
Aalborg Universitet

Hardware-Accelerated NIOS-II Implementation of a Turbo Decoder

Corneliussen, Andreas; Poulsen, Erik B.; Silpakar, Pradeep; Østeraa, Troels T.; Le Moullec,
Yannick
Published in:
Proceedings of the Second International Conference on Computer and Electrical Engineering, 2009 (ICCEE '09)

DOI (link to publication from Publisher):
10.1109/ICCEE.2009.71

Publication date:
2009

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Corneliussen, A., Poulsen, E. B., Silpakar, P., Østeraa, T. T., & Le Moullec, Y. (2009). Hardware-Accelerated
NIOS-II Implementation of a Turbo Decoder. In Proceedings of the Second International Conference on
Computer and Electrical Engineering, 2009 (ICCEE '09) (pp. 367-371). IEEE (Institute of Electrical and
Electronics Engineers). https://doi.org/10.1109/ICCEE.2009.71

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ICCEE.2009.71
https://vbn.aau.dk/en/publications/e902e2b0-0441-11df-9046-000ea68e967b
https://doi.org/10.1109/ICCEE.2009.71

This is the authors’ version of a paper published in the Proceedings of the International Conference on Computer and
Electrical Engineering, 2009.

Hardware-Accelerated NIOS-II Implementation of a Turbo Decoder

Andreas Corneliussen, Erik B. Poulsen, Pradeep
Silpakar, Troels T. Østeraa

Department of Electronic Systems
Aalborg University
Aalborg, Denmark

Yannick Le Moullec
Department of Electronic Systems
Center for Software Defined Radio

Aalborg University
Aalborg, Denmark

ylm@es.aau.dk

Abstract— This paper presents a hardware accelerated
NIOS-II implementation of a turbo decoder. Firstly, a
MatLAB prototype consisting of a) an encoder made of a
parallel concatenation of two RSC encoders and b) a
decoder based on two identical SOVA decoders is
constructed. Simulations of the prototype show that the BER
decreases for every iteration in the decoder (down to 10-4),
except for low SNR cases (below -5 dB). Secondly, two FPGA
implementations of the decoder are described and
compared. The first one consists of software executing on a
Nios II/f soft-core processor, while the second one adds
hardware acceleration. Computationally demanding parts of
the decoder are identified, rescheduled for parallel execution
and moved from the software implementation to the
hardware accelerator. The decoding process in the hardware
accelerated implementation results in approximately the
same BER as for the software implementation, but the
execution time is decreased by between 34 % and 25 %,
when the number of decoding iterations are increased from
1 to 20, respectively. The accelerated implementation
increases the number of required resources from 10 to 16%,
as compared to the software one.

Keywords-turbo decoder; FPGA, soft-core processor;
NIOS-II; hardware accelerator;parallelism, partitionning

I. INTRODUCTION

The concept of Turbo Coding (TC) is the idea of using
two or more codes on the same symbol sequence, and
then use the knowledge obtained by decoding one code to
improve the decoding of the second code, and vice-versa,
in an iterative manner. This means that, given two very
different codes wherein all the information from the
source data is reserved, TC is potentially able to
iteratively decode until no more errors exist in the
decoded symbol sequence. The error correcting
performance of TC is therefore dependent on the
difference between the two codes. A frequently used
method to assure high difference between the two codes is
to interleave the input sequence to one of the encoders so
that it encodes the same bits in a different order. A typical
TC scheme therefore consists of four elements; encoder,
decoder, interleaver, and de-interleaver.

The uses for TC are many because it approaches the
Shannon limit [1]. It is, for instance, used in applications
like magnetic/optical data storage systems, ADSL

modems and satellite communication [2]. However,
because of the iterative behavior of the decoding process,
the error correcting performance is bounded by the
computational power and precision of the platform on
which it is implemented [3]. It is therefore challenging to
implement TC on embedded platforms and to use the
concept to its full potential because such platforms are
often limited in computational power and precision.

The objective of this work is to investigate whether it is
possible to improve the embedded software
implementation of TC by means of hardware acceleration.
This is achieved by 1) synthesizing a soft-core processor
on an FPGA, 2) implementing the software of TC for this
processor, and 3) designing and implementing a hardware
accelerator to reduce the execution time of the software
solution.

The remainder of this paper is organized as follows:
Section II presents the MatLAB Prototype of the
encoding/decoding chain. Section III details both the
software and the hardware accelerator implementations.
In section IV the results are presented and section V
concludes the paper.

II. MATLAB PROTOTYPE

Figure 1. The structure of the MatLAB prototype of a Turbo Coding

scheme

The turbo encoder/decoder chain is shown in Figure 1.
The encoder is implemented using two Recursive
Systematic Convolutional (RSC) [4] encoders with the

This is the authors’ version of a paper published in the Proceedings of the International Conference on Computer and
Electrical Engineering, 2009.

feedback polynomial g1(D) = D2 + D + 1 and the output
polynomials g2(D) = D2 + 1 and g3(D) = D + 1. The
interleaver design chosen for this prototype is of the
quadratic type [5] and the input block length is chosen to
be 2048 bits. The Main function, illustrated in the middle
of Figure 1, generates a random bit string to use as source
data. This string is forwarded to the encoder to achieve an
encoded bit string which requires the use of the
interleaver. However, first all bits are converted from a
0/1 representation to -1/1 to be compatible with the
decoder, and afterwards Additive White Gaussian Noise
(AWGN) is added to emulate the effect of a noisy
channel. After the noise is added, the bit string is passed
to the decoder which calls the Soft Output Viterbi
Algorithm (SOVA) [6] decoder, the interleaver and the
deinterleaver functions in the needed order.

A. Channel Emulation

The prototype implementation includes an emulation of a
channel to be able to test the performance of the system
when used with an AWGN channel. Therefore, white
Gaussian noise was generated and the power was
normalized with respect to the encoded sequence.

Afterwards the noise was multiplied by , where

Signal-to-Noise Ratio (SNR) is the signal-to-noise ratio of
the channel emulation in dBs. The noise and the encoded
sequence are then added to emulate an AWGN channel.

B. Test Methodology

The test consists of encoding long strings of data and then
adding noise at different SNRs. The noisy data is then
passed to the decoder which performs several iterations
before outputting the data. After the decoding is complete,
the decoded data is compared with the original strings,
and the BER is calculated. It is chosen to test the
prototype at SNRs ranging from -8 to 2 dB in steps of 1
dB to show the asymptotical behavior at lower SNRs
while still showing the decaying exponential shape for
higher SNRs. The test was performed for multiple
numbers of iterations ranging from 1 to 8 iterations, since
the benefit of performing more iterations is negligible. It
is furthermore chosen to repeat the test a 1000 times for
each SNR and calculate the mean of the resulting data set
to increase the reliability of the results.

C. MatLAB Simulation Results

The result of the compliance test is shown in Figure 2. It
can be seen from the results that more iterations reduce
the BER as expected. It is furthermore visible that the
decoder does not improve much on the quality of the
received data if the SNR is below -5 dB.

Figure 2. MatLAB simulation results. Each curve shows the result of a

certain number of iterations as stated in the legend.

III. FPGA IMPLEMENTATIONS

This section details the software and hardware-accelerated
FPGA implementations of the decoder. The selected
platform is the Altera DE2 board which includes a
Cyclone II EP2C35F672C6 FPGA and the soft-core
processor is the NIOS-II.

A. Software Implementation

The soft-core processor is designed with arithmetic units
only capable of integer calculations. This means that one
must either use a fixed point representation, or design a
floating point implementation using the arithmetic units
available. Such an implementation possibly provides a
better numerical stability to the TC implementation and
certainly eases the design of it. A floating point
implementation, however, increases the number of
calculations required for rather simple operations, and
therefore increases the execution time of the algorithm
significantly. It is therefore chosen to use a fixed point
implementation, where all numbers are represented as 32
bit integers with the point placed at 216. This means that
all numbers are multiplied by 216 = 65536 and rounded to
the closest integer lower than the resulting number. The
Nios processor, however, is not capable of multiplying or
dividing two 32 bit numbers with full precision and range.
A consequence is that one has to choose between range or
precision in all multiplication operations. Either one must
divide each number by 28 (or one of them by 216) and then
multiply the numbers, or multiply the numbers and then
divide the result by 216. The first method throws away 8
bits of precision in each number before multiplying the
numbers, whereas the second method can cause up to 32
bits of overflow since (231-1)2 = 262-232 +1, which does
not fit in a 32 bit register. The software for the embedded
system has therefore been designed to use the best of the
two methods, i.e. divides one operand by 28 and also
divides the result by 28.

The overall system is illustrated in Figure 3.

This is the authors’ version of a paper published in the Proceedings of the International Conference on Computer and
Electrical Engineering, 2009.

Figure 3. The software implementation of the turbo decoder (right) and
its connection to the MatLAB implementation of the turbo encoder.

The software embedded in the Nios II soft-core processor
is composed of 5 functions: main to receive the data from
the PC, place it in the right data structures and call the
decode function. When the decode function is finished,
main transmits the decoded data to the PC. It also
measures the execution time of the other functions, and
transfers this information to the PC. decode is in charge of
the iterative part of the decoding process, it calls the
functions interleave, deinterleave and sova. interleave and
deinterleave are in charge of interleaving and
deinterleaving either the La, sys or LLR sequence. It has
been chosen to implement a quadratic interleaver and
implement the permutation using a lookup table rather
than the matrix-vector multiplication. sova performs the
actual decoding.

The soft-core processor is configured as follows. Core
type: Nios II/f, Hardware multiply: Embedded multipliers,
Hardware divide: Yes. The peripherals are as follows.
SRAM: 512 KB (actual usage is only 400 Kb),RS-232
UART, JTAG UART, and TIMER. The system is
synthesized and programmed from the Quartus II suite,
the C program is compiled and sent to the Nios II/f using
the Altera Nios II IDE program. After the completion of
the synthesis in Quartus II, the summary report states that
the total amount of LEs used is 3250 out of 33,216, i.e.
roughly 10 % of the available LEs. The execution time
measurements of the soft-core implementation are
presented in Section IV.

B. Hardware Accelerated Implementation

The next step is to examine the software implementation
to identify the most computationally intensive parts of the
algorithm by means of profiling. In Nios II IDE, the
pprofiler is called niosii-elf-gprof. This profiler samples
the program counter at certain intervals which quickly
produces results but it might not give the most precise
results. The profiler output is generated by the Turbo

decoder functions on the Altera DE2 board using the Nios
II/f soft-core processor operating at 50 MHz. A summary
of the flat profile of the functions is given in Table I.

TABLE I. FLAT PROFILE SUMMARY

Function name % Time Self-Time Calls Self s/call Total s/call
Decoder 1 0.01 1 0.01 1.15
Sova 80 0.92 2 0.46 0.56
Interleave 1 0.01 2 0.00 0.00
Deinterleave 1 0.01 2 0.01 0.01
Jabob_log 17 0.20 98368 0.00 0.00

Since the sova and the Jacob_log function are using 97 %
of the execution time spent on decoding, it is decided to
analyze them to determine whether they can be
accelerated. To initiate the exploration process, the Sova
and Jacob_log functions are analyzed using combined
Precedence Graphs (PG) and Data Flow Graphs (DFG).
The operations in the computation of the best forward and
backwards path cost are illustrated in the combined DFG
and PG in Figure 4. The combined DFG and PG for the
output computation of the sova function is seen in Figure
5. The Jacob_log function, which is called by sova
function, is shown in Figure 6. The inherent parallelism
can be seen in the patterns in the combined DFGs/PGs in
figures 4-6. Some observations can be made regarding the
parallelism: the computation of branch0 and branch1 is
not possible before the computations of par1cost, par2cost
and logprob have completed. The algorithm in Figure 6
requires knowledge of mu best and mu best back to
calculate a temporary cost, right after the calculation of
branch0 and branch1. The orders of calculation of a)
branch0 and branch1, b) syscost, par1cost and par2cost,
and of c) first term and second term are irrelevant. The
rescheduling of the algorithm for the computation of
forward and backwards path costs in the sova function,
can be performed as shown in Figure 7.

Figure 4. The PG and DFG of the backwards and forward evaluation of
the path cost.

This is the authors’ version of a paper published in the Proceedings of the International Conference on Computer and
Electrical Engineering, 2009.

Figure 5. The PG and DFG of the output computation from the branch
metrics.

Figure 8 shows the second part, where the branch metrics
are re-computed and used with mu best and mu best back
from Figure 7 to calculate the extrinsic value, La, and the
softoutput, LLR.

The last rescheduled function, Jacob_log, is depicted in
Figure 9.

Figure 6. The PG and DFG of the jacob log function which is called
from the sova function in order to calculate the branch costs, branch0
and branch1.

Figure 7. Structure of re-scheduling the sequential code to extract the
inherent parallelism.

Figure 8. Rescheduling the second part of the SOVA algorithm, where
the extrinsic values, La, and the soft-outputs, LLR, are calculated.

Figure 9. Structure of re-scheduling the sequential code for the jacob log
function to extract the inherent parallelism.

It is selected to implement a hardware accelerator with the
structure shown in Figure 10. It can compute the branch
costs for all three loops, and it can therefore function as a
generic block. This is one solution trading off area and
execution time, but it can easily be scaled as several
accelerators could be implemented and offer branch cost
computation. As stated in III.B the soft-core
implementation took up 3,250 LEs in the FPGA, which
corresponds to roughly 10 % of the total number of LEs.
When adding the hardware accelerator, the area
consumption increases to 5,909 LEs, which is 16 % of the
total area consumption.

Figure 10. The selected parts of the algorithms for the hardware
implementation.

This is the authors’ version of a paper published in the Proceedings of the International Conference on Computer and
Electrical Engineering, 2009.

IV. EXPERIMENTAL RESULTS

An experimental test is specified in order to provide the
required data to be able to compare the two different
implementations of Turbo Coding (TC), with regards to
execution time, while also verifying that the turbo coding
principle is preserved. This test is specified as follows: 1.
Generate a random bit sequence of length 2048 using
MatLAB, 2. Add white Gaussian noise and ensure an
SNR level of 2 dB, 3. Send the bit sequence to both
implementations and make them decode with the number
of iterations ranging from 1 to 20. 4. For both
implementations the time used for decoding is measured.
The time is measured in exactly the same way in the two
implementations to remove bias. The time, along with
amount of iterations, should be noted. The tests are
performed with and without the hardware acceleration.
The results of the first test, testing the execution time of
the two implementations, are shown in Figure 11. The
results of the BER test are shown in Figure 12.

Figure 11. Execution time for the soft-core implementations, with and
without hardware acceleration.

Figure 12. Results for the BER achieved at different levels of SNRs for
the prototype in MatLAB and the two implementations. The numbers
next to the curves indicate the number of iterations for the specific
curve.

The results for the first test shows that the combined soft-
core and hardware implementation is faster than the pure
soft-core implementation. Specifically, at for example 10
iterations, the two implementations differ by 2.614 s in
favor of the hardware accelerated implementation. The

results also show that the dependency between execution
time and number of decoding iterations has an
approximately linear relationship. In detail, the hardware
accelerated implementation is faster than the soft-core
implementation by between 34.44% and 25.13% for one
and 20 iterations, respectively. The cost of this
acceleration is moderate since the required resources of
the FPGA are increased from 10% to 16% (cf.III.B).
The results of the second test show that the curves of the
two implementations have a shape similar to the curve for
the prototype decoder. The BER decreases with
increasing SNR and the number of decoding iterations.
This suggests that the Turbo coding functionality is still
preserved. At any SNR, the BERs of the implemented
versions are roughly equal. However, compared to the
prototype, the two implementations require SNRs 2 dB
higher to achieve the same BER as the prototype.

V. CONCLUSION

A hardware accelerated NIOS-II implementation of a
turbo decoder has been presented. In the first phase,
simulations of the MatLAB prototype have shown that the
BER decreases for every iteration in the decoder (down to
10-4), except for low SNR cases (below -5 dB). In the
second phase, two FPGA implementations of the decoder
have been described and compared. The first one consists
of software executing on a Nios II/f soft-core processor,
while the second one adds hardware acceleration.
Computationally demanding parts of the decoder have
been identified, rescheduled for parallel execution and
moved to the hardware accelerator. The two
implementations require SNRs 2 dB higher to achieve the
same BER as the MatLAB prototype. The decoding
process in the hardware accelerated implementation
results in approximately the same BER as for the software
implementation, but the execution time is decreased by
between 34 % and 25 % when the number of decoding
iterations is increased from 1 to 20, respectively. The
accelerated implementation increases the number of
required resources from 10 to 16%, as compared to the
software one.

REFERENCES
[1] Shannon, C. E. (1948). A mathematical theory of communication.

Bell System Technical Journal, 27:50–64.

[2] Sripimanwat, K., editor (2005). Turbo Code Applications - a
journey from a paper to realization. Springer.

[3] Jin, Y., Zhang, F., and ling Wu, W. (2006). Reduced-complexity
turbo equalization for turbo coded mimo/ofdm systems. The
Journal of China Universities of Posts and Telecommunications,
13(1):93 – 98.

[4] Sklar, B. (2002). Fundamentals of turbo codes.

[5] Takeshita, O. and Costello, D.J., J. (1998). New classes of
algebraic interleavers for turbo-codes. Information Theory, 1998.
Proceedings. 1998 IEEE International Symposium on, pages 419–.

[6] M. R. Soleymani, Y. G. U. V. (2002). Turbo coding for satellite
and wireless communications. Kluwer Academic Publishers.

