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Abstract—In moving towards the Swarm Production
Paradigm, the need for a planner capable of developing paths
for multiple robots of different capabilities is required. Such
a planner needs to generate paths for robots while remaining
effective when topological or environmental reconfiguations
occur. This project investigates the development of a model
predictive controller for multiple robots using potential fields
as the primary path generation method for short intervals into
the future for multiple robots. This controller is implemented in
ROS2, and the supporting topics and data handling created to
allow dissemination of the desired control outputs to multiple
robots. The controller and method are then validated in both a
Python based occupancy grid simulation, as well as in a ROS2
physics simulator for multiple robots.

I. INTRODUCTION

Swarm Production, as proposed in [2] is the basis for a new
paradigm of manufacturing, allowing high flexibility not only
in tool configurations and workflows, but also in the layout
of machinery in the physical environment. The limitations in
current manufacturing paradigms include rigid linearity, fixed
machinery locations, or lack of flexibility of tool selection at
each stage of the manufacturing production. By establishing a
variety of mobile manufacturing platforms for each potential
operation in the production process, as well as a set of carrier
robots to move materials between stages of the process, swarm
production provides flexibility in physical layout, step order of
the production flow, and multitasking between different sets
of machines. Such a flexible environment requires adequate
management of the robots, including path finding for each
carrier and production robot, establishment of priorities in both
moving and job scheduling, as decisions being made by each
robot without coordination may result in collisions, deadlock,
or inefficient planning if each robot lacks an awareness of the
others.

This paper presents a centralized method of controlling
multiple robots in a manufacturing context through the use of
a model predictive potential field pathing algorithm combined
with A* navigation. The aim of this project is to allow a variety
of robots to move around each other to accomplish a goal
such as material delivery, or to move around an environment
with the goal of robot topology reconfiguration. The novelty
of this paper’s solution compared to previous work is the
incorporation of both model predictive potential fields and
A* pathfinding in the context of discrete task completion.
This novelty is combined with simultaneously allowing for
reconfiguration of the manufacturing environment according
to a higher level job scheduler and topology manager. Unlike

several approaches to multi-robot navigation, this paper does
not adopt a leader-follower approach, and assumes a known
environment in which all operations occur, as opposed to
an unknown or exploratory environment.The jobs undertaken
by carrier robots are allocated to available robots based on
the highest available job in a list, while jobs for process
robots are set via jobs marked for specific roles or robot IDs.
It is assumed that the priorities of these jobs are set by a
different system. The proof of concept for this solution is
achieved by a occupancy grid simulation run in Python, which
provides a simple and fast test ground for parameter tuning
and validation of the method, as well as simulations in the
MAES simulator for ROS2 develope by students at Aalborg
University [3]. The MAES simulator provides ROS2 RVIS and
Unity visualization output, as well as the ability to capture
data in a rosbag for further playback and analysis. The result
of this paper is a control system for multiple robots in a swarm
production environment allowing for pathfinding of robots for
both delivery and topology reorganization according to the
needs of the overall manufacturing flow.

II. RELATED WORK

While swarm production itself relatively new and only
proposed in 2021 by [2], much work has previously been done
on managing swarms of robots, and finding effective ways
of planning paths for one or multiple robots in an enclosed
environment. Potential field based robot planning has been
the subject of academic research since the 1990s, including
early implementations on the CARMEL platform in 1991 as
described in [9]. Koren and Borenstein describe an effective
method to calculating a navigation vector based on an cell
based occupancy grid, in which the robot receives influence
from the goal it should navigate to as well as any obsta-
cles nearby. This approach is mathematically straightforward,
relying on the calculation and combination of the different
vectors, but has shortcomings when navigating through close
walls or tunnels. Limitations of the potential field approach
are described in [9], and potential solutions to some of the
shortcomings in [1]. In the expected environment for a swarm
production system, several of the identified shortcomings
expressed in [9] are not expected to be common, specifically
the oscillations in narrow corridors, or the oscillation when
between obstacles. [9] only considers the potential fields in
the context of one robot, while swarm production requires
planning for multiple robots and types of robots. In consider-
ing multiple robots, the work of Elkilany et al. in [1] offers



insight to the existing literature for refining potential field
implementations. Additionally, [1] discusses tuning methods
for the forces and gains experienced by a robot when in
the presence of obstacles while pursuing a moving target.
While swarm production does not require the tracking of a
moving target to be successful, the possibilities of continuing
to deliver materials to process robots while the manufacturing
environment reconfigures is of potential interest. Several non
potential field based approaches are present and integrated
into the second version of the Robot Operating System, or
ROS2. ROS2 provides a base for standard development of
robots, as well as a set of integrated planning and commu-
nication frameworks and tools [7]. Included in the toolbox
of ROS2 is a set of navigation tools, which plan pathing for
individual robots to calculate paths based on the A* algorithm
or Dijkstra’s algorithm [6]. While widely used in the field
of path planning, both of these algorithms create paths only
for one robot at a time. Model predictive control provides
a set of control tools for a system, as opposed to a single
component, and assumes that short term predictions eventually
approach optimal solutions over longer time intervals [10].
As model predictive control allows simulation and control of
a complicated system, such as multiple mobile robots, with
near optimal results over the long term while planning for the
search term, this approach is of interest to this project due to
it’s ability to control complicated systems without planning a
complete solution in one step.

III. METHODS

The goal of this paper was to create a ROS2 centralized
model predictive potential field based path planner for a
variety of robots in the context of swarm production. The
controller should be capable of handling robots with different
capabilities, plan pathing for each robot to a receding horizon
with assumed knowledge of the robot positions and environ-
ment obstacles, and react to changes in the environment or
job order flow. A central ROS2 node will provide the path
information to each robot, and receive information from each
robot to update the controller’s knowledge of each robot after
each step is taken, and adjust the predictions based on any
deviation from the intended path. The information for each
robot will be sent to every robot, allowing for robustness in
communication between robots in the case of communication
failures, the information could be passed between individual
robots instead of directly from the controller. In designing
and implementing the controller, it is assumed that effective
localization is present in the environment, and the location of
robots and obstacles can be known and given to the controller
for the calculations.

Simulations and calculations were performed with ROS2
Galactic, a Lenovo Thinkpad P53 20QN, with an Intel i9-
9850H CPU, 16GB RAM, an Nvidia T2000 GPU, and Ubuntu
20.04 LTS with ROS2 Galactic Geochelone and Python 3.8.10.
Simulations were performed in the MAES simulator. All
information between the controller and simulated robots took
place over the ROS2 topic system.

A. System Architecture

The overall goal of the system architecture design is to
create a centralized control structure in which pathing can
be generated, and regenerated, to best fit the needs of the
production flow. The controller therefore is designed with in-
tegration to job scheduler and topology manager not included
in this project, which would dictate the organization of the
environment, and the order in which jobs are presented to the
controller for execution. The controller therefore only needs
an understanding of the environment, primarily the robot and
obstacle locations, and have access to a list of jobs to be done.
Information on the locations of all relevant objects is assumed
to be reliable, and not part of the system architecture beyond
the ability for robots to send their location info back to the
central control node. The central control node performs all job
allocation to robots, as well as all calculations for the paths
using potential fields, or a handover to local robot navigation
such as A* or Dijkstra, as described in [6]. Depending on a
variety of navigation properties, such as remaining distance,
time elapsed, and potential future additions, the A* or Dijkstra
algorithm built into the ROS2 navigation stack serves as a
”last-mile” method of achieving the navigation and orientation
while close to the goal. As discussed in [9], the usage of
potential fields as all or part of a navigation system is a
known method of solving multi robot navigation problems.
The architecture presented in this paper improves on the usage
by allowing a hybrid control solution for multiple robots in a
model predictive context, and flexibility with different jobs and
robot types for the swarm production paradigm, in which large
scale movements and orchestration is handled by a central
controller, and control handed off to a local controller for final
approach of the robot to it’s goal.

B. Communication Architecture

Communication of all data is handled by the ROS2 topic
system. There are two central communications topics: one
from the controller to the robots, containing all of the intended
navigation information, and one available to the robots to
update the control node with their positions. The implemen-
tation in this paper assumes a static environment devoid of
obstacles that would be unknown to the controller, but it is
acknowledged that an additional obstacle detection topic could
be easily added to inform the controller of unknown obstacles
encountered by the robots.

1) JSON Architecture: While the controller assumes con-
tact with all robots to continuously send the most recently
calculated path information, the communications in a real
world environment may not allow optimal distribution of
commands. A JSON file of all robot IDs and each robot’s
next navigation steps is therefore sent to all robots, instead of
sending individual commands to each robot. As each robot is
aware of every other robots next set of commands, it becomes
possible for the commands to be distributed locally from robot
to robot if one or more are unable to reach the central control
node. The format of the JSON file is presented below with an
example JSON structure for 3 robots with IDs 1, 2, and 3, and
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Fig. 1. Information flow and high level ROS2 topic diagram of the controller, including assumed interface to production and topology management.

4 steps of calculation complete for each. The structure of the
JSON is of each entry being in the format of

"robotID” : [[x1,y1], [2, 2] [Tn, Yn]] H

Therefore a set of three robots with 4 calculated next points
would be constructed as:

{

717 [[0,0][0.1,0.2][0.2,0.3]1],
727 [[1,2][0.6,1.8][0.2,1.6]1],
737 [[5.,6]1[4.5,6.3]1[4.2,6.6]]

When calculated and converted to a JSON in the main
control node, the JSON is further converted to a string object
using the Python json library. The ROS2 topic system does
not include support for JSON topics, so a conversion from the
JSON format to a supported format of String is required.

2) Unknown Robot Inclusion: The topic for the robots
to update their position in the controller additionally allows
the controller to become aware of new robots entering the
arena, and potentially request further information about their
capabilities if needed. The simulations presented in this paper
assume identical robot capabilities for all courier robots, and
the specifics of the capabilities of the process robots are not
considered relevant to the design of the path planning.

C. Job allocation

This paper assumes that the order in which jobs are to
be processed is determined by a higher level authority than
the path planner, as while swarm production allows a high
degree of flexibility in the organization and order of jobs,
this paper focuses primarily on how to move the robots
transporting materials, or the manufacturing robots, around the
manufacturing space effectively. In this paper a set of jobs

is presented to the controller, emulating pickup and dropoff
of materials from one location to another. The structure of
the model predictive calculations, as well as the centralized
knowledge of each robot and each robots intended next steps,
allows for additional flexibility in routing materials, as the
goals of a material delivery robot can be linked to the location
and orientation of a manufacturing robot, regardless of whether
or not it moves.

D. Path Generation

Generation of the paths each robot should take is done
by the central control node and distributed to each robot
in the schema described in section III-A and III-BI1. The
calculation of the paths is described by two main components:
the computation algorithm to generate a ”step” for a robot to
take in a given time interval, and the model predictive process
of the usage of the computation algorithm.

1) Computing “Steps”: A ”’step” for a robot is defined in
this context as the movement that a robot is directed to take in
a given time interval. Based on the maximum usable speed of
the robot and the frequency that the model is run at, each step
is calculated such that the steps at a given time ¢ are calculated
for all robots before any step at time ¢ 4 1 is calculated. The
calculation of a step is based on several factors: The location
of the robot relative to its goal, the location of the obstacles,
and the location of other robots. Each of the objects that are
in those lists are considered on an individual basis relative to
the robot who’s step is being calculated, and a vector created
to represent the influence of that object.

2) Goal Contribution: The influence of the goal is calcu-
lated first, as it is always providing some influence to the
robot. The goal is considered in three scenarios, dependent
on the distance d, the radius » of the goal, # angle to the
goal relative to the global frame, and the spread s of the



goal. If the robot is within the radius of the goal then the
navigation directions from the central controller are considered
complete, and control can be handed off to the robot itself for
any fine tuning of it’s position, for example docking with the
manufacturing robot. The vector of the angle to the goal from
the robot is established in the global frame as

9; = [cos(0), sin(6)] 2)

The equations that govern the vector generated by the goal are
as follows:

d<r+5:30%(d—71)%0,
d>7‘+5:50*(d—r)*6’; 3)
d<r:0x6,

Ug:

3) Obstacle Contribution: In considering each other robot
in the environment, while the controller is aware of the
difference between robots and obstacles, the other robots
are considered something to avoid for each robot. They are
therefore considered obstacles, albeit obstacles that move and
have their influence recalculated on each iteration of the
model predictive calculations. The awareness of the difference
between robots and obstacles allows different multipliers on
the vector contribution to the final result, as well as the ability
to change the influence of a robot on others based on job or
robot type. The influence of robots, v,, and obstacles, v, is
calculated as follows, where 6 is the angle in the global frame
between the robot who’s vectors are being calculated and the
entity creating the influence.

0, = [cos(0), sin(6)] 4)

As each other robot is considered an obstacle at each point in
time, the calculations for robot and obstacle influence are the
same. The equations that govern the vector are generated by
are as follows:

d<r+4s:=10%(d—r)*0,
U =Rd>r+s:20%(d—r)x0, ©)
d<r:50%0,

4) Combination and Iteration: After all components of the
main vector have been calculated, the different contributions
are added together, normalized to a unit vector, and then scaled
by the speed of the robot multiplied by the time step used in
the model. This normalization and scaling is done to create a
step that matches the maximum distance the robot is able to
move in the simulation step, and the intended orientation is
set to match the orientation of the intended movement vector.

Uy = Vg + 2, (6)

. Uy
Ustep = Speedrobot * @)
[[vrl

With the vector and orientation established, the robot’s
next intended position is defined by the end of the vszep

vector defined in equation 7 when the vector is positioned

to start at the robot position used to calculate the vector. This
intended position after the next step, as well as the intended
orientation of the robot, are added to internal lists in the
controller’s representation of the robot. This approach allows
the calculations to be run using intended positions of all robots,
as the controller is aware not only of the current positions of
the robots, but also the intended positions at every calculated
time. When calculating to the horizon of the predictive model,
each robot includes the position of the other robots at ¢t + n
when calculating their individual step for ¢ + n + 1. These
lists held in the controller representations form the basis of
the JSON control message sent to all robots, as described in
1I-B1

E. Parameter Selection

Four main parameters were identified as key parameters for
effective simulation and control. The multipliers on the vector
components for distance to goal, both in and out of the spread
region, and the multipliers of the obstacle vector contributions,
also both in and out of the influence region, and the multiplier
used when a robot is within the radius. These parameters were
chosen largely by a rough parameter sweep, where simulations
were run for multipliers ranging from 10 to 100 in increments
of 10, and all collisions and successful navigation to goal were
recorded. These parameters were then slightly refined by hand
for further tuning.

IV. SIMULATION

The model’s effectiveness was validated using two simula-
tion methods. First, while developing the core model predictive
control functionality, an occupancy grid type environment
was created in Python, where multiple robots, obstacles, and
tasks can be run. This environment allows easily visualization
of the environment and intended pathing as each time step
is calculated and executed, however does not include ROS
messaging support as shown in III-A Once the intended
behaviour of the system was designed in the occupancy grid
environment, the MAES simulator was used to provide ROS
compatible physics simulator testing [3].

A. Occupancy Simulation Design

The main components of the Python simulation are the
model predictive loop, the calculation set described in sec-
tion III-D1 and III-D4, a collision detection method, and
the visualization capture when running the simulation. These
components are designed to be independent of one another, so
that changes to each component can be implemented without
adverse effect, or so that each piece can be removed, replaced,
or reused in similar contexts.

1) Control Loop and Calculation: As discussed in III-D4,
the controller runs multiple steps of calculations as described
in III-D1. The calculation of each next intended step is done
independently for each step, and for each robot. The controller
additionally recognizes when to hand off control to the local
A* planner on the robot, such as when the robot is within the
intended radius of its goal.



Fig. 2. Captures of the occupancy grid simulation at start (left), at the closest approach of two robots at the 7th step (center), and as robots are closing in on
the goals at the end of the simulation (right). Robots are in dark blue, the goal regions in lighter blue, and obstacles in red. Each robot has a trail of colored
dots extending from it, representing the set of intended next positions for the robot. Parameters for the control loop are 20 iterations at .1 second each.

2) Collision Detection: Collision detection is split into
two main categories, an actual collision, and a warning of
close proximity. Collisions are detected at each step of the
simulation by iterating over the list of robots, and performing
two sets of checks. First, against the list of static or environ-
mental obstacles, where a collision is registered when the radii
of the robot and obstacle overlap, and a proximity warning
determined by an overlap of the robot radius with the influence
radius of the obstacle, determined by

. _ 2
distance = \/xrobot — Topstacle + Yrobot — Yobstacle (8)

distance <= radius, por + radiuSopsiacie : Collision
distance <= radiuSropot + radituSopstacie

+TadiUSobstacleinj'luence : WCLTTLing

Close proximity is not in itself to be completely avoided, as
there may be cases in which a small robot is able to squeeze
through a gap of two larger robots, and serves only as an
indicator that something in the environment has pushed a
robot into an area typically to be avoided.

B. MAES Simulation

The MAES simulator [3] was developed to provide easy
simulation of multiple robots with ROS2 support and minimal
setup and configuration. The simulator requires that an update
function be created for the robots that are simulated inside
of it, where the base setup requires that all robots share the
same controller. Since all robots are assumed to be the same,
and the simulator does not allow for the addition or removal
of robots from the simulation environment without restarting
the simulator, a controller was written to listen to the ROS2
topic described in III-B to obtain the control JSON, however
the functionality needed for reporting new robot information
to the controller was omitted. Several robots were simulated
in MAES, and a list of tasks given to them to complete.
The simulator was warned to be less stable and performant
running more than 3 robots, however a test with 5 robots was
performed.

Fig. 3. Example of multiple robots in the same arena being calculated in
the MAES simulator. 5 robots are visible in the left of the arena, and topic
information including the last received messages from the controller are visble
at the top of the image.

V. RESULTS

The initial stages of validation for the project were per-
formed in the Python occupancy grid based simulator, a
visualization of which visible in 2. In these trials, several
robots and obstacles were placed in an an environment, and 50
or more time steps calculated at a .1 second time resolution for
the control loop. The robots exhibit pathing towards their goals
while avoiding each other preemptively through recognition of
the intended paths, and all approach the goals to a degree that
would allow reasonable handover to the local controller for the
final approach. Once validated in the Python environment, a
more robust simulation was attempted in MAES. An interface
was designed for the MAES simulator, and trials attempted.
The initial phase of the MAES simulator with display of an
incoming message from the controller is seen in 3. While
the interface is able to receive incoming messages from the
controller, the simulator has difficulty in implementing them
due to suspected timing problems between the two, as the
controller iterates through the positions of the robots and
begins sending position commands of NalV.



VI. DISCUSSION

This paper set out to create a controller for multiple
robots in the swarm production context. While potential fields
have some limitations in navigation, the usage of a model
predictive loop to generate constant short horizon sets of
commands for the pathfinding, as well as the expectation of
a known environment demonstrate in initial simulations that
the method has viability in guiding robots close enough to
their goal that the local planner on the robot can complete
the navigation and alignment. Further tuning of the potential
field coefficients could further the usefulness of this method,
as well as developing a form of hybrid control between the
potential field planner and the best times to hand off to the
local controller or another algorithm, for example to reduce the
likelihood of being trapped in a local minima. Job handling
and organization in this project is sufficient for the needs
of the controller, however further integration with a more
sophisticated job scheduler is an avenue of future work. The
Python based simulations provide a proof of concept model
in two dimensional space for multiple robots, and those same
calculations are integrated into a ROS2 controller for use with
an existing simulator. Finally, fully integrating the controller
built in this paper to a controller with inclusion of bad message
rejection and handling and proper frequency is proposed future
work that would allow better data collection for large job sets.

VII. CONCLUSION

This paper provides a centralized,flexible ROS2 compatible
model predictive hybrid control architecture and proof-of-
concept implementation using potential fields and A* naviga-
tion in the context of swarm production robotics. This solution
allows for additional methods of path planning to be easily
integrated, as well as support for changing environments and
job priority, both key components in the swarm production
paradigm.
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