
Aalborg Universitet

Scheduling Temporal Partitions in a Multiprocessing Paradigm for Reconfigurable
Architectures

Popp, Andreas; Le Moullec, Yannick; Koch, Peter

Published in:
NASA/ESA Conference on Adaptive Hardware and Systems, 2009. AHS 2009

DOI (link to publication from Publisher):
10.1109/AHS.2009.43

Publication date:
2009

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Popp, A., Le Moullec, Y., & Koch, P. (2009). Scheduling Temporal Partitions in a Multiprocessing Paradigm for
Reconfigurable Architectures. In NASA/ESA Conference on Adaptive Hardware and Systems, 2009. AHS 2009
(pp. 230). IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/AHS.2009.43

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/AHS.2009.43
https://vbn.aau.dk/en/publications/142e55a0-3963-11de-8a17-000ea68e967b
https://doi.org/10.1109/AHS.2009.43

Downloaded from vbn.aau.dk on: June 18, 2025

Scheduling Temporal Partitions in a Multiprocessing

Paradigm for Reconfigurable Architectures

Andreas Popp, Yannick Le Moullec, and Peter Koch

Center for Software Defined Radio & Technology Platforms Section,

Department of Electronic Systems, Aalborg University

Aalborg, Denmark

{anp,ylm,pk}@es.aau.dk

Abstract—In this paper we describe a mapping methodology
for heterogeneous reconfigurable architectures consisting of one
or more SW processors and one or more reconfigurable units,
FPGAs. The mapping methodology consists of a separated track
for a) the generation of the configurations for the FPGA by level-
based and clustering-based temporal partitioning, and b) the
scheduling of those configurations as well as the software tasks,
based on two multiprocessor scheduling algorithms: a simple list-
based scheduler and the more complex extended dynamic level
scheduling algorithm. The mapping methodology is benchmarked
by means of randomly created task graphs on an architecture of
one SW processor and one FPGA. The results are compared to a
0-1 integer linear programming solution in terms of exploration
time as well as the finish-time of all tasks of the application.
The results show that, in 90% of the investigated cases, the
combination of level-based temporal partitioning and extended
dynamic level scheduling gives the best performance in terms of
finish-time of the full task-set.

Keywords-Reconfigurable Hardware; Heterogeneous Recon-
figurable Architectures; Temporal Partitioning; Multiprocessor
Scheduling

I. INTRODUCTION

Most signal processing architectures are both reconfig-

urable and heterogeneous, consisting of several software pro-

cessors as well as configurable hardware, typically Field-

Programmable Gate Arrays (FPGAs). Moreover, FPGAs pro-

vide reconfiguration during runtime, either for the full FPGA

area - or for a portion of the area, noted Dynamic Partial

Reconfiguration (DPR). Such systems have the possibility

to provide better performance than compile-time configured

systems in terms of total execution time, logic resource usage,

and power consumption [1]. However, in order to obtain

such performance benefits, it is necessary to have efficient

scheduling techniques and methods which we denote ”map-

ping methods” in the following.

Existing solutions for mapping applications to reconfig-

urable heterogeneous architectures target architectures con-

sisting of a software processor connected to a reconfigurable

FPGA via a common bus. The software processor serves as

the host, either being 1) a simple configuration controller for

the reconfigurable hardware, or 2) a processor that utilizes the

reconfigurable hardware for acceleration of computationally

heavy tasks.

In case 1 where the processor works solely as a config-

uration controller, approaches for temporal partitioning have

been suggested by, among others, Kaul&Vemuri [2] and

Purna&Bhatia [3]. Temporal partitioning is the task of dividing

a large application into partitions that are mutually exclusive

in time, and thus can be executed sequentially on a device that

is smaller than needed for fully parallel implementation of the

entire application.

In case 2, approaches have been suggested by, among

others, Banerjee et al. [4] that formulated the solution as

a 0-1 Integer Linear Programming (ILP) problem to ob-

tain the minimum cost in terms of overall execution time.

Noguera&Badia [5] proposed a HW/SW partitioning algo-

rithm where tasks are moved between HW and SW until

a minimum overall execution time is obtained. The method

considers prefetching of configurations to reduce the reconfig-

uration overhead. The computational complexity of both works

is high (non-polynomial for the first), leading to prohibitively

long execution times of exploration algorithms, which we

from hereon will denote ”exploration times”. An approach

with lower computational complexity has been proposed by

Chatha&Vemuri [6]. The work consists of an algorithm of five

steps: a) HW/SW partitioning, b) temporal partitioning of HW

tasks, c) scheduling of HW and SW tasks, d) scheduling of

HW reconfigurations, and e) scheduling of communications.

However, as these three approaches do cover a subset of

heterogeneous reconfigurable architectures, they are not suited

for architectures consisting of several units, both in HW and

SW.

Mapping methods for homogeneous SW architectures have

been well studied for some time. One of the well known meth-

ods is Dynamic Level Scheduling (DLS) by Sih&Lee [7], who

in the same connection propose an extended DLS algorithm

for heterogeneous architectures.

The previously mentioned approaches do not cover het-

erogeneous reconfigurable architectures consisting of several

processing units, thus in this work we combine the known

temporal partitioning algorithms with multiprocessor schedul-

ing algorithms in a scheduling methodology for heterogeneous

reconfigurable architectures. The methodology is inspired by

Chatha&Vemuri [6] that starts with an initial HW/SW parti-

tioning followed by creation of temporal partitions for HW

nodes. The temporal partitions are then treated as super-nodes

in a multiprocessing framework - where the super-nodes are

tied to a particular unit, the reconfigurable HW unit.

This is the author’s version of the paper published in

NASA/ESA Conference on Adaptive Hardware and Systems, 2009

1

Fig. 1. The proposed mapping methodology. The first step is the specification
of the application, architecture, and their interrelation via a cost-library. This
is followed by a partitioning between HW and SW tasks. The HW tasks are
sent to the HW-flow, where the tasks are partitioned into temporal partitions of
HW tasks. The HW tasks and their reconfiguration are each considered super-
nodes of tasks, which are fed to the multiprocessor binding and scheduling
process.

Fig. 2. General Architecture Model. The attributes for each architecture
element is found by studying the data sheets of the architecture.

This paper describes the suggested methodology in sec-

tion II, including the underlying application and architecture

model. This is followed by a series of experiments in sec-

tion III where the mapping results are compared to a 0-1 ILP

solution that serves as a lower boundary reference. The results

are presented in section IV, followed by a discussion and a

conclusion in section V and VI, respectively.

II. MAPPING METHODOLOGY

The proposed mapping methodology is a combination of

multiprocessor scheduling and temporal partitioning for recon-

figurable architectures, and is outlined in figure 1. The starting

point is the specifications of the application, architecture, and

cost-library which are all expanded in section II-A. Follow-

ing the specification, the application’s tasks are partitioned

between HW and SW units, and between several HW units.

This is fed back to the original SW multiprocessor scheduling

flow, as described in section II-D.

A. Specifications and Modeling

The application is specified as a directed acyclic task-

graph, consisting of nodes and edges. The nodes represent

tasks, whereas the edges represent data dependencies. The

edges are assigned a width, describing the amount of data

transferred between the nodes. The task granularity can vary,

being both single algorithmic operations as well as larger

blocks of operations. The general architecture model is illus-

trated in figure 2. The model is a composition of Processing

Units (PUs), memories, and ports, all connected via buses.

PUs are again either SW or HW. SW units have a certain

number of cycles per second, whereas HW has a number of

resources, each corresponding to the number of logic slices,

DSP resources, memory blocks etc. Buses are described by

the units they connect, their direction, width, and frequency.

The cost-library binds the application and the architec-

ture together. It contains the cost of various implementation

alternatives for each task, i.e. execution time for SW and

execution time, reconfiguration time, and resource usage for

HW. Reconfiguration time is derived from the size of the

reconfigurable HW. The cost-library is derived by sample

implementations of each task, without having to perform the

full implementation of the application. Another option is to

provide estimates based on previous experiences.

B. Partitioning

The partitioning approach is based on the values of the

cost-library: tswi is the SW execution time of task i, thw
i is

the hardware execution time of task i, and thw
reconf is the full

reconfiguration time of the HW unit. The HW/SW partitioning

is based on the principles described in the list below:

1) If logic slice resource usage for task i is larger than the

capacity of the HW unit, then partition to SW

2) Else If thw
reconf + thw

i < tswi , then partition to HW

3) Else thw
reconf + thw

i ≥ tswi is true, so partition to SW

As seen in the partitioning scheme, reconfiguration time is

included in the HW execution time, assuming that each HW

execution must be preceded by reconfiguration.

C. HW Flow

The partitioning is followed by an extraction of the HW

tasks from the application graph.

The task-set is then temporally partitioned, following

the two list-scheduling temporal partitioning algorithms by

Purna&Bhatia [3]. However, it is a requirement to the exe-

cution scheme that temporal partitions do not start execution

before all inputs are ready. Thus, there must not be a path

through other nodes or partitions from an output to an input

in the same partition. Therefore, the temporal partitioning

algorithms are extended with a search for paths outside the

current partition. If such a path exists, a new partition is

created, and the current node is placed in that new partition.

The result of the HW flow is fed to the binding and

scheduling by performing an application graph and cost-table

update. In the application graph update, the temporal partitions

are considered as HW super-nodes, and are fed to the SW flow

This is the author’s version of the paper published in

NASA/ESA Conference on Adaptive Hardware and Systems, 2009

2

Fig. 3. Illustration of the application graph update. Firstly, HW nodes are
temporally partitioned. Secondly, nodes in temporal partitions are replaced by
super-nodes, followed by insertion of reconfiguration nodes for each super-
node.

as super nodes. The cost-table entries for the HW tasks are

removed and replaced by cost-table entries for the super-nodes.

The application graph and cost-table update follows the

scheme as described below and refers to the illustration of

the application graph update in figure 3:

1) All nodes in the same temporal partition are replaced

by a single super-node (#1 and #2 in figure 3). This is

performed for all temporal partitions. All edges going

to/from those nodes are being redirected to the corre-

sponding super-nodes, preserving the direction of the

edge.

2) Reconfiguration nodes (R1 and R2) are added to all

the new super-nodes. The reconfiguration nodes have

no predecessors, and their only successor will be the

corresponding super-node.

3) The cost-table is updated by firstly removing the entries

for the nodes that are replaced by super-nodes. Secondly,

entries are added for each super-node. The execution

time is the maximum execution time of the tasks in the

super-node. The resource cost is the sum of all tasks in

the super-node.

4) Similarly, entries are added for the reconfiguration

nodes. The execution is similar to the reconfiguration

time of the unit, and the resource cost is similar to the

super-node that is reconfigured.

D. SW Flow

The SW scheduling flow is based on two approaches:

1) A simple list-scheduler where nodes are scheduled in

the order given by the finish-time of their predecessor

as well as their mobility, such that the node with the

lowest mobility is scheduled first.

2) The extended DLS algorithm by Sih&Lee [7] for het-

erogeneous processor systems.

For both approaches additional constraints have been in-

cluded in order to ensure that reconfiguration and execution se-

TABLE I
DESCRIPTION OF TASK-GRAPHS FOR THE EXPERIMENTS. CP DENOTES

THE LENGTH OF THE CRITICAL PATH IN TERMS ON NUMBER OF NODES.

Experiment Tasks Edges/Task CP [nodes]

1 5 1.2 3
2 5 1 4

3 10 1.6 3
4 10 0.8 4
5 10 1.2 5
6 10 1.8 5

7 15 0.8 5
8 15 1 8
9 15 1.2 6
10 15 1.53 6

quences are performed in the right order, without interruption

by other tasks. The two approaches have been implemented in

order to be able to compare two SW scheduling algorithms,

thus they are both used for scheduling.

For both algorithms, we use a light communication model

based on communication time. Communication time between

tasks executed in the same unit is assumed to be zero. The

transfer of data over the connecting bus is associated with

a certain communication time based the the amount of data

transferred, the bus width, and the bus frequency.

The extended DLS algorithm has been selected due to its

ability to handle heterogeneous multiprocessing architectures

consisting of several HW and SW units taking interprocessor

communication costs into account. Heterogeneity is repre-

sented by varying execution times of tasks, which are included

in the Dynamic Level (DL) computation. If a task-processor

combination is invalid, its execution time is infinity, leading to

a DL of minus infinity. This prevents that combination from

being selected. The state of the communication resources are

modeled as occupied slots of communication. The state is

included in two steps of the algorithm:

• DL computation: If the communication resource is free

to provide communication from the predecessor to the

current node, the communication time is assumed to

take place right after finishing the predecessor, else the

communication is moved to the next free communication

slot. Both possibilities influence the Data Available (DA)

time, thus the computation of DL.

• Scheduling: When the node with the highest DL is

scheduled, it is performed based on the calculated start

time in the previous step. This is followed by an update

of the state of the communication resources.

III. MAPPING EXPERIMENTS

Several mapping experiments have been performed during

the development of the framework, they are explained in

this section. The experiments were performed as a series of

mapping experiments for various task-graphs. The task-graphs

had the number of nodes {5, 10, 15}, with varying numbers

of edges and length of the Critical Path (CP). The graphs are

described in table I. All graphs have only a single sink node.

This is the author’s version of the paper published in

NASA/ESA Conference on Adaptive Hardware and Systems, 2009

3

TABLE II
ALGORITHM OPTIONS FOR THE MAPPING EXPERIMENTS

No Temporal Partitioning Multiprocessor Scheduling

1 Level-based Simple list-based
2 Clustering-based Simple list-based
3 Level-based Extended DLS
4 Clustering-based Extended DLS

5 0-1 ILP-based Optimal Reference

The architecture for all experiments was the same, a

HW/SW architecture consisting of one SW processor and one

HW unit. The HW unit had 15 logic slices, and the reconfig-

uration time was 10 cycles. Reconfiguration was assumed not

to overlap with HW execution, but has no influence on the SW

execution. We assumed a constant transfer time of two cycles

between the SW and HW units. This transfer was assumed not

to interrupt HW nor SW execution.

The SW and HW execution times as well as the HW-

cost were randomly created to each task, based on random

distributions in the given intervals.:

• SW execution time: [1; 20]
• HW execution time: [1; 10]
• HW Cost: [1; 15]

The experiments were performed for four combinations

of our mapping framework as well as the optimal 0-1 ILP

reference as indicated in table II. The ILP problem formulation

is outlined in the next section III-A. The results were compared

in terms of makespan (defined as the total execution time of

the task-set) and the exploration time (defined as the execution

time of the exploration algorithm). The mapping framework

was executed in Matlab R© on a standard PC.

A. ILP Formulation of Optimal Mapping

The optimal mapping reference is performed by an 0-1 ILP

formulation of the problem. The formulation is a light version

of the work by Banerjee et al. [4] and is described below. The

major difference between their work and our work is that we

only consider the area and have disregarded HW placement

constraints that Banerjee et al. use to make sure that tasks

that span several columns are placed in consecutive columns.

Furthermore, we have added the precedence constraint for

reconfiguration in equation (4), such that a HW area is

reconfigured before its tasks are executed. The formulation

of the problem allows partial reconfiguration, thus potentially

a lower makespan than for the global reconfiguration case.

First some binary variables are described, indexed by i as the

task-index, i ∈ {0, . . . , ntasks − 1}, and j as the time-step,

j ∈ {0, . . . , ntimesteps − 1}. The variables are:

• xi,j is 1 if task Ti starts execution in HW at timestep j,

0 otherwise.

• yi,j is 1 if task Ti starts execution on the SW processor

at timestep j, 0 otherwise.

• ri,j is 1 if the reconfiguration for task Ti starts execution

at timestep j, 0 otherwise.

• ini1,i2 is 1 if the communication along the edge between

task Ti1 and Ti2 incurs a communication delay, 0 other-

wise.

Furthermore, the costs are given by the symbols:

• tswi is the SW execution time of task Ti.

• thw
i is the HW execution time of task Ti.

• chw
i is the HW resource cost of task Ti.

• thw
reconf is the time is takes to reconfigure the HW.

• CFPGA is the full logic capacity in terms of CLB logic

slices of the FPGA.

• cti1,i2 is bus data transfer time from task Ti1 to Ti2 .

The variables are subject to a series of constraints:

1) Uniqueness Constraint: Every task executes only once:

∀i,
∑

j

(xi,j + yi,j) = 1 (1)

2) SW Processing Constraint: At each time, at most one

task is executing on the SW processor:

∀j,
∑

i

j
∑

m=j−tsw
i

+1

yi,m ≤ 1 , (2)

where the sum over m is performed to include yi,m over all

time-steps where a SW task can occupy the SW processor.

3) Reconfiguration Constraint: For each task, there is at

most one configuration, expressed as mutual exclusiveness of

SW execution and reconfiguration:

∀i,
∑

j

(yi,j + ri,j) ≤ 1 (3)

Furthermore, if the task is performed in HW, reconfiguration

must precede execution:

∀i,
∑

j

j · ri,j +
∑

j

thw
reconf · ri,j −

∑

j

j · xi,j ≤ 0 (4)

4) FPGA Resource Constraint: For the FPGA, the sum of

resources used for execution or reconfiguration at any timestep

must not exceed the full size of the FPGA. A sum over m is

included similarly to (2):

∀j,
∑

i

(

j
∑

m=j−thw

i
+1

chw
i · xi,m+

j
∑

m=j−thw

reconf
+1

chw
i · ri,m

)

≤ CFPGA (5)

5) Communication Constraint: Communication on the bus

should only be performed when tasks connected by edges are

performed on different units:

∀edges(i1, i2),
∑

j

yi1,j + yi2,j + ini1,i2 = {0, 1} (6)

This is the author’s version of the paper published in

NASA/ESA Conference on Adaptive Hardware and Systems, 2009

4

1 2 3 4 5 6 7 8 9 10
0

50

100

150

Experiment Index

M
a
k
e
s
p
a
n
 [
c
y
c
le

s
]

Makespan for Experiments

1) List−based,Level−TP

2) List−based,Clustering−TP

3) ExtendedDLS,Level−TP

4) ExtendedDLS,Clustering−TP

5) ILP Reference

Fig. 4. Results in terms of makespan. The bars 1-4 for each experiment
are for the proposed framework. Bar 5 is an adapted version of [4]. In
90% of the cases, the Extended DLS algorithm gave better or equally
good results compared to the list-based scheduling. Out of those cases,
44% showed additional improvement in makespan by using the level-based
temporal partitioning.

6) Precedence Constraint:

∀edges(i1, i2),
∑

j

(

j · xi1,j + j · yi1,j

)

+ (7)

∑

j

(

thw
i1

· xi1,j + tswi1 · yi1,j

)

+ (8)

cti1,i2 · ini1,i2 −
∑

j

(

j · xi2,j + j · yi2,j

)

≤ 0 (9)

The optimization goal is given by minimization of the finish-

time of the last task, which can be formulated as:

min
∑

j

(

j · xn,j + j · yn,j + thw
i · xn,j + tswi · yn,j

)

, (10)

where n is the index of the last task (sink node).

Having the ILP-problem defined, it was passed to the solver,

glpsol version 4.35, from the GNU Linear Programming Kit

(GLPK) [8]. The glpsol was executed on a standard Linux

PC. The results were compared to the result of the mapping

framework as described in the previous section III.

IV. RESULTS

The results of the mapping experiments are given by

makespan and exploration times shown in the figures 4 and 5,

respectively. For the cases where ILP experiments have been

performed, the results are shown in the graphs as a rightmost

grey bar for each task graph. The optimal ILP solution was

only found for 20% of the task-graphs, as the exploration time

was simply too long, going beyond more than eight hours for

even relatively simple task-graphs with only 10 nodes.

Furthermore, we have included the resulting schedule for

task-graph 6 in figure 6, as an illustration of the outcome of

the mapping framework.

V. DISCUSSION

When comparing the results presented in figure 5 it is clear

that the ILP reference has a significantly higher exploration

time than the framework that we propose in section II of

this paper. However, when looking at the makespan results in

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

Experiment Index

E
x
p
lo

ra
ti
o
n
 T

im
e
,
[s

e
c
o
n
d
s
]

Exploration Time for Experiments

1) List−based,Level−TP

2) List−based,Clustering−TP

3) ExtendedDLS,Level−TP

4) ExtendedDLS,Clustering−TP

5) ILP Reference

Fig. 5. Resulting in terms of exploration time. The bars 1-4 for each
experiment are for the proposed framework. Bar 5 is an adapted version of [4],
described in section III-A. The 0-1 ILP solution was only obtained for 20%
of the cases, while it had prohibitively long exploration time for the rest of
the cases. The results clearly showed that the 0-1 ILP solution is not a viable
alternative, whereas the variation in exploration times in the four options of
the proposed mapping framework was insignificant.

Fig. 6. Resulting schedule of task-graph 6, obtained by level-based temporal
partitioning and the Extended DLS scheduling. The dotted lines indicate
reconfiguration of the HW, and the arrows represent data transfer on the bus.

figure 4, the mapping framework resulted in a slightly higher

(12.5%) makespan for the experiments 1 and 2. However, the

lower makespan of the optimal reference was made possible

due to overlaying of HW execution and reconfiguration in

dynamic partial reconfiguration.

When the results are compared for the four different com-

binations for the presented mapping framework, the results

were less clear. For 9 of the 10 cases, the Extended DLS

algorithm gave better or equally good results compared to the

list-based scheduling. Out of those 9 cases, 4 of them showed

that the level-based temporal partitioning gave better results

than the clustering-based. Only in 1 of those 9 cases, the level-

based performed worse than the clustering-based temporal par-

titioning. This was surprising since the level-based algorithm

would normally lead to more connections to outside partitions,

which could potentially increase the HW/SW communication

delay. However, the level-based algorithms are less likely to

create paths from output to input of the same partition that go

through other partitions, thus leading to fewer partitions than

the clustering-based approach.

However, it is beneficial to run all four algorithms and

compare the results. Such runs do only take short time as seen

in figure 5, but gave a highest-to-lowest makespan reduction

between 0% and 34%.

This is the author’s version of the paper published in

NASA/ESA Conference on Adaptive Hardware and Systems, 2009

5

The performance of the proposed mapping framework is

highly dependent on the early HW/SW partitioning, and it is

therefore relevant to consider if this can be improved. First,

the reconfiguration time is included for each HW task, even

though it may cover reconfiguration of several tasks in parallel

(for HW supernodes). This may be improved by weighting the

HW reconfiguration time relative to the logic resource usage.

However, the partitioner may then not be aware of the risk that

small tasks may still require their own partition as described

in section II-C. Second, there has not been incorporated any

feedback loop into the partitioning as indicated in figure 1.

This may be beneficial especially for the partitioning cases

where the HW and SW execution times are close to each other.

VI. CONCLUSION

In this paper we presented a mapping framework for re-

configurable heterogeneous architectures consisting of a SW

processor and a HW unit with global reconfiguration capa-

bility. Our main contribution is that the framework has been

developed with the explicit goal to be able to handle het-

erogeneous reconfigurable architectures consisting of multiple

HW and SW units. The framework is based on an application

and architecture description, related through a cost-library that

provides information of implementation alternatives of each

task. The mapping framework performs HW/SW partitioning,

and uses temporal partition algorithms to create HW partitions

that can be handled by a scheduling and binding algorithm for

heterogeneous multiprocessor architectures.

Mapping experiments were performed for ten task-graphs,

with four combinations of two temporal partitions algorithms

and two multiprocessor scheduling algorithms. The results

showed that the mapping framework had very short exploration

time as compared to the (existing) ILP approach, but that

the selection of a specific mapping method (out of the four

combinations) had an impact of up to 34% compared to

the worst performing method. For 90% of the cases, the

Extended DLS algorithm in combination with level-based

temporal partitioning had the best performance.

We conclude that the proposed mapping methodology is

promising and that it can provide designers with a tool for

rapid exploration of scheduling strategies for reconfigurable

heterogeneous architectures. In order to further improve the

methodology, we will conduct the following as future work:

a) improve the HW/SW partitioning algorithm, and b) add

a feedback loop from the multiprocessor scheduler. Further-

more, future work will also include experiments that cover

architectures consisting of multiple SW and HW units.

REFERENCES

[1] A. Shoa and S. Shirani, “Run-time reconfigurable systems for digital sig-
nal processing applications: a survey,” Journal of VLSI Signal Processing

Systems, vol. 39, no. 3, pp. 213–235, 2005.

[2] M. Kaul and R. Vemuri, “Optimal temporal partitioning and synthesis for
reconfigurable architectures,” in Proceedings of the conference on Design,

automation and test in Europe, 1998, pp. 389–397.

[3] K. M. G. Purna and D. Bhatia, “Temporal partitioning and scheduling
data flow graphs for reconfigurable computers,” IEEE Trans. Comput.,
vol. 48, no. 6, pp. 579–590, Jun. 1999.

[4] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Integrating physical
constraints in hw-sw partitioning for architectures with partial dynamic
reconfiguration,” IEEE Trans. VLSI Syst., vol. 14, no. 11, pp. 1189–1202,
Nov. 2006.

[5] J. Noguera and R. M. Badia, “A hw/sw partitioning algorithm for dynam-
ically reconfigurable architectures,” in Proceeding of Design, Automation

and Test in Europe, Mar. 2001, pp. 729–734.
[6] K. S. Chatha and R. Vemuri, “Hardware-software codesign for dynam-

ically reconfigurable architectures,” in 9th International Workshop on

Field-Programmable Logic and Applications, 1999, pp. 175–184.
[7] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for

interconnection-constrained heterogeneous processor architectures,” IEEE

Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 175–187, Feb. 1993.
[8] GNU, “Gnu linear programming kit (glpk),”

http://www.gnu.org/software/glpk/.

This is the author’s version of the paper published in

NASA/ESA Conference on Adaptive Hardware and Systems, 2009

6

