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Abstract— This paper presents a hardware accelerated 
NIOS-II implementation of a turbo decoder. Firstly, a 
MatLAB prototype consisting of a) an encoder made of a 
parallel concatenation of two RSC encoders and b) a 
decoder based on two identical SOVA decoders is 
constructed. Simulations of the prototype show that the BER 
decreases for every iteration in the decoder (down to 10-4), 
except for low SNR cases (below -5 dB). Secondly, two FPGA 
implementations of the decoder are described and 
compared. The first one consists of software executing on a 
Nios II/f soft-core processor, while the second one adds 
hardware acceleration. Computationally demanding parts of 
the decoder are identified, rescheduled for parallel execution 
and moved from the software implementation to the 
hardware accelerator. The decoding process in the hardware 
accelerated implementation results in approximately the 
same BER as for the software implementation, but the 
execution time is decreased by between 34 % and 25 %, 
when the number of decoding iterations are increased from 
1 to 20, respectively. The accelerated implementation 
increases the number of required resources from 10 to 16%, 
as compared to the software one. 

Keywords-turbo decoder; FPGA, soft-core processor; 
NIOS-II; hardware accelerator;parallelism, partitionning 

I.  INTRODUCTION 

The concept of Turbo Coding (TC) is the idea of using 
two or more codes on the same symbol sequence, and 
then use the knowledge obtained by decoding one code to 
improve the decoding of the second code, and vice-versa, 
in an iterative manner. This means that, given two very 
different codes wherein all the information from the 
source data is reserved, TC is potentially able to 
iteratively decode until no more errors exist in the 
decoded symbol sequence. The error correcting 
performance of TC is therefore dependent on the 
difference between the two codes. A frequently used 
method to assure high difference between the two codes is 
to interleave the input sequence to one of the encoders so 
that it encodes the same bits in a different order. A typical 
TC scheme therefore consists of four elements; encoder, 
decoder, interleaver, and de-interleaver. 
 
The uses for TC are many because it approaches the 
Shannon limit [1]. It is, for instance, used in applications 
like magnetic/optical data storage systems, ADSL 

modems and satellite communication [2]. However, 
because of the iterative behavior of the decoding process, 
the error correcting performance is bounded by the 
computational power and precision of the platform on 
which it is implemented [3]. It is therefore challenging to 
implement TC on embedded platforms and to use the 
concept to its full potential because such platforms are 
often limited in computational power and precision. 
 
The objective of this work is to investigate whether it is 
possible to improve the embedded software 
implementation of TC by means of hardware acceleration. 
This is achieved by 1) synthesizing a soft-core processor 
on an FPGA, 2) implementing the software of TC for this 
processor, and 3) designing and implementing a hardware 
accelerator to reduce the execution time of the software 
solution. 
 
The remainder of this paper is organized as follows: 
Section II presents the MatLAB Prototype of the 
encoding/decoding chain. Section III details both the 
software and the hardware accelerator implementations. 
In section IV the results are presented and section V 
concludes the paper. 

II. MATLAB PROTOTYPE 

 

 
Figure 1. The structure of the MatLAB prototype of a Turbo Coding 

scheme 

 
The turbo encoder/decoder chain is shown in Figure 1. 
The encoder is implemented using two Recursive 
Systematic Convolutional (RSC) [4] encoders with the 
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feedback polynomial g1(D) = D2 + D + 1 and the output 
polynomials g2(D) = D2 + 1 and g3(D) = D + 1. The 
interleaver design chosen for this prototype is of the 
quadratic type [5]  and the input block length is chosen to 
be 2048 bits. The Main function, illustrated in the middle 
of Figure 1, generates a random bit string to use as source 
data. This string is forwarded to the encoder to achieve an 
encoded bit string which requires the use of the 
interleaver. However, first all bits are converted from a 
0/1 representation to -1/1 to be compatible with the 
decoder, and afterwards Additive White Gaussian Noise 
(AWGN) is added to emulate the effect of a noisy 
channel. After the noise is added, the bit string is passed 
to the decoder which calls the Soft Output Viterbi 
Algorithm (SOVA) [6] decoder, the interleaver and the 
deinterleaver functions in the needed order.  
 

A. Channel Emulation 

The prototype implementation includes an emulation of a 
channel to be able to test the performance of the system 
when used with an AWGN channel. Therefore, white 
Gaussian noise was generated and the power was 
normalized with respect to the encoded sequence. 

Afterwards the noise was multiplied by , where 

Signal-to-Noise Ratio (SNR) is the signal-to-noise ratio of 
the channel emulation in dBs. The noise and the encoded 
sequence are then added to emulate an AWGN channel. 
 

B. Test Methodology 

The test consists of encoding long strings of data and then 
adding noise at different SNRs. The noisy data is then 
passed to the decoder which performs several iterations 
before outputting the data. After the decoding is complete, 
the decoded data is compared with the original strings, 
and the BER is calculated. It is chosen to test the 
prototype at SNRs ranging from -8 to 2 dB in steps of 1 
dB to show the asymptotical behavior at lower SNRs 
while still showing the decaying exponential shape for 
higher SNRs. The test was performed for multiple 
numbers of iterations ranging from 1 to 8 iterations, since 
the benefit of performing more iterations is negligible. It 
is furthermore chosen to repeat the test a 1000 times for 
each SNR and calculate the mean of the resulting data set 
to increase the reliability of the results. 
 

C. MatLAB Simulation Results 

The result of the compliance test is shown in Figure 2. It 
can be seen from the results that more iterations reduce 
the BER as expected. It is furthermore visible that the 
decoder does not improve much on the quality of the 
received data if the SNR is below -5 dB. 
 

 
Figure 2. MatLAB simulation results. Each curve shows the result of a 

certain number of iterations as stated in the legend. 

III. FPGA IMPLEMENTATIONS 

This section details the software and hardware-accelerated 
FPGA implementations of the decoder. The selected 
platform is the Altera DE2 board which includes a 
Cyclone II EP2C35F672C6 FPGA and the soft-core 
processor is the NIOS-II. 

A. Software Implementation 

The soft-core processor is designed with arithmetic units 
only capable of integer calculations. This means that one 
must either use a fixed point representation, or design a 
floating point implementation using the arithmetic units 
available. Such an implementation possibly provides a 
better numerical stability to the TC implementation and 
certainly eases the design of it. A floating point 
implementation, however, increases the number of 
calculations required for rather simple operations, and 
therefore increases the execution time of the algorithm 
significantly. It is therefore chosen to use a fixed point 
implementation, where all numbers are represented as 32 
bit integers with the point placed at 216. This means that 
all numbers are multiplied by 216 = 65536 and rounded to 
the closest integer lower than the resulting number. The 
Nios processor, however, is not capable of multiplying or 
dividing two 32 bit numbers with full precision and range. 
A consequence is that one has to choose between range or 
precision in all multiplication operations. Either one must 
divide each number by 28 (or one of them by 216) and then 
multiply the numbers, or multiply the numbers and then 
divide the result by 216. The first method throws away 8 
bits of precision in each number before multiplying the 
numbers, whereas the second method can cause up to 32 
bits of overflow since (231-1)2 = 262-232 +1, which does 
not fit in a 32 bit register. The software for the embedded 
system has therefore been designed to use the best of the 
two methods, i.e. divides one operand by 28 and also 
divides the result by 28. 
 
The overall system is illustrated in Figure 3. 
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Figure 3. The software implementation of the turbo decoder (right) and 
its connection to the MatLAB implementation of the turbo encoder. 

 
The software embedded in the Nios II soft-core processor 
is composed of 5 functions: main to receive the data from 
the PC, place it in the right data structures and call the 
decode function. When the decode function is finished, 
main transmits the decoded data to the PC. It also 
measures the execution time of the other functions, and 
transfers this information to the PC. decode is in charge of 
the iterative part of the decoding process, it calls the 
functions interleave, deinterleave and sova. interleave and 
deinterleave are  in charge of interleaving and 
deinterleaving either the La, sys or LLR sequence. It has 
been chosen to implement a quadratic interleaver and 
implement the permutation using a lookup table rather 
than the matrix-vector multiplication. sova performs the 
actual decoding. 
 
The soft-core processor is configured as follows. Core 
type: Nios II/f, Hardware multiply: Embedded multipliers, 
Hardware divide: Yes. The peripherals are as follows. 
SRAM: 512 KB (actual usage is only 400 Kb),RS-232 
UART, JTAG UART, and TIMER. The system is 
synthesized and programmed from the Quartus II suite, 
the C program is compiled and sent to the Nios II/f using 
the Altera Nios II IDE program. After the completion of 
the synthesis in Quartus II, the summary report states that 
the total amount of LEs used is 3250 out of 33,216, i.e. 
roughly 10 % of the available LEs. The execution time 
measurements of the soft-core implementation are 
presented in Section IV. 
 

B. Hardware Accelerated Implementation 

The next step is to examine the software implementation 
to identify the most computationally intensive parts of the 
algorithm by means of profiling. In Nios II IDE, the 
pprofiler is called niosii-elf-gprof. This profiler samples 
the program counter at certain intervals which quickly 
produces results but it might not give the most precise 
results. The profiler output is generated by the Turbo 

decoder functions on the Altera DE2 board using the Nios 
II/f soft-core processor operating at 50 MHz. A summary 
of the flat profile of the functions is given in Table I. 
 

TABLE I. FLAT PROFILE SUMMARY 
 

Function name % Time Self-Time Calls Self s/call Total s/call 
Decoder 1 0.01 1 0.01 1.15 
Sova 80 0.92 2 0.46 0.56 
Interleave 1 0.01 2 0.00 0.00 
Deinterleave 1 0.01 2 0.01 0.01 
Jabob_log 17 0.20 98368 0.00 0.00 

 
Since the sova and the Jacob_log function are using 97 % 
of the execution time spent on decoding, it is decided to 
analyze them to determine whether they can be 
accelerated. To initiate the exploration process, the Sova 
and Jacob_log functions are analyzed using combined 
Precedence Graphs (PG) and Data Flow Graphs (DFG). 
The operations in the computation of the best forward and 
backwards path cost are illustrated in the combined DFG 
and PG in Figure 4. The combined DFG and PG for the 
output computation of the sova function is seen in Figure 
5. The Jacob_log function, which is called by sova 
function, is shown in Figure 6. The inherent parallelism 
can be seen in the patterns in the combined DFGs/PGs in 
figures 4-6. Some observations can be made regarding the 
parallelism: the computation of branch0 and branch1 is 
not possible before the computations of par1cost, par2cost 
and logprob have completed. The algorithm in Figure 6 
requires knowledge of mu best and mu best back to 
calculate a temporary cost, right after the calculation of 
branch0 and branch1. The orders of calculation of a) 
branch0 and branch1, b) syscost, par1cost and par2cost, 
and of c) first term and second term are irrelevant. The 
rescheduling of the algorithm for the computation of 
forward and backwards path costs in the sova function, 
can be performed as shown in Figure 7. 
 

 
Figure 4. The PG and DFG of the backwards and forward evaluation of 
the path cost. 
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Figure 5. The PG and DFG of the output computation from the branch 
metrics. 
 
 

Figure 8 shows the second part, where the branch metrics 
are re-computed and used with mu best and mu best back 
from Figure 7 to calculate the extrinsic value, La, and the 
softoutput, LLR.  
 
The last rescheduled function, Jacob_log, is depicted in 
Figure 9. 
 
 

 
Figure 6. The PG and DFG of the jacob log function which is called 
from the sova function in order to calculate the branch costs, branch0 
and branch1. 

 
 

 
Figure 7. Structure of re-scheduling the sequential code to extract the 
inherent parallelism. 

 
Figure 8. Rescheduling the second part of the SOVA algorithm, where 
the extrinsic values, La, and the soft-outputs, LLR, are calculated. 

 

 
Figure 9. Structure of re-scheduling the sequential code for the jacob log 
function to extract the inherent parallelism. 

 
It is selected to implement a hardware accelerator with the 
structure shown in Figure 10. It can compute the branch 
costs for all three loops, and it can therefore function as a 
generic block. This is one solution trading off area and 
execution time, but it can easily be scaled as several 
accelerators could be implemented and offer branch cost 
computation. As stated in III.B the soft-core 
implementation took up 3,250 LEs in the FPGA, which 
corresponds to roughly 10 % of the total number of LEs. 
When adding the hardware accelerator, the area 
consumption increases to 5,909 LEs, which is 16 % of the 
total area consumption. 
 

 
Figure 10. The selected parts of the algorithms for the hardware 
implementation. 
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IV. EXPERIMENTAL RESULTS 

An experimental test is specified in order to provide the 
required data to be able to compare the two different 
implementations of Turbo Coding (TC), with regards to 
execution time, while also verifying that the turbo coding 
principle is preserved. This test is specified as follows: 1. 
Generate a random bit sequence of length 2048 using 
MatLAB, 2. Add white Gaussian noise and ensure an 
SNR level of 2 dB, 3. Send the bit sequence to both 
implementations and make them decode with the number 
of iterations ranging from 1 to 20. 4. For both 
implementations the time used for decoding is measured. 
The time is measured in exactly the same way in the two 
implementations to remove bias. The time, along with 
amount of iterations, should be noted. The tests are 
performed with and without the hardware acceleration. 
The results of the first test, testing the execution time of 
the two implementations, are shown in Figure 11. The 
results of the BER test are shown in Figure 12. 
 

 
Figure 11. Execution time for the soft-core implementations, with and 
without hardware acceleration. 
 

 

 
Figure 12. Results for the BER achieved at different levels of SNRs for 
the prototype in MatLAB and the two implementations. The numbers 
next to the curves indicate the number of iterations for the specific 
curve. 

 
The results for the first test shows that the combined soft-
core and hardware implementation is faster than the pure 
soft-core implementation. Specifically, at for example 10 
iterations, the two implementations differ by 2.614 s in 
favor of the hardware accelerated implementation. The 

results also show that the dependency between execution 
time and number of decoding iterations has an 
approximately linear relationship. In detail, the hardware 
accelerated implementation is faster than the soft-core 
implementation by between 34.44% and 25.13% for one 
and 20 iterations, respectively. The cost of this 
acceleration is moderate since the required resources of 
the FPGA are increased from 10% to 16% (cf.III.B). 
The results of the second test show that the curves of the 
two implementations have a shape similar to the curve for 
the prototype decoder. The BER decreases with 
increasing SNR and the number of decoding iterations. 
This suggests that the Turbo coding functionality is still 
preserved. At any SNR, the BERs of the implemented 
versions are roughly equal. However, compared to the 
prototype, the two implementations require SNRs 2 dB 
higher to achieve the same BER as the prototype. 
 

V. CONCLUSION 

A hardware accelerated NIOS-II implementation of a 
turbo decoder has been presented. In the first phase, 
simulations of the MatLAB prototype have shown that the 
BER decreases for every iteration in the decoder (down to 
10-4), except for low SNR cases (below -5 dB). In the 
second phase, two FPGA implementations of the decoder 
have been described and compared. The first one consists 
of software executing on a Nios II/f soft-core processor, 
while the second one adds hardware acceleration. 
Computationally demanding parts of the decoder have 
been identified, rescheduled for parallel execution and 
moved to the hardware accelerator. The two 
implementations require SNRs 2 dB higher to achieve the 
same BER as the MatLAB prototype. The decoding 
process in the hardware accelerated implementation 
results in approximately the same BER as for the software 
implementation, but the execution time is decreased by 
between 34 % and 25 % when the number of decoding 
iterations is increased from 1 to 20, respectively. The 
accelerated implementation increases the number of 
required resources from 10 to 16%, as compared to the 
software one. 
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