
Aalborg Universitet

Fast Feasibility Estimation of Reconfigurable Architectures

Popp, Andreas; Le Moullec, Yannick; Koch, Peter

Published in:
4th IEEE Conference on Industrial Electronics and Applications, 2009. ICIEA 2009

DOI (link to publication from Publisher):
10.1109/ICIEA.2009.5138181

Publication date:
2009

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Popp, A., Le Moullec, Y., & Koch, P. (2009). Fast Feasibility Estimation of Reconfigurable Architectures. In 4th
IEEE Conference on Industrial Electronics and Applications, 2009. ICIEA 2009 (pp. 117-122). IEEE (Institute of
Electrical and Electronics Engineers). https://doi.org/10.1109/ICIEA.2009.5138181

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ICIEA.2009.5138181
https://vbn.aau.dk/en/publications/722f8350-e796-11dd-b0a4-000ea68e967b
https://doi.org/10.1109/ICIEA.2009.5138181

Fast Feasibility Estimation of Reconfigurable
Architectures

Andreas Popp, Yannick Le Moullec, and Peter Koch Center for Software Defined Radio & Technology Platforms

Section,

Department of Electronic Systems, Aalborg University

Fredrik Bajers Vej 7A, 9220 Aalborg Øst, Denmark

{anp,ylm,pk}@es.aau.dk

Abstract—Reconfigurable architectures are often said to be
able to exploit the possibilities of resource savings by means
of hardware time-sharing. However, existing literature does not
point clearly at which conditions must be fulfilled for considering
a reconfigurable architecture for the implementation of signal
processing applications. Therefore, we propose a fast method to
perform high-level pre-implementation feasibility-based evalua-
tion of a reconfigurable hardware implementation. The method
is based on a light architectural model to compute costs of a static
reference as well as costs for globally and partially reconfigurable
architectures. Two case studies have been performed for an FFT
and an FPGA-based DAB application. Our results show that
implementation on reconfigurable architectures is only feasible
when the reconfiguration time is low, which generally means that
a dynamically partially reconfigurable solution is preferred.

Index Terms—Field programmable gate arrays, reconfigurable
architectures, performance evaluation, feasibility

I. INTRODUCTION

Reconfigurable hardware architectures have been introduced

as a possibility to provide an intermediate solution between

Application Specific Integrated Circuits (ASIC) or Application

Specific Instruction-set Processors (ASIP) and Digital Signal

Processors (DSP) [1]. Reconfigurable hardware is known to

offer the opportunity of resource and energy savings for some

applications due to the possibility of time-sharing of the

hardware resources, as well as run-time circuit specialization

allowing an accelerator that is ultimately customized to the

task executing at any given moment of operation.

One of the most utilized reconfigurable architectures is the

Field Programmable Gate Array (FPGA), where an example is

the Xilinx Virtex series with the improved version of Dynamic

Partial Reconfiguration (DPR) [2] in the newest Virtex-4 and

5 series. In DPR, also noted partial reconfiguration in the

rest of this text, parts of the logic can be reconfigured while

maintaining operation on the other parts. The application of the

inherent flexibility of DPR has been demonstrated especially

in the field of Software Defined Radio (SDR), among others

by Delahaye et al. [3] and Ihmig et al. [4] where DPR allows

the implementation of several functionalities without having

to perform parallel implementations of all functionalities.

Furthermore, extensive research efforts in both academia and

industry have been put into i) synthesis tools and methods to

perform scheduling of algorithms onto reconfigurable architec-

tures by e.g. Bobda [5], and ii) technical solutions to reduce

the reconfiguration overhead suggested by e.g. Hauck [6].
However, even though the use of reconfiguration in FPGA

architectures seems promising, it is important for the designer

to realize and remember that it is associated with certain

costs to provide and use reconfiguration capabilities. Firstly,

reconfiguration takes time (known as reconfiguration overhead)

and consumes power. Secondly, reconfigurable architectures

generally also consume more power, area, and have longer exe-

cution time than non-reconfigurable or static solutions. Finally,

development time is also longer than for non-reconfigurable ar-

chitectures, as reconfigurable hardware requires the developer

to spend more time on design as well as test and debugging

of the implementation.
Shoa & Shirani [8] have given a survey on reconfigurable

systems in the context of digital signal processing operations.

One conclusion is that FPGA implementation is suitable for

data-intensive operations like FIR-filters, FFT and DCT trans-

forms. In traditional FPGA implementations the reconfigura-

tion capabilities are not utilized. However, the inherent lack

of flexibility during run-time is a motivation for considering

reconfigurable architectures. The survey concludes that recon-

figurable architectures should be considered due to possibilities

of run-time circuit specialization and logic resource savings by

time-sharing among hardware resources.
Although many applications of reconfigurable architectures

based on FPGAs have been built, there is, to the best of

our knowledge, a lack of clear pointers in the direction of

determining when a reconfigurable implementation is feasible.

In this paper, feasibility is defined as a non-reduction in

performance as compared to a static implementation. Thereby,

the study does not include the implementation effort in terms of

development costs. The ability to derive a pre-implementation

estimate before conducting the final implementation is consid-

ered an important basis for deciding whether it is worth the

man-hours to perform the implementation in reconfigurable

hardware architectures versus non-reconfigurable hardware.

Therefore, we have posed the question:

”What high-level characteristics of the application must be

fulfilled, and in which conditions is it feasible to make an

implementation using reconfigurable hardware?”

This is the author’s version of the paper published in

4th IEEE Conference on Industrial Electronics and Applications, ICIEA, 2009

1

Previous approaches to answer similar questions have

mainly been focused on developing a full implementation and

comparing it to another implementation in static hardware or

programmable processors. Typically, solutions are compared

by means of a cost-function or metric that weighs time, silicon

area or resource usage, energy or power consumption, and

other factors such as numerical properties. Such a cost-metric

is used by Wirthlin & Hutchings [7], who provide an esti-

mation method to evaluate the feasibility of a reconfigurable

implementation. The evaluation is based on functional density,

D, which is a throughput oriented cost metric including area,

A, and total operation time, T , and combining these by the

expression D = 1
A T

. Feasibility is determined from

Imax ≥ f ,

where Imax =
Dreconfigurable

Dstatic
− 1 is the improvement in

functional density over a static implementation and f is the

configuration ratio defined as the relation between total time

spent on configuration and the total time spent on execution.

This means that in case the area A is reduced by a factor of

two, a two-fold increase in execution time, T , gives exactly

the same functional density, D. This leads to an improvement

Imax of 0%, thus if any time is spent on reconfiguration, f will

become greater than 0, and a reconfigurable solution is deemed

infeasible despite that the static and reconfigurable solution

have equal functional density D. Similarly, if execution time is

only increased by a factor of 1.5, then as long as 33% or less of

the execution time is spent on reconfiguration, the throughput

will not be degraded compared to the static reference. While

the work evaluates feasibility of reconfigurable architectures,

it has two limitations:

• The throughput oriented metric does not reflect the possi-

bility of time-sharing resources and thereby reduction of

the area-costs.

• Partial reconfiguration cannot be evaluated, as DPR is not

directly reflected in the configuration ratio.

Manet et al. [9] evaluated dynamic partial reconfiguration

for non-consumer applications based on selected scenarios

where DPR could be advantageous. The evaluation shows that

DPR has clear advantages when changes occur in environment

or functions (denoted ”mission change”). Furthermore, advan-

tages are shown by the use of hardware time-sharing to obtain

hardware resource reduction. However, the evaluation of the

advantages of DPR is subjective and an objective measure is

desired.

A. Contribution

In this work we develop a light architectural model for glob-

ally and partially dynamically reconfigurable architectures. The

model describes high-abstraction level characteristics of the

architecture. The characteristics are considered adjustable to

the architecture under consideration. The feasibility estimation

method consists of two subsequent steps:

1) Analysis of the application from a high level of abstrac-

tion to determine execution patterns for the reconfig-

urable architecture.

Fig. 1. The basic reconfigurable architecture. The controller can be on-chip
or off-chip, but the control resources are separated from the computational
resources. The external memory is used to save intermediate data that is used
in subsequent configurations.

2) Logic synthesis of parts or modules to estimate costs.

The costs can also be estimated based on a cost-library

for basic functions. The estimates are input to the archi-

tectural model to evaluate the feasibility by means of a

cost-function.

The focus of the cost-function is put on the time and area

trade-off that is made possible by time-sharing of resources and

not on the flexibility that is provided for applications. Area is

counted based on logic resources and the costs of software

processors or controllers are not considered.

In the following, the method is presented. This is followed

by two case-studies and presentation of the result of these

studies. Finally, the results are discussed followed by the

conclusion.

II. METHOD

The method consists of a conveniently light architectural

model to describe the characteristics of the architecture. This

is followed by a description of the application analysis.

A. Architectural Model

The architectural model is limited to consider a recon-

figurable unit, a controller with configuration memory, and

external memory as depicted in figure 1.

The proposed architectural model is the basis of two cost

models, describing globally reconfigurable architectures and

partially reconfigurable architectures. The models describe the

capabilities of the architectures from a high-level point of view

and capture time and resource parameters. Time costs are cat-

egorized on the basis of time spent on execution/computation,

reconfiguration, or data transfer. There are many possible area

parameters for quantifying resource costs, such as Config-

urable Logic Block (CLB) and DSP slices, reconfiguration

resources, and RAM/memory resources for data, configuration

and intermediate data representation. However, in this work

area resources are only counted in CLB slices allocated for

execution, based on the results from logic synthesis.

The improvement or degradation caused by a reconfigurable

implementation is based on a comparison to a static implemen-

tation. The static costs, Cstatic, are expressed by

Cstatic = Astatic · Tstatic [s · slices] , (1)

where Astatic is the total area in CLB slices of the architecture,

and Tstatic is the total execution time in seconds. The area

This is the author’s version of the paper published in

4th IEEE Conference on Industrial Electronics and Applications, ICIEA, 2009

2

Fig. 2. Execution flow in global reconfiguration.

is inherently two-dimensional thus the costs are conveniently

described in three dimensions.

In our proposed cost model, time and area are given equal

weight in order to fully reflect the area-time trade-off in time-

sharing of resources. In case certain area or time constraints

must be fulfilled, these constraints are evaluated externally to

the cost evaluation.

B. Dynamic Global Reconfiguration

In the case of dynamic global reconfiguration, it is assumed

that reconfiguration and execution cannot be overlapped, which

is a general assumption for globally reconfigurable FPGAs.

The execution flow is illustrated in figure 2 and proceeds

as follows: First, the controller configures the FPGA. Then

the FPGA executes the tasks of configuration 1 and stores

intermediate data in the external memory. Then configuration

2 is programmed into the FPGA, followed by reading the

intermediate data from memory. This process repeats itself

until all configurations have been executed.

Time costs can easily be described by the sum in (2) that

describes time-consuming parts of execution in a globally

reconfigurable system:

Texec =
∑

i

texec,i

Treconf =
∑

i

treconf,i

Ttransfer =
∑

i

tread,i +
∑

i

twrite,i

Tglobal = Texec + Treconf + Ttransfer , (2)

where the symbols are defined as in table I.

The total cost of the globally reconfigurable solution is

given by multiplying equation (2) by the area in CLB slices,

Aglobal, of the globally reconfigurable architecture:

Cglobal = Aglobal · Tglobal [s · slices] , (3)

which can then be compared to Cstatic, (1).

TABLE I
DEFINITION OF SYMBOLS IN (2).

I Total number of configurations
i Configuration index, i ∈ {1, 2, . . . , I}
Tglobal Total time spent in the global reconfiguration scenario [s]
Texec Total time spent on execution [s]
Treconf Total time spent on reconfiguration [s]
Ttransfer Total time spent on data transfer [s]
texec,i Execution time of configuration i [s]
treconf,i Reconfiguration time of configuration i [s]
tread,i Memory read-time for input to configuration i [s]
twrite,i Memory write-time for output from configuration i [s]

Fig. 3. Execution flow in dynamic partial reconfiguration.

C. Dynamic Partial Reconfiguration

The partial reconfiguration model is basically similar to

the model for global reconfiguration. However, instead of

multiplying the time and total area for global configurations,

the sum of reconfiguration and execution time is multiplied by

the resources consumed by each reconfigurable module.

The model assumes that transfer of data between modules

is performed by special bus registers, so called Bus Macros in

Xilinx tool flows [2], and the transfer delay across Bus Macros

is assumed negligible. However, the bus registers consume

area during the whole operation. Furthermore, the placement

of bus macros is assumed fixed during operation, as this is

similar to current DPR implementation in Xilinx FPGAs [2].

The execution flow is illustrated in figure 3. The figure has one

static module, M0, that is active during the whole execution

Tpartial. There are two bus macros that handle communication

of data between the reconfigurable modules and the static

module. The configuration of the static module and the bus

macros is not included in the costs, as it is assumed being a

part of the general start-up of the FPGA. The six static modules

M1-M6 are reconfigured prior to their execution. As indicated

in the figure, there are periods where some of the resources

are unused for execution. This is not included in the costs, as

the area is theoretically available for other functionalities.

This is the author’s version of the paper published in

4th IEEE Conference on Industrial Electronics and Applications, ICIEA, 2009

3

TABLE II
DEFINITION OF SYMBOLS IN (4), ALSO ILLUSTRATED IN FIGURE 3.

j Module index
Aj Area of module j [slices]
Abusregs Area of the bus registers [slices]
texec,j Execution time of module j [s]
treconf,j Reconfiguration time for loading module j [s]
Tpartial Total execution time [s]
Cpartial,proc Cost of processing and reconfig. in DPR [s·slices]
Cpartial,comm Cost of communication in DPR [s·slices]
Cpartial Total cost of dynamic partial reconfiguration [s·slices]

The total cost of a partially reconfigurable implementation,

Cpartial, is expressed by

Cpartial = Cpartial,proc + Cpartial,comm [s · slices] (4)

Cpartial,proc =
∑

j

Aj · texec,j +
∑

j

Aj · treconf,j

Cpartial,comm = Abusregs · Tpartial ,

where the symbols are defined as in table II. Cpartial can be

compared to Cstatic, (1), as well as Cglobal, (3).

D. Application Analysis and Logic Synthesis

The application analysis is performed by an examination of

the application to demonstrate how to extract the parameters

of the architecture model described in the previous section.

From a high level of abstraction the application and spec-

ifications are analyzed to determine the deadline, Tdeadline,

at which the task-set, (i.e. all operations), must be finished.

The task-set can either be a one-time running application or

periodic tasks. For periodic tasks, the deadline is equal to the

longest period of the tasks. Since the static reference occupies

all resources from execution start to deadline, Tstatic is set to

Tdeadline.

In the second part of the analysis, the application is exam-

ined to determine whether it can be divided into configurations

that can be executed sequentially thus suitable for global

reconfiguration. It may, however, be that it is judged more

suitable for partial reconfiguration, and tasks are then grouped

or defined by modules. The process can either be performed

manually, or by an automated scheduling approach including

temporal partitioning and placement similar to Bobda [5].

The latter does however, require knowledge or estimates of

execution time and resource usage. Those estimates have to be

acquired by logic synthesis, as described in the next paragraph.

The determined configurations or modules are provided as

input to a synthesis program to obtain estimates of execution

time and area consumption. The reconfiguration time, treconf,i,

is estimated by dividing the bitstream size estimate by the

speed of the configuration interface (up to 100 MHz using the

Xilinx Virtex-4 SelectMAP interface [2]) as in

treconf,i =
W + 1312

100
[µs] , (5)

where W is the configuration array size of 147600, 726520,

and 426810 for the LX15, LX80, and SX35 Virtex-4 FPGAs

respectively [11]. In a similar manner, the data transferred

Fig. 4. Organization of an FFT.

between the configurations are quantified and divided by the

read/write speeds of the external memory.

Finally, the costs are calculated, and the use of reconfig-

urable architectures is deemed feasible if the conditions (6)

and (7) are satisfied. The left hand side arguments in curly

braces indicate that only one argument is considered at a

time; This is determined by the selection of global or partial

reconfiguration:

{Cglobal, Cpartial} ≤ Cstatic AND (6)

{Tglobal, Tpartial} ≤ Tdeadline , (7)

which ensures that the total cost is lower than or similar to the

static implementation, and that the deadline is fulfilled.

In case Tglobal or Tpartial are lower than Tdeadline, it may be

considered to utilize reconfiguration capabilities even further

i.e. trade off execution time for area reduction, or select an

architecture with a lower clock speed as idle resources are

available.

III. CASE STUDIES

The previous sections described our proposed architecture

model and how to do the application analysis. This is demon-

strated by two case-studies in this section. The first study

considers global reconfiguration, whereas the second study

considers both global and partial reconfiguration.

A. Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm is widely used

in multimedia applications and communications systems. In

the latter case it is known as an efficient implementation of

orthogonal frequency-division multiplexing (OFDM). An FFT

is composed of parallel butterfly operation blocks that are

executed sequentially followed by data reordering as illustrated

in figure 4. N is the number of points in the FFT and r is

the radix of the butterfly operations. The computation consists

of logr N sequential blocks of N
r

parallel radix-r butterfly

operations.

The case is selected to be a 32 point radix-2 FFT (N = 32
and r = 2) operating at 16 bit resolution. The static reference

is a fully parallel implementation with constant twiddle-factor

multipliers synthesized for a Virtex-4LX80 FPGA with 35840

CLB slices [10] executing an FFT-operation at a rate selected

to be 1 kHz. The reordering of data at the output is not

considered for the static reference.

This is the author’s version of the paper published in

4th IEEE Conference on Industrial Electronics and Applications, ICIEA, 2009

4

TABLE III
DETAILS OF CONFIGURATIONS FOR THE FPGA-BASED DAB

RECEIVER [4]:

Configuration texec,i

i [ms] Content

0 2.26
Mixer, FIR filter, and
fine frequency offset correction

1 1.14 Fast Fourier Transform

2 0.48
Coarse freq. offset correction,
demodulator, frequency and
time deinterleaving

3 0.11 Viterbi decoding and energy dispersion

The alternative implementation is a globally reconfigurable

solution at which each stage is implemented as a full configu-

ration, theoretically making it possible to reduce the hardware

area by a factor of logr N = 5. Reconfiguration time is

estimated by (5) for a Virtex-4LX15 FPGA containing totally

6144 CLB slices [10], as the number of CLB-slices in this

FPGA is close to 5 times smaller than the Virtex4-LX80.
The memory read and write times are estimated based on

SDRAM memory running at 266 MHz, by using the expression

tread = twrite =
nbytes

4bytes × 266MHz
+

3

266MHz
, (8)

where the last part of the sum is based on the latency of the

memory. In this case study, the transferred amount of data,

nbytes, was 128 Bytes.
The static and globally reconfigurable implementations

were synthesized in Xilinx ISE 9.1 based on VHDL code to

obtain the necessary estimates.

B. FPGA-based DAB Receiver

The second case is based on a study of the results by Ihmig

et al. [4]. The work consists of a digital audio broadcasting

(DAB) receiver that is investigated for combining the tasks

in a sequential execution on a Xilinx Virtex-4 SX 35 FPGA.

The reference is a pipelined architecture consisting of 10 stages

running at multiple rates, and is characterized by having a very

relaxed latency requirement. The authors investigate a solution

where the 10 stages are partitioned into four configurations,

listed in table III, that are executed sequentially at a higher

clock frequency (100 MHz) than the pipelined architecture (8.2

MHz).
The buffered sequential implementation is assumed based

on a 50 Hz cycle, which determines the time, Tstatic, of the

static implementation. In their work, the read/write time for

external memory is not listed, and is therefore estimated as

in (8). The transferred amount of data between configurations,

nbytes, is conservatively assumed based on the maximum data

rate of 8192 kbytes/s, which gives 8192/50 kbytes between

each configuration.
The static and global area were both determined by the size

of the FPGA to 15360 CLB slices [10] and the reconfiguration

time was estimated as described in (5).
The above referenced work also considers partial reconfig-

uration, where the four configurations are set to the size of

TABLE IV
RESULTS: FAST FOURIER TRANSFORM:

Static Implementation (Virtex-4LX80)
Time Tstatic = Tdeadline 1 ms
Area {Astatic,synthesis} {35840, 24516} slices
Cost Cstatic 35.8 s·slices
Globally Reconfigurable Implementation (Virtex-4LX15)
Time {Texec, Treconf , Ttransfer} {27.0E-6, 7.4, 1.32E-3} ms
Area {Aglobal,synthesis} {6144, 5815} slices
Cost Cglobal 45.8 s·slices

TABLE V
RESULTS: FPGA-BASED DAB RECEIVER:

Static Implementation (Virtex-4SX35)
Time Tstatic = Tdeadline 20 ms
Area Astatic 15360 slices
Cost Cstatic 307 s·slices
Globally Reconfigurable Implementation (Virtex-4SX35)
Time {Texec, Treconf , Ttransfer} {4.4, 17.1, 0.63} ms
Area Aglobal 15360 slices
Cost Cglobal 340 s·slices
Partially Reconfigurable Implementation (Virtex-4SX35)

Time
treconf,0, . . . , treconf,3 750 µs
{texec,0,. . . ,texec,3} {2.26,1.14,0.48,0.11} ms
Tpartial 20 ms

Area
A0, . . . , A3 2048 slices
Abusregs 668 slices

Cost
Cpartial,proc 15.1 s·slices
Cpartial,comm 13.4 s·slices
Cpartial 28.4 s·slices

the largest configuration of 2048 CLB slices. Reconfiguration

time was given to be 750 µs, and Cpartial,comm was estimated

by multiplying the memory controller area (668) by the total

period of 20 ms.

IV. RESULTS

The results were obtained as described in section III. The

results from the FFT case study are shown in table IV. Astatic

and Aglobal are the actual values for the FPGAs [10], whereas

”synthesis” is the synthesis result obtained by ISE 9.1. In

addition to CLB slices, DSP48 resources were also utilized.

However, these are not included in the cost-model, thus not

showed in the table.

From the synthesis results, it is clear that one FFT-stage

only consumes 16% of the FPGA’s resources in the full static

implementation. However, due to the high reconfiguration

overhead, the costs and time are higher, 28% and 540%

respectively, than for the static reference.

For the second case of the DAB receiver, the results are

shown in table V. The results are a combination of extracts

from [4] and the estimates described in section III-B.

V. DISCUSSION

For the investigated FFT-case, the results clearly showed

that a globally reconfigurable implementation had significantly

higher costs than a static implementation, in spite of the

possibility of HW sharing. The cost can be reduced by packing

This is the author’s version of the paper published in

4th IEEE Conference on Industrial Electronics and Applications, ICIEA, 2009

5

more operations into each configuration, and thereby reduce

the number of reconfigurations. However, this will not make

the reconfigurable solution feasible for this case, as (6) and (7)

still cannot be fulfilled. It can be argued that the investigated

fully parallel FFT implementation is not a realistic reference

and is inefficiently implemented in the FPGA. However, we

find that the suggested scenario describes the problem of

feasibility estimation for block-processing applications in an

illustrative and easily understandable way.

For the investigated DAB-receiver case, the global recon-

figuration did not fulfill the conditions (6) and (7), and it was

thereby concluded that a globally reconfigurable implementa-

tion is not feasible compared to a static solution. This is mainly

caused by the long time spent on reconfiguration as shown in

table V. However, the reconfiguration time can be decreased

by selecting a smaller FPGA - thus reducing the cost of the

globally reconfigurable implementation.

The partially reconfigurable solution for the DAB-case did

show a significant reduction in cost and only 9.3% of the

resources were utilized. The rest of the resources can either

be utilized for other functionalities or a smaller FPGA can be

selected. The feasibility conditions (6) and (7) were fulfilled,

so a partially reconfigurable implementation is feasible for this

application.

The investigated cases show that a reconfigurable imple-

mentation may be feasible and may satisfy the time-constraints

either due to a very relaxed deadline, or by running the

reconfigurable architecture at a higher clock-speed than the

non-reconfigurable implementation. Increasing the clock-speed

leads to an increased power-consumption, thus we suggest

extensive evaluation of power-consumption for future work.

An advantage of the methodology is that it is relatively

simple to obtain the estimates and set up the feasibility

conditions. However, it requires that the designer performs the

partitioning of the application into configurations or modules

and performs logic synthesis of these configuration or modules.

The partitioning of the application can be performed by an

automatic scheduling approach as suggested in section II-D.

So far, our methodology does only consider the CLB

slices, but other conditions are currently being investigated for

memory blocks and DSP slices.

VI. CONCLUSION

In this work we propose a method to evaluate the feasibility

of implementing signal processing applications in reconfig-

urable architectures.

A general condition for feasibility of a globally reconfig-

urable architecture is closely related to the reconfiguration time

and thus the size of the reconfigurable area. The size must

be carefully selected so that the reconfiguration time does not

exceed the execution time of the static configuration reference.

However, as the reconfiguration time is potentially significantly

smaller for partially reconfigurable implementations than for

globally reconfigurable implementations it is generally prefer-

able to choose a partially reconfigurable solution.

We conclude that the proposed cost-metric makes it possible

to evaluate the feasibility considering area-usage and timing.

An observation is that timing constraints may be fulfilled

by adjusting the clock-speed, thus consideration of power-

consumption in the cost-metric is suggested as future work.

REFERENCES

[1] R. Hartenstein, “Trends in reconfigurable logic and reconfigurable
computing,” 9th International Conference on Electronics, Circuits and

Systems, vol. 2, September 2002, pp. 801–808.
[2] P. Lysaght et al., “Enhanced architectures, design methodologies and

cad tools for dynamic reconfiguration of xilinx fpgas,” International

Conference on Field Programmable Logic and Applications, 2006.
[3] J. P. Delahaye et al., “Software radio and dynamic reconfiguration on a

dsp/fpga platform,” 3rd Karlsruhe Workshop on Software Radios, 2004.
[4] M. Ihmig et al., “Resource-efficient sequential architecture for fpga-

based dab receiver,” 5th Karlsruhe Workshop on Software Radios, 2008.
[5] C. Bobda, “Synthesis of dataflow graphs for reconfigurable systems using

temporal partitioning and temporal placement,” Doctor’s dissertation,
Faculty of Computer Science, Electrical Engineering and Mathematics
of the University of Paderborn, May 2003.

[6] S. Hauck, “Configuration prefetch for single context reconfigurable
coprocessors,” ACM/SIGDA sixth international symposium on Field

programmable gate arrays, pp. 65–74, 1998.
[7] M. J. Wirthlin and B. L. Hutchings, “Improving functional density using

run-time circuit reconfiguration,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 6, no. 2, pp. 247–256, June 1998.
[8] A. Shoa and S. Shirani, “Run-time reconfigurable systems for digital sig-

nal processing applications: a survey,” Journal of VLSI Signal Processing

Systems, vol. 39, no. 3, pp. 213–235, 2005.
[9] P. Manet et al., “Evaluation of dynamic partial reconfiguration in

professional electronics applications,” DASIP Workshop on Design and

Architectures for Signal and Image Processing, November 2007.
[10] Xilinx Inc., “Virtex-4 FPGA User Guide,” UG070, June 2008.
[11] Xilinx Inc., “Virtex-4 FPGA Configuration User Guide,” UG071, April

2008.

This is the author’s version of the paper published in

4th IEEE Conference on Industrial Electronics and Applications, ICIEA, 2009

6

