurations, many efforts have been
made to improve the performance of the output voltage/current/power, reduce the
cost, and simplify the control of series systems. These efforts include developing
appropriate modulation methods, power control methods, and distributed/decentral-
ized control schemes. However, as most of them are not specifically developed for
distributed PV-battery applications, they are not suitable for series-PV-battery
systems. In addition, several essential issues remain unaddressed in series-PV-battery
systems, such as interharmonics, overmodulation of individual converters, and the
flexible active power control (FAPC) functions, further limiting the application of
series-PV-battery systems. Thus, to tackle these issues and overcome the limitations in
prior-art research, solutions have been developed in the following four chapters.

As for the modulation for series-PV-battery systems, the variable angle phase-
shifting (VAPS) PWM method based on mathematical searching algorithms has been
firstly introduced in Chapter 2. The VAPS PWM method aims at minimizing the high-
frequency harmonics when the outputs of individual converters are nonidentical,
being one of the most suitable modulation methods for distributed series-PV-battery
systems. However, it generally takes hundreds of milliseconds with a common
standard digital signal processor (DSP) to calculate the optimal carrier phase-shifting
(PS) angles for the VAPS PWM method. During the period when the optimal angles
are not calculated, the total harmonic distortion (THD) performance of the system can
be degraded. Thus, to improve the optimization speed, a hardware-based approach
for the VAPS PWM method has been proposed, where a few calculation units are
implemented in field programmable gate arrays (FPGAs). By doing so, multiple
computations can be executed in parallel, and the dynamic performance of the VAPS
PWM method can be significantly improved, being dozens of times faster than the



Summary

DSP-based method. The proposed computation-efficient VAPS PWM method can also
be easily applied to series systems with more cascaded converters.

In Chapter 3, the interharmonic issue in cascaded H-bridge (CHB) PV converters has
been discussed, which occurs due to the in-phase MPPT perturbation of individual
converters. To mitigate interharmonics, a phase-shifting MPPT (PS-MPPT) scheme has
been proposed, which adjusts the phase-angles of the DC-side oscillations for
individual converters in a way to counteract with each other. With this approach,
interharmonics due to the in-phase MPPT control can be fully eliminated for CHB PV
converters with an even cascaded number. To further suppress interharmonics from
CHB PV converters with an odd cascaded number, a hybrid PS-MPPT method has
been proposed, where the PS-MPPT and the random sampling-rate MPPT methods
are simultaneously applied to different converter cells. The interharmonic suppression
performance of the random sampling-rate MPPT method has also been investigated
and being another cost-effective solution to mitigate interharmonics. The above
methods are all based on the modification of conventional MPPT algorithms, avoiding
the equipment of additional energy storage units to mitigate interharmonics.
Considering that the PS-MPPT and the random sampling-rate MPPT methods are
either compromised in the dynamic and steady-state interharmonic suppression per-
formance, respectively, a hardware-based approach — the “interharmonic filter” has
been proposed. With an additional converter only with capacitors on its DC link,
interharmonics from CHB PV converters due to the MPPT perturbation can be
completely mitigated. In practice, the interharmonic filter can also be selected among
the PV converter cells, avoiding further costs of the additional converter.

Although various distributed/decentralized control schemes have been developed
for series systems, they are either highly dependent on the real-time communication,
or only suitable for limited operation conditions (e.g., equal power sharing with
identical power factors among all converters). In addition, the reactive power sharing
among all converters and the anti-overmodulation (AOM) of individual converters
have rarely been studied. Thus, a distributed control architecture has been developed
for islanding series-PV-battery systems in Chapter 4, which is less-dependent on
communication. The proposed control scheme includes the PQ decoupling control of
each PV converter, droop control of the battery converter, a reactive power
distribution strategy with low communication requirements, and the AOM control for
all converters. With the PQ decoupling control, individual converters can be self-
synchronized with the series system using only local measurements, regardless of their
power factor (PF) conditions. The battery converter compensates for the difference
between the PV power generation and the load power following the desired droop
curves, enabling the system to regulate the voltage and frequency of the islanding grid.
Reactive power is shared by all converters in a way to balance their loadings,
alleviating the overmodulation and overloading risks of certain converters. Two AOM
control loops have been designed for individual PV and battery converters, achieved
by curtailing a part of PV power. The proposed distributed control scheme can be
achieved with low communication requirements, through which only a few variables
and control signals with low band-width should be transmitted.
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Conclusion

Based on the distributed control architecture for series-PV-battery systems in
Chapter 4, flexible active power control (FAPC) strategies have been further developed
in Chapter 5, including the power ramp-rate control (PRRC), power limiting control
(PLC), and power reserve control (PRC) strategies. Different from prior-art FAPC
strategies which are mainly focused on single-inverter systems, in the proposed
strategies, multiple converters are coordinatively controlled considering a variety of
constraints. These constraints include the battery charging/discharging power limits
and SoC conditions, the available PV power of each converter, total PRRC, PLC and
PRC constraints, and the requirements for estimating the available PV power. With the
above, the FAPC constraints can be maintained, while the curtailed/reserved power of
the system is properly distributed among all converters, ensuring a balanced power
sharing performance, and reducing the overmodulation/overloading risks of certain
converters.

6.2. Main Contributions

The main contributions of this Ph.D. project can be summarized as:
¢ Computation-efficient VAPS PWM method

A computation-efficient VAPS PWM method has been developed and verified
experimentally in this Ph.D. study. With the parallel computing in FPGAs, the
optimization of the conventional DSP-based VAPS PWM method can be
improved dozens of times faster, and significantly improves the response speed
of VAPS PWM methods.

¢ Interharmonic mitigation for CHB PV converters

A PS-MPPT scheme has been proposed to mitigate interharmonics from CHB PV
converters induced by the in-phase MPPT perturbations of individual converter
cells, achieved by synchronizing and phase-shifting the DC-side oscillations of
all PV converters. Based on the PS-MPPT method, the following methods have
been further developed and investigated:

1) The hybrid PS-MPPT method to further suppress interharmonics from CHB
PV converters with an odd cascaded number.

2) The random sampling-rate MPPT method for CHB PV converters to suppress
interharmonics in dynamic conditions (e.g., under varying solar irradiance).

3) A “interharmonic filter” approach to compensate interharmonics regardless
of the MPPT conditions (i.e., DC-side oscillation conditions) of all PV
converters.

The effectiveness of all these methods has been validated by either simulations
or experimental results.
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¢ Distributed control method for islanded series-PV-battery systems with low

communication requirements

A distributed control scheme for islanded series-PV-battery systems have been
proposed to achieve 1) self-synchronization of individual converters, 2) regula-
ting the frequency and voltage of the islanding grid, 3) apparent power balancing
among all converters, and 4) AOM control for all converters. Correspondingly,
the following methods have been developed:

1) PQ decoupling control for individual converters and droop control for a
battery converter

2) Two reactive power distribution strategies

3) AOM control for PV and battery converters based on the coordinated PV
power curtailment

Experiments have been conducted for validating the effectiveness of the
proposed control, which can be achieved with very low communication
requirements. In addition, a small signal model of the series-PV-battery system
under the proposed control has also been developed to analyze the stability
performance and help tuning the parameters of the control loops.

FAPC methods for grid-connected series-PV-battery systems

As FAPC functions are becoming mandatory for PV systems, FAPC strategies
for series-PV-battery systems have also been developed during the Ph.D. study,
including the PRRC, PLC, and PRC. The above strategies are achieved through
a coordinative control of all converters, where the curtailed power is shared
among them considering 1) the battery charging/discharging limits and SoC
limits, 2) the available PV power of each converter, 3) the total PRRC, PLC and
PRC constraints, and 4) the requirements to estimate the available power of
individual converters. The effectiveness of all these proposed FAPC strategies
have been experimentally verified.

6.3. Future Research Perspectives

Control-related issues for series-PV-battery systems have been addressed in this

Ph.D. project in terms of the modulation, interharmonic mitigation, distributed control,
and the flexible power control of the system. However, many issues remain to be
resolved, as listed in the following:
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resources, e.g., FPGA size and communication bus width. According to the
experimental results, the THD of the output multilevel voltage can still be
degraded for a short period (less than one fundamental cycle) using the
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proposed computation-efficient VAPS PWM method. Due to this, the output AC
filters should still be overdesigned to improve the output harmonic performance.
Thus, in the future, more efforts can be made to accelerate the optimization speed,
including 1) employing a wider parallel bus, 2) incorporating all the PSO
algorithm in FPGAs, and 3) optimizing the circuit layout in FPGAs. By doing so,
the reduction of the AC filter size can be possible due to the bandwidth extension
of the VAPS PWM methods.

Regarding the distributed control and FAPC of series-PV-battery systems, only
the control of short time scales (millisecond to minute levels) has been studied
and experimentally verified. Control and planning issues of longer time scales
have not been investigated:

1) In the proposed strategies, the system follows the power scheduling com-
mands from the grid control layer, but how to determine these commands
has not been discussed (the interaction with the grid control layer).

2) The battery SoC condition is simply considered as one control constraint in
the proposed strategies. Nevertheless, how the operation of the system with
the FAPC affects the battery SoC and state-of-health (SoH) has not been
investigated.

3) Batteries are used to solve the conflicts between maintaining the total power
constraint and maximizing PV power yield. However, how to maximize the
total benefits by allocating batteries with appropriate capacity remain
undiscussed.

4) As individual converters are usually unevenly loaded, they will have
different aging profiles, which can affect the reliability performance of the
entire system. However, the reliability assessment, and power routing strate-
gies to enhance the reliability of the entire system have not been studied.

Thus, it calls for further studies on the system behavior under longer time scales
(hour / day / month levels), which include: 1) mission profile analysis of both PV
and battery converters, 2) reliability assessment of the entire system, 3) develop-
ing appropriate strategies to interact with the grid control layer, 4) proposing
design criteria for determining the battery capacity to maximize the benefits, and
5) developing power routing strategies to enhance the reliability of the entire
system.

In the proposed distributed control scheme, individual converters can be self-
synchronized with others. However, as the self-synchronization is based on a
power measurement, it is challenging to synchronize all converters during the
start-up, when the line current is not established. On the other hand, it is also not
suitable to rely on the communication for the start-up, as individual converters
may not start simultaneously due to the communication delay. In the
experimental tests of this Ph.D. project, all converters have been synchronized
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with a common start-up signal during the start-up for simplification. Thus, how
to synchronize individual converters during the start-up process, and then to
develop appropriate start-up strategies for series systems are needed.

Due to the removal of the DC/DC boost conversion stage, one advantage of
single-stage series configurations is the improved efficiency. Nevertheless, the
efficiency of the series system has not been studied in this project. As the
employment of the VAPS PWM method may improve the efficiency of the entire
system, it could be interesting to evaluate the converter efficiency under the
proposed VAPS PWM method (including both the conventional DSP-based and
the FPGA-based methods). Moreover, the reactive power can also be distributed
among all converters to optimize the overall efficiency of the system. These
topics are expected to be studied in the future.

Compared with conventional parallel structures, series systems have limited
fault-tolerant capability, as the malfunctions of any converter cells will affect the
operation of the entire system. Although the fault-tolerant control methods
against the semiconductor fault have been studied previously for series-
converter systems, they have not been systematically evaluated for series-PV-
battery systems. In fact, fault tolerant control issues in series-PV-battery systems
are more complex. For instance, when PV panels are plugged into the DC rails,
the criteria for identifying the fault (e.g., through analyzing the operating
waveforms of the line current) can be different from previous studies, where
only ideal DC sources or only capacitors have been considered in the DC side.
Moreover, the MPPT operation of PV converters will also be affected under
semiconductor faults. Therefore, the fault tolerant control of series-PV-battery
systems requires further investigation.

Only single-phase systems have been considered in this Ph.D. project. It can be
interesting to extend the proposed methods to three-phase systems, where the
conditions can be more complex. To list a few:

1) The optimization of the high-frequency harmonics in three-phase line volt-
ages (inter-phase voltages) can be more complex than the optimization of the
phase voltage in single-phase systems.

2) Configurations of series-PV-battery systems can be more flexible in three-
phase systems, bring more complexities in developing appropriate control
strategies (e.g., a lumped three-phase inverter can be employed to integrate
the battery, while PV panels are still interfaced to individual H-bridge
converters).

3) Three-phase power quality issues are more complex than single-phase
systems (e.g., three-phase unbalance of the grid voltage and PV power
generation, three-phase short-circuit faults).
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