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ABSTRACT

In this paper, we propose a novel non-negative matrix factoriza-
tion (NMF) and hidden Markov model (NMF-HMM) based speech
enhancement algorithm, which employs a Poisson mixture model
(PMM). Compared to the previously proposed NMF-HMM method,
the new algorithm, termed PMM-NMF-HMM, uses the Poisson mix-
ture distribution for the state conditional likelihood function for a
HMM rather than the single Poisson distribution. This means that
there are the more basis matrices that can be used to model the
speech and noise signals, so more signal information can be captured
by the resulting model. The proposed method is supervised and thus
includes a training and an enhancement stage. It is shown that, in the
training stage, the proposed method can be implemented efficiently
using multiplicative update (MU) for the model parameters, much
like the NMF-HMM algorithm. In the speech enhancement stage,
which can be performed online, a novel PMM-NMF-HMM mini-
mum mean-square error (MMSE) estimator is developed. The exper-
imental results indicate that the PMM-NMF-HMM method can ob-
tain higher short-time objective intelligibility (STOI) and perceptual
evaluation of speech quality (PESQ) score than NMF-HMM. Ad-
ditionally, the method also outperforms other state-of-the-art NMF-
based supervised speech enhancement algorithms.

Index Terms— Poisson mixture model (PMM), speech en-
hancement, non-negative matrix factorization (NMF), hidden Markov
model (HMM), minimum mean-square error (MMSE)

1. INTRODUCTION

In real-word environments,the quality and intelligibility of speech
signal is often degraded due to the presence of background noise.
To combat such noise, speech enhancement techniques have been
developed. The main purpose of speech enhancement is to esti-
mate the speech from the observed noisy speech while attenuating
the background noise to improve the quality and intelligibility of
the observed signal [1]. Monaural speech enhancement provides a
cost-effective strategy to address this problem by utilizing recordings
from a single microphone, and by combining it with beamforming it
can be extended to multiple microphones. Speech enhancement has
a wide rang of important applications, which include as automatic
speech recognition (ASR) [2], teleconferencing, hearing-aids, and
mobile communication.

During the past decades, many different speech enhancement
strategies have been proposed for environments with additive noise
(e.g., [3]). These methods can be roughly divided into supervised
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and unsupervised approaches. For the unsupervised algorithms, the
spectral subtraction algorithm [4] is perhaps the simplest strategy
to estimate the speech. Furthermore, the minimum mean-square
error (MMSE) spectral amplitude estimator [5], the signal subspace
method of [6] and the optimally-modified log-spectral amplitude
(OM-LSA) method [7] combined with IMCRA noise estimator [8]
are all effective strategies to estimate the speech. However, these
methods cannot always achieve satisfactory speech enhancement
performance in non-stationary noise environment because of in-
accurate estimation of noise. Therefore, the supervised speech
enhancement method have been proposed like NMF [9]. Among the
supervised speech enhancement algorithms, the codebook-driven
auto-regressive (AR) model based method [10], the auto-regressive
hidden Markov model (ARHMM) method [11] and non-negative
matrix factorization (NMF) based methods [12] are noteworthy
methods. These algorithms can make good use of prior informa-
tion about both speech and noise, and, as a result, they can often
achieve better speech enhancement performance than the unsuper-
vised methods, particularly in non-stationary acoustic environments.

With the advances in computation power, increases in the avail-
ability of training data combined with advances in the theory and
practice of neural networks [13], deep neural networks (DNNs) have
become a feasible strategy for speech enhancement. In recent years,
various network structures have been used for enhancement, such
as feed-forward multilayer perceptron [14], fully convolutional neu-
ral network [15], deep recurrent neural networks [16], and generative
adversarial networks [17]. These networks can be used to predict the
different targets like the speech spectrum [18], ideal ratio mask [19]
and time domain waveform [20]. However, the computational com-
plexity, model size and power consumption of these methods may be
problematic for some application.

As mentioned above, NMF is an effective speech enhancement
method. In general, NMF can be combined with other models to
achieve the better speech enhancement performance. For instance,
the combination of NMF and DNN can help NMF better model the
speech and noise characteristics [21] and improve the generalization
ability of the method [22]. Moreover, the NMF can be also combined
with HMM [23], which can capture the temporal information of both
speech and noise. As a consequence, such methods can often outper-
form the traditional NMF-based speech enhancement methods [12].

In our previous work [24], we proposed a NMF-HMM-based
speech enhancement algorithm. This method applies a single Pois-
son distribution as the likelihood function for the HMM, which
cannot effectively model the speech and noise due to their complex
behavior. To address this problem we propose the Poisson Mixture
Model-based NMF-HMM (PMM-NMF-HMM) speech enhance-
ment algorithm, which is a more sophisticated statistical model



capable of capturing more complex behavior, similarly to Gaus-
sian mixture models [25]. This model makes it possible to better
describe the speech and noise because these may be governed by
multiple underlying causes, each being responsible for one par-
ticular mixture component in the distribution. If such causes are
identified, then the PMM-NMF-HMM can be decomposed into a
set of cause-dependent or context-dependent component distribu-
tions [25]. As a result, the performance can, arguably, be improved
by exploiting this. Furthermore, like the NMF-HMM-based speech
enhancement algorithm, the proposed method can be implemented
using multiplicative updates (MU) of the parameters. For perform-
ing the enhancement given the trained speech and noise models,
we propose an PMM-NMF-HMM-based MMSE estimator, which
can be implemented using online parameter updates suitable for
parallel computations. Moreover, compared to typical DNN-based
method [14], the proposed method uses a small model size with few
degrees of freedom.

2. SIGNAL MODEL

In this section, we will briefly introduce the signal model that the
proposed method is based. In an acoustic environment with additive
noise, the observed signal model can be written as

y(l) = s(l) +d(1), M

where y(1), s(I) and d(l) represent the observed, speech and noise
signals, respectively, and [ is the time index. The short-time Fourier
transform (STFT) of y(1) can be written as

Y(fvn):S(fvn)+D(f7n)v 2

where Y (f,n), S(f,n), and D(f,n) denotes the frequency spec-
trums of y(1), s(), and d(l), respectively. The f is the frequency
bin index and the n is the time frame index. Collecting F' frequency
bins and /N time frames, the magnitude spectrum matrices can be
defined as Y n, Sy and Dy, where Yy = [y1,-* ,¥n, " ,YN]
and y, = HY(Ln)'v T |Y(fa n)|a R |Y(F,TL)HT, spn and d,,
are defined similarly to y,,. And Sy and Dy are defined similarly
to Y n. Additionally, the proposed method is based on the approx-
imation Yy = Sy + Dy. The overbar () and double dots (*) are
used to represent the speech and the noise, respectively. The sig-
nal models for the speech and the noise signal are the same, so we
will in what follows only shown them for the speech signal. Apply-
ing the conditional independence property of the standard HMM, the
likelihood function for the speech can be expressed as follows:

p(Sn;®) =) Hp Su|Tn)p(@n|Tn-1), 3)
XN n=1
where XN = [T1,+* , T, - ,IN]T is a collection of states, T,, €

{1,2,---,J} represents the state at the n*® frame and J denotes
the total number of states. p(Tn|Tn—1) is the state transition prob-
ability from state T,—1 to T, with p(Z1|To) being the initial state
probability. p(s,|T») is the state-conditioned likelihood function,
® is a collection of modeling parameters. In this work, we propose
to apply PMM-NMF-HMM to estimate the p(s,|Z» ), which can be
written as

p(sa[Tn) = / D(80[70)D(Zn[Tn) dZn, 4

7l(zn =j,Zn=t) (5)

)

E’ﬂ\

J
p(Zn|Tn) = H

j=1t=1

-
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where z, € {1,2,---,T} denotes the mixture state and 7T is
the total number of mixture states. Additionally, we define zn =
[Z1,* ,Zn, -+ ,Zn]%, whichis a collection of mixture states. The

P; , is the mixture weight and there is Zt JPie=11<j< ).
The () denotes an indicator function, which i 1s 1 when the logical
expression in the parentheses is true and O otherwise. In [26] it
was demonstrated that the Kullback-Leibler (KL) divergence-based
NMF can be derived from the following hierarchical statistical
model:

K
=Y C(k), ©)
k=1
Crn(k) ~ POCsn(k); W kHen), )
where PO(z;\) = A®e™*/T'(z + 1) is the Poisson distribution,

I'(z+1) = «! denotes the gamma function for positive integer x, K
denotes the number of basis vectors, C(k) is the latent matrix and
€ .n (k) denotes the element of C(k) in the f*" row and n*® column.
W and Hy, ,, correspond to the elements of the basis and activa-
tion matrices for the NMF. Based on the (6) and (7), we propose to
apply the following hierarchical model to estimate p(sn|Zx),

K
Sp = Zén(k)v (8)
k=1

P(E (k) 2, ) =
[T (PO (k) Wi ™ H Y =00, )

)
Jitsk, f

ch (10)

where W?"k’z" and ﬁi’; " correspond to the elements of the ba-
sis and activation matrices and €, (k) contains the hidden variables,
writing €, = [€,(1)7,€,(2)7,--- ,€.(K)T]" and integrating €,
out, we obtain

p(snlCn) = d(s

p(n[7n) = / P(80[Cn)p(€n|Z0) de
(11)

K\

= [[{PoqS(f.n); > Wi Hyn )y r=imn=h.

gt f k=1

Finally, combining (4) and (5), at jth state, the (11) can be written
as

p(sn|Tn = j) =
L K e nmnE, (12
ZPJ H (|S(f7 )|7ZWfk Hk,n )
t=1 f=1 k=1
Moreover, we have that
p(sn|Tn, Zn) =
= = (13)

We collect the unknown parameters {Wl”’z"} and {H Jc"’z"} in

matrices {WJ’ } and {HJ’ }. To summarize, there are five param-
eters to be estimated in our proposed clean speech model. They
are the initial state probablllty matrix 7, state transmon probability

matrix A, basis matrix W , activation matrix H" and mixture



weight matrix P. The activation matrix EL"° is estimated in the
online speech enhancement stage while the other parameters are ob-
tained in the offline training stage. Additionally, the K and T can
be predetermined. For the observed signal, the initial state and tran-
sition probabilities matrix can be expressed as T @ 7 and A ® A,
where the ® denotes the Kronecker product. Thus, the conditional
likelihood function can be written as

T F
P(Yn|Tn, @n) :ZZ H oY (f,n)l;
- t=1 t=1 f=1 (14)
K K 0s e . T .
Z nkany n + Z W;‘;z’an]fz;zn)
k=1 =
F
p(yn|En,5n,fn,§7n) = H O(|Y(f7 n)|7
~ (15)
K

R By s s
Wf 12N, Hkn»nj n + 2 W;Zyzn HZ:;;Z” )
1 k=1
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>
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3. OFFLINE PARAMETER ESTIMATION

As mentioned above, the algorithm can be divided into two stages. In
the offline training stage, the parameters of speech and noise signal
model are estimated by using the speech and noise database, respec-
tively. First, we define the complete data set (Sn,Xn~,2Zn, Cn),
where Cn = [€1,C2, -+ ,Cn]. Based on the (3) and derivation in
Section 2, using the conditional independence property, the complete
data likelihood function can be written as

p(Sn,Xn,ZN, Cn)
= <£[1p(snlcn)> (p(wl)gp(xnlxnl)> 16

(H p(zn|xn)> (H p(cn|xn,zn)> .

Using Expectation-Maximization (EM) algorithm [27], the model
parameters can be estimated. For simplicity, we here omit the deriva-
tion process. It can be shown that the parameter updates can be writ-
ten as follows:

T = 7(1(?1—=j)7 (17)
2 o-14(T1 = 0)
N
A,y = el S RT 20 gy

J N — -
ijl Zn:Q q(x" =1Tn-1 = 0)

where 1 < 0, < J. The quantities q(Tn) and q(Tn, Tn—1) corre-
spond to the posterior state probability and the joint posterior proba-
bility, which can be calculated by forward-backward algorithm [24]
that combines the (12). The 7; and Zo, ; 1s the elements of A and 7,
respectively. The estimation of A and 7 is similar to the traditional
HMM. In addition, we have the following updates:

S .
Wt e e O
W7~ WT o p— ; (19)
LAG, &)(H)T

. . (Wht)Tf‘ftN j.t
B emto— W H 20)
(W)T1

where A(j,t) = diag(q(1 = 5,71 = t),q@2 = j,z2 =
t),--+,q@T~n = j,Z2nv = t)). The q(Tn = 7,Zn = t) is the
posterior probability when (T, = j,Z, = t). Once again, this
calculation can be performed using the forward-backward algorithm
which uses (13). Furthermore, this update is in the form of an
multiplicative update, which means that the offline training can be
performed efficiently. Moreover, we have

N _ .
- n=172n =1
Py = o=t =2 21 @

N T = C_
Yone1 221 (T = §,Zn = 1)

This mixture weight P;; determines the importance of each latent

cause that is modeled by single Poisson distribution for the whole

speech signal.

4. ONLINE SPEECH ENHANCEMENT

In the online enhancement stage, we propose a novel MMSE estima-
tor, which is based on the model produced by the PMM-NMF-HMM
algorithm. The MMSE estimate of the speech signal from the noisy
observation is

Sy = Esn\Yn (Sn) = /Snp(sn|Yn) dsp. (22)

For simplicity, we omit the specific details of this derivation. The
enhanced speech can be written as §, = y, ® g, where g,, can be
viewed as a spectral gain vector with

8= D Wi ( > Pj,tﬁ-,tpn(xn,zn,zn,én)), (23)

Tn,&n Zn,Zn

where the weight 0 < wz,, ,#,, < 1 can be written as

P(YnlTn, En)p(Tn, Tn|Yn-1)
Wy in = — : (24)
>z, i, PYnlTn, En)P(Tr, #n | Y1)

The calculation of p(y . |Z», Z») can be conducted using (14), and

p(fm i'n|Yn—1)

P>

Ty —1,8n—1

P>

Tn—1,Tn—1

p(fru i’n‘fn—l, i‘n—ly Yn—l)p(fn—h i’n—1|Yn—1)

p(fm iin‘f'nfly infl)p(fnflv Tn—1 |Yn71)7

(25)

In (25), the first term can be calculated by the transition probabilities

matrix of observed signal and the second term is the forward proba-

bility which can be calculated by a forward algorithm [24]. In (23),

pn(fn, jnaz’fh Z"’L) = [pl,n(fn, jﬂa En? én)7p2,n(fna ‘;B.ny ETL’ Z")a
0P (Tn, &,y Zn, 2n)] ", where

pf,n(fmi’mznvén) =
K  T57Zn:ZnTrEn,Zn
Do Wik Hkn (26)
K T57TnZnT7%n,Zn
Zk 1Wfk Hkn +Zk1

Comparing the PMM-NMF-HMM-based MMSE estimator with our
previous proposed NMF-HMM-based MMSE estimator [24], we can

:En aZW Hz‘n 1Zn



Average PESQ scores of different methods
| |

m SLF-NMF
B PMM-NMF-HMM(T = 2, K = 50)

m Noisy
| = NMF-HMM

S PMM-NMF-HMM(T = 4,K = 25)
2.6 - 3

2.8

PESQ

SNR

Fig. 1. Average PESQ scores of different algorithms using six types
of noise under four different SNRs.
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Fig. 2. Average STOI scores of different algorithms using six types
of noise under four different SNRs.

find that there are more than one NMF basis matrices at each HMM
hidden state, which means that our algorithm can model more un-
derlying possible causes in the observed signal, so the enhancement
performance can likely be improved based on this better model. Fur-
thermore, we also remark that parallel computing can be applied to

. L . .=t .
conduct the online estimation of active matrix H'~ to effectively
reduce the time consumption.

5. EXPERIMENTAL RESULT AND ANALYSIS

In this section, the performance of proposed algorithm was evaluated
and compared with state-of-the-art NMF-based speech enhancement
algorithms. All the experiments were conducted on the TIMIT [28]
and NOISEX-92 [29] databases. In the training stage, all 4620 utter-
ances from the training set of the TIMIT database were used to train
the speech PMM-NMF-HMM model. Meanwhile, parts of the Bab-
ble, F16, Factory and White noise from the NOISEX-92 database
were used to train the noise model. In the test stage, 200 utterances
were randomly chosen from the test set of the TIMIT database. Af-

ter that, the chosen 200 utterances were added to six types of noise
at four different SNR levels (i.e., -5, 0, 5, and 10 dB). There were
two types of noise (destroyerengine and destroyerops) that were not
included in the training database to test the generalization ability of
the noise model. It must be stressed that for all noise types, disjoint
training and test data was used.

To evaluate the performance of the proposed method, we com-
pare to two state-of-the-art methods, namely the NMF-HMM [24]
and the variable span linear filters [6] (SLF-NMF) combined with
parametric NMF [10] for estimating the noise and speech statsitics.

In the experiments, all the signal waveform was down-sampled
to 16 kHz. The frame length was set to 1024 samples with a frame
shift of 512 samples . The size of STFT was 1024 points with a
Hanning window. Furthermore, the maximum number of iterations
was set to 30 in the training stage and 15 in the online speech en-
hancement stage for these NMF-based methods. In addition, the
PESQ [30], ranging from -0.5 to 4.5, was used to evaluate the en-
hanced speech quality. The STOI [31], ranging from O to 1, was
used to measure the enhanced speech intelligibility.

For the NMF parameter setting, to better compare the perfor-
mance of PMM-NMF-HMM and NMF-HMM, we ensure that there
are the same total number of basis vector for the two models. For
the NMF-HMM, there is no the mixture weight (the NMF-HMM
can be seen as a special case of PMM-NMF-HMM when T =1
and T = 1), so we only need to set J = 10, K = 100,J = 2
and K = 70. For the PMM-NMF-HMM, we have J =10,J =
2, K = 70,7 = 1. We investigate the two different 7. When T is
set to 2 and 4, the K corresponds to 50 and 25, which ensures that
there is the same number of total basis vector. For the SLF-NMF,
we utilize the maximum SNR filter and the codebook size of speech
and noise is set to 64 and 8, respectively. Figure 1 indicates the aver-
age PESQ scores with 95% confidence interval of these algorithms.
The NMF-HMM-based methods always achieve higher PESQ scores
than SLF-NMF for all four SNRs. Additionally, with increased to-
tal number of mixture state 7, PMM-NMF-HMM achieve the better
performance. This indicates that PMM-NMF-HMM may effectively
better model multiple underlying causes in speech and noise when
improving the speech quality. Figure 2 shows the average STOI
scores with 95% confidence interval of the methods. We can see that
the PMM-NMF-HMM achieves better speech enhancement perfor-
mance at low SNRs (-5, 0, 5dB) with increased numbers of mixture
state T. However, for high SNRs, more mixture states does not lead
to a better performance.

6. CONCLUSION

In this work, we have proposed a novel PMM-NMF-HMM-based
speech enhancement algorithm. The new method employes a PMM
which was used to model the state-conditioned likelihood function
for the HMM, whereby multiple underlying causes in the signals
could be captured. More specifically, the resulting modal can be
decomposed into the different sets of cause-dependent or context-
dependent component distributions. Finally, as a result of the new
and more sophisticated model, the speech can be estimated more ac-
curately. To enhance the speech, we have proposed a novel MMSE
estimator, which is also based on the model of the PMM-NMF-
HMM method. This estimator can be implemented efficiently and is
thus suitable for online speech enhancement. In general, the experi-
mental results showed that the proposed PMM-NMF-HMM method
outperforms the previously proposed NMF-HMM, though the STOI
score was slightly lower than NMF-HMM at high SNR (10dB).
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