
Aalborg Universitet

SystemC-AMS SDF Model Synthesis for Exploration of Heterogeneous Architectures

Popp, Andreas; Herrholz, Andreas; Gruettner, Kim; Le Moullec, Yannick; Koch, Peter; Nebel,
Wolfgang
Published in:
Proceedings of the 13th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and
Systems

DOI (link to publication from Publisher):
10.1109/DDECS.2010.5491801

Publication date:
2010

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Popp, A., Herrholz, A., Gruettner, K., Le Moullec, Y., Koch, P., & Nebel, W. (2010). SystemC-AMS SDF Model
Synthesis for Exploration of Heterogeneous Architectures. In Proceedings of the 13th IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (pp. 133-138). IEEE (Institute of
Electrical and Electronics Engineers). https://doi.org/10.1109/DDECS.2010.5491801

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/DDECS.2010.5491801
https://vbn.aau.dk/en/publications/d3acd4a0-21e9-11df-bb17-000ea68e967b
https://doi.org/10.1109/DDECS.2010.5491801

SystemC-AMS SDF Model Synthesis for

Exploration of Heterogeneous Architectures

Andreas Popp∗, Andreas Herrholz†, Kim Grüttner†,

Yannick Le Moullec∗, Peter Koch∗ and Wolfgang Nebel‡

∗Center for Software Defined Radio, Department of Electronic Systems, Aalborg University, Denmark

Email: {anp,ylm,pk}@es.aau.dk
†OFFIS, R&D Division Transportation, Oldenburg, Germany

Email: {andreas.herrholz,kim.gruettner}@offis.de
‡Carl von Ossietzky University Oldenburg,

Faculty II - Department for Computer Science, Division Embedded HW/SW Systems, Oldenburg, Germany

Email: wolfgang.nebel@informatik.uni-oldenburg.de

Abstract—Cost efficient design of embedded HW/SW systems
that need to meet certain requirements is a complex task due
to the huge number of possible solutions, the ”design space”.
Design space exploration methods depend on the designers’
input in terms of application description, target architecture,
and cost estimates for implementation alternatives. Obtaining
feasible pre-implementation cost estimates causes lots of effort
since the designer does not have confident information before
implementation on the target architecture, or even different
target architectures, has been performed.

In this paper we present a methodology suitable for auto-
matic cost estimation of synchronous data flow (SDF) graphs.
We propose to start from an executable SystemC-AMS SDF
specification, and demonstrate its automatic transformation and
implementation for cost estimation on heterogeneous HW/SW
architectures. The presented methodology allows the estimation
of both HW and SW implementation alternatives of each SDF
node based on a quick synthesis approach. These cost estimates
are fed to a mapping framework to obtain a static binding
and schedule for the architectures under exploration. With the
proposed methodology the designer does not have to perform full
synthesis and implementation for design space exploration. This
is demonstrated by a case study of a Bluetooth baseband unit
considered for implementation on a Xilinx Virtex-5 FPGA.

I. INTRODUCTION

Heterogenous architectures consisting of different kinds

of processing units, like CPUs, DSPs, ASIPs, and custom

hardware, provide a vast amount of different implementation

alternatives for a given application. In order to obtain the

most cost efficient implementation as a System On-a-Chip

(SoC), different architecture configurations in terms of area

consumption, execution speed etc. need to be evaluated.

However, this is an extensive task due to the many degrees

of freedom the designer has in aspects of

1) design of the processing and communication architec-

ture, and

2) options for selecting where and when to perform which

tasks (binding and scheduling).

The design of heterogeneous HW/SW systems is aided by

the use of methodologies that output a binding and a schedule.

We propose to build upon our existing mapping framework [1].

The mapping framework handles heterogeneous static HW/SW

architectures and takes as input specifications: 1) application

model, 2) architecture model, and 3) cost attributes and

mapping constraints.

The mapping framework is a combination of multiprocessor

scheduling and pre-scheduling of HW/SW partitions. Follow-

ing the specification, the application’s tasks (described by a

directed acyclic data flow graph) are partitioned between HW

and SW units based on execution time. The HW flow utilises

temporal partitioning to create sequentially executable clusters

of HW configurations, represented by super-nodes. The execu-

tion time of the super-node is the maximum execution time of

the tasks it contains. For static architectures, a HW super-node

is composed based on which tasks are available first. The rest

of the tasks are repartitioned to SW. The super-nodes are fed

back to the original SW multiprocessor scheduling flow via

an updated task graph. The scheduler uses the Extended DLS

scheduling algorithm [13] for heterogeneous multiprocessor

architectures to schedule SW and HW execution. The schedul-

ing algorithm takes into account interprocessor communication

between SW units as well as the HW/SW communication.

The result of the mapping framework mainly depends on the

input of cost estimates for given architecture elements and the

binding of tasks. Thus it is crucial to have feasible estimates

for the mapping to the examined execution architectures in

order to obtain realistic exploration results.

In our previous work the experiments were based on abstract

application and costs estimates. Therefore, we propose a

methodology to provide and obtain such information based

on a specification of the application via a Synchronous Data

Flow (SDF) model [3]. The methodology presented here serves

as a preprocessor for the mapping framework. Thus, our

contribution is an approach for HW/SW implementation cost

estimation from an SDF application model combined with a

heterogeneous multiprocessor system scheduling framework.

The paper is organised as follows: First, we take a look

at related work and describe the proposed methodology for

This is the author’s version of the paper published in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

1

automatic cost estimation of SystemC-AMS models for het-

erogeneous HW/SW architectures. The methodology will be

presented along a BlueTooth baseband processing unit from

the domain of Software Defined Radio (SDR). This is followed

by the application of the methodology to the BlueTooth

case study and an exploration of different target architecture

mappings is presented. The paper closes with a conclusion.

II. RELATED WORK

Initial work on finding schedules for parallel and sequential

execution of SDF models has been presented in [3]. In [4]

this work has been extended towards buffer minimisation for

sequential execution on a single processor. More recently, a

buffer-minimising method for mapping SDF models on het-

erogeneous HW/SW architectures is presented in [2]; however,

it is based on a formal non-functional model and does not

consider implementation costs.

There is a lot of previous and ongoing work in the field

of hardware and software synthesis from SDF and other data

flow models. Most works on software synthesis are based on

the work on static scheduling of SDF models but typically

they do not take into account costs like area and system

performance. In [6] a method for generating hardware from

SDF models is proposed based on existing work on software

synthesis. While it includes proposals for different hardware

architectures, it does not explicitly consider any modelling lan-

guage or tool-based design automation. Other approaches for

hardware synthesis, as in [7] and [8], are based on predefined

building blocks restricting the set of available computation

primitives. A complete and automated design flow for SDF

based hardware synthesis based on the actor language CAL is

presented in [9].

A design space pruning tool for FPGA design is presented

in [10] where the application is specified in C. Each op-

eration corresponds to one or more basic Register Transfer

Level (RTL) architecture elements, and the cost of different

RTL datapaths is based on scheduling onto a combination

of those basic RTL elements. A quite similar approach to

ours has been presented in [11]. The flow is based on a

tool called SystemCoDesigner enabling automated exploration

and system-level synthesis of HW/SW systems for data flow

applications. Initial specification is done in terms of a dynamic

data flow model called SystemMoC using a set of predefined

SystemC modelling elements. This is different to our work,

as we use SystemC-AMS as an initial specification of the

application. To the best of our knowledge, there is no existing

work on hardware synthesis of SDF models using SystemC-

AMS for initial specification and SystemC for final hardware

implementation.

III. METHODOLOGY

The methodology presented in this work is outlined in

Fig. 1. The user application is specified as a SystemC-

AMS [14] SDF model which describes the tasks to be per-

formed, their interdependency, and their activation based on

a user-defined transaction container, also called “token”. The

SDF model of computation has been selected as it allows

the calculation of a static schedule [3], and thus allows its

automatic transformation into an acyclic task graph required

by the mapping framework. We have chosen SystemC-AMS,

because it adds an SDF-layer to the SystemC discrete event

simulation kernel enabling C/C++ based specification of ex-

ecutable SDF models and their integration into system level

models. Furthermore it is non-proprietary, freely available and

has recently become an Open SystemC Initiative standard.

The architecture model in our methodology is composed

of architecture templates: Software processing elements with

local memory, dedicated hardware processing elements, and

communication infrastructure for the interconnection of these

processing elements.

The cost estimation, as shown in Fig. 1, performs a charac-

terisation of each SDF module for each processing element of

the architecture template library. Our proposed cost estimation

approach is based on automatic code transformation which

allows the synthesis of the behaviour of each SDF module

to either dedicated hardware or software. For hardware cost

estimation we perform SystemC to VHDL synthesis with

our synthesis tool [15]. Logic synthesis for the chosen target

technology (e.g. Xilinx Virtex-5 FPGA) allows accurate cost

estimates in terms of area, critical path length in terms of

fmax, and number of clock cycles per activation of each

SDF module. For software cost estimation we propose the

use of a lightweight SystemC data type library which can

be compiled along with the behavioural code of the SDF

block. Therefore, our methodology allows the direct cross

compilation and profiling of the SDF module on the chosen

target processor. For obtaining the number of clock cycles per

SDF module activation we use a generic test bench for HW and

SW modules. It generates input stimuli for profiling, based on

recorded traces of the SystemC-AMS simulation model. This

allows to profile the minimum, average, and maximum number

of clock cycles per activation.

To guarantee the correct communication and activation

according to the SDF model of computation, our methodology

provides certain HW Module and SW Module wrappers, which

can be connected via FIFOs. The communication controllers

for the FIFOs are part of the architecture template library and

can be customised in terms of packet format (i.e. payload

or token), communication width, and FIFO depth (number of

payloads per FIFO).

The mapping framework takes an architecture configuration,

which is an instantiation of processing and communication

elements of the architecture template library. The second input

of the mapping framework is an acyclic task graph which is

generated from the SDF graph through static scheduling.

In the following, we describe the methodology and illustrate

it by a case study.

A. Case Study

The performed case study is based on a baseband processing

unit for a BlueTooth (IEEE 802.15.1) transmitter [12]. The

baseband unit processes data and packs it into packets that are

This is the author’s version of the paper published in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

2

SDF

behaviour

SDF

behaviour

SDF

behaviour

SystemC-AMS Application Model

Architecture Template Library

including static architecture costs

Processing
Elements

Communication
Elements

HW SW
Shared

Bus
FIFO

Application Specific Binding Cost

Estimates

SW

Module

FPGA

logic
SW

Processor

FOSSY cross
compiler

Test

Bench

profiling profiling

Cost

Estimation

Architecture Configuration

SW

SW

HW

HW

Aalborg University

Mapping

Framework

(AUMFRA)

Task Graph

Pareto Chart

HW

Module

S
D

F
 S

c
h

e
d

u
lin

g

code transformationstimuli

Mapping?

Mapping Result

Fig. 1. Overview of the proposed methodology.

transmitted by the modulator and RF front-end in time-slots of

625 µs. The SDF representation of the baseband unit is shown

in Fig. 2a. It composes a packet based on three parts; synchro-

nisation word, packet header, and payload. We have chosen

to focus on the mode of operation with the most processing

requirements, the Frequency Hop Synchronisation (FHS) or

Data-Medium Rate (DM1) payload types including Cyclic

Redundancy Check (CRC) checksums to payload, whitening,

and (10,15) Hamming Forward Error Correction [12].

The first step of the methodology is the transformation of the

SDF graph into an acyclic task graph which can be processed

by the mapping framework.

B. Application Model (Task Graph)

The application input model of the mapping framework

is a directed acyclic data flow graph, G = (V,E), where

the nodes, {v0, . . . , vnv−1} ∈ V , represent tasks. During this

work we call it Task Graph. The edges, {e0, . . . , ene−1} ∈ E,

represent data dependencies. Each edge is assigned a width,

w0, . . . , wne−1, describing how much data is generated and

consumed by the nodes.

This application model is derived from the SDF specifica-

tion through graph transformation. It starts with the calculation

of a static schedule of the SDF specification wich can be

represented as an Acyclic Precedence Graph (APG) [5]. The

above mentioned application task graph only allows sequential

execution along the dependency of tasks. Therefore, the APG

needs to be “folded” into a sequential order of tasks. A valid

static schedule of the SDF graph of the case study from Fig. 2a

is shown as an acyclic task graph model in Fig. 2b.

The SDF scheduling and graph transformation for the case

study consist of the following steps:

1) Compute a static schedule of the SDF model and map

the scheduling sequence into an acyclic task graph.

Fig. 2. Illustration of the SDF scheduling and graph transformation
procedure. The dashed arrows relate to a graph transformation step, with
a number related to the steps in Section III-B. a) Synchronous Data Flow
graph for Baseband data path of the BlueTooth transmitter. The underlined
numbers on the arrows are tokens, describing the relation between quantity of
input and output data (in bit). The switch composes the packet from the three
parts: synchronisation word, header, and payload. The header and payload data
have been appended error checksums, whitened, and forward error correction
coded [12]. The static schedule consists of three parallel paths: 1) A, 2) B-
C-D, and 3) E-5F-5G, followed by the join node, H, after all three paths are
finished. b) Task Graph for case study. The graph is derived from Fig. 2a
through our proposed method. The nodes denote operations and the edges
denote communication. The letters inside nodes relate to the task in Fig. 2a.
The numbers inside nodes determine the number of times the functionality
of the task is called before the node is finished. This is determined by the
number of activations in the static schedule. The bold italic numbers is the
total number of input and output bits of a node. The edges are annotated with
a number, indicating the number of 32-bit data packets transferred between
tasks.

• Allow parallel execution of paths, but sequential

execution of all nodes in each path.

• Disregard the number of tokens in the SDF model.

• If an SDF node is executed several times, its func-

tionality is executed several times inside the node

of the Task Graph (indicated with a number inside

the node in Fig. 2a).

2) Add source and sink nodes, as the mapping framework

needs these nodes.

3) Determine the number of data packets transferred be-

tween nodes

a) Determine basic data packet size for data transfer

between tasks. In the case study, we have selected

32 bits.

b) Based on the static schedule, determine the total

number of input and output bits of each node.

c) Divide the input and output bits by the basic

data packet size and round towards the ceiling to

normalise the number of data packets.

d) No packets are allocated on the edges from source

or into sink nodes, as this data is assumed available

for processing.

This is the author’s version of the paper published in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

3

C. Architecture Model

The architecture model is an abstract architecture model

describing the types and numbers of processing elements that

are available, as well as how they are interconnected. The

processing elements, pk ∈ P , are assigned an index, k =
{0, . . . , npu−1}, and a type, (sw ∈ PESW, hw ∈ PEHW). PESW

and PEHW are the available sets of SW and HW processing

elements, such as the software processor type and the type

of reconfigurable logic fabric. Interconnection of processing

elements is described in terms of buses, bm ∈ B, also assigned

an index, m = {0, . . . , nb − 1}. The buses are furthermore

assigned a direction (unidirectional or bidirectional), width,

and a speed (as time it takes to transfer one package of data

with the size of the bus width). According to its type, the

processing and communication elements are assigned their

corresponding resource utilisation in terms of Look-Up Tables

(LUTs), Flip-Flops (FFs), and Block RAMS (BRAMs).

The cost estimates provide the interrelation between the

application and the architecture model. Each task, vi ∈ V , has

at least one cost entry, and there exist cost entries for each

binding alternative of a task. The costs are execution times

for both HW and SW units, as well as resource utilisation for

custom HW units. Thus every cost entry contains at least a

task index, a processing unit index, and an execution time.

The architecture investigated for implementation is the

Virtex-5 FPGA. The architecture model consists of a number

of processing elements that are either a MicroBlaze SW pro-

cessor or dedicated hardware logic. The processing elements

are interconnected by a common bus. The bus is assumed to be

implemented by a 32 bit FIFO buffer, the Xilinx Fast Simplex

Link (FSL).

The communication model distinguishes between intra and

inter processing unit communication. Communication between

tasks, executed in the same processing unit, is taken into

account by the HW and SW module wrappers. This intra

processing unit communication is performed via dedicated

and local memories and thus can be considered as side effect

free. The inter processing unit communication is implemented

over dedicated communication resources with its own timing

behaviour. Communication over FSL, as chosen in this work,

takes a number of cycles, based on the number of 32 bit

data packets that are transmitted. The communication time is

estimated by multiplying the number of data packets with the

communication delay.

The HW and SW cost estimates were performed using the

estimation process as described in Section III-D.

D. Model Transformation & Cost Estimation

To enable the estimation of HW and SW implementation

costs the SystemC-AMS SDF model needs to be decomposed

and transformed into separate modules suited for either HW

or SW implementation. These modules are similar to the task

nodes in the application model. One significant advantage

of our methodology is that SystemC and its AMS extension

are based on C++, and thus enables maximum reuse of the

functional parts of each task, minimising the effort to adapt

the tasks to different implementation flows and architectures.

Therefore, the behavioural part of each block of the SDF

model is implemented as a C++ class, as shown in Listing 1,

which can either be used inside an SDF (Listing 2), a SystemC

HW (Listing 3), or a SW module (Listing 4).

c l a s s b e h a v i o u r c l a s s t y p e {
p r o t e c t e d :

i n t e r n a l v a r t y p e va r 0 ;

p u b l i c :

b e h a v i o u r c l a s s t y p e () { t h i s−>i n i t () ; }
void i n i t () { var 0 = v a r 0 i n i t v a l u e ; }

void run (s c a s d f i n i f <t o k e n i n t y p e >∗ in ,

s c a s d f o u t i f <t o k e n o u t t y p e >∗ o u t) {
/ / pe r fo rm user−d e f i n e d b e h a v i o u r he re

}
} ;

Listing 1. The user-defined internal variables and behaviour of either the
SystemC-AMS, the SystemC HW, and the SW model is implemented by a
C++ class

SCA SDF MODULE(sdf module name) {
s c a s d f i n<t o k e n i n t y p e> d a t a i n ;

sca sdf out<t o k e n o u t t y p e> d a t a o u t ;

SCA CTOR(sdf module name) { }

void a t r i b u t e s () {
d a t a i n . s e t r a t e (i n p u t r a t e) ;

d a t a o u t . s e t r a t e (o u t p u t r a t e) ;

}
void i n i t () { b e h i n s t . i n i t () ; }
void s i g p r o c () { b e h i n s t . run (d a t a i n , d a t a o u t) ; }

b e h a v i o u r c l a s s t y p e b e h i n s t ;

} ;

Listing 2. Outline of a SystemC-AMS SDF module to be estimated for HW
and SW implementation. The user-defined internal variables and behaviour of
the sig_proc method are implemented by a C++ class (Listing 1).

For the alternative implementation of the tasks in HW or

SW we have created code stubs, already containing required

control processes and interfaces for communication and data

transfer. The stubs can be adapted to the specific task very

easily by setting the class type of the behaviour object and

by adapting the calls to the object’s interface methods if

necessary. For HW, an SC_MODULE container is used con-

taining the required FSL interfaces and methods and a control

process fetching input data via FSL, performing the required

computation and writing the resulting data back via FSL. To

obtain cost estimates for the HW implementation of a task,

we use our SystemC/C++ synthesis tool [15] translating the

transformed SystemC model to synthesisable RT-level VHDL.

The generated VHDL code has been used with the RT-level

synthesis tool Xilinx XST to obtain a first estimate of the

hardware costs (logic blocks, maximum frequency). In our

case, execution times in terms of clock cycles have been

determined by profiling an early HW prototype on the FPGA

platform, but they could also be estimated by simulating or

statically analysing the generated VHDL model.

SC MODULE(module name) {
sc in<bool> c lock , r e s e t ;

s d f f s l i n <t o k e n i n t y p e , i n p u t r a t e > d a t a i n ;

s d f f s l o u t <t o k e n o u t t y p e , o u t p u t r a t e > d a t a o u t ;

SC CTOR(module name) {
SC CTHREAD(proc , c l o c k . pos ()) ;

r e s e t s i g n a l i s (r e s e t , t r u e) ;

This is the author’s version of the paper published in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

4

}

p r o t e c t e d :

void pr oc () {
b e h i n s t . i n i t () ;

w a i t () ;

whi le (t r u e) {
i f (d a t a i n−>r e a d y ()) {

f o r (i n t i =0 ; i<num cycles ; ++ i)

b e h i n s t . run (& d a t a i n , &d a t a o u t) ;

d a t a o u t−>f l u s h () ;

w a i t () ;

} e l s e w a i t () ;

}
}

b e h a v i o u r c l a s s t y p e b e h i n s t ;

} ;

Listing 3. Outline of a SystemC HW module template that contains the
connection to the FSL FIFOs with annotated input and output rates and
a clocked thread that waits until the input data is available and calls the
user-defined behaviour num_cycles times, as obtained from the static
scheduling. The wait statements define the clock boundaries. After all cycles
have been completed it updates the output FIFOs.

For SW, the behaviour class is used inside the main

function also defining input and output of data. The function

is compiled to the embedded target platform and can either be

profiled by use of either an emulator or on the platform itself.

The outcome is a number of cycles necessary for execution.

To enable the comparison of the execution times for HW and

SW the estimates are normalised in terms of clock cycles. To

enable the usage of bit-true SystemC data types in HW as in

SW, we have created a lightweight C++ library providing the

same types and semantics as the SystemC data types without

the additional overhead of the SystemC simulation kernel,

making it usable for embedded SW targets.

s d f f s l i n <t o k e n i n t y p e , i n p u t r a t e > d a t a i n ;

s d f f s l o u t <t o k e n o u t t y p e , o u t p u t r a t e > d a t a o u t ;

i n t main () {
b e h a v i o u r c l a s s t y p e beh name ;

whi le (t r u e) {
i f (d a t a i n−>r e a d y ()) {

f o r (i n t i =0 ; i<num cycles ; ++ i)

beh name . run (& d a t a i n , &d a t a o u t) ;

d a t a o u t−>f l u s h () ;

}
}

}

Listing 4. Outline of a SW module template. It has the same structure as
the HW module template from Listing 3, but does not contain any explicit
timing information in terms of clock boundaries.

IV. EXPERIMENTS

In Section III-A we have presented a case study as an illus-

tration of the methodology described throughout Section III.

This section describes how the architecture exploration is per-

formed based on giving the derived models and cost estimates

as input to the mapping framework. The study is composed of

three parts: 1) the characterisation of architecture models, 2)

obtaining cost estimates for the tasks of the application for the

elements of the architecture, and 3) utilisation of the mapping

framework to obtain a binding and schedule. The outcome is

a Pareto Chart describing the costs of the architecture models,

paired with the execution times of the obtained schedules.

Section III-B described how to obtain an acyclic task graph as

TABLE I
ARCHITECTURE CONFIGURATION MODELS: THE TWO BOTTOM ROWS

INDICATE THE COST OF THE BASIC ARCHITECTURE ELEMENTS

Description # µBlaze # FSLs HW Area Total HW

Units Size [LUT] Cost [LUT]

Max. HW Area 1 1 62800 69033

10% HW Area 1 1 6900 13133

5% HW Area 1 1 3450 9683

2% HW Area 1 1 1375 7608

1% HW Area 1 1 650 6883

1 µBlaze only 1 0 0 5698

Max. HW Area 2 2 56000 68466

10% HW Area 2 2 6900 19366

5% HW Area 2 2 3450 15916

2% HW Area 2 2 1375 13841

1% HW Area 2 2 650 13116

2 µBlazes only 2 1 0 11931

3 µBlazes only 3 2 0 18164

µBlaze architecture template element 5698

FSL architecture template element 535

TABLE II
RESULTS OF COST ESTIMATION. THE EXECUTION TIMES ARE

NORMALISED TO 100 MHZ CLOCK CYCLES.

Task HW Cost HW Exec-Time SW Exec-Time

[LUT] [cycles] [cycles]

SyncWordGen 1165 547 11533

HECGenerator 931 460 141

Whitener (Header) 631 460 1188

EncoderFEC13 856 530 1512

CRCGenerator 981 581 843

Whitener (Payload) 631 577 10560

EncoderFEC23 1134 1162 1696

Packet Switch - - 1888

Sum 6329 4317 29361

input specification to the mapping framework. The application

model in Fig. 2b is the basis of the experiments.

The architecture exploration is based on a set of archi-

tecture models, which all share the properties described in

Section III-C. The architecture is based on the Virtex-5 FPGA

with two basic processing element types: MicroBlaze soft-

core processor and FPGA logic. The processing elements are

interconnected via FSLs. The costs of these basic elements are

based on IP core synthesis using the Xilinx EDK and XST

logic synthesis tools.

The MicroBlaze SW Processor is running at a clock fre-

quency of 100 MHz, and the set of architecture models are

shown in Table I. The HW resource costs are measured in

terms of Look-Up Tables (LUTs), which is the basis for

comparing the cost of the architecture models, HW area size,

and the cost of tasks in HW. The total cost of an architecture

model is estimated by summing the costs of its elements.

The FSLs are 32 bit wide, and we assume that it is

possible to transmit 32 bit for every two clock cycles be-

tween processing elements. Internally, within each processing

element (FPGA logic or MicroBlaze processor), we assume

communication costs to by included in the cost estimates.

The case study is subject to the cost estimation procedure

described in Section III-D, which results in the costs shown

in Table II. The packet switch task is placed inside a SW

processor, as it is mainly communication oriented.

The cost estimates in Table II are provided as input to the

mapping framework together with the application model and

This is the author’s version of the paper published in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

5

Fig. 3. Pareto Chart showing the mapping result: The x-axis shows the total
HW cost in terms of Look-Up Tables (Table I), whereas the y-axis shows
the makespan (as determined by the mapping framework) in 100MHz CLK
cycles. (Please observe that both axes are in thousands).

the architecture models. The framework is invoked for each

of the architecture models, and outputs total execution time of

all tasks. The execution time is interpreted as makespan, i.e.

the span from the start-time of the first task, to the finish time

of the last task.

The resulting Pareto Chart for all architecture models is

shown in Fig. 3. The graph is composed by pairing the total

HW cost (rightmost column in Table I) with the mapping

result (makespan) for the corresponding architecture model.

Fig. 3 shows that the set of architecture models have different

characteristics in terms of area consumption and makespan.

Based on the results, it is concluded that the architecture with

only 1 MicroBlaze processor is the most feasible as it does

not give any speed improvement to increase the number of

SW units. The lowest total HW cost (5698 LUTs) is obtained

by the pure SW-processor solution with the highest makespan

of 29361 cycles. This solution is accepted since the makespan

is below the time-slot length of 625 µs. However, the graph

shows that by e.g. allocating some HW area (e.g. 3450 LUTs)

and thereby increase the area cost by 70% (to 9683 LUTs),

the makespan can be reduced to 26% (7676 cycles) of the pure

SW implementation.

V. CONCLUSION

In this paper we have presented a methodology for perform-

ing SystemC-AMS based exploration for heterogeneous archi-

tectures. Main contribution is the derivation of an acyclic task

graph based on a synchronous data flow model in SystemC-

AMS, and its cost estimation for HW and SW implementations

based on a generic C++ class template representation. Each

node of the acyclic task graph is subject to cost-estimation

based on an architecture template library. The task graph

and its cost characterisation for available architecture template

elements are input to our mapping framework. Output of the

framework is a Pareto Chart allowing evaluation of implemen-

tation costs of various architecture configurations.

The methodology has been demonstrated by an IEEE

802.15.1 BlueTooth transmitter case study and has partly been

performed manually for proof of concept. The methodology

can easily be automated, reducing the effort of heterogeneous

HW/SW architecture exploration from executable SystemC-

AMS SDF specifications. The advantage of the full method-

ology is that the designer does not have to perform the

full synthesis and implementation to obtain cost estimates

for performing the exploration. Moreover, our approach is

modular and IP-centric, allowing the designer to reuse cost

estimates, even when new architecture template elements are

added.

As future work we will consider pipelining of tasks in the

mapping framework and we plan to investigate the impact of

SDF granularity on the exploration process. Furthermore, we

plan to extend the cost estimation methodology to reconfig-

urable architectures.

REFERENCES

[1] A. Popp, Y. L. Moullec, and P. Koch, “Scheduling temporal partitions
in a multiprocessing paradigm for reconfigurable architectures,” in
NASA/ESA Conference on Adaptive Hardware and Systems, 2009.

[2] J. Zhu, I. Sander, and A. Jantsch, “Buffer Minimization of Real-
Time Streaming Applications Scheduling on Hybrid CPU/FPGA Ar-
chitectures,” Proceedings of Design Automation and Test in Europe

(DATE’09), Nice, France, April 2009.
[3] E.A. Lee and D.G. Messerschmitt, “Static scheduling of synchronous

data flow programs for digital signal processing,” IEEE Transactions on

Computers, vol. C-36, no. 1, pp. 24-35, January 1987.
[4] P.K.M. Shuvra, S. Bhattacharyya, and E.A. Lee, “Software Synthesis

from Dataflow Graphs,” Norwell,MA, USA: Kluwer Academic Press,
1996.

[5] S.S. Bhattacharyya and W.S. Levine, “Optimization of Signal Processing
Software for Control System Implementation,” Proceedings of the 2006

IEEE Conference on Computer Aided Control Systems Design, Munich,
Germany, October 4-6, 2006.

[6] M. Edwards and P. Green, “The Implementation of Synchronous
Dataflow Graphs Using Reconfigurable Hardware,” Field-Programmable

Logic and Applications: The Roadmap to Reconfigurable Computing,
Springer LNCS, vol. 1896/2000, pp. 739-748, January 2000.

[7] J. Horstmannshoff and H. Meyr, “Efficient building block based RTL
code generation from synchronous data flow graphs,” Proceedings of the

37th Annual Design Automation Conference (DAC’00), Los Angeles,
USA, pp. 552-555, 2000.

[8] M.C. Williamson, “Synthesis of Parallel Hardware Implementations
from Synchronous Dataflow Graph Specifications,” PhD thesis, EECS
Department, University of California, Berkeley, 1998.

[9] J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs: an MPEG-
4 Simple Profile decoder case study,” Proceedings of IEEE Workshop

on Signal Processing Systems, 2008. (SiPS 2008), Washington, USA,
2008.

[10] S. Bilavarn, G. Gogniat, J. Philippe, and L. Bossuet, “Design Space
Pruning Through Early Estimations of Area/Delay Tradeoffs for FPGA
Implementations,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, pp. 1950-1968, 2006.
[11] J. Keinert et al., “SystemCoDesigner: an automatic ESL synthesis

approach by design space exploration and behavioral synthesis for
streaming applications,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 14, issue 1, January 2009.
[12] IEEE Comp. Soc., “802.15.1: Wireless medium access control (mac) and

physical layer (phy) specifications for wireless personal area networks
(wpans),” May 2005.

[13] G.C. Sih and E.A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 175–187, February
1993.

[14] Open SystemC Initiative, “Standard SystemC AMS extensions Language
Reference Manual,” March 8, 2010.

[15] FOSSY - Functional Oldenburg System Synthesiser,
http://www.system-synthesis.org.

This is the author’s version of the paper published in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

6

