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Cost- and Energy-Efficient Aerial Communication
Networks with Interleaved Hovering and Flying

Nithin Babu, Student Member, IEEE, Marco Virgili, Student Member, IEEE,
Constantinos. B Papadias, Fellow, IEEE, Petar Popovski, Fellow, IEEE, and

Andrew Forsyth, Senior member, IEEE

Abstract—This work proposes a methodology for the energy-
and cost-efficient 3-D deployment of an unmanned aerial vehicle
(UAV)-based aerial access point (AAP), that exchanges a given
amount of independent data with a set of ground user equipment
(UE). Considering a fly-hover-communicate transmission scheme,
the most energy-efficient 3-D hovering points (HPs) of the AAP
are determined by decoupling the problem in the horizontal
and vertical dimensions. First, we derive analytically the optimal
hovering altitude that jointly maximizes the downlink and uplink
global energy efficiency (GEE) of the system. Next, we propose
the multilevel circle packing (MCP) algorithm to determine
the minimal number of HPs and their associated horizontal
coordinates, such that the AAP covers all the UEs in the given
geographical area. A cost analysis is carried out to observe
the variation of both fixed and variable costs; these are then
minimized by suitably selecting the AAP’s battery parameters,
like the depth of discharge (DOD), defined as the portion of
battery capacity that is consumed during a discharge cycle, and
the velocity of the UAV. Simulation results show that: the UAV
energy consumption has a significant impact on the 3-D HPs of
the AAP; the time spent during the substitution swap of an out
of power AAP has a major influence on the operational cost;
the cost of the system can be optimized by suitably selecting the
onboard battery and the UAV flight parameters.

Index Terms—cost-optimization, energy-efficiency, 3-D place-
ment optimization, UAV communication.

I. INTRODUCTION

THE use of unmanned aerial vehicles (UAVs) deployed
for providing temporary telecommunication services in a

disaster-affected area or a special situation event is considered
as an important application of the 5G and beyond technology
[1], [2]. The mobile feature of UAV-based communication
systems provides opportunities for better communication chan-
nels to the UEs as compared to conventional systems. The
improved channel gain is due to the higher line-of-sight (LoS)
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probability [4], shorter distance between the aerial access point
(AAP) and the pieces of user equipment (UEs), and ability
to choose a preferred link. On the other hand, the service
time of a UAV-based AAP is determined by the available
onboard energy. Due to this energy constraint, the deployment
of the AAP should be done in an energy-efficient way to
maximize the number of bits transmitted per Joule of energy
consumed, as captured by the global energy efficiency (GEE)
of the network [3]. As defined in [3], the GEE of an aerial
communication network is the ratio of the sum rate in bits
per second to the total power consumed. The total power
consumed is the sum of the communication-related power and
the power required by the UAV for flying and hovering.

The placement optimization of a UAV-based base station
with the objective of optimizing communication-related pa-
rameters, such as sum rate and coverage, is well investigated
in the literature. For instance, the authors of [4] present
an analytical approach to optimize the altitude of a UAV-
based base station for a given maximum allowed path loss.
A joint altitude and beam-width optimization for throughput
maximization is considered in [5]. A method to find the
optimal 3-D location of a UAV base station is developed
in [6], which maximizes the coverage region and optimizes
the transmission power. In [7], the authors have developed a
learning-based Intent-aware Upper Confidence Bound (IUCB)
algorithm that could be used for offloading tasks in an air-
ground integrated vehicular edge computing system. Works
studying the deployment of a multi-UAV system for optimal
wireless coverage and throughput maximization include [9],
[10]. The work in [8] maximizes the revenue of the mobile
crowd-sensing (MCS) carrier and the UAV via a joint opti-
mization of route planning and task assignment subject to
practical constraints of battery capacity and sensing latency.
A 3-D deployment plan for a flying base station that serves
the users according to their service requirements is presented
in [11]. The placement optimization of dynamic standalone
drones equipped with a steerable antenna is proposed in [12].

In [13], the authors maximize the minimum average rate
and individual uplink energy-efficiency of multiple ground
nodes supported by a UAV. The works [17], [18] maximize
the downlink GEE of a UAV-based communication system
flying at a constant altitude using the sequential convex
programming-based trajectory optimization techniques. The
trajectory optimizations considered in [14], [15], and [16]
maximize the downlink throughput. In our previous work [3],
we have determined the energy-efficient hovering altitude for a
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standalone AAP deployed for orthogonal downlink broadcast
transmission. In another work [19], we have optimized the 3-D
locations of a multi-UAV system which maximize the uplink
GEE of the system in the presence of inter-cell interference.
A detailed survey on the works that consider energy-efficient
UAV deployment is available in [20].

Besides the placement optimization of the AAP, cost mini-
mization is of great importance for the effective deployment of
the aerial communication network. In order to minimize the
installation cost of UAVs and charging stations, an efficient
mixed-infrastructure placing was proposed in [21]. In [22],
an economic analysis aimed at optimizing both coverage and
capital cost is carried out, while [23] provides a novel technical
solution for a sensor network and provides information on
the price of all its components. However, the capital cost is
just one part of the total expenses, which depend on how the
system operates: parameters such as the number of UAVs, the
UAV swap time, and the depth of discharge (DOD) need to
be optimized.

The works [4]- [16] position UAVs for optimizing
communication-related parameters such as sumrate, transmit
power, or coverage region without considering the energy-
consumption factors of the UAVs. [13], [17], and [18] max-
imize the GEE by considering a simple line-of-sight (LoS)
single UAV system. Furthermore, from [20], none of the
existing works, to the best of our knowledge, have considered a
UAV placement problem that jointly maximizes the uplink and
downlink GEE by considering both the communication and
UAV-related energy consumption factors. Moreover, the UAV
energy consumption models used are not directly applicable
to a multi-rotor UAV-based system. In addition to this, opera-
tional cost minimization by optimizing the system parameters
of a UAV network has, to the best of our knowledge, not yet
been considered in the literature.

A. Main Contributions and Paper Organization

The work proposes an energy- and cost-efficient rotary-
wing UAV-assisted aerial communication network deployed to
provide temporary service to a set of ground UEs. The main
contributions are:
• We propose and use hovering and flying power con-

sumption models that apply to any multi-rotor UAV.
The power consumption models used in [17] cannot be
applied directly to a multi-rotor UAV since they are based
on the axial momentum theory applied to a single-rotor
UAV.

• The altitude and beamwidth optimization considering
both the communication-related and UAV energy con-
sumption factors that maximize both the uplink and the
downlink GEE has, to the best of our knowledge, not
been investigated in the literature.

• A general framework for the optimal horizontal posi-
tioning of UAV in a target area is proposed through
the polynomial-time complex multi-level circle packing
(MCP) algorithm. The algorithm applies to the maxi-
mization of different objectives in which the coverage
radius depends on the objective function to be maximized.

HP 2

R

𝑅1

𝜃(2)

Hovering Points (HPs)
HP 1

(𝐪ℎ,1
𝑎 , ℎ𝑎 )
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Idle UAVUser Equipment (UE)

Fig. 1: System setup.

We consider the GEE as the performance matrix and
determine the UAV coverage radius which maximizes
both the uplink and downlink GEE of the system.

• A detailed economic analysis of the aerial network is
provided; furthermore, the operational cost minimization
by optimizing the number of UAVs, the UAV swap time,
the UAV flying velocity, and the depth of discharge of
the UAV battery has, to the best of our knowledge, not
yet been considered in the literature.

Section II describes the system setup and assumptions
taken for this study, while in subsection II-C, we derive the
expression to estimate the power consumed by a multi-rotor
UAV during its hovering, horizontal and vertical movements.
The optimal altitude and beamwidth that maximize both the
uplink and the downlink GEE are determined in Section III-A
and Section III-A1, respectively. Using the optimal altitude and
beamwidth determined from Section III-A, in Section III-B we
propose a general framework for determining the minimum
number and location of hovering points (HPs) to cover all the
UEs in a given geographical region, using a polynomial-time
complex MCP algorithm. The different factors that affect the
deployment and operational cost of the considered network are
discussed in Section IV1. The annualized cost of the system is
minimized by suitably selecting the onboard battery parameter
and the optimal horizontal flying velocity of the UAV. A
detailed discussion of the main findings and the future scopes
of work are provided in Sections V and VI. In this paper,
boldface lowercase letters are used to denote vectors.

II. SYSTEM MODELLING AND DEFINITIONS

We consider a delay-tolerant network consisting of a set
of uniformly distributed UEs with a density of λuUEs/m2

over a circular geographical area of radius R m. We assume
that each UE needs to send/receive data bits to/from the AAP
every Tn seconds (s). Our objective is to deploy a single
moving AAP in an energy- and cost-efficient way so that all

1This work considers the GEE HPs determination problem and the DOD
optimization problem not jointly, but sequentially; the later one takes the set
of energy-efficient HPs as the input to find the cost-efficient DOD.
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the UEs are served by the AAP once every Tn s. In order to
do so, the AAP will follow a fly-hover-communicate protocol,
meaning it will fly from one HP to another, hovers for the time
needed to exchange the data packets, then moves on to the next
destination as shown in Fig. 1. The AAP is deployed to serve
the UEs for tmiss hrs/day and, if the active time (tactive) of the
serving-UAV is less than tmiss, then the idle UAV will replace
the out-of-power UAV while the latter descends to recharge.

We assume the AAP is equipped with a directional antenna
with the antenna gain in the direction (ε, κ, ) given by,

Ga =

{
Go

θ2
−θ ≤ ε ≤ θ,−θ ≤ κ ≤ θ,

g ≈ 0 otherwise,
(1)

where Go ≈ 2.2846 [5], and since the side lobe gain of the
antenna is assumed very small compared to the main lobe
gain, we can also assume g ≈ 0. The half-power beamwidth
of the antenna in the elevation and the azimuth plane is 2θ. The
UEs are equipped with an omnidirectional antenna of unitary
gain. Hence the coverage area of a single AAP hovering at an
altitude ha will be a circular region of radius Ra = hatanθ
as shown in Fig. 1. In addition, we assume an orthogonal
multiple access transmission scenario between the AAP and
its served UEs, where each UE in the geographical area is
allocated a fixed bandwidth (e.g., in a narrowband frequency
division multiple access system [26]).

The line-of-sight (LoS) and non-LoS (NLoS) air to ground
channel links are considered to model the probabilistic mean
path loss between the AAP and the UEs [4], given by [19]:

Li = Pl(φi)×
d2i η

2
l

go
+ (1− Pl(φi))×

d2i η
2
nl

go
, (2)

=
d2i
go

[
Pl(φi)

(
η2l − η2nl

)
+ η2nl

]︸ ︷︷ ︸
Lm(φi)

, (3)

where Pl(φi) = 1/ {1 + a exp [−b(φi − a))]} is a modified
Sigmoid function that closely represents the LoS probability
between the AAP and the ith UE located at a distance of ri
from the center of the AAP coverage area, corresponding to an
elevation angle of φi = (180/π)tan−1(ha/ri) with the AAP
hovering at an altitude ha; the parameters a and b are directly
linked to the environment variables such as the mean number
of buildings, their height distribution, and the ratio of built-up
land area to the total land area using the two variable surface
fitting [4]; go is the channel gain at a reference distance of
1m; di =

√
r2i + h2a. Since the work considers the planning

phase of the AAP deployment, we consider long term channel
random variation rather than the small scale fading component
[4], [6], [19]; ηl and ηnl are the mean values of the excess loss
due to the man-made structures associated with the LoS and
NLoS links, respectively.

A. Downlink data rate

Consider an AAP deployed to send independent information
to a set of UEs through orthogonal channels be hovering at
the HP1 position as shown in Fig. 1. The equivalent average
SNR defined as the ratio of average received signal power to
the noise power, received by a UE located at a distance of

ri from the center of the coverage region is γdi =
GaP

d
i

Γiσ2Li
;

Γi ≥ 1 represents the gap between the channel capacity and
the achievable rate due to the practical coding scheme and
modulation scheme used; σ2 is the variance of the zero-mean
additive white Gaussian noise; P d

i is the power allocated for
the ith UE. Hence the corresponding achievable data rate of
the UE in bits per second is given by:

Sd
i = Blog2

(
1 + γdi

)
, (4)

where B is the bandwidth allocated to each UE. The average
sum rate, Sd, defined as the expectation of the sum of
the achievable rate by all the UEs in the AAP coverage
area is obtained by taking an expectation over the uniformly
distributed UEs with a density λu:

Sd = Bλu

∫ Ra

0

2πSd
i ridri, (5)

where Ra = hatanθ. The integral in (5) is difficult to evaluate
because of the excess path loss factor, Lm(φi). Since the
LoS probability is a decreasing function of ri, we approx-
imate Pl(φi) ≈ Pl(φedge)∀i, where Pl(φedge) is the LoS
probability of the edge UE [19] with φedge = 90o − θ (in
deg). Thus the average rate value evaluated using (5) with
Lm(φi) = Lm(φedge)∀i is the lower bound of the actual rate
value expressed as,

Sd = 2πλuB

∫ Ra

0

log2

(
1 +

G
′

(r2i + h2a)

)
ridri, (6)

= B
′
(
G

′
+ h2asec2θ

)
log(G

′
+ h2asec2θ)

− B
′
(
G

′
+ h2a

)
log(G

′
+ h2a)

− B
′ [(

h2asec2θ
)

log(h2asec2θ)− h2alog(h2a)
]
, (7)

where G
′

=
GaP

d
i go

Γiσ2Lm(θ)
, B

′
= Bπλulog2e.

B. Uplink data rate
A different deployment scenario in which the AAP hovering

at HP1 of Fig. 1 is deployed to collect independent data from
a set of ground UEs is considered in this section. We consider
the uplink power control implemented according to the 3GPP
technical report [24], through which each UE chooses its
uplink transmit power so that the received SNRs at the AAP
from all the UEs in the coverage region are equal. Hence, the
average transmit power chosen by a UE located at a distance of
di from the AAP location in the uplink power control scheme
is represented in its basic form as P u

i = PaLi; where Pa is the
target power to be received at the AAP. Because of the uplink
power control, the received SNR from all the UEs will be the

same: γui =
GaPa

Γiσ2
and the uplink data rate will be different

from the downlink data rate:

Su
i = Blog2 (1 + γui ) . (8)

In addition to this, all the UEs lying in the coverage area of
the AAP will have the same data rate given by (8); hence the
sum of the data rate is given by,

Su = Bπλuh
2
atan2θSu

i . (9)
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TABLE I: UAV Parameters [30].

Label Definition Value
W Weight of the UAV in Newton 35.28 N
NR Number of rotors 4
Fn Upward thrust by the nth rotor -
v UAV’s horizontal flying velocity -
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.2113 m2

ρ(ha) Air density -
CD Drag Co-efficient 0.022
Ar Rotor disc area 0.083 m2

∆ Profile drag coefficient 0.012
s Rotor solidity 0.05

C. UAV power consumption model

Lift

𝑊

𝐹

DragForward

𝑣

𝑊

𝐹1

𝐹4 𝐹3

𝐹2

Fig. 2: Forces acting on a multi-rotor UAV (NR = 4).

The UAV carrying the radio access node ascends vertically
to a HP, hovers there, and then moves horizontally from
one HP to another. In this section, we provide the general
expressions to calculate the total power consumed by a UAV
during its hovering, horizontal and vertical movements. The
definitions and values of all the variables used in this section
are given in Table I. From the free-body diagram, as shown
in Fig. 2, of the considered multi-rotor UAV,

NR∑
n=1

Fn −W = 0. (10)

The total power consumed by the UAV during its horizontal
flying from one HP to another, as shown in Fig. 1, is derived
using the axial momentum theory [17], [30]. Applying (10)
in (67) of [17], the power required for forward flight, by
assuming identical rotors (Fn = F ∀n), is given by,

Phfly(v) = NRPb

(
1 +

3v2

v2tip

)
︸ ︷︷ ︸

Pblade

+
1

2
CDAfρ(ha)v3︸ ︷︷ ︸

Pfuselage

+ W

(√
W 2

4N2
Rρ

2(ha)A2
r

+
v4

4
− v2

2

)1/2

︸ ︷︷ ︸
Pinduce

, (11)

where Pb =
∆

8
ρ(ha)sArv

3
tip, ρ(ha) = (1 −

2.2558.10−5ha)4.2577. Pblade and Pfuselage are the powers
required to overcome the profile drag forces of the rotor
blades and the fuselage of the aerial vehicle that oppose its
forward movement, respectively, while Pinduce represents the
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Fig. 3: UAV Power consumption components.

power required to lift the payload. The hovering power is
obtained by substituting v = 0 in (11):

Phov(ha) = NRPb +
W 3/2√

2NRρ(ha)Ar

. (12)

Using (12.35) of [30], the power required by the aerial vehicle
to climb vertically with a rate vc m/s is expressed as,

Pvfly =
W

2

(
vc +

√
v2c +

2W

NRρ(ha)Ar

)
+NRPb. (13)

The effect of reduced air density at higher altitudes, which
demands additional force to the propeller of the UAV, is
captured by modeling the hovering power as an increasing
function of the altitude, as reported in (12). It is known from
(11) that the drag forces are increasing functions of v, and are
the power components that oppose them. On the other hand,
the Pinduce is a decreasing function of v; hence, there exists an
optimal velocity that minimizes Phfly(v), as shown in Fig. 3.

III. ENERGY EFFICIENT HOVERING POINTS

In this section we find the energy-efficient 3-D HPs of
the AAP in the given geographical area which maximize the
uplink and the dowlink GEE subject to minimum Quality-
of-Service (QoS), altitude, and power constraints. The corre-
sponding downlink GEE maximization problem is formulated
as follows:

(P1) : maximize
{qa,j}

∑
j∈A

αj
∑
i∈U

thβ
j
i S

d
i∑

j∈A
th

(
Phov(ha) +

∑
i∈U

βjiP
d
i

)
+ tfPfly(v)

,

s.t. hmin ≤ qav,j ≤ hmax, ∀j ∈ A, (14)

Sd
i ≥ Sd

o ∀i ∈ U , (15)∑
i∈U

βjiP
d
i ≤ P d

max ∀j ∈ A, (16)∑
j∈A

βji = 1 ∀i ∈ U , (17)

‖qa
h,j − β

j
i q

ue
h,i‖ ≤ |qav,j | tanθ ∀j ∈ A. (18)

The numerator of (P1) is the sum of the data rate of all the UEs
in the given geographical area. The binary indicator variable
αj is equal to 1 if the AAP is hovering at the jth HP with
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coordinates (qa
h,j , q

a
v,j), or to 0 otherwise; βji is equal to 1 if

the ith UE located at (que
h,i, 0) is covered by the AAP while

hovering at the jth HP; A and U are the sets of the HPs and
UEs, respectively. (14), (15), and (16) are the altitude, QoS
and power constraints; hmin and hmax are the minimum and
maximum permitted AAP altitudes. (17) expresses that each
UE should be covered by the AAP while hovering at any of the
|A| HPs. (18) is the coverage region constraint that couples the
horizontal and vertical coordinates of a HP. The denominator
of the ratio in (P1) is the sum of the hovering and the flying
energy consumption, with th and tf being the hovering time at
a HP and the total flying time respectively. (P1) has the form
of a mixed-integer non-linear fractional problem (MINLFP),
which is exponentially complex to solve due to the constraint
(18). Considering the uplink GEE to be jointly maximized
with the downlink GEE would enhance the complexity further;
hence we decouple the AAP placement problem in the vertical
and horizontal dimensions [5], [19].

A. Optimal vertical coordinates of the hovering points

The energy-efficient hovering altitude of the AAP consider-
ing both the uplink and downlink communication between the
AAP and the UEs is analytically derived in this section. Here
we consider the instant in which the AAP is hovering at HP1 as
shown in Fig. 1 with 3-D coordinates (qa

h,1, q
a
v,1) = (0, 0, ha).

The problem that finds the optimal altitude that maximizes
both the uplink and downlink GEE of the considered aerial
communication network subject to the altitude, power, and
QoS constraints can be formulated as,

(P2) : maximize
ha

(GEEd,GEEu) ,

s.t. hmin ≤ ha ≤ hmax, (19)
Sd
i ≥ Sd

o ;Su
i ≥ Su

o ∀i : ri ≤ Ra, (20)
P d
t ≤ P d

max, (21)
P u
i ≤ P u

max ∀i : ri ≤ Ra, (22)

where, GEEd = Sd/P
d
t and GEEu = Su/P

u
t are the uplink

and downlink GEE of the system, respectively, with P d
t , P u

t

being the respective total downlink and uplink AAP power
consumption while hovering, expressed by (23) and (24):

P d
t = πλuh

2
atan2θP d

i︸ ︷︷ ︸
Pd

com

+Phov(ha), (23)

P u
t =

2πλuPaLm(θ)tan2θh4a[tan2θ + 2]

4go︸ ︷︷ ︸
Pu

com

+Phov(ha), (24)

where P d
com and P u

com are the respective total communication-
related power consumption values; P u

com of (24), is obtained
by averaging the power profile over a uniform distribution of
density λu, with the approximation Lm(φi) ≈ Lm(φedge) ∀i :
ri ≤ Ra [19]. (19) and (20) are the altitude and QoS
constraints with Sd

o , S
u
o being the respective minimum down-

link and uplink data rates in bps; (21) and (22) are the
total downlink and individual UE uplink power constraints.
Considering the edge UE (ri = Ra), the uplink QoS constraint
becomes Pa = δuΓiσ

2/Ga; furthermore, the downlink QoS

constraint, (20), and the power constraints, (21) and (22), can
be equivalently represented as the altitude constraints in (25),
(26), and (27):

ha ≤ hdmax,δd = cosθ

√
G

′

δd
, (25)

ha ≤ hdmax,P =

√
P d

max − Phov

πλutan2θP d
i

, (26)

ha ≤ humax,P = cosθ

√
goP

u
max

PaLm(θ)
, (27)

where δd = 2S
d
o /B − 1 and δu = 2S

u
o /B − 1. Hence, (P2) can

be reformulated as

(P2.1) : maximize
ha

(GEEd,GEEu) ,

s.t. hmin ≤ ha ≤ min
{
hmax, h

d
max,δd , h

d
max,P, h

u
max,P

}
(28)

Proposition 2: For given θ, Sd
o , and Su

o values;
Statement A: The GEE of the system considering the downlink
communication between the AAP and the ground UEs lying
in the AAP coverage region is an increasing function of the
hovering altitude.
Statement B: The GEE of the system considering the uplink
communication between the AAP and the ground UEs lying
in the AAP coverage region is an increasing function of the
hovering altitude.
Proof : The derivative of the numerator and the denominator
of the downlink GEE with respect to ha are given by:

S
′

d

2haB
′ = sec2θlog

(
G

′
+ h2asec2θ
h2asec2θ

)
− log

(
G

′
+ h2a
h2a

)
,

(29)

P
′d
t = 2πλuhatan2θP d

i + P
′

hov(ha), (30)

where P
′

hov(ha) = NR
∆

8
ρ

′
(ha)sArv

3
tip −

W 3/2ρ
′
(ha)√

8NRArρ3/2(ha)
with ρ

′
(ha) = −9.6.10−5(1 − 2.2558.10−5ha)3.2577. Hence

the derivative of the downlink GEE with respect to ha is

(
P d
t

)2(Sd

P d
t

)′

= S
′

dP
d
t − P

′d
t Sd,

> 0 ∀h ∈ {hmin, hmax} . (31)

The increasing nature of the uplink GEE with respect to
ha can be proved using similar steps used in the proof of
Statement A with the following numerator and denominator
derivatives:

S
′

u = 2Bπλutan2θSu
i ha, (32)

P
′u
t =

2πλuPaLm(θ)tan2θ[tan2θ + 2]h3a
go

+ P
′

hov(ha).(33)

Thus, by Proposition 1, the globally energy-efficient hov-
ering altitude for the AAP that maximizes both the uplink
and downlink GEE (the objective function of (P2) ) is hopt =

min
{
hmax, h

d
max,δd , h

d
max,P, h

u
max,P

}
.
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1) Optimal Beamwidth: For a given altitude, both the up-
link and downlink GEE of the system vary with the beamwidth
of the antenna at the UAV. As the beamwidth increases, the
coverage area increases, the effective antenna gain given by
(1) decreases, and the additional path loss factor, Lm(θ),
increases. Here we find the optimal beamwidth that jointly
maximizes the uplink and downlink GEE of the system.
Proposition 3: For a given QoS constraint, the uplink-GEE is
an increasing function of the beamwidth.
Proof : The derivative of the uplink sum rate is given by:

dSu

dθ
= 2Bπλuh

2
atanθsec2θlog2 (1 + δu) > 0. (34)

Since P u
com << Phov(ha), P u

t ≈ Phov makes the denominator
of the uplink GEE an independent function of θ. Hence, the
optimal beamwidth that maximizes the uplink-GEE of the
considered system is θuopt = θmax.

Using (7) and P u
t ≈ Phov, it can be pointed out that

the downlink GEE is neither an increasing function nor a
decreasing function of θ. Hence, for a given hovering altitude,
the optimal θ that maximizes the downlink GEE can be
determined using the ternary search method, as detailed in Al-
gorithm 1. Therefore, the antenna beamwidth that maximizes

Algorithm 1: Optimal Beamwidth.

1 Input: θmin,θmax;
2 Take any two points θ1, and θ2 : θmin < θ1 < θ2 <

θmax. Calculate GEEd(θmin), GEEd(θ1), GEEd(θ2),
GEEd(θmax);

3 if GEEd(θ1) < GEEd(θ2) then
4 θopt 6∈ [θmin, θ1):θmin = θ1;

5 if GEEd(θ1) > GEEd(θ2) then
6 θopt 6∈ (θ2, θmax, ]:θmax = θ2;

7 if GEEd(θ1) == GEEd(θ2) then
8 θmin = θ1; θmax = θ2;

9 Repeat Step 2 to Step 7 until |θmin − θmax| ≤ ψ.
Output:θdopt = θmin.

both the uplink and the downlink GEE is θopt = min(θuopt, θ
d
opt).

Hence, the corresponding radius of the coverage region is
given by Ropt = hopttanθopt.

B. Optimal horizontal coordinates of the HPs

In this section, we determine the horizontal coordinates of
the optimal HPs for the AAP

({
qa
h,j

})
so that all the UEs

in the given geographical region will be covered by the AAP
once every Tn s. The vertical coordinate of all the HPs will be
equal to the optimal altitude determined from Section III-A,
i.e. qav,j = hopt ∀j ∈ A. Since the coverage region of the
considered AAP is circular in shape, a full coverage of the
given area is only achievable through the controlled overlap-
ping among the coverage regions centered at

{(
qa
h,j , 0

)}
.

The two main related challenges are finding the minimum
number of HPs and their horizontal coordinates so that the
given area is fully covered. We propose a MCP algorithm for

doing so, using the circle packing theory. With the optimal
coverage radius Ropt from Section III-A, the problem takes
the form of a circle packing problem, in which the given
circle of radius R needs to be covered by smaller circles of
radius Ropt. A regular-pentagon-based 5-circle packing pattern
is considered in the proposed novel MCP algorithm. As shown
in Fig. 7, the 5-circle packing covers a circle of radius ΛRopt
by placing five equi-radius smaller circles of radius Ropt about
the center of the larger circle, where Λ = 1.618 is the golden
ratio [25]. The smaller circles are placed according to the
solution of the 5-disks problem, which guarantees the least
overlapping between the adjacent circles [25]. The centers of
the smaller circles arranged this way form the vertices of a
regular pentagon of side length 2sin(36o)Λ Ropt, with vertices
located at

{
(xlk, y

l
k)
}

where,

xlk = xl−1 +Rlcos
(

2πk

5

)
for k ∈ {0, 1, ...4} , (35)

ylk = yl−1 +Rlsin
(

2πk

5

)
for k ∈ {0, 1, ...4} , (36)

with (xl−1, yl−1) as the center of the pentagon and Rl = Ropt.
Thus, to cover a circular region with R > ΛRopt, we initially
place this 5-circle pattern in multiple levels as shown in Fig.
4, and then the radius of each circle is adjusted according to
the farthest UE’s position in the circle.
Proposition 2: Using the multi-level 5 circle packing method,
the maximum number of HPs required to cover a given
circular region of radius R by a fly-hover communicating
AAP with a coverage radius of Ropt is given by 5Mp , where

Mp =

⌈
1

log2(Λ)
log2

(
R

Ropt

)⌉
.

Proof : According to the multi-level 5 circle packing
method, the radius of the circle to be covered in each level is
1/Λ times the radius of the circle of the previous level. This
multi-level packing continues until the radius of the circle to
be covered is less than or equal to the coverage radius of the
AAP, giving the inequality:

R
1

ΛMp
≤ Ropt. (37)

Thus, the total number of levels required is given by:

Mp =

⌈
1

log2(Λ)
log2

(
R

Ropt

)⌉
. (38)

Hence the maximum number of smaller circles (HPs) of radius
Ropt required to cover the given geographical region of radius
R by the 5-circle multi-level packing is 5Mp .

1) MCP Algorithm: The MCP algorithm given in Algo-
rithm 2 can be grouped into two parts: in the first part (line
1 to line 10), the locations of the HPs are determined using
the multi-level 5-circle packing method; in the second part
(lines 11 to 16), the beamwidth of the antenna at each HP
is adjusted based on the UE positions in the coverage area
so that the constraints (17) and (18) are satisfied. Consider
R = 733m, hopt = 102m and θ = 70o; using (38), the total
number of circle packing levels required to cover the given
area is 2. As shown in Fig. 4, in the first level of placement
(l = 1), the location of the centers of 5 smaller circles of
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Algorithm 2: Multilevel circle packing (MCP).

1 Input:Ropt, R, l = 1;
2 Find the number of required levels using (38);
3 while l ≤Mp do
4 if l==1 then
5 Find the center of circles using (35) & (36)

with (xl−1, yl−1) = (0, 0) & Rl = R/Λ;
6 else
7 Rl = Rl−1/Λ

8 For each of the (xl−1k , yl−1k ), find the center of
5 circles using (35) & (36) with
(xl−1, yl−1) = (xl−1k , yl−1k );

9 l=l+1;

10 A =
{

(x
Mp

k , y
Mp

k , hopt)
}

;
11 For each j ∈ A, find the unique set of UEs covered,
Uj ;

12 if isempty( Uj) then
13 A = A− {j};
14 else

15 θ(j) = arctan
(

[max(ri), i ∈ Uj ]
hopt

)
;

16 Output:A, the set optimal HPs to cover the UEs in
the given geographical area.

radius R1 = R/Λ are determined using step 5 of the MCP
algorithm (A,B,C,D,E of Fig. 4). In the next level, step 8 is
used to determine the location of the centers of 5 smaller
circles of radius R2 = R1/Λ that cover the circle of radius
R1. This step is repeated for each of the 5 determined centers
from the first level. The centers of the smaller circles of radius
R2 are the HPs that cover the given geographical area. As
seen in Fig. 4, the determined HPs lie on the vertices of
5 smaller pentagons with circumcenters A, B, C, D, E. For
any given R, this multi-level circle packing continues until
the radius of the circle to be covered is less than, or equal
to, the coverage radius of the AAP, or until l = Mp. In the
second part, redundant coverage of the same UE by multiple
HPs and the HPs without any UEs in the coverage region
are removed. The coverage radius associated with each HP is
readjusted as the radial distance of the farthest UE lying in the
respective coverage areas by adjusting the antenna beamwidth
using step 15. It should be noted that, with given R and Ropt,
the first part takes a total running time of O [log2 (R/Ropt)] to
find the initial set of HPs, whereas the second part needs to

perform a total of
|A|−1∑
f=0

(|A| − f)(|A| − f − 1) pair checks to

remove the redundant UE coverage where |A| = 5Mp . Hence
the complexity of the proposed MCP algorithm is, at worst
O
[
log2 (R/Ropt) + 5ωlog2(R/Ropt)

]
, a polynomial quantity of

the input parameters R and Ropt; where ω = 2/log2Λ. It
should be noted that this algorithm could maximize different
objective functions in which the coverage radius of the AAP
will be determined by the very objective function. Also, it
can be adapted to different packing patterns by replacing the

equations in step 5 and 8.
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Fig. 4: AAP coverage circles positioned using the first part
of the MCP algorithm for R = 733m.

IV. ECONOMIC ANALYSIS AND COST OPTIMISATION

In this section, we describe the cost optimization method
developed for an aerial network and the parameters it uses.
The total aerial network deployment cost consists of two parts:
a) the cost of purchasing the required number of UAVs and
recharging stations, called the capital cost; b) the maintenance
and replacement cost associated with the long-term operation
of the network, represented by the operational cost. The UAV
is equipped with two TB47D LiPo Battery, for a total capacity
Ebatt = 199.8 Wh. Our objective is to minimize the network
deployment cost by optimally planning the operational param-
eters.

The financial analysis is based on the annualized cost of the
system (ACS), defined as the sum of the annualized capital,
maintenance, and replacement costs [27]:

ACS = Ccap,a + Cmain,a + Crep,a. (39)

The annualization is needed in order to report different ex-
penses to the same time interval (year of reference) so that
expenses happening at different times can be compared. Ccap,a
is given by (40), where the capital cost is multiplied by the
capital recovery factor (CRF), i.e., the portion of capital that
is paid back every year to the financier:

Ccap,a = (nuCu) + (nsCs)︸ ︷︷ ︸
Ccap

· I (1 + I)
lt

(1 + I)
lt − 1︸ ︷︷ ︸

CRF

, (40)

with Cu and Cs being the purchasing cost per unit of,
respectively, UAV and charging station. The financing method
is based on debt, with a duration of 15 years (lifetime of the
system), a nominal interest rate of 4% [28] and an inflation
rate of 2%, meaning a real interest rate I ≈ 2%. ns is the
number of charging stations and nu, the number of UAVs in
the system (both active and idle), determined as:

nu =

(
tdead

tactive
+ 1

)⌈
min

(
|A|,

tlap(v)

Tn

)⌉
, (41)
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where tdead represents all the dead time an AAP spends
recharging and ascending/descending, as expressed in (42);
tactive is the total active time of a UAV; tlap(v) is the time
needed to complete a lap, stopping at all the HPs. Given (40)
and (41), for a low Tn value, the number of UAVs, and thus
the capital cost, is determined by the number of HPs (|A|).
Hence, by finding the minimum number of HPs required to
cover all the UEs (Algorithm 2), we minimize the capital cost.
The tdead value is calculated assuming a maximum charging
power Pch,max, a DOD that can go from 5% to 95%, and a
fixed charging efficiency ηch, as follows:

tdead =
EbattDOD
Pch,max

ηch + tex, (42)

where tex is the unproductive time spent by the UAV climbing
to take its position in the network and descending for recharge.
The cost of the electricity consumed to recharge the batteries
is given by the product of the energy provided by the charging
station and the cost of electricity in the network deployment
region (in the UK, Cel = 0.14£/kWh):

Cch =
tmiss

tactive
Cel

EUAV(v, ha)

ηch
, (43)

where EUAV(v, ha) = |A|thPhov(ha) + tfPhfly(v) + texPvfly
and tmiss = 2hr is the duration of an entire mission. Cmain,a
represents both the yearly maintenance cost (assumed equal
to 1% of the capital cost) and the cost of a recharge, ad-
justed for inflation f after n years using Cmain,a = (Cch +
1%Ccap) (1 + f)

n. The last element of (39) is represented by
the annualized cost of battery replacement, Crep,a, calculated
using,

Crep,a = Cbat
I

(1 + I)
lbat − 1

, (44)

with lbat being the lifetime of the battery and Cbat its replace-
ment cost (£155). For simplicity, the lifetime of the battery
is assumed to depend solely on the DOD, and it is simulated
using the model presented in [29], reported in (45):

nc = 8.131e4(−0.03809DOD) + 2.151e−8(0.2433DOD). (45)

This returns the number of cycles nc a LiFePO4 battery can
withstand at a certain DOD, which is then converted into years
using the mission duration and its frequency.
Ccap,a, Cmain,a, and Crep,a can be minimized by suitably

selecting the DOD value and the velocity of the UAV. Ccap,a
can be minimized by increasing the DOD, since this increases
tactive. It can be noted that tdead also grows with the DOD, but
at a slower rate, due to the attenuation effect of tex. However,
(41) is a step function, so the variations in these parameters
do not always affect nu. By (43), Cmain,a can be reduced by
increasing tactive through the selection of a high DOD value. On
the contrary, since the lifetime of the battery is increased by a
low DOD value, the battery replacement cost Crep,a can only be
minimized by selecting a low DOD value. For a fixed network
delay tolerance, Tn, the UAV velocity affects both the power
consumption and the number of UAVs: though the minimum
power consumption is reached at an average speed of 20
m/s (Fig. 3), the minimum cost is expected to be achieved

TABLE II: Simulation Parameters.

Parameter Value Parameter Value
go 1.42× 10−4 B 106 Hz
hmax 120m λu 0.001UEs/m2

δd, δu 9 dB hmin 10 m
Γi ∀i ∈ U 1.2 Pd

max 500W
Pu

max 1W Cu £2000
Cs £1000 Cbat £155
ηch 0.95 Pch,max 180W

when the UAV is operated at its maximum velocity because
a higher velocity minimizes the capital cost by reducing the
tlap(v) value. Considering these trade-offs, the values of DOD
and horizontal flying velocity that minimize the ACS will be
numerically determined in the next section.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide the results of the numerical eval-
uation in support of our analysis. The considered simulation
parameters are given in Table II.

A. Energy efficient hovering points
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Fig. 5: GEE variation with the hovering altitude.

Fig. 5 shows the variation of the normalized GEE with
the hovering altitude for both the uplink and downlink
communication parts, plotted using (7), (23), (9), and (24).
The (a, b, ηl, ηnl) parameters used for rural, urban, and
dense-urban regions are, respectively, (4.83, 0.43, 1.01, 11.22),
(9.6, 0.16, 1.12, 10), (12.08, 0.11, 1.2, 14.12) [4]. As proved
in Proposition 1, both the uplink and downlink GEE are
increasing functions of the hovering altitude in the three
geographical regions considered. As the altitude increases, the
received SNR at each UE (downlink) decreases because of the
increasing di value. In contrast, the received SNR at the AAP
from the UEs (uplink) is independent of the hovering altitude
because of the uplink power control mechanism. Nevertheless,
a higher hovering altitude demands the UEs to transmit more
power to deliver the target power (Pa) at the AAP. However,
this increase in the communication-related power consump-
tion is negligible, if compared to the UAV hovering power
(Phov(ha))). Both the AAP coverage area and the UAV power
consumption increase with the altitude, but the effect of the
larger area (higher number of covered UEs) is more relevant
in both cases, which makes the downlink and uplink GEE
monotonically increasing functions of the hovering altitude. It
should be noted that, in both cases, if Phov(ha) is neglected,
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the increase in the communication power becomes significant
and the GEE becomes in fact a decreasing function of the
altitude. Thus hopt(Phov(ha) = 0) = hmin, which is not only
energy-inefficient, but also requires more HPs to cover the
given area (cost-inefficient).
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Fig. 6: GEE variation with the antenna beamwidth.
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Fig. 7: AAP coverage circles positioned using the first part
of the MCP algorithm for R = 453m.

Fig. 6 shows the variation of the GEE with half of the
half-power beamwidth, θ, in rural, urban, and dense-urban
scenarios. As said in Section III-A1, the coverage radius is
an increasing function of θ; however, for a given height, Fig.
6 shows that the downlink GEE increases with θ up to θdopt
(obtained using Algorithm 1), then decreases. This is because
the LoS probability is a decreasing function of θ and, after
θdopt, the high path loss NLoS links become dominant; hence,
the gain in sum rate achieved by a greater number of covered
UEs is overcompensated by a drop in the received SNR. On
the other hand, the uplink GEE is an increasing function of θ:
because of the power control mechanism, the uplink sum-rate
grows with the number of UEs in the coverage region, which
is, in turn, an increasing function of θ. However, the maximum
value of θ will be decided by the P u

max of the edge UE.
Furthermore, the optimal beamwidth decreases as we move
from rural to dense-urban regions due to the presence of taller
and more numerous buildings. In both the uplink and downlink
scenarios, the plots with Phov(ha) = 0 are decreasing functions
of θ, forcing the elevation angle between the UEs and the AAP
to be 0o. This means that, with Phov(ha) = 0, the AAP should
hover directly above the UE locations to maximize the GEE.

This would be a sub-optimal result, as the number of HPs
would be equal to that of UEs.
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Fig. 8: 3-D HPs using the MCP algorithm for R = 453m.

Fig. 8 shows the final HP locations in the given geographical
area of R = 453m, determined using the proposed MCP
algorithm of Section. III-B. The simulation considers 10
UEs randomly distributed in the given geographical area. As
explained in Section III-B and shown in Fig. 7, R = 455m
requires one level of circle packing. Using the HPs from the
first part of Algorithm 2 as the input, the second part removes
the redundant coverage of a UE by different HPs and then
discards the HPs with no UEs in its coverage region. As seen
in Fig. 8, each UE is covered by only one of the HPs and one
of these (HP5, in Fig. 7), having no UEs in its coverage area,
is removed, reducing the total number of HPs from 5 to 4. In
addition, the coverage radius, hence the beamwidth, of each
HP is adjusted considering the position of the farthest UE in
each coverage region.

B. Cost analysis results

Fig. 9 shows the variations of the ACS with the UAVs
velocity, the DOD of their batteries, the hovering altitude, the
data packet sizes (D) to be exchanged between the UAV and
the users, and the maximum allowed time between two UAV
passages Tn. The cost analysis is carried out using the set of
HPs from the previous section as input. The hovering time
at an HP is determined as the time required to complete the
uplink and the downlink transmission: th=D/Su

edge +D/Sd
edge.

The DOD value that minimizes the annualized cost of the
system described in (39) depends on the UAV velocity and
tex. As the curves within the lower black circle in Fig. 9
show, with a small data size (50 Mbits) the velocity should
be kept just above 17m/s, due to the decrease of tlap(v)
in (41), which in turn decreases the number of UAVs. As
velocity increases further, ACS keeps decreasing, albeit with
a slowing pace, due to the flying time decreasing, while the
hovering time is constant. At even higher velocity the power
consumption grows, draining the battery quickly enough to
require the deployment of extra UAVs and greater electricity
consumption, affecting (40) and (43), and ultimately the ACS.
If Tn is large enough (curves with triangles in Fig. 9), then
tlap(v)/Tn < 1; hence, the number of active UAVs does not
vary with the velocity. Nevertheless, the first component of
(41) is velocity-dependant, so the total number of UAVs still
varies, although by a small margin. The upper curves in Fig.
9 show what happens with larger data size: the hovering time
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Fig. 9: Cost evaluation with Tn = 100s and Tn = 10000s.

increases, thus the flying time becomes negligible and so does
the velocity, resulting in horizontal curves. These curves also
show the effect of altitude: since every UAV swap represents
a waste of energy and time proportional to tex, which, in turn,
has a positive relationship with the altitude, a higher altitude
negatively affects both the number of UAVs and the energy
consumption, raising the cost. This effect is more relevant if
the DOD is low, as swaps happen more often. The negative
effect of higher swap frequency is represented by the gap
between the black and the red curve at different altitudes: when
the altitude is low (upper black circle) a low DOD results more
advantageous, whereas the opposite is true at a higher altitude
(blue circle). Therefore, the optimal DOD becomes higher as
the mission altitude rises. With reference to (39), the trade-off
to determine the optimal DOD is between two opposite forces:
maximization of battery lifetime (lbat in (44)) with low DOD;
minimization of UAV fleet (nu in (41)) and UAV swaps with
high DOD. The latter effects become more relevant as altitude
rises, and tex with it. Still, since the two forces are comparable,
the optimal DOD is unlikely to be extremely high or low, and
it must be determined as a function of the given Tn, D, and
hopt parameters. With the user distribution shown in Section
V-A, Tn = 100s, and a data size of 50 Mbits, the overall
cost is minimized when v = 33m/s and the DOD is 50%,
resulting in an ACS of £1388. Fig. 10 shows the variation of
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Fig. 10: Capital Cost evaluation with 500 Mbits.

Ccap,a with regards to the number of UEs for different values
of R. As seen in the figure, the capital cost depends mainly
on the delay tolerance of the network: for a high Tnvalue,
Ccap,a is independent of the number of UEs or the R-value
since a single AAP could fly-hover communicate with the
UEs sequentially. Furthermore, the average number of HPs
does not increase linearly with the number of UEs because of
the efficient MCP algorithm. Additionally, for a low Tn value,

Ccap,a increases with a decrease in UE density since it needs
more HPs to cover widely separated UEs. Hence the system
is more cost-efficient when it is deployed to cover a smaller
geographical region with a relatively high number of UEs. The
3-D trajectory optimization of an AAP that communicates to
a set of mobile users [31], [32] while flying is left for future
work.

VI. CONCLUSION

In this work, we carried out a cost and energy optimization
of a UAV-based aerial communication network by taking
into account both telecommunications and energy parameters.
Observing that the GEE becomes an increasing function of the
hovering altitude, the 3-D hovering locations of an AAP that
maximize the uplink and downlink GEE are determined using
the proposed MCP algorithm. The coordinates generated this
way are used as input for the cost analysis, which calculates
the number of UAVs needed and how deeply they should
exploit their batteries (optimal DOD) and flying parameter
(optimal velocity), in order to minimize the annualized total
cost of the system. The optimal DOD showed to have an
indirect dependency with the altitude, as this extends the UAV
swap time (tex). The optimal UAV velocity was calculated for
a low data size because its effect becomes less relevant at a
higher data size.
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